51
|
Bi Y, Verginadis II, Dey S, Lin L, Guo L, Zheng Y, Koumenis C. Radiosensitization by the PARP inhibitor olaparib in BRCA1-proficient and deficient high-grade serous ovarian carcinomas. Gynecol Oncol 2018; 150:534-544. [PMID: 30025822 DOI: 10.1016/j.ygyno.2018.07.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/27/2018] [Accepted: 07/01/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Approximately 15-25% of high-grade serous ovarian carcinomas (HGSOC) harbor BRCA1/2 mutations. Inhibition of Poly (ADP-ribose) polymerase (PARP) is synthetically lethal to cells and tumors with BRCA1/2 mutation. Our goal was to investigate the radiosensitizing effects of PARP inhibitor olaparib in HGSOC with different BRCA1 status. METHODS The radiosensitizing effects of olaparib were tested on BRCA1-proficient and deficient HGSOC by clonogenic survival and tumor growth assays. The effects of olaparib and radiation on DNA damage, PARP activity, and apoptosis were determined. RESULTS BRCA1-deficient HGSOC cells were more sensitive to RT alone and exhibited significantly higher levels of olaparib-mediated radiosensitization compared to BRCA1-proficient cells. Furthermore, when combined with RT, olaparib inhibited DNA damage repair and PARP1 activity, increased apoptosis, decreased growth of HGSOC xenografts and increased overall host survival. The growth-inhibitory effects of the combined olaparib and RT treatment were more pronounced in mice bearing BRCA1-deficient tumors compared to BRCA1-proficient tumors. CONCLUSIONS These results provide a preclinical rationale for improved treatment modalities using olaparib as an effective radiosensitizer in HGSOC, particularly in tumors with BRCA1-deficiencies.
Collapse
Affiliation(s)
- Yue Bi
- Oncology Center, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, China; Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ioannis I Verginadis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Souvik Dey
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lilie Lin
- MD Anderson Cancer Center, Division of Radiation Oncology, Houston, TX 77054, USA
| | - Linlang Guo
- Oncology Center, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yanfang Zheng
- Oncology Center, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, China.
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
52
|
Wang C, Bai F, Zhang LH, Scott A, Li E, Pei XH. Estrogen promotes estrogen receptor negative BRCA1-deficient tumor initiation and progression. Breast Cancer Res 2018; 20:74. [PMID: 29996906 PMCID: PMC6042319 DOI: 10.1186/s13058-018-0996-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/30/2018] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Estrogen promotes breast cancer development and progression mainly through estrogen receptor (ER). However, blockage of estrogen production or action prevents development of and suppresses progression of ER-negative breast cancers. How estrogen promotes ER-negative breast cancer development and progression is poorly understood. We previously discovered that deletion of cell cycle inhibitors p16Ink4a (p16) or p18Ink4c (p18) is required for development of Brca1-deficient basal-like mammary tumors, and that mice lacking p18 develop luminal-type mammary tumors. METHODS A genetic model system with three mouse strains, one that develops ER-positive mammary tumors (p18 single deletion) and the others that develop ER-negative tumors (p16;Brca1 and p18;Brca1 compound deletion), human BRCA1 mutant breast cancer patient-derived xenografts, and human BRCA1-deficient and BRCA1-proficient breast cancer cells were used to determine the role of estrogen in activating epithelial-mesenchymal transition (EMT), stimulating cell proliferation, and promoting ER-negative mammary tumor initiation and metastasis. RESULTS Estrogen stimulated the proliferation and tumor-initiating potential of both ER-positive Brca1-proficient and ER-negative Brca1-deficient tumor cells. Estrogen activated EMT in a subset of Brca1-deficient mammary tumor cells that maintained epithelial features, and enhanced the number of cancer stem cells, promoting tumor progression and metastasis. Estrogen activated EMT independent of ER in Brca1-deficient, but not Brca1-proficient, tumor cells. Estrogen activated the AKT pathway in BRCA1-deficient tumor cells independent of ER, and pharmaceutical inhibition of AKT activity suppressed EMT and cell proliferation preventing BRCA1 deficient tumor progression. CONCLUSIONS This study reveals for the first time that estrogen promotes BRCA1-deficient tumor initiation and progression by stimulation of cell proliferation and activation of EMT, which are dependent on AKT activation and independent of ER.
Collapse
Affiliation(s)
- Chuying Wang
- Department of Medical Oncology, The First Affiliated hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061 People’s Republic of China
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL 33136 USA
| | - Feng Bai
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL 33136 USA
| | - Li-han Zhang
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL 33136 USA
| | - Alexandria Scott
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL 33136 USA
| | - Enxiao Li
- Department of Medical Oncology, The First Affiliated hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061 People’s Republic of China
| | - Xin-Hai Pei
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL 33136 USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136 USA
| |
Collapse
|
53
|
van de Ven M, Liu X, van der Burg E, Klarenbeek S, Alexi X, Zwart W, Dijcks F, Bouwman P, Jonkers J. BRCA1-associated mammary tumorigenesis is dependent on estrogen rather than progesterone signaling. J Pathol 2018; 246:41-53. [PMID: 29877575 DOI: 10.1002/path.5105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/01/2018] [Accepted: 05/25/2018] [Indexed: 12/16/2022]
Abstract
Hereditary breast cancers in BRCA1 mutation carriers are mostly estrogen receptor α (ERα)-negative and progesterone receptor (PR)-negative; however, hormone depletion via bilateral oophorectomy does result in a marked reduction in breast cancer risk, suggesting that BRCA1-associated breast tumorigenesis is dependent on hormone signaling. We used geneticaly engineered mouse models to determine the individual influences of ERα and PR signaling on the development of BRCA1-deficient breast cancer. In line with the human data, BRCA1-deficient mouse mammary tumors are ERα-negative, and bilateral ovariectomy leads to abrogation of mammary tumor development. Hormonal replacement experiments in ovariectomized mice showed that BRCA1-deficient mammary tumor formation is promoted by estrogen but not by progesterone. In line with these data, mammary tumorigenesis was significantly delayed by the selective ERα downregulator fulvestrant, but not by the selective PR antagonist Org33628. Together, our results illustrate that BRCA1-associated tumorigenesis is dependent on estrogen signaling rather than on progesterone signaling, and call into question the utility of PR antagonists as a tumor prevention strategy for BRCA1 mutation carriers. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Marieke van de Ven
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Xiaoling Liu
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Eline van der Burg
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sjoerd Klarenbeek
- Experimental Animal Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Xanthippi Alexi
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Fred Dijcks
- Synthon Biopharmaceuticals B.V, Nijmegen, The Netherlands
| | - Peter Bouwman
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
54
|
Koundouros N, Poulogiannis G. Phosphoinositide 3-Kinase/Akt Signaling and Redox Metabolism in Cancer. Front Oncol 2018; 8:160. [PMID: 29868481 PMCID: PMC5968394 DOI: 10.3389/fonc.2018.00160] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 04/26/2018] [Indexed: 12/21/2022] Open
Abstract
Metabolic rewiring and the consequent production of reactive oxygen species (ROS) are necessary to promote tumorigenesis. At the nexus of these cellular processes is the aberrant regulation of oncogenic signaling cascades such as the phosphoinositide 3-kinase and AKT (PI3K/Akt) pathway, which is one of the most frequently dysregulated pathways in cancer. In this review, we examine the regulation of ROS metabolism in the context of PI3K-driven tumors with particular emphasis on four main areas of research. (1) Stimulation of ROS production through direct modulation of mitochondrial bioenergetics, activation of NADPH oxidases (NOXs), and metabolic byproducts associated with hyperactive PI3K/Akt signaling. (2) The induction of pro-tumorigenic signaling cascades by ROS as a consequence of phosphatase and tensin homolog and receptor tyrosine phosphatase redox-dependent inactivation. (3) The mechanisms through which PI3K/Akt activation confers a selective advantage to cancer cells by maintaining redox homeostasis. (4) Opportunities for therapeutically exploiting redox metabolism in PIK3CA mutant tumors and the potential for implementing novel combinatorial therapies to suppress tumor growth and overcome drug resistance. Further research focusing on the multi-faceted interactions between PI3K/Akt signaling and ROS metabolism will undoubtedly contribute to novel insights into the extensive pro-oncogenic effects of this pathway, and the identification of exploitable vulnerabilities for the treatment of hyperactive PI3K/Akt tumors.
