51
|
Pfanner N, Warscheid B, Wiedemann N. Mitochondrial proteins: from biogenesis to functional networks. Nat Rev Mol Cell Biol 2020; 20:267-284. [PMID: 30626975 DOI: 10.1038/s41580-018-0092-0] [Citation(s) in RCA: 558] [Impact Index Per Article: 139.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mitochondria are essential for the viability of eukaryotic cells as they perform crucial functions in bioenergetics, metabolism and signalling and have been associated with numerous diseases. Recent functional and proteomic studies have revealed the remarkable complexity of mitochondrial protein organization. Protein machineries with diverse functions such as protein translocation, respiration, metabolite transport, protein quality control and the control of membrane architecture interact with each other in dynamic networks. In this Review, we discuss the emerging role of the mitochondrial protein import machinery as a key organizer of these mitochondrial protein networks. The preprotein translocases that reside on the mitochondrial membranes not only function during organelle biogenesis to deliver newly synthesized proteins to their final mitochondrial destination but also cooperate with numerous other mitochondrial protein complexes that perform a wide range of functions. Moreover, these protein networks form membrane contact sites, for example, with the endoplasmic reticulum, that are key for integration of mitochondria with cellular function, and defects in protein import can lead to diseases.
Collapse
Affiliation(s)
- Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - Bettina Warscheid
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,Institute of Biology II, Biochemistry - Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
52
|
Phu L, Rose CM, Tea JS, Wall CE, Verschueren E, Cheung TK, Kirkpatrick DS, Bingol B. Dynamic Regulation of Mitochondrial Import by the Ubiquitin System. Mol Cell 2020; 77:1107-1123.e10. [DOI: 10.1016/j.molcel.2020.02.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/30/2019] [Accepted: 02/12/2020] [Indexed: 01/05/2023]
|
53
|
AIF meets the CHCHD4/Mia40-dependent mitochondrial import pathway. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165746. [PMID: 32105825 DOI: 10.1016/j.bbadis.2020.165746] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
In the mitochondria of healthy cells, Apoptosis-Inducing factor (AIF) is required for the optimal functioning of the respiratory chain machinery, mitochondrial integrity, cell survival, and proliferation. In all analysed species, it was revealed that the downregulation or depletion of AIF provokes mainly the post-transcriptional loss of respiratory chain Complex I protein subunits. Recent progress in the field has revealed that AIF fulfils its mitochondrial pro-survival function by interacting physically and functionally with CHCHD4, the evolutionarily-conserved human homolog of yeast Mia40. The redox-regulated CHCHD4/Mia40-dependent import machinery operates in the intermembrane space of the mitochondrion and controls the import of a set of nuclear-encoded cysteine-motif carrying protein substrates. In addition to their participation in the biogenesis of specific respiratory chain protein subunits, CHCHD4/Mia40 substrates are also implicated in the control of redox regulation, antioxidant response, translation, lipid homeostasis and mitochondrial ultrastructure and dynamics. Here, we discuss recent insights on the AIF/CHCHD4-dependent protein import pathway and review current data concerning the CHCHD4/Mia40 protein substrates in metazoan. Recent findings and the identification of disease-associated mutations in AIF or in specific CHCHD4/Mia40 substrates have highlighted these proteins as potential therapeutic targets in a variety of human disorders.