Collapse
Affiliation(s)
- Nikos Koundouros
- Department of Cancer Biology, Institute of Cancer Research, London, United Kingdom.,Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - George Poulogiannis
- Department of Cancer Biology, Institute of Cancer Research, London, United Kingdom.,Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
55
|
Mo W, Wu X, Jia G, Zhao H, Chen X, Tang J, Wu C, Cai J, Tian G, Wang J, Liu G. Roles of dietary supplementation with arginine or N-carbamylglutamate in modulating the inflammation, antioxidant property, and mRNA expression of antioxidant-relative signaling molecules in the spleen of rats under oxidative stress. ACTA ACUST UNITED AC 2018; 4:322-328. [PMID: 30175262 PMCID: PMC6116323 DOI: 10.1016/j.aninu.2018.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/08/2018] [Accepted: 02/23/2018] [Indexed: 12/21/2022]
Abstract
This study evaluated the effects of arginine (Arg) or N-carbamylglutamate (NCG) on inflammation, antioxidant property, and antioxidant-related gene expression in rat spleen under oxidative stress. A total of 52 rats were randomly distributed into 4 treatment groups with 13 replicates per group. Rats were fed a basal diet (BD) or BD supplemented with Arg or NCG for 30 days. On day 28, half of the BD-fed rats were intraperitoneally injected with sterile saline (control group), and the other half with 12 mg/kg body weight of diquat (DT; DT group). The other 2 diet groups were intraperitoneally injected with 12 mg/kg body weight of DT with either Arg (1%) (DT + Arg) or NCG (0.1%) (DT + NCG). Rat spleen samples were collected for analysis at 48 h after DT injection. Results showed that DT damaged the antioxidant defense in rats compared with the control group (P < 0.05). Compared with the DT group, the DT + Arg and DT + NCG groups manifested improved anti-hydroxyl radical, catalase, and total superoxide dismutase (T-SOD) activities, increased glutathione content (P < 0.05), and decreased malondialdehyde content (P < 0.05). Moreover, compared with the DT group, the DT + Arg and DT + NCG groups enhanced mRNA expression of superoxide dismutase (SOD), glutathione peroxidase 1 (GPx1), glutathione reductase (GR), nuclear factor erythroid 2-related factor 2 (Nrf2), Kelch-like ECH-associated protein 1(Keap-1), and mammalian target of rapamycin (mTOR) (P < 0.05). Both NCG and Arg significantly increased anti-inflammatory cytokine mRNA level but suppressed the pro-inflammatory cytokine mRNA expression under oxidative stress (P < 0.05). In summary, NCG and Arg effectively alleviated oxidative stress, improved the antioxidant capacity and regulated the antioxidant-related signaling molecular expression in rat spleen. N-carbamylglutamate and Arg reduced the inflammation in the spleen by mediating the gene expression of anti-inflammatory and pro-inflammatory cytokines and transforming growth factor-β (TGF-β).
Collapse
Affiliation(s)
- Weiwei Mo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Xianjian Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Jiayong Tang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Jingyi Cai
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Gang Tian
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Gangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
- Corresponding author.
| |
Collapse
|
56
|
Penkert J, Ripperger T, Schieck M, Schlegelberger B, Steinemann D, Illig T. On metabolic reprogramming and tumor biology: A comprehensive survey of metabolism in breast cancer. Oncotarget 2018; 7:67626-67649. [PMID: 27590516 PMCID: PMC5341901 DOI: 10.18632/oncotarget.11759] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/25/2016] [Indexed: 12/20/2022] Open
Abstract
Altered metabolism in tumor cells has been a focus of cancer research for as long as a century but has remained controversial and vague due to an inhomogeneous overall picture. Accumulating genomic, metabolomic, and lastly panomic data as well as bioenergetics studies of the past few years enable a more comprehensive, systems-biologic approach promoting deeper insight into tumor biology and challenging hitherto existing models of cancer bioenergetics. Presenting a compendium on breast cancer-specific metabolome analyses performed thus far, we review and compile currently known aspects of breast cancer biology into a comprehensive network, elucidating previously dissonant issues of cancer metabolism. As such, some of the aspects critically discussed in this review include the dynamic interplay or metabolic coupling between cancer (stem) cells and cancer-associated fibroblasts, the intratumoral and intertumoral heterogeneity and plasticity of cancer cell metabolism, the existence of distinct metabolic tumor compartments in need of separate yet simultaneous therapeutic targeting, the reliance of cancer cells on oxidative metabolism and mitochondrial power, and the role of pro-inflammatory, pro-tumorigenic stromal conditioning. Comprising complex breast cancer signaling networks as well as combined metabolomic and genomic data, we address metabolic consequences of mutations in tumor suppressor genes and evaluate their contribution to breast cancer predisposition in a germline setting, reasoning for distinct personalized preventive and therapeutic measures. The review closes with a discussion on central root mechanisms of tumor cell metabolism and rate-limiting steps thereof, introducing essential strategies for therapeutic targeting.
Collapse
Affiliation(s)
- Judith Penkert
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Tim Ripperger
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | | | - Doris Steinemann
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Thomas Illig
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany.,Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| |
Collapse
|
57
|
Tang D, Shen YB, Wang ZH, He B, Xu YH, Nie H, Zhu Q. Rapid Analysis and Guided Isolation of Astragalus Isoflavonoids by UHPLC-DAD-MS n and Their Cellular Antioxidant Defense on High-Glucose-Induced Mesangial Cell Dysfunction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1105-1113. [PMID: 29091441 DOI: 10.1021/acs.jafc.7b02949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Isoflavonoids, including isoflavones, isoflavans, and pterocarpans, the principal components in Astragalus membranaceus, have a great deal of versatile health-promoting benefits. In this work, as a continuation of our search for bioactive constituents from A. membranaceus, a fast high-performance liquid chromatography-diode array detection-multiple-stage mass spectrometry method was first used to analyze the isoflavonoid profile of A. membranaceus roots extract. Twelve diverse isoflavonoids in subclasses of isoflavones, isoflavans, and pterocarpans present in glycoside/aglycone pair forms were tentatively characterized; of those 12, eight major isoflavonoids were finally isolated and simultaneously quantified by the established fast UHPLC method. Furthermore, the results confirmed for the first time that Astragalus isoflavonoid aglycones could attenuate mesangial cell proliferation and extracellular matrix (ECM) accumulation triggered by high glucose levels, and the primary mechanism might be via protecting intracellular antioxidant enzymes activities and enhancing endogenous antioxidant function to lower levels of cellular oxidative damage induced by high glucose levels. Collectively, diverse Astragalus isoflavonoid antioxidants have the potential to ameliorate high-glucose-induced mesangial cell dysfunction through the regulation of cellular antioxidant defense.
Collapse
Affiliation(s)
- Dan Tang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou 510632, P. R. China
| | - Ying-Bin Shen
- Department of Food Science and Engineering, Jinan University , Guangzhou 510632, P. R. China
| | - Zhi-Hua Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou 510632, P. R. China
| | - Bao He
- Institute of Kidney Diseases, Guangdong Consun Pharmaceutical Group , Guangzhou 510530, P. R. China
| | - You-Hua Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology , Macau, P. R. China
| | - Hong Nie
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou 510632, P. R. China
| | - Quan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology , Macau, P. R. China
- Institute of Kidney Diseases, Guangdong Consun Pharmaceutical Group , Guangzhou 510530, P. R. China
| |
Collapse
|
58
|
Dagnell M, Schmidt EE, Arnér ESJ. The A to Z of modulated cell patterning by mammalian thioredoxin reductases. Free Radic Biol Med 2018; 115:484-496. [PMID: 29278740 PMCID: PMC5771652 DOI: 10.1016/j.freeradbiomed.2017.12.029] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/16/2017] [Accepted: 12/21/2017] [Indexed: 12/12/2022]
Abstract
Mammalian thioredoxin reductases (TrxRs) are selenocysteine-containing proteins (selenoproteins) that propel a large number of functions through reduction of several substrates including the active site disulfide of thioredoxins (Trxs). Well-known enzymatic systems that in turn are supported by Trxs and TrxRs include deoxyribonucleotide synthesis through ribonucleotide reductase, antioxidant defense through peroxiredoxins and methionine sulfoxide reductases, and redox modulation of a number of transcription factors. Although these functions may be essential for cells due to crucial roles in maintenance of cell viability and proliferation, findings during the last decade reveal that mammals have major redundancy in their cellular reductive systems. The synthesis of glutathione (GSH) and reductive functions of GSH-dependent pathways typically act in parallel with Trx-dependent pathways, with only one of these systems often being sufficient to support viability. Importantly, this does not imply that a modulation of the Trx system will remain without consequences, even when GSH-dependent pathways remain functional. As suggested by several recent findings, the Trx system in general and the TrxRs in particular, function as key regulators of signaling pathways. In this review article we will discuss findings that collectively suggest that modulation in mammalian systems of cytosolic TrxR1 (TXNRD1) or mitochondrial TrxR2 (TXNRD2) influence cell patterning and cellular stress responses. Effects of lower activities include increased adipogenesis, insulin responsiveness, glycogen accumulation, hyperproliferation, and distorted embryonic development, while increased activities correlate with decreased proliferation and extended lifespan, as well as worse cancer prognosis. The molecular mechanisms that underlie these diverse effects, involving regulation of protein phosphorylation cascades and of key transcription factors that guide cellular differentiation pathways, will be discussed. We conclude that the selenium-dependent oxidoreductases TrxR1 and TrxR2 should be considered as key components of signaling pathways that control cell differentiation and cellular stress responses.
Collapse
Affiliation(s)
- Markus Dagnell
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Edward E Schmidt
- Microbiology & Immunology, Montana State University, Bozeman, MT 59718, USA
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden.
| |
Collapse
|
59
|
Narumi M, Takahashi K, Yamatani H, Seino M, Yamanouchi K, Ohta T, Takahashi T, Kurachi H, Nagase S. Oxidative Stress in the Visceral Fat Is Elevated in Postmenopausal Women with Gynecologic Cancer. J Womens Health (Larchmt) 2018; 27:99-106. [DOI: 10.1089/jwh.2016.6301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Megumi Narumi
- Department of Obstetrics and Gynecology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Kazuhiro Takahashi
- Department of Obstetrics and Gynecology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hizuru Yamatani
- Department of Obstetrics and Gynecology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Manabu Seino
- Department of Obstetrics and Gynecology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Keiko Yamanouchi
- Department of Obstetrics and Gynecology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Tsuyoshi Ohta
- Department of Obstetrics and Gynecology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Toshifumi Takahashi
- Department of Obstetrics and Gynecology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hirohisa Kurachi
- Osaka Medical Center and Research Institute for Maternal and Child Health, Izumi, Osaka, Japan
| | - Satoru Nagase
- Department of Obstetrics and Gynecology, Yamagata University Faculty of Medicine, Yamagata, Japan
| |
Collapse
|
60
|
Rao S, Cronin SJF, Sigl V, Penninger JM. RANKL and RANK: From Mammalian Physiology to Cancer Treatment. Trends Cell Biol 2017; 28:213-223. [PMID: 29241686 DOI: 10.1016/j.tcb.2017.11.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/24/2022]
Abstract
The tumor necrosis factor (TNF) receptor RANK (TNFRSF11A) and its ligand RANKL (TNFSF11) regulate osteoclast development and bone metabolism. They also control stem cell expansion and proliferation of mammary epithelial cells via the sex hormone progesterone. As such, RANKL and RANK have been implicated in the onset of hormone-induced breast cancer. Recently, RANK/RANKL were identified as crucial regulators for BRCA1 mutation-driven breast cancer. Current prevention strategies for BRCA1 mutation carriers are associated with wide-ranging risks; therefore, the search for alternative, non-invasive strategies is of paramount importance. We summarize here the functions of the RANKL/RANK pathway in mammalian physiology and focus on its recently uncovered role in breast cancer. We propose that anti-RANKL therapy should be pursued as a preventative strategy for breast cancer.
Collapse
Affiliation(s)
- Shuan Rao
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna Biocenter (VBC), Dr. Bohr Gasse 3, Vienna, Austria; These authors contributed equally to this work
| | - Shane J F Cronin
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna Biocenter (VBC), Dr. Bohr Gasse 3, Vienna, Austria; These authors contributed equally to this work
| | - Verena Sigl
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna Biocenter (VBC), Dr. Bohr Gasse 3, Vienna, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna Biocenter (VBC), Dr. Bohr Gasse 3, Vienna, Austria.
| |
Collapse
|
61
|
Dalasanur Nagaprashantha L, Adhikari R, Singhal J, Chikara S, Awasthi S, Horne D, Singhal SS. Translational opportunities for broad-spectrum natural phytochemicals and targeted agent combinations in breast cancer. Int J Cancer 2017; 142:658-670. [PMID: 28975625 DOI: 10.1002/ijc.31085] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/18/2017] [Accepted: 09/12/2017] [Indexed: 12/17/2022]
Abstract
Breast cancer (BC) prevention and therapy in the context of life-style risk factors and biological drivers is a major focus of developmental therapeutics in oncology. Obesity, alcohol, chronic estrogen signaling and smoking have distinct BC precipitating and facilitating effects that may act alone or in combination. A spectrum of signaling events including enhanced oxidative stress and changes in estrogen-receptor (ER)-dependent and -independent signaling drive the progression of BC. Breast tumors modulate ERα/ERβ ratio, upregulate proliferative pathways driven by ERα and HER2 with a parallel loss and/or downregulation of tumor suppressors such as TP53 and PTEN which together impact the efficacy of therapeutic strategies and frequently lead to emergence of drug resistance. Natural phytochemicals modulate oxidative stress, leptin, integrin, HER2, MAPK, ERK, Wnt/β-catenin and NFκB signaling along with regulating ERα and ERβ, thereby presenting unique opportunities for both primary and combinatorial interventions in BC. In this regard, this article focuses on critical analyses of the evidence from multiple studies on the efficacy of natural phytochemicals in BC. In addition, areas in which the combinations of such effective natural phytochemicals with approved and/or developing anticancer agents can be translationally beneficial are discussed to derive evidence-based inference for addressing challenges in BC control and therapy.
Collapse
Affiliation(s)
| | | | - Jyotsana Singhal
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA
| | - Shireen Chikara
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA
| | - Sanjay Awasthi
- Texas Tech University Health Sciences Center, Lubbock, TX
| | - David Horne
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA
| | - Sharad S Singhal
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA
| |
Collapse
|
62
|
Cairns RA, Mak TW. Fire and water: Tumor cell adaptation to metabolic conditions. Exp Cell Res 2017; 356:204-208. [PMID: 28457987 DOI: 10.1016/j.yexcr.2017.04.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 12/23/2022]
Abstract
Lorenz Poellinger was a leader in understanding the effects of altered microenvironmental conditions in tumor biology and in normal physiology. His work examining the effects of hypoxia and the HIF transcription factors has expanded our understanding of the role of the microenvironment in affecting the behaviour of both normal and malignant cells. Furthermore, his work provides a model for understanding the adaptive responses to other metabolic stress conditions. By investigating the molecular mechanisms responsible for the adaptive responses to metabolic stress in normal physiological situations, across pathological conditions, and in different model organisms, his work shows the power of combining data from different model systems and physiological contexts. In cancers, it has become clear that in order to evolve to become an aggressive malignant disease, tumor cells must acquire the capacity to tolerate a host of abnormal and stressful metabolic conditions. This metabolic stress can be thought of as a fire that tumor cells must douse with enough water to survive, and may offer opportunities to exploit smoldering vulnerabilities in order to eradicate malignant cells.
Collapse
Affiliation(s)
- Rob A Cairns
- The Campbell Family Institute for Breast Cancer Research at Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada M5G 2C1.
| | - Tak W Mak
- The Campbell Family Institute for Breast Cancer Research at Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada M5G 2C1
| |
Collapse
|
63
|
Abstract
How can we treat cancer more effectively? Traditionally, tumours from the same anatomical site are treated as one tumour entity. This concept has been challenged by recent breakthroughs in cancer genomics and translational research that have enabled molecular tumour profiling. The identification and validation of cancer drivers that are shared between different tumour types, spurred the new paradigm to target driver pathways across anatomical sites by off-label drug use, or within so-called basket or umbrella trials which are designed to test whether molecular alterations in one tumour entity can be extrapolated to all others. However, recent clinical and preclinical studies suggest that there are tissue- and cell type-specific differences in tumorigenesis and the organization of oncogenic signalling pathways. In this Opinion article, we focus on the molecular, cellular, systemic and environmental determinants of organ-specific tumorigenesis and the mechanisms of context-specific oncogenic signalling outputs. Investigation, recognition and in-depth biological understanding of these differences will be vital for the design of next-generation clinical trials and the implementation of molecularly guided cancer therapies in the future.
Collapse
Affiliation(s)
- Günter Schneider
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Marc Schmidt-Supprian
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany
| | - Roland Rad
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Dieter Saur
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
64
|
Spira A, Yurgelun MB, Alexandrov L, Rao A, Bejar R, Polyak K, Giannakis M, Shilatifard A, Finn OJ, Dhodapkar M, Kay NE, Braggio E, Vilar E, Mazzilli SA, Rebbeck TR, Garber JE, Velculescu VE, Disis ML, Wallace DC, Lippman SM. Precancer Atlas to Drive Precision Prevention Trials. Cancer Res 2017; 77:1510-1541. [PMID: 28373404 PMCID: PMC6681830 DOI: 10.1158/0008-5472.can-16-2346] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 02/07/2023]
Abstract
Cancer development is a complex process driven by inherited and acquired molecular and cellular alterations. Prevention is the holy grail of cancer elimination, but making this a reality will take a fundamental rethinking and deep understanding of premalignant biology. In this Perspective, we propose a national concerted effort to create a Precancer Atlas (PCA), integrating multi-omics and immunity - basic tenets of the neoplastic process. The biology of neoplasia caused by germline mutations has led to paradigm-changing precision prevention efforts, including: tumor testing for mismatch repair (MMR) deficiency in Lynch syndrome establishing a new paradigm, combinatorial chemoprevention efficacy in familial adenomatous polyposis (FAP), signal of benefit from imaging-based early detection research in high-germline risk for pancreatic neoplasia, elucidating early ontogeny in BRCA1-mutation carriers leading to an international breast cancer prevention trial, and insights into the intricate germline-somatic-immunity interaction landscape. Emerging genetic and pharmacologic (metformin) disruption of mitochondrial (mt) respiration increased autophagy to prevent cancer in a Li-Fraumeni mouse model (biology reproduced in clinical pilot) and revealed profound influences of subtle changes in mt DNA background variation on obesity, aging, and cancer risk. The elaborate communication between the immune system and neoplasia includes an increasingly complex cellular microenvironment and dynamic interactions between host genetics, environmental factors, and microbes in shaping the immune response. Cancer vaccines are in early murine and clinical precancer studies, building on the recent successes of immunotherapy and HPV vaccine immune prevention. Molecular monitoring in Barrett's esophagus to avoid overdiagnosis/treatment highlights an important PCA theme. Next generation sequencing (NGS) discovered age-related clonal hematopoiesis of indeterminate potential (CHIP). Ultra-deep NGS reports over the past year have redefined the premalignant landscape remarkably identifying tiny clones in the blood of up to 95% of women in their 50s, suggesting that potentially premalignant clones are ubiquitous. Similar data from eyelid skin and peritoneal and uterine lavage fluid provide unprecedented opportunities to dissect the earliest phases of stem/progenitor clonal (and microenvironment) evolution/diversity with new single-cell and liquid biopsy technologies. Cancer mutational signatures reflect exogenous or endogenous processes imprinted over time in precursors. Accelerating the prevention of cancer will require a large-scale, longitudinal effort, leveraging diverse disciplines (from genetics, biochemistry, and immunology to mathematics, computational biology, and engineering), initiatives, technologies, and models in developing an integrated multi-omics and immunity PCA - an immense national resource to interrogate, target, and intercept events that drive oncogenesis. Cancer Res; 77(7); 1510-41. ©2017 AACR.