Collapse
|
54
|
Murray B, Peng H, Barbier-Torres L, Robinson A, Li TWH, Fan W, Tomasi ML, Gottlieb RA, Eyk JV, Lu Z, Martínez-Chantar ML, Liangpunsakul S, Skill NJ, Mato JM, Lu SC. Methionine Adenosyltransferase α1 Is Targeted to the Mitochondrial Matrix and Interacts with Cytochrome P450 2E1 to Lower Its Expression. Hepatology 2019; 70:2018-2034. [PMID: 31077594 PMCID: PMC6842664 DOI: 10.1002/hep.30762] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/09/2019] [Indexed: 12/12/2022]
Abstract
Methionine adenosyltransferase α1 (MATα1, encoded by MAT1A) is responsible for hepatic biosynthesis of S-adenosyl methionine, the principal methyl donor. MATα1 also act as a transcriptional cofactor by interacting and influencing the activity of several transcription factors. Mat1a knockout (KO) mice have increased levels of cytochrome P450 2E1 (CYP2E1), but the underlying mechanisms are unknown. The aims of the current study were to identify binding partners of MATα1 and elucidate how MATα1 regulates CYP2E1 expression. We identified binding partners of MATα1 by coimmunoprecipitation (co-IP) and mass spectrometry. Interacting proteins were confirmed using co-IP using recombinant proteins, liver lysates, and mitochondria. Alcoholic liver disease (ALD) samples were used to confirm relevance of our findings. We found that MATα1 negatively regulates CYP2E1 at mRNA and protein levels, with the latter being the dominant mechanism. MATα1 interacts with many proteins but with a predominance of mitochondrial proteins including CYP2E1. We found that MATα1 is present in the mitochondrial matrix of hepatocytes using immunogold electron microscopy. Mat1a KO hepatocytes had reduced mitochondrial membrane potential and higher mitochondrial reactive oxygen species, both of which were normalized when MAT1A was overexpressed. In addition, KO hepatocytes were sensitized to ethanol and tumor necrosis factor α-induced mitochondrial dysfunction. Interaction of MATα1 with CYP2E1 was direct, and this facilitated CYP2E1 methylation at R379, leading to its degradation through the proteasomal pathway. Mat1a KO livers have a reduced methylated/total CYP2E1 ratio. MATα1's influence on mitochondrial function is largely mediated by its effect on CYP2E1 expression. Patients with ALD have reduced MATα1 levels and a decrease in methylated/total CYP2E1 ratio. Conclusion: Our findings highlight a critical role of MATα1 in regulating mitochondrial function by suppressing CYP2E1 expression at multiple levels.
Collapse
Affiliation(s)
- Ben Murray
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Hui Peng
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Lucia Barbier-Torres
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Aaron Robinson
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Tony W. H. Li
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Wei Fan
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Maria Lauda Tomasi
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Roberta A. Gottlieb
- The Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jenny Van Eyk
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zhimin Lu
- Department of Neuro-Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - ML Martínez-Chantar
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology, Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN,Roudebush Veterans Administration Medical Center, Indianapolis, IN
| | - Nicholas J Skill
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202
| | - José M. Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology, Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Shelly C. Lu
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
55
|
Lavie J, De Belvalet H, Sonon S, Ion AM, Dumon E, Melser S, Lacombe D, Dupuy JW, Lalou C, Bénard G. Ubiquitin-Dependent Degradation of Mitochondrial Proteins Regulates Energy Metabolism. Cell Rep 2019; 23:2852-2863. [PMID: 29874573 DOI: 10.1016/j.celrep.2018.05.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/21/2017] [Accepted: 05/03/2018] [Indexed: 12/20/2022] Open
Abstract
The ubiquitin proteasome system (UPS) regulates many cellular functions by degrading key proteins. Notably, the role of UPS in regulating mitochondrial metabolic functions is unclear. Here, we show that ubiquitination occurs in different mitochondrial compartments, including the inner mitochondrial membrane, and that turnover of several metabolic proteins is UPS dependent. We specifically detailed mitochondrial ubiquitination and subsequent UPS-dependent degradation of succinate dehydrogenase subunit A (SDHA), which occurred when SDHA was minimally involved in mitochondrial energy metabolism. We demonstrate that SDHA ubiquitination occurs inside the organelle. In addition, we show that the specific inhibition of SDHA degradation by UPS promotes SDHA-dependent oxygen consumption and increases ATP, malate, and citrate levels. These findings suggest that the mitochondrial metabolic machinery is also regulated by the UPS.