Collapse
Affiliation(s)
- Avrum Spira
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Pathology and Bioinformatics, Boston University School of Medicine, Boston, Massachusetts
| | - Matthew B Yurgelun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ludmil Alexandrov
- Theoretical Division, Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Rafael Bejar
- Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Olivera J Finn
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Madhav Dhodapkar
- Department of Hematology and Immunology, Yale Cancer Center, New Haven, Connecticut
| | - Neil E Kay
- Department of Hematology, Mayo Clinic Hospital, Rochester, Minnesota
| | - Esteban Braggio
- Department of Hematology, Mayo Clinic Hospital, Phoenix, Arizona
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sarah A Mazzilli
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Pathology and Bioinformatics, Boston University School of Medicine, Boston, Massachusetts
| | - Timothy R Rebbeck
- Division of Hematology and Oncology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Judy E Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Victor E Velculescu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Mary L Disis
- Department of Medicine, Center for Translational Medicine in Women's Health, University of Washington, Seattle, Washington
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Scott M Lippman
- Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California.
| |
Collapse
|
65
|
Lou Y, Hu M, Wang Q, Yuan M, Wang N, Le F, Li L, Huang S, Wang L, Xu X, Jin F. Estradiol Suppresses TLR4-triggered Apoptosis of Decidual Stromal Cells and Drives an Anti-inflammatory T H2 Shift by Activating SGK1. Int J Biol Sci 2017; 13:434-448. [PMID: 28529452 PMCID: PMC5436564 DOI: 10.7150/ijbs.18278] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/28/2017] [Indexed: 12/27/2022] Open
Abstract
A pro-inflammatory cytokine profile at the feto-maternal interface may predispose immune maladaptation notably in early miscarriages. We investigated the involvement of estradiol (E2)-activated serum-glucocorticoid regulated kinase 1 (SGK1) in preserving the tolerogenic and pro-survival intrauterine microenvironment beneficial to gestation maintenance. Decidual SGK1 was down-regulated in early miscarriage, consistent with the lower serum E2 concentration seen in pregnancy loss. Lipopolysaccharide (LPS)/Toll-like receptors 4 (TLR4) signaling induced apoptosis and the pro-inflammatory T helper type (TH) 1 response of decidual stromal cells (DSCs) were associated with miscarriage. SGK1 activation was suppressed by LPS/TLR4 signaling and would be rescued by E2 administration via the PI3K signaling pathway in DSCs. SGK1 activation attenuated TLR4-mediated cell apoptosis, while promoting cell viability of DSCs by up-regulating the pro-survival genes BCL2 and XIAP, and enhancing the phosphorylation of FOXO1. Furthermore, E2-induced SGK1 activation reduced the secretion of pro-inflammatory TH1 cytokines, and promoted the generation of TH2 cytokines and elevated IRF4 mRNA and protein levels in LPS-incubated DSCs. Pharmacologic inhibition of SGK1 or suppression by small interfering (si) RNA increased the phosphorylation and nuclear translocation of NF-κB to reverse the pro-TH2 and anti-inflammatory effects of E2 pretreatment, leading to compromised pregnancy. These findings suggest that the E2-mediated SGK1 activation suppressed LPS-mediated apoptosis and promoted the anti-inflammatory TH2 responses in DSCs, ultimately contributing to a successful pregnancy.
Collapse
Affiliation(s)
- Yiyun Lou
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, 310007, China
| | - Minhao Hu
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Qijing Wang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Mu Yuan
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Ning Wang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Fang Le
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Lejun Li
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Shisi Huang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Liya Wang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Xiangrong Xu
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Fan Jin
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| |
Collapse
|
66
|
Nolan E, Lindeman GJ, Visvader JE. Out-RANKing BRCA1 in Mutation Carriers. Cancer Res 2017; 77:595-600. [PMID: 28104682 DOI: 10.1158/0008-5472.can-16-2025] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/28/2016] [Accepted: 10/08/2016] [Indexed: 11/16/2022]
Abstract
Beyond prophylactic mastectomy, there are currently very few options available to BRCA1 mutation carriers to help reduce their risk of developing breast cancer. An effective prevention therapy therefore remains a pressing area of need. Accumulating evidence points to amplification of the progesterone signaling axis in precancerous tissue from BRCA1 mutation carriers. Given that RANKL is an important paracrine mediator of hormonal signaling in breast tissue, there has been considerable interest in exploring a potential role for this pathway in oncogenesis. Recent findings indicate that the RANK and NF-κB pathways are aberrantly activated in luminal progenitor cells resident in preneoplastic BRCA1mut/+ breast tissue. The augmented proliferation of these cells and their predilection for DNA damage suggest that they are prime cellular targets for basal-like cancers arising in BRCA1 mutation carriers. The end result is a hyperactive pathway, initiated by progesterone and amplified by DNA damage-induced NF-κB signaling, that likely accounts for the susceptibility of BRCA1mut/+ luminal progenitor cells to oncogenesis and tissue specificity. Specific targeting of this progenitor subset has revealed a compelling new prevention strategy for these and possibly other high-risk women. Cancer Res; 77(3); 595-600. ©2017 AACR.
Collapse
Affiliation(s)
- Emma Nolan
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Geoffrey J Lindeman
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Parkville Familial Cancer Centre, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Parkville, Victoria, Australia.,Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Jane E Visvader
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. .,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
67
|
Berger T, Saunders ME, Mak TW. Beyond the Oncogene Revolution: Four New Ways to Combat Cancer. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 81:85-92. [PMID: 28057846 DOI: 10.1101/sqb.2016.81.031161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
It has become clear that tumorigenesis results from much more than just the activation of an oncogene and/or the inactivation of a tumor-suppressor gene, and that the cancer cell genome contains many more alterations than can be specifically targeted at once. This observation has led our group to a search for alternative ways to kill cancer cells (while sparing normal cells) by focusing on properties unique to the former. We have identified four approaches with the potential to generate new anticancer therapies: combatting the tactics by which cancers evade antitumor immune responses, targeting metabolic adaptations that tumor cells use to survive conditions that would kill normal cells, manipulating a cancer cell's response to excessive oxidative stress, and exploiting aneuploidy. This review describes our progress to date on these fronts.
Collapse
Affiliation(s)
- Thorsten Berger
- The Campbell Family Institute for Breast Cancer Research and Ontario Cancer Institute, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Mary E Saunders
- The Campbell Family Institute for Breast Cancer Research and Ontario Cancer Institute, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Tak W Mak
- The Campbell Family Institute for Breast Cancer Research and Ontario Cancer Institute, University Health Network, Toronto, Ontario M5G 2M9, Canada
| |
Collapse
|
68
|
Zacksenhaus E, Liu J, Jiang Z, Yao Y, Xia L, Shrestha M, Ben-David Y. Transcription Factors in Breast Cancer—Lessons From Recent Genomic Analyses and Therapeutic Implications. CHROMATIN PROTEINS AND TRANSCRIPTION FACTORS AS THERAPEUTIC TARGETS 2017; 107:223-273. [DOI: 10.1016/bs.apcsb.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
69
|
Gorrini C, Mak TW. Fundamental Pathways in Breast Cancer 2: Maintenance of Genomic Stability. Breast Cancer 2017. [DOI: 10.1007/978-3-319-48848-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
70
|
Scott A, Bai F, Chan HL, Liu S, Ma J, Slingerland JM, Robbins DJ, Capobianco AJ, Pei XH. p16INK4a suppresses BRCA1-deficient mammary tumorigenesis. Oncotarget 2016; 7:84496-84507. [PMID: 27811360 PMCID: PMC5356676 DOI: 10.18632/oncotarget.13015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/25/2016] [Indexed: 11/25/2022] Open
Abstract
Senescence prevents the proliferation of genomically damaged, but otherwise replication competent cells at risk of neoplastic transformation. p16INK4A (p16), an inhibitor of CDK4 and CDK6, plays a critical role in controlling cellular senescence in multiple organs. Functional inactivation of p16 by gene mutation and promoter methylation is frequently detected in human breast cancers. However, deleting p16 in mice or targeting DNA methylation within the murine p16 promoter does not result in mammary tumorigenesis. How loss of p16 contributes to mammary tumorigenesis in vivo is not fully understood.In this article, we reported that disruption of Brca1 in the mammary epithelium resulted in premature senescence that was rescued by p16 loss. We found that p16 loss transformed Brca1-deficient mammary epithelial cells and induced mammary tumors, though p16 loss alone was not sufficient to induce mammary tumorigenesis. We demonstrated that loss of both p16 and Brca1 led to metastatic, basal-like, mammary tumors with the induction of EMT and an enrichment of tumor initiating cells. We discovered that promoter methylation silenced p16 expression in most of the tumors developed in mice heterozygous for p16 and lacking Brca1. These data not only identified the function of p16 in suppressing BRCA1-deficient mammary tumorigenesis, but also revealed a collaborative effect of genetic mutation of p16 and epigenetic silencing of its transcription in promoting tumorigenesis. To the best of our knowledge, this is the first genetic evidence directly showing that p16 which is frequently deleted and inactivated in human breast cancers, collaborates with Brca1 controlling mammary tumorigenesis.
Collapse
MESH Headings
- Animals
- BRCA1 Protein/genetics
- BRCA1 Protein/metabolism
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cells, Cultured
- Cyclin-Dependent Kinase Inhibitor p16/genetics
- Cyclin-Dependent Kinase Inhibitor p16/metabolism
- DNA Methylation
- Epithelial Cells/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/metabolism
- Mammary Neoplasms, Animal/pathology
- Mice, Knockout
- Mice, Transgenic
- Promoter Regions, Genetic/genetics
Collapse
Affiliation(s)
- Alexandria Scott
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- The Sheila and David Fuente Graduate Program in Cancer Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Feng Bai
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ho Lam Chan
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Shiqin Liu
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jinshan Ma
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Joyce M Slingerland
- Braman Family Breast Cancer Institute, Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - David J. Robbins
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Anthony J. Capobianco
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Xin-Hai Pei
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- The Sheila and David Fuente Graduate Program in Cancer Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
71
|
Mak T. A Journey in Science: "Not Lost in Translation". Mol Med 2016; 22:675-679. [PMID: 27819109 DOI: 10.2119/molmed.2016.00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 08/04/2016] [Indexed: 11/06/2022] Open
Abstract
Real innovations in medicine and science are historic and singular; the stories behind each occurrence are precious. At Molecular Medicine we have established the Anthony Cerami Award in Translational Medicine to document and preserve these histories. The monographs recount the seminal events as told in the voice of the original investigators who provided the crucial early insight. These essays capture the essence of discovery, chronicling the birth of ideas that created new fields of research; and launched trajectories that persisted and ultimately influenced how disease is prevented, diagnosed, and treated. In this volume, the Cerami Award Monograph is by Tak Mak, PhD, Professor, The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, Princess Margaret Cancer Centre in Toronto. A visionary in the field of cancer, this is the story of Dr. Mak's scientific journey.
Collapse
Affiliation(s)
- Tak Mak
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| |
Collapse
|
72
|
Konecny GE, Kristeleit RS. PARP inhibitors for BRCA1/2-mutated and sporadic ovarian cancer: current practice and future directions. Br J Cancer 2016; 115:1157-1173. [PMID: 27736844 PMCID: PMC5104889 DOI: 10.1038/bjc.2016.311] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 08/02/2016] [Accepted: 09/01/2016] [Indexed: 12/12/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors cause targeted tumour cell death in homologous recombination (HR)-deficient cancers, including BRCA-mutated tumours, by exploiting synthetic lethality. PARP inhibitors are being evaluated in late-stage clinical trials of ovarian cancer (OC). Recently, olaparib was the first PARP inhibitor approved in the European Union and United States for the treatment of advanced BRCA-mutated OC. This paper reviews the role of BRCA mutations for tumorigenesis and PARP inhibitor sensitivity, and summarises the clinical development of PARP inhibitors for the treatment of patients diagnosed with OC. Among the five key PARP inhibitors currently in clinical development, olaparib has undergone the most extensive clinical investigation. PARP inhibitors have demonstrated durable antitumour activity in BRCA-mutated advanced OC as a single agent in the treatment and maintenance setting, particularly in platinum-sensitive disease. PARP inhibitors are well tolerated; however, further careful assessment of moderate and late-onset toxicity is mandatory in the maintenance and adjuvant setting, respectively. PARP inhibitors are also being evaluated in combination with chemotherapeutic and novel targeted agents to potentiate antitumour activities. Current research is extending the use of PARP inhibitors beyond BRCA mutations to other sensitising molecular defects that result in HR-deficient cancer, and is defining an HR-deficiency signature. Trials are underway to determine whether such a signature will predict sensitivity to PARP inhibitors in women with sporadic OC.
Collapse
Affiliation(s)
- G E Konecny
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, 2825 Santa Monica Blvd., Suite 200, Santa Monica, CA 90404–2429, USA
| | - R S Kristeleit
- Department of Oncology, University College London Cancer Institute, University College London, Paul Gorman Building, Huntley Street, London, WC1E 6BT, UK
| |
Collapse
|
73
|
Phosphoinositide 3-kinase inhibitors induce DNA damage through nucleoside depletion. Proc Natl Acad Sci U S A 2016; 113:E4338-47. [PMID: 27402769 PMCID: PMC4968752 DOI: 10.1073/pnas.1522223113] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We previously reported that combining a phosphoinositide 3-kinase (PI3K) inhibitor with a poly-ADP Rib polymerase (PARP)-inhibitor enhanced DNA damage and cell death in breast cancers that have genetic aberrations in BRCA1 and TP53. Here, we show that enhanced DNA damage induced by PI3K inhibitors in this mutational background is a consequence of impaired production of nucleotides needed for DNA synthesis and DNA repair. Inhibition of PI3K causes a reduction in all four nucleotide triphosphates, whereas inhibition of the protein kinase AKT is less effective than inhibition of PI3K in suppressing nucleotide synthesis and inducing DNA damage. Carbon flux studies reveal that PI3K inhibition disproportionately affects the nonoxidative pentose phosphate pathway that delivers Rib-5-phosphate required for base ribosylation. In vivo in a mouse model of BRCA1-linked triple-negative breast cancer (K14-Cre BRCA1(f/f)p53(f/f)), the PI3K inhibitor BKM120 led to a precipitous drop in DNA synthesis within 8 h of drug treatment, whereas DNA synthesis in normal tissues was less affected. In this mouse model, combined PI3K and PARP inhibition was superior to either agent alone to induce durable remissions of established tumors.
Collapse
|
74
|
Bennani-Baiti B, Dietzel M, Baltzer PA. MRI Background Parenchymal Enhancement Is Not Associated with Breast Cancer. PLoS One 2016; 11:e0158573. [PMID: 27379395 PMCID: PMC4933349 DOI: 10.1371/journal.pone.0158573] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/17/2016] [Indexed: 12/04/2022] Open
Abstract
Background Previously, a strong positive association between background parenchymal enhancement (BPE) at magnetic resonance imaging (MRI) and breast cancer was reported in high-risk populations. We sought to determine, whether this was also true for non-high-risk patients. Methods 540 consecutive patients underwent breast MRI for assessment of breast findings (BI-RADS 0–5, non-high-risk screening (no familial history of breast cancer, no known genetic mutation, no prior chest irradiation, or previous breast cancer diagnosis)) and subsequent histological work-up. For this IRB-approved study, BPE and fibroglandular tissue FGT were retrospectively assessed by two experienced radiologists according to the BI-RADS lexicon. Pearson correlation coefficients were calculated to explore associations between BPE, FGT, age and final diagnosis of breast cancer. Subsequently, multivariate logistic regression analysis, considering covariate colinearities, was performed, using final diagnosis as the target variable and BPE, FGT and age as covariates. Results Age showed a moderate negative correlation with FGT (r = -0.43, p<0.001) and a weak negative correlation with BPE (r = -0.28, p<0.001). FGT and BPE correlated moderately (r = 0.35, p<0.001). Final diagnosis of breast cancer displayed very weak negative correlations with FGT (r = -0.09, p = 0.046) and BPE (r = -0.156, p<0.001) and weak positive correlation with age (r = 0.353, p<0.001). On multivariate logistic regression analysis, the only independent covariate for prediction of breast cancer was age (OR 1.032, p<0.001). Conclusions Based on our data, neither BPE nor FGT independently correlate with breast cancer risk in non-high-risk patients at MRI. Our model retained only age as an independent risk factor for breast cancer in this setting.
Collapse
Affiliation(s)
- Barbara Bennani-Baiti
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-guided Therapy, Vienna General Hospital (AKH), Medical University of Vienna, Vienna, Austria
- * E-mail: ; (BBB); (PB)
| | - Matthias Dietzel
- Department of Radiology, University of Erlangen-Nürnberg, Nürnberg, Germany
| | - Pascal Andreas Baltzer
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
- * E-mail: ; (BBB); (PB)
| |
Collapse
|
75
|
Rui W, Zou Y, Lee J, Nambiar SM, Lin J, Zhang L, Yang Y, Dai G. Nuclear Factor Erythroid 2-Related Factor 2 Deficiency Results in Amplification of the Liver Fat-Lowering Effect of Estrogen. J Pharmacol Exp Ther 2016; 358:14-21. [PMID: 27189962 DOI: 10.1124/jpet.115.231316] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/05/2016] [Indexed: 12/16/2022] Open
Abstract
Transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates multiple biologic processes, including hepatic lipid metabolism. Estrogen exerts actions affecting energy homeostasis, including a liver fat-lowering effect. Increasing evidence indicates the crosstalk between these two molecules. The aim of this study was to evaluate whether Nrf2 modulates estrogen signaling in hepatic lipid metabolism. Nonalcoholic fatty liver disease (NAFLD) was induced in wild-type and Nrf2-null mice fed a high-fat diet and the liver fat-lowering effect of exogenous estrogen was subsequently assessed. We found that exogenous estrogen eliminated 49% and 90% of hepatic triglycerides in wild-type and Nrf2-null mice with NAFLD, respectively. This observation demonstrates that Nrf2 signaling is antagonistic to estrogen signaling in hepatic fat metabolism; thus, Nrf2 absence results in striking amplification of the liver fat-lowering effect of estrogen. In addition, we found the association of trefoil factor 3 and fatty acid binding protein 5 with the liver fat-lowering effect of estrogen. In summary, we identified Nrf2 as a novel and potent inhibitor of estrogen signaling in hepatic lipid metabolism. Our finding may provide a potential strategy to treat NAFLD by dually targeting Nrf2 and estrogen signaling.