Collapse
Affiliation(s)
- Julie Lavie
- Laboratoire Maladies Rares, Génétique et Métabolisme-INSERM U1211, 33000 Bordeaux, France; Université de Bordeaux, 146 rue Léo-Saignat, 33076 Bordeaux Cedex, France
| | - Harmony De Belvalet
- Laboratoire Maladies Rares, Génétique et Métabolisme-INSERM U1211, 33000 Bordeaux, France; Université de Bordeaux, 146 rue Léo-Saignat, 33076 Bordeaux Cedex, France
| | - Sessinou Sonon
- Laboratoire Maladies Rares, Génétique et Métabolisme-INSERM U1211, 33000 Bordeaux, France; Université de Bordeaux, 146 rue Léo-Saignat, 33076 Bordeaux Cedex, France
| | - Ana Madalina Ion
- Laboratoire Maladies Rares, Génétique et Métabolisme-INSERM U1211, 33000 Bordeaux, France; Université de Bordeaux, 146 rue Léo-Saignat, 33076 Bordeaux Cedex, France; Molecular Mechanisms of Disease, Radboud University, 65000 HC Nijmegen, the Netherlands
| | - Elodie Dumon
- Laboratoire Maladies Rares, Génétique et Métabolisme-INSERM U1211, 33000 Bordeaux, France; Université de Bordeaux, 146 rue Léo-Saignat, 33076 Bordeaux Cedex, France
| | - Su Melser
- Université de Bordeaux, 146 rue Léo-Saignat, 33076 Bordeaux Cedex, France; INSERM, U1215 NeuroCentre Magendie, 33000 Bordeaux, France
| | - Didier Lacombe
- Laboratoire Maladies Rares, Génétique et Métabolisme-INSERM U1211, 33000 Bordeaux, France; Université de Bordeaux, 146 rue Léo-Saignat, 33076 Bordeaux Cedex, France; CHU Bordeaux, Service de Génétique Médicale, 33076 Bordeaux, France
| | - Jean-William Dupuy
- Université de Bordeaux, 146 rue Léo-Saignat, 33076 Bordeaux Cedex, France; Plateforme Protéome, Centre de Génomique Fonctionnelle, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Claude Lalou
- Laboratoire Maladies Rares, Génétique et Métabolisme-INSERM U1211, 33000 Bordeaux, France; Université de Bordeaux, 146 rue Léo-Saignat, 33076 Bordeaux Cedex, France
| | - Giovanni Bénard
- Laboratoire Maladies Rares, Génétique et Métabolisme-INSERM U1211, 33000 Bordeaux, France; Université de Bordeaux, 146 rue Léo-Saignat, 33076 Bordeaux Cedex, France.
| |
Collapse
|
56
|
Molecular pathways of mitochondrial outer membrane protein degradation. Biochem Soc Trans 2019; 47:1437-1447. [DOI: 10.1042/bst20190275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 01/23/2023]
Abstract
Abstract
Mitochondrial outer membrane (MOM) encloses inner compartments of mitochondria and integrates cytoplasmic signals to regulate essential mitochondrial processes, such as protein import, dynamics, metabolism, cell death, etc. A substantial understanding of MOM associated proteostatic stresses and quality control pathways has been obtained in recent years. Six MOM associated protein degradation (MAD) pathways center on three AAA ATPases: Cdc48 in the cytoplasm, Msp1 integral to MOM, and Yme1 integral to the inner membrane. These pathways survey MOM proteome from the cytoplasmic and the inter-membrane space (IMS) sides. They detect and degrade MOM proteins with misfolded cytoplasmic and IMS domains, remove mistargeted tail-anchored proteins, and clear mitochondrial precursor proteins clogged in the TOM import complex. These MOM associated protein quality control pathways collaboratively maintain mitochondrial proteostasis and cell viability.