Collapse
Affiliation(s)
- Wenjuan Rui
- Department of Pharmacology and Immunology, Anhui Medical University, Hefei, China (W.R., L.Z., Y.Y.); Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana (W.R., Y.Z., S.M.N., G.D.); and Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana (J.L.)
| | - Yuhong Zou
- Department of Pharmacology and Immunology, Anhui Medical University, Hefei, China (W.R., L.Z., Y.Y.); Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana (W.R., Y.Z., S.M.N., G.D.); and Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana (J.L.)
| | - Joonyong Lee
- Department of Pharmacology and Immunology, Anhui Medical University, Hefei, China (W.R., L.Z., Y.Y.); Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana (W.R., Y.Z., S.M.N., G.D.); and Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana (J.L.)
| | - Shashank Manohar Nambiar
- Department of Pharmacology and Immunology, Anhui Medical University, Hefei, China (W.R., L.Z., Y.Y.); Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana (W.R., Y.Z., S.M.N., G.D.); and Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana (J.L.)
| | - Jingmei Lin
- Department of Pharmacology and Immunology, Anhui Medical University, Hefei, China (W.R., L.Z., Y.Y.); Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana (W.R., Y.Z., S.M.N., G.D.); and Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana (J.L.)
| | - Linjie Zhang
- Department of Pharmacology and Immunology, Anhui Medical University, Hefei, China (W.R., L.Z., Y.Y.); Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana (W.R., Y.Z., S.M.N., G.D.); and Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana (J.L.)
| | - Yan Yang
- Department of Pharmacology and Immunology, Anhui Medical University, Hefei, China (W.R., L.Z., Y.Y.); Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana (W.R., Y.Z., S.M.N., G.D.); and Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana (J.L.)
| | - Guoli Dai
- Department of Pharmacology and Immunology, Anhui Medical University, Hefei, China (W.R., L.Z., Y.Y.); Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana (W.R., Y.Z., S.M.N., G.D.); and Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana (J.L.)
| |
Collapse
|
76
|
Schaefer MH, Serrano L. Cell type-specific properties and environment shape tissue specificity of cancer genes. Sci Rep 2016; 6:20707. [PMID: 26856619 PMCID: PMC4746590 DOI: 10.1038/srep20707] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/11/2016] [Indexed: 12/21/2022] Open
Abstract
One of the biggest mysteries in cancer research remains why mutations in certain genes cause cancer only at specific sites in the human body. The poor correlation between the expression level of a cancer gene and the tissues in which it causes malignant transformations raises the question of which factors determine the tissue-specific effects of a mutation. Here, we explore why some cancer genes are associated only with few different cancer types (i.e., are specific), while others are found mutated in a large number of different types of cancer (i.e., are general). We do so by contrasting cellular functions of specific-cancer genes with those of general ones to identify properties that determine where in the body a gene mutation is causing malignant transformations. We identified different groups of cancer genes that did not behave as expected (i.e., DNA repair genes being tissue specific, immune response genes showing a bimodal specificity function or strong association of generally expressed genes to particular cancers). Analysis of these three groups demonstrates the importance of environmental impact for understanding why certain cancer genes are only involved in the development of some cancer types but are rarely found mutated in other types of cancer.
Collapse
Affiliation(s)
- Martin H Schaefer
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, Barcelona, Spain
| | - Luis Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, Spain
| |
Collapse
|
77
|
Oommen D, Yiannakis D, Jha AN. BRCA1 deficiency increases the sensitivity of ovarian cancer cells to auranofin. Mutat Res 2016; 784-785:8-15. [PMID: 26731315 DOI: 10.1016/j.mrfmmm.2015.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 06/05/2023]
Abstract
Auranofin, a thioredoxin reductase inhibitor and an anti-rheumatic drug is currently undergoing phase 2 clinical studies for repurposing to treat recurrent epithelial ovarian cancer. Previous studies have established that auranofin exerts its cytotoxic activity by increasing the production of reactive oxygen species (ROS). Breast cancer 1, early onset (BRCA1) is a DNA repair protein whose functional status is critical in the prognosis of ovarian cancer. Apart from its key role in DNA repair, BRCA1 is also known to modulate cellular redox homeostasis by regulating the stability of anti-oxidant transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2) via direct protein-protein interaction. However, it is currently unknown whether BRCA1 modulates the sensitivity of ovarian cancer cells to auranofin. Here we report that BRCA1-depleted cells exhibited increased DNA double strand breaks (DSBs) and decreased clonogenic cell survival upon auranofin treatment. Interestingly, auranofin induced the expression of Nrf2 in BRCA1-depleted cells suggesting its regulation independent of BRCA1. Furthermore, anti-oxidant agent, N-acetyl cysteine (NAC) protected BRCA1-depleted cells from DNA damage and apoptosis induced by auranofin. Our study suggests that accumulated lethal DSBs resulting from the oxidative damage render BRCA1 deficient cells more sensitive to auranofin despite the activation of Nrf2.
Collapse
Affiliation(s)
- Deepu Oommen
- School of Biological Sciences, Plymouth University, Plymouth PL4 8AA, UK
| | - Dennis Yiannakis
- Plymouth Oncology Centre, Derriford Hospital, Plymouth Hospitals NHS Trust, Plymouth PL6 8DH, UK
| | - Awadhesh N Jha
- School of Biological Sciences, Plymouth University, Plymouth PL4 8AA, UK.
| |
Collapse
|
78
|
TGF-β and Hypoxia/Reoxygenation Promote Radioresistance of A549 Lung Cancer Cells through Activation of Nrf2 and EGFR. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6823471. [PMID: 26904167 PMCID: PMC4745286 DOI: 10.1155/2016/6823471] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 12/28/2022]
Abstract
Although many studies have examined the roles of hypoxia and transforming growth factor- (TGF-) β separately in the tumor microenvironment, the effects of simultaneous treatment with hypoxia/reoxygenation and TGF-β on tumor malignancy are unclear. Here, we investigated the effects of redox signaling and oncogenes on cell proliferation and radioresistance in A549 human lung cancer cells in the presence of TGF-β under hypoxia/reoxygenation conditions. Combined treatment with TGF-β and hypoxia activated epidermal growth factor receptor (EGFR) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a redox-sensitive transcription factor. Interestingly, Nrf2 knockdown suppressed the effects of combined treatment on EGFR phosphorylation. In addition, blockade of EGFR signaling also suppressed induction of Nrf2 following combined treatment with hypoxia and TGF-β, indicating that the combined treatment induced positive crosstalk between Nrf2 and EGFR. TGF-β and hypoxia/reoxygenation increased the accumulation of reactive oxygen species (ROS), while treatment with N-acetyl-l-cysteine abolished the activation of Nrf2 and EGFR. Treatment with TGF-β under hypoxic conditions increased the proliferation of A549 cells compared with that after vehicle treatment. Moreover, cells treated with the combined treatment exhibited resistance to ionizing radiation (IR), and knockdown of Nrf2 increased IR-induced cell death under these conditions. Thus, taken together, our findings suggested that TGF-β and hypoxia/reoxygenation promoted tumor progression and radioresistance of A549 cells through ROS-mediated activation of Nrf2 and EGFR.
Collapse
|
79
|
Idh1 mutations contribute to the development of T-cell malignancies in genetically engineered mice. Proc Natl Acad Sci U S A 2016; 113:1387-92. [PMID: 26787889 DOI: 10.1073/pnas.1525354113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gain-of-function mutations in isocitrate dehydrogenase 1 (IDH1) are key drivers of hematopoietic malignancies. Although these mutations are most commonly associated with myeloid diseases, they also occur in malignancies of the T-cell lineage. To investigate their role in these diseases and provide tractable disease models for further investigation, we analyzed the T-cell compartment in a conditional knock-in (KI) mouse model of mutant Idh1. We observed the development of a spontaneous T-cell acute lymphoblastic leukemia (T-ALL) in these animals. The disease was transplantable and maintained expression of mutant IDH1. Whole-exome sequencing revealed the presence of a spontaneous activating mutation in Notch1, one of the most common mutations in human T-ALL, suggesting Idh1 mutations may have the capacity to cooperate with Notch1 to drive T-ALL. To further investigate the Idh1 mutation as an oncogenic driver in the T-cell lineage, we crossed Idh1-KI mice with conditional Trp53 null mice, a well-characterized model of T-cell malignancy, and found that T-cell lymphomagenesis was accelerated in mice bearing both mutations. Because both IDH1 and p53 are known to affect cellular metabolism, we compared the requirements for glucose and glutamine in cells derived from these tumors and found that cells bearing the Idh1 mutation have an increased dependence on both glucose and glutamine. These data suggest that mutant IDH1 contributes to malignancy in the T-cell lineage and may alter the metabolic profile of malignant T cells.