Collapse
|
57
|
Anderson AJ, Jackson TD, Stroud DA, Stojanovski D. Mitochondria-hubs for regulating cellular biochemistry: emerging concepts and networks. Open Biol 2019; 9:190126. [PMID: 31387448 PMCID: PMC6731593 DOI: 10.1098/rsob.190126] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are iconic structures in biochemistry and cell biology, traditionally referred to as the powerhouse of the cell due to a central role in energy production. However, modern-day mitochondria are recognized as key players in eukaryotic cell biology and are known to regulate crucial cellular processes, including calcium signalling, cell metabolism and cell death, to name a few. In this review, we will discuss foundational knowledge in mitochondrial biology and provide snapshots of recent advances that showcase how mitochondrial function regulates other cellular responses.
Collapse
Affiliation(s)
- Alexander J Anderson
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Thomas D Jackson
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - David A Stroud
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
58
|
Mohanraj K, Wasilewski M, Benincá C, Cysewski D, Poznanski J, Sakowska P, Bugajska Z, Deckers M, Dennerlein S, Fernandez‐Vizarra E, Rehling P, Dadlez M, Zeviani M, Chacinska A. Inhibition of proteasome rescues a pathogenic variant of respiratory chain assembly factor COA7. EMBO Mol Med 2019; 11:emmm.201809561. [PMID: 30885959 PMCID: PMC6505684 DOI: 10.15252/emmm.201809561] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Nuclear and mitochondrial genome mutations lead to various mitochondrial diseases, many of which affect the mitochondrial respiratory chain. The proteome of the intermembrane space (IMS) of mitochondria consists of several important assembly factors that participate in the biogenesis of mitochondrial respiratory chain complexes. The present study comprehensively analyzed a recently identified IMS protein cytochrome c oxidase assembly factor 7 (COA7), or RESpiratory chain Assembly 1 (RESA1) factor that is associated with a rare form of mitochondrial leukoencephalopathy and complex IV deficiency. We found that COA7 requires the mitochondrial IMS import and assembly (MIA) pathway for efficient accumulation in the IMS We also found that pathogenic mutant versions of COA7 are imported slower than the wild-type protein, and mislocalized proteins are degraded in the cytosol by the proteasome. Interestingly, proteasome inhibition rescued both the mitochondrial localization of COA7 and complex IV activity in patient-derived fibroblasts. We propose proteasome inhibition as a novel therapeutic approach for a broad range of mitochondrial pathologies associated with the decreased levels of mitochondrial proteins.
Collapse
Affiliation(s)
- Karthik Mohanraj
- Laboratory of Mitochondrial BiogenesisCentre of New TechnologiesUniversity of WarsawWarsawPoland,ReMedy International Research Agenda UnitCentre of New TechnologiesUniversity of WarsawWarsawPoland,Laboratory of Mitochondrial BiogenesisInternational Institute of Molecular and Cell BiologyWarsawPoland
| | - Michal Wasilewski
- Laboratory of Mitochondrial BiogenesisCentre of New TechnologiesUniversity of WarsawWarsawPoland,Laboratory of Mitochondrial BiogenesisInternational Institute of Molecular and Cell BiologyWarsawPoland
| | | | - Dominik Cysewski
- Mass Spectrometry LabDepartment of BiophysicsInstitute of Biochemistry and BiophysicsWarsawPoland
| | - Jaroslaw Poznanski
- Department of BiophysicsInstitute of Biochemistry and BiophysicsWarsawPoland
| | - Paulina Sakowska
- Laboratory of Mitochondrial BiogenesisInternational Institute of Molecular and Cell BiologyWarsawPoland
| | - Zaneta Bugajska
- Laboratory of Mitochondrial BiogenesisCentre of New TechnologiesUniversity of WarsawWarsawPoland
| | - Markus Deckers
- Department of Cellular BiochemistryUniversity of GöttingenGöttingenGermany
| | - Sven Dennerlein
- Department of Cellular BiochemistryUniversity of GöttingenGöttingenGermany
| | | | - Peter Rehling
- Department of Cellular BiochemistryUniversity of GöttingenGöttingenGermany,Max Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Michal Dadlez
- Mass Spectrometry LabDepartment of BiophysicsInstitute of Biochemistry and BiophysicsWarsawPoland
| | - Massimo Zeviani
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Agnieszka Chacinska
- Laboratory of Mitochondrial BiogenesisCentre of New TechnologiesUniversity of WarsawWarsawPoland,ReMedy International Research Agenda UnitCentre of New TechnologiesUniversity of WarsawWarsawPoland,Laboratory of Mitochondrial BiogenesisInternational Institute of Molecular and Cell BiologyWarsawPoland
| |
Collapse
|
59
|
Chen L, Liu YC, Tan H, Zhang Y, Xu J, Liu WL, Li ZY, Li WP. Santacruzamate A Ameliorates AD-Like Pathology by Enhancing ER Stress Tolerance Through Regulating the Functions of KDELR and Mia40-ALR in vivo and in vitro. Front Cell Neurosci 2019; 13:61. [PMID: 30886573 PMCID: PMC6409322 DOI: 10.3389/fncel.2019.00061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/06/2019] [Indexed: 11/13/2022] Open
Abstract
Aggregated amyloid-β protein (Aβ) and Aβ-induced neuronal apoptosis have been implicated as critical factors in the pathophysiology of Alzheimer's disease (AD). Certain preclinical results have indicated that the increased accumulation of protein aggregates in AD-affected neurons activates the unfolded protein response (UPR), a pathological phenomenon, which predominantly mediates the aberrant endoplasmic reticulum (ER) stress and apoptotic cascades in neuronal cells. In the present study, we confirmed that Santacruzamate A (STA, a natural product isolated from a Panamanian marine cyanobacterium) attenuates Aβ protein fragment 25-35 (Aβ25-35)-induced toxicity in PC12 cells and rescues cognitive deficits in APPswe/PS1dE9 mice by enhancing ER stress tolerance. We first demonstrated the anti-apoptotic effects of STA by evaluating caspase-3 activity, annexin V/propidium iodide (PI) staining, and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Behavioral testing of STA-treated APPswe/PS1dE9 mice showed that the pronounced memory impairments were ameliorated and that the consolidated memories were stably maintained over a 2-week period. The mechanistic studies provided evidence that STA inhibited Aβ25-35-induced UPR and ER stress by regulating the ER retention signal (KDEL) receptor, which reinforced the retention of resident chaperones in the ER lumen. Furthermore, STA regulated the expression of the mitochondrial intermembrane space assembly protein 40 (Mia40) and augmenter of liver regeneration (ALR), which ultimately attenuated the mitochondrial fission and apoptosis pathways. Together, our present findings suggest that the KDEL receptor and Mia40-ALR play a role in mitigating Aβ25-35-induced neurotoxicity, which might in turn positively regulate learning and memory. These observations support that STA may be a promising agent for reversing the progression of AD.
Collapse
Affiliation(s)
- Lei Chen
- Shenzhen Key Laboratory of Neurosurgery, Brain Center, Shenzhen Second People’s Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, China
| | | | - Hui Tan
- Shenzhen Key Laboratory of Neurosurgery, Brain Center, Shenzhen Second People’s Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, China
| | - Yuan Zhang
- Shenzhen Key Laboratory of Neurosurgery, Brain Center, Shenzhen Second People’s Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, China
| | - Ji Xu
- Shenzhen Key Laboratory of Neurosurgery, Brain Center, Shenzhen Second People’s Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, China
| | - Wen-lan Liu
- Shenzhen Key Laboratory of Neurosurgery, Brain Center, Shenzhen Second People’s Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, China
| | - Zong-yang Li
- Shenzhen Key Laboratory of Neurosurgery, Brain Center, Shenzhen Second People’s Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, China
| | - Wei-ping Li
- Shenzhen Key Laboratory of Neurosurgery, Brain Center, Shenzhen Second People’s Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, China
| |
Collapse
|
60
|
|
61
|
Mitochondrial presequence import: Multiple regulatory knobs fine-tune mitochondrial biogenesis and homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:930-944. [PMID: 30802482 DOI: 10.1016/j.bbamcr.2019.02.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022]
Abstract
Mitochondria are pivotal organelles for cellular signaling and metabolism, and their dysfunction leads to severe cellular stress. About 60-70% of the mitochondrial proteome consists of preproteins synthesized in the cytosol with an amino-terminal cleavable presequence targeting signal. The TIM23 complex transports presequence signals towards the mitochondrial matrix. Ultimately, the mature protein segments are either transported into the matrix or sorted to the inner membrane. To ensure accurate preprotein import into distinct mitochondrial sub-compartments, the TIM23 machinery adopts specific functional conformations and interacts with different partner complexes. Regulatory subunits modulate the translocase dynamics, tailoring the import reaction to the incoming preprotein. The mitochondrial membrane potential and the ATP generated via oxidative phosphorylation are key energy sources in driving the presequence import pathway. Thus, mitochondrial dysfunctions have rapid repercussions on biogenesis. Cellular mechanisms exploit the presequence import pathway to monitor mitochondrial dysfunctions and mount transcriptional and proteostatic responses to restore functionality.