Collapse
|
80
|
NRF2 Regulates HER2 and HER3 Signaling Pathway to Modulate Sensitivity to Targeted Immunotherapies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:4148791. [PMID: 26770651 PMCID: PMC4685121 DOI: 10.1155/2016/4148791] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/23/2015] [Accepted: 08/25/2015] [Indexed: 12/27/2022]
Abstract
NF-E2 related factor-2 (NRF2) is an essential transcription factor for multiple genes encoding antioxidants and detoxification enzymes. NRF2 is implicated in promoting cancer therapeutic resistance by its detoxification function and crosstalk with proproliferative pathways. However, the exact mechanism of this intricate connectivity between NRF2 and growth factor induced proliferative pathway remains elusive. Here, we have demonstrated that pharmacological activation of NRF2 by tert-butylhydroquinone (tBHQ) upregulates the HER family receptors, HER2 and HER3 expression, elevates pAKT levels, and enhances the proliferation of ovarian cancer cells. Preactivation of NRF2 also attenuates the combined growth inhibitory effects of HER2 targeting monoclonal antibodies, Pertuzumab and Trastuzumab. Further, tBHQ caused transcriptional induction of HER2 and HER3, while SiRNA-mediated knockdown of NRF2 prevented this and further caused transcriptional repression and enhanced cytotoxicity of the HER2 inhibitors. Hence, NRF2 regulates both HER2 and HER3 receptors to influence cellular responses to HER2 targeting monoclonal antibodies. This deciphered crosstalk mechanism reinforces the role of NRF2 in drug resistance and as a relevant anticancer target.
Collapse
|
81
|
Tian H, Gao Z, Wang G, Li H, Zheng J. Estrogen potentiates reactive oxygen species (ROS) tolerance to initiate carcinogenesis and promote cancer malignant transformation. Tumour Biol 2015; 37:141-50. [DOI: 10.1007/s13277-015-4370-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/03/2015] [Indexed: 12/25/2022] Open
|
82
|
Mikosha AS, Kovzun EI, Tronko ND. Biochemical effects of estrogens in non-reproductive organs. UKRAINIAN BIOCHEMICAL JOURNAL 2015; 87:10-23. [DOI: 10.15407/ubj87.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
83
|
Ning S, Sekar TV, Scicinski J, Oronsky B, Peehl DM, Knox SJ, Paulmurugan R. Nrf2 activity as a potential biomarker for the pan-epigenetic anticancer agent, RRx-001. Oncotarget 2015; 6:21547-56. [PMID: 26280276 PMCID: PMC4673285 DOI: 10.18632/oncotarget.4249] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/21/2015] [Indexed: 11/26/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master regulatory transcription factor that plays an important role in the antioxidant response pathway against anticancer drug-induced cytotoxic effects. RRx-001 is a new anticancer agent that generates reactive oxygen and nitrogen species, and leads to epigenetic alterations in cancer cells. Here we report the RRx-001 mediated nuclear translocation of Nrf2 and the activation of expression of its downstream enzymes HO-1 and NQO1 in tumor cells. Inhibition of intrinsic Nrf2 expression by Nrf2-specific siRNA increased cell sensitivity to RRx-001. Molecular imaging of tumor cells co-expressing pARE-Firefly luciferase and pCMV-Renilla luciferase-mRFP in vitro and in vivo in mice revealed that RRx-001 significantly increased ARE-FLUC signal in cells in a dose- and time-dependent manner, suggesting that RRx-001 is an effective activator of the Nrf2-ARE signaling pathway. The pre-treatment level of ARE-FLUC signal in cells, reflecting basal activity of Nrf2, negatively correlated with the tumor response to RRx-001. The results support the concept that RRx-001 activates Nrf2-ARE antioxidant signaling pathways in tumor cells. Hence measurement of Nrf2-mediated activation of downstream target genes through ARE signaling may constitute a useful molecular biomarker for the early prediction of response to RRx-001 treatment, and thereby guide therapeutic decision-making.
Collapse
Affiliation(s)
- Shoucheng Ning
- Department of Radiation Oncology Stanford University Medical Center Stanford, CA 94305, USA
| | | | | | | | - Donna M. Peehl
- Department of Urology Stanford University Medical Center Stanford, CA 94305, USA
| | - Susan J. Knox
- Department of Radiation Oncology Stanford University Medical Center Stanford, CA 94305, USA
| | - Ramasamy Paulmurugan
- Department of Radiology Stanford University Medical Center Stanford, CA 94304, USA
| |
Collapse
|
84
|
Zhang S, Lu Z, Mao W, Ahmed AA, Yang H, Zhou J, Jennings N, Rodriguez-Aguayo C, Lopez-Berestein G, Miranda R, Qiao W, Baladandayuthapani V, Li Z, Sood AK, Liu J, Le XF, Bast RC. CDK5 Regulates Paclitaxel Sensitivity in Ovarian Cancer Cells by Modulating AKT Activation, p21Cip1- and p27Kip1-Mediated G1 Cell Cycle Arrest and Apoptosis. PLoS One 2015; 10:e0131833. [PMID: 26146988 PMCID: PMC4492679 DOI: 10.1371/journal.pone.0131833] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/06/2015] [Indexed: 01/12/2023] Open
Abstract
Cyclin-dependent kinase 5 (CDK5) is a cytoplasmic serine/ threonine kinase. Knockdown of CDK5 enhances paclitaxel sensitivity in human ovarian cancer cells. This study explores the mechanisms by which CDK5 regulates paclitaxel sensitivity in human ovarian cancers. Multiple ovarian cancer cell lines and xenografts were treated with CDK5 small interfering RNA (siRNA) with or without paclitaxel to examine the effect on cancer cell viability, cell cycle arrest and tumor growth. CDK5 protein was measured by immunohistochemical staining of an ovarian cancer tissue microarray to correlate CDK5 expression with overall patient survival. Knockdown of CDK5 with siRNAs inhibits activation of AKT which significantly correlates with decreased cell growth and enhanced paclitaxel sensitivity in ovarian cancer cell lines. In addition, CDK5 knockdown alone and in combination with paclitaxel induced G1 cell cycle arrest and caspase 3 dependent apoptotic cell death associated with post-translational upregulation and nuclear translocation of TP53 and p27Kip1 as well as TP53-dependent transcriptional induction of p21Cip1 in wild type TP53 cancer cells. Treatment of HEYA8 and A2780 wild type TP53 xenografts in nu/nu mice with CDK5 siRNA and paclitaxel produced significantly greater growth inhibition than either treatment alone. Increased expression of CDK5 in human ovarian cancers correlates inversely with overall survival. CDK5 modulates paclitaxel sensitivity by regulating AKT activation, the cell cycle and caspase-dependent apoptosis. CDK5 inhibition can potentiate paclitaxel activity in human ovarian cancer cells.