Collapse
|
62
|
Strangers in strange lands: mitochondrial proteins found at extra-mitochondrial locations. Biochem J 2019; 476:25-37. [DOI: 10.1042/bcj20180473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 12/18/2022]
Abstract
Abstract
The mitochondrial proteome is estimated to contain ∼1100 proteins, the vast majority of which are nuclear-encoded, with only 13 proteins encoded by the mitochondrial genome. The import of these nuclear-encoded proteins into mitochondria was widely believed to be unidirectional, but recent discoveries have revealed that many these ‘mitochondrial’ proteins are exported, and have extra-mitochondrial activities divergent from their mitochondrial function. Surprisingly, three of the exported proteins discovered thus far are mitochondrially encoded and have significantly different extra-mitochondrial roles than those performed within the mitochondrion. In this review, we will detail the wide variety of proteins once thought to only reside within mitochondria, but now known to ‘emigrate’ from mitochondria in order to attain ‘dual citizenship’, present both within mitochondria and elsewhere.
Collapse
|
63
|
Fan L, Zhang W, Wang X, Dong W, Tong Y, Dong C, Shuang S. A two-photon ratiometric fluorescent probe for highly selective sensing of mitochondrial cysteine in live cells. Analyst 2018; 144:439-447. [PMID: 30420979 DOI: 10.1039/c8an01908h] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We report herein a two-photon ratiometric fluorescent probe (DNEPI) for mitochondrial cysteine (Cys) detection on the basis of a merocyanine (compound 1) as the two-photon fluorophore and a 2,4-dinitrobenzensulfonyl (DNBS) unit as the biothiol reaction site. Upon reaction with Cys in DMSO/PBS (1/1, v/v), DNEPI showed a distinct ratiometric fluorescence emission characteristic (F583 nm/F485 nm) linearly proportional to Cys concentrations over the range of 2-10 μM, which was attribute to the enhanced intramolecular charge transfer (ICT) effect by cleavage of the sulfonic acid ester bond of DNEPI to release compound 1. More importantly, the probe could detect Cys with a fast response time (within 2 min) and the detection limit was quantitatively calculated as 0.29 μM. Furthermore, DNEPI not only exhibited high selectivity toward Cys over other similar biothiols, including homocysteine (Hcy) and glutathione (GSH), but also displayed significant mitochondrial-targeting ability, which were favorable for mitochondrial Cys-selective imaging. Subsequently, application of DNEPI to Cys imaging in live cells was successfully achieved by two-photon fluorescence microscopy, suggesting that the probe proposed here could be used to monitor mitochondrial Cys concentration changes in live cells with negligible interference from other biological thiols.
Collapse
Affiliation(s)
- Li Fan
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China.
| | - Wenjia Zhang
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China.
| | - Xiaodong Wang
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China.
| | - Wenjuan Dong
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China.
| | - Yaoli Tong
- Translational medicine research center, Shanxi Medical University, Taiyuan, 030006, P. R. China
| | - Chuan Dong
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China.
| | - Shaomin Shuang
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China.
| |
Collapse
|
64
|
Kowalski L, Bragoszewski P, Khmelinskii A, Glow E, Knop M, Chacinska A. Determinants of the cytosolic turnover of mitochondrial intermembrane space proteins. BMC Biol 2018; 16:66. [PMID: 29929515 PMCID: PMC6013907 DOI: 10.1186/s12915-018-0536-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/25/2018] [Indexed: 12/31/2022] Open
Abstract
Background The proteome of mitochondria comprises mostly proteins that originate as precursors in the cytosol. Before import into the organelle, such proteins are exposed to cytosolic quality control mechanisms. Multiple lines of evidence indicate a significant contribution of the major cytosolic protein degradation machinery, the ubiquitin-proteasome system, to the quality control of mitochondrial proteins. Proteins that are directed to the mitochondrial intermembrane space (IMS) exemplify an entire class of mitochondrial proteins regulated by proteasomal degradation. However, little is known about how these proteins are selected for degradation. Results The present study revealed the heterogeneous cytosolic stability of IMS proteins. Using a screening approach, we found that different cytosolic factors are responsible for the degradation of specific IMS proteins, with no single common factor involved in the degradation of all IMS proteins. We found that the Cox12 protein is rapidly degraded when localized to the cytosol, thus providing a sensitive experimental model. Using Cox12, we found that lysine residues but not conserved cysteine residues are among the degron features important for protein ubiquitination. We observed the redundancy of ubiquitination components, with significant roles of Ubc4 E2 ubiquitin-conjugating enzyme and Rsp5 E3 ubiquitin ligase. The amount of ubiquitinated Cox12 was inversely related to mitochondrial import efficiency. Importantly, we found that precursor protein ubiquitination blocks its import into mitochondria. Conclusions The present study confirms the involvement of ubiquitin-proteasome system in the quality control of mitochondrial IMS proteins in the cytosol. Notably, ubiquitination of IMS proteins prohibits their import into mitochondria. Therefore, ubiquitination directly affects the availability of precursor proteins for organelle biogenesis. Importantly, despite their structural similarities, IMS proteins are not selected for degradation in a uniform way. Instead, specific IMS proteins rely on discrete components of the ubiquitination machinery to mediate their clearance by the proteasome. Electronic supplementary material The online version of this article (10.1186/s12915-018-0536-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lukasz Kowalski
- Centre of New Technologies, University of Warsaw, Warsaw, Poland.,International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Piotr Bragoszewski
- Centre of New Technologies, University of Warsaw, Warsaw, Poland. .,International Institute of Molecular and Cell Biology, Warsaw, Poland.
| | - Anton Khmelinskii
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany.,Institute of Molecular Biology (IMB), Mainz, Germany
| | - Edyta Glow
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Michael Knop
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany.,Deutsches Krebsforschungszentrum (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Agnieszka Chacinska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland. .,International Institute of Molecular and Cell Biology, Warsaw, Poland.