Collapse
Affiliation(s)
- Shu Zhang
- Departments of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of General Surgery, the Second Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zhen Lu
- Departments of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Weiqun Mao
- Departments of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Ahmed A. Ahmed
- Departments of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Hailing Yang
- Departments of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Jinhua Zhou
- Departments of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Nicholas Jennings
- Departments of Gynecologic Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Cristian Rodriguez-Aguayo
- Departments of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Center for RNA Interference and Non-Coding RNA, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Gabriel Lopez-Berestein
- Departments of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Center for RNA Interference and Non-Coding RNA, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Roberto Miranda
- Departments of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, Untied States of America
| | - Wei Qiao
- Bioinformatics Computer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Veera Baladandayuthapani
- Bioinformatics Computer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Zongfang Li
- Department of General Surgery, the Second Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Anil K. Sood
- Departments of Gynecologic Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Center for RNA Interference and Non-Coding RNA, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Jinsong Liu
- Departments of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, Untied States of America
| | - Xiao-Feng Le
- Departments of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (RCB); (XFL)
| | - Robert C. Bast
- Departments of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (RCB); (XFL)
| |
Collapse
|
85
|
Zhang C, Chen S, Bao J, Zhang Y, Huang B, Jia X, Chen M, Wan JB, Su H, Wang Y, He C. Low Doses of Camptothecin Induced Hormetic and Neuroprotective Effects in PC12 Cells. Dose Response 2015; 13:1559325815592606. [PMID: 26674066 PMCID: PMC4674184 DOI: 10.1177/1559325815592606] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hormetic response is an adaptive mechanism for a cell or organism surviving in an unfavorable environment. It has been an intriguing subject of researches covering a broad range of biological and medical disciplines, in which the underlying significance and molecular mechanisms are under intensive investigation. In the present study, we demonstrated that topoisomerase I inhibitor camptothecin (CPT), a potent anticancer agent, induced an obvious hormetic response in rat pheochromocytoma PC12 cells. Camptothecin inhibited PC12 cell growth at relative high doses as generally acknowledged while stimulated the cell growth by as much as 39% at low doses. Moreover, low doses of CPT protected the cells from hydrogen peroxide (H2O2)-induced cell death. Phosphoinositide 3-kinase (PI3K)/Akt and nuclear factor-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathways were reported playing pivotal roles in protecting cells from oxidative stress. We observed that these 2 pathways were upregulated by low doses of CPT, as evidenced by increased levels of phosphorylated PI3K, phosphorylated Akt, phosphorylated mammalian target of rapamycin, Nrf2, and HO-1; and abolishment of the growth-promoting and neuroprotective effects of CPT by LY294002, a PI3K inhibitor. These results suggest that the hormetic and neuroprotective effects of CPT at low doses on PC12 cells were attributable, at least partially, to upregulated PI3K/Akt and Nrf2/HO-1 pathways.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Shenghui Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jiaolin Bao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yulin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Borong Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xuejing Jia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
86
|
Zou Y, Wang R, Guo H, Dong M. Phytoestrogen β-Ecdysterone Protects PC12 Cells Against MPP+-Induced NeurotoxicityIn Vitro: Involvement of PI3K-Nrf2-Regulated Pathway. Toxicol Sci 2015; 147:28-38. [DOI: 10.1093/toxsci/kfv111] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
87
|
Kim J, Johnson L, Skrzynia C, Buchanan A, Gracia C, Mersereau JE. Prospective multicenter cohort study of estrogen and insulin-like growth factor system in BRCA mutation carriers. Cancer Causes Control 2015; 26:1087-92. [DOI: 10.1007/s10552-015-0601-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/15/2015] [Indexed: 12/20/2022]
|
88
|
Fridlich R, Annamalai D, Roy R, Bernheim G, Powell SN. BRCA1 and BRCA2 protect against oxidative DNA damage converted into double-strand breaks during DNA replication. DNA Repair (Amst) 2015; 30:11-20. [PMID: 25836596 DOI: 10.1016/j.dnarep.2015.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 02/27/2015] [Accepted: 03/03/2015] [Indexed: 12/20/2022]
Abstract
BRCA1 and BRCA2 mutation carriers are predisposed to develop breast and ovarian cancers, but the reasons for this tissue specificity are unknown. Breast epithelial cells are known to contain elevated levels of oxidative DNA damage, triggered by hormonally driven growth and its effect on cell metabolism. BRCA1- or BRCA2-deficient cells were found to be more sensitive to oxidative stress, modeled by treatment with patho-physiologic concentrations of hydrogen peroxide. Hydrogen peroxide exposure leads to oxidative DNA damage induced DNA double strand breaks (DSB) in BRCA-deficient cells causing them to accumulate in S-phase. In addition, after hydrogen peroxide treatment, BRCA deficient cells showed impaired Rad51 foci which are dependent on an intact BRCA1-BRCA2 pathway. These DSB resulted in an increase in chromatid-type aberrations, which are characteristic for BRCA1 and BRCA2-deficient cells. The most common result of oxidative DNA damage induced processing of S-phase DSB is an interstitial chromatid deletion, but insertions and exchanges were also seen in BRCA deficient cells. Thus, BRCA1 and BRCA2 are essential for the repair of oxidative DNA damage repair intermediates that persist into S-phase and produce DSB. The implication is that oxidative stress plays a role in the etiology of hereditary breast cancer.
Collapse
Affiliation(s)
- Ram Fridlich
- Department of Radiation Oncology and Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States
| | - Devi Annamalai
- Department of Radiation Oncology and Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States
| | - Rohini Roy
- Department of Radiation Oncology and Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States
| | - Giana Bernheim
- Department of Radiation Oncology and Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States
| | - Simon N Powell
- Department of Radiation Oncology and Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States.
| |
Collapse
|
89
|
Savage KI, Harkin DP. BRCA1, a 'complex' protein involved in the maintenance of genomic stability. FEBS J 2014; 282:630-46. [PMID: 25400280 DOI: 10.1111/febs.13150] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/10/2014] [Accepted: 11/13/2014] [Indexed: 12/15/2022]
Abstract
BRCA1 is a major breast and ovarian cancer susceptibility gene, with mutations in this gene predisposing women to a very high risk of developing breast and ovarian tumours. BRCA1 primarily functions to maintain genomic stability via critical roles in DNA repair, cell cycle checkpoint control, transcriptional regulation, apoptosis and mRNA splicing. As a result, BRCA1 mutations often result in defective DNA repair, genomic instability and sensitivity to DNA damaging agents. BRCA1 carries out these different functions through its ability to interact, and form complexes with, a vast array of proteins involved in multiple cellular processes, all of which are considered to contribute to its function as a tumour suppressor. This review discusses and highlights recent research into the functions of BRCA1-related protein complexes and their roles in maintaining genomic stability and tumour suppression.
Collapse
Affiliation(s)
- Kienan I Savage
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, UK
| | | |
Collapse
|
90
|
Nrf2, the master redox switch: The Achilles' heel of ovarian cancer? Biochim Biophys Acta Rev Cancer 2014; 1846:494-509. [DOI: 10.1016/j.bbcan.2014.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/13/2014] [Accepted: 09/17/2014] [Indexed: 12/21/2022]
|
91
|
Estrogen increases Nrf2 activity through activation of the PI3K pathway in MCF-7 breast cancer cells. Exp Cell Res 2014; 328:351-60. [DOI: 10.1016/j.yexcr.2014.08.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 07/18/2014] [Accepted: 08/19/2014] [Indexed: 12/17/2022]
|
92
|
Hybertson BM, Gao B. Role of the Nrf2 signaling system in health and disease. Clin Genet 2014; 86:447-52. [PMID: 25099075 DOI: 10.1111/cge.12474] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 07/22/2014] [Accepted: 07/28/2014] [Indexed: 12/17/2022]
Abstract
A key component of cytoprotective gene regulation is the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), also known as nuclear factor erythroid 2-like 2, from the gene NFE2L2. Under normal conditions, Nrf2 in the cell is targeted for proteasomal degradation by its inhibitor Kelch-like ECH-associated inhibitor 1 (Keap1). When stimulated by oxidative stress, electrophiles, or kinase activation, conformational changes in the Nrf2-Keap1 complex inhibit proteasomal degradation of Nrf2, facilitating an increase in the amount of Nrf2 that binds to antioxidant response element sequences in the promoter regions of a variety of antioxidant, detoxification, and metabolic control genes. Nrf2 activation is mostly associated with beneficial cytoprotective gene regulation, but it can also have deleterious effects. For example, gene mutations in some types of cancers can lead to constitutive activation of Nrf2 and give the tumor cells growth advantages and increased drug resistance. Because cases exist where Nrf2/Keap1/ARE signaling is either too low or too high, there is great interest in the development of both Nrf2 activators and Nrf2 inhibitors as the basis of new therapies.
Collapse
Affiliation(s)
- B M Hybertson
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | |
Collapse
|
93
|
Geismann C, Arlt A, Sebens S, Schäfer H. Cytoprotection "gone astray": Nrf2 and its role in cancer. Onco Targets Ther 2014; 7:1497-518. [PMID: 25210464 PMCID: PMC4155833 DOI: 10.2147/ott.s36624] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nrf2 has gained great attention with respect to its pivotal role in cell and tissue protection. Primarily defending cells against metabolic, xenobiotic and oxidative stress, Nrf2 is essential for maintaining tissue integrity. Owing to these functions, Nrf2 is regarded as a promising drug target in the chemoprevention of diseases, including cancer. However, much evidence has accumulated that the beneficial role of Nrf2 in cancer prevention essentially depends on the tight control of its activity. In fact, the deregulation of Nrf2 is a critical determinant in oncogenesis and found in many types of cancer. Therefore, amplified Nrf2 activity has profound effects on the phenotype of tumor cells, including radio/chemoresistance, apoptosis protection, invasiveness, antisenescence, autophagy deficiency, and angiogenicity. The deregulation of Nrf2 can result from various epigenetic and genetic alterations directly affecting Nrf2 control or from the complex interplay of Nrf2 with numerous oncogenic signaling pathways. Additionally, alterations of the cellular environment, eg, during inflammation, contribute to Nrf2 deregulation and its persistent activation. Therefore, the status of Nrf2 as anti- or protumorigenic is defined by many different modalities. A better understanding of these modalities is essential for the safe use of Nrf2 as an activation target for chemoprevention on the one hand and as an inhibition target in cancer therapy on the other. The present review mainly addresses the conditions that promote the oncogenic function of Nrf2 and the resulting consequences providing the rationale for using Nrf2 as a target structure in cancer therapy.
Collapse
Affiliation(s)
- Claudia Geismann
- Laboratory of Molecular Gastroenterology, Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Alexander Arlt
- Laboratory of Molecular Gastroenterology, Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Susanne Sebens
- Inflammatory Carcinogenesis Research Group, Institute of Experimental Medicine, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Heiner Schäfer
- Laboratory of Molecular Gastroenterology, Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany
| |
Collapse
|
94
|
Abstract
The existence of BRCA1 was proven in 1990 by mapping predisposition to young-onset breast cancer in families to chromosome 17q21. Knowing that such a gene existed and approximately where it lay triggered efforts by public and private groups to clone and sequence it. The press baptized the competition "the race" and reported on it in detail for the next 4 years. BRCA1 was positionally cloned in September 1994. Twenty years later, I reflect on "the race" and its consequences for breast cancer prevention and treatment.
Collapse
Affiliation(s)
- Mary-Claire King
- Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
95
|
|