| |
Collapse
|
65
|
Samluk L, Chroscicki P, Chacinska A. Mitochondrial protein import stress and signaling. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
66
|
Becker T, Wagner R. Mitochondrial Outer Membrane Channels: Emerging Diversity in Transport Processes. Bioessays 2018; 40:e1800013. [DOI: 10.1002/bies.201800013] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/29/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Thomas Becker
- Faculty of MedicineInstitute of Biochemistry and Molecular Biology, ZBMZUniversity of FreiburgFreiburgD‐79104Germany
- BIOSS Centre for Biological Signalling StudiesUniversity of FreiburgFreiburgD‐79104Germany
| | - Richard Wagner
- Biophysics, Life Sciences & ChemistryJacobs University BremenBremenD‐28759Germany
| |
Collapse
|
67
|
Abstract
It is commonly observed that proteasome impairment results in accumulation of ubiquitinated proteins in the cytosol. Even proteins originally located in the nucleus show similar cytosolic accumulation, suggesting that unidentified machinery proactively transports them to the cytosol. Here, we report that a protein complex, UBIN–polyubiquitinated substrate transporter, harboring ubiquitin binding domain and nuclear export signal specifically mediates this process. In addition, their worm homologues showing similar transportation activity are important to maintain the lifespan of worms under natural condition. Our findings provide an answer to the long-standing question of why ubiquitinated proteins are deposited in the cytosol by proteasome impairment; they provide definite identification of underlying molecular machinery and show its essential involvement in the proteostasis in animal cells. Although mechanisms for protein homeostasis in the cytosol have been studied extensively, those in the nucleus remain largely unknown. Here, we identified that a protein complex mediates export of polyubiquitinated proteins from the nucleus to the cytosol. UBIN, a ubiquitin-associated (UBA) domain-containing protein, shuttled between the nucleus and the cytosol in a CRM1-dependent manner, despite the lack of intrinsic nuclear export signal (NES). Instead, the UBIN binding protein polyubiquitinated substrate transporter (POST) harboring an NES shuttled UBIN through nuclear pores. UBIN bound to polyubiquitin chain through its UBA domain, and the UBIN-POST complex exported them from the nucleus to the cytosol. Ubiquitinated proteins accumulated in the cytosol in response to proteasome inhibition, whereas cotreatment with CRM1 inhibitor led to their accumulation in the nucleus. Our results suggest that ubiquitinated proteins are exported from the nucleus to the cytosol in the UBIN-POST complex-dependent manner for the maintenance of nuclear protein homeostasis.
Collapse
|
68
|
Callegari S, Dennerlein S. Sensing the Stress: A Role for the UPR mt and UPR am in the Quality Control of Mitochondria. Front Cell Dev Biol 2018; 6:31. [PMID: 29644217 PMCID: PMC5882792 DOI: 10.3389/fcell.2018.00031] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/12/2018] [Indexed: 01/01/2023] Open
Abstract
Mitochondria exist as compartmentalized units, surrounded by a selectively permeable double membrane. Within is contained the mitochondrial genome and protein synthesis machinery, required for the synthesis of OXPHOS components and ultimately, ATP production. Despite their physical barrier, mitochondria are tightly integrated into the cellular environment. A constant flow of information must be maintained to and from the mitochondria and the nucleus, to ensure mitochondria are amenable to cell metabolic requirements and also to feedback on their functional state. This review highlights the pathways by which mitochondrial stress is signaled to the nucleus, with a particular focus on the mitochondrial unfolded protein response (UPRmt) and the unfolded protein response activated by the mistargeting of proteins (UPRam). Although these pathways were originally discovered to alleviate proteotoxic stress from the accumulation of mitochondrial-targeted proteins that are misfolded or unimported, we review recent findings indicating that the UPRmt can also sense defects in mitochondrial translation. We further discuss the regulation of OXPHOS assembly and speculate on a possible role for mitochondrial stress pathways in sensing OXPHOS biogenesis.
Collapse
Affiliation(s)
- Sylvie Callegari
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
69
|
Dubinski AF, Camasta R, Soule TGB, Reed BH, Glerum DM. Consequences of cytochrome c oxidase assembly defects for the yeast stationary phase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:445-458. [PMID: 29567354 DOI: 10.1016/j.bbabio.2018.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 12/24/2022]
Abstract
The assembly of cytochrome c oxidase (COX) is essential for a functional mitochondrial respiratory chain, although the consequences of a loss of assembled COX at yeast stationary phase, an excellent model for terminally differentiated cells in humans, remain largely unexamined. In this study, we show that a wild-type respiratory competent yeast strain at stationary phase is characterized by a decreased oxidative capacity, as seen by a reduction in the amount of assembled COX and by a decrease in protein levels of several COX assembly factors. In contrast, loss of assembled COX results in the decreased abundance of many mitochondrial proteins at stationary phase, which is likely due to decreased membrane potential and changes in mitophagy. In addition to an altered mitochondrial proteome, COX assembly mutants display unexpected changes in markers of cellular oxidative stress at stationary phase. Our results suggest that mitochondria may not be a major source of reactive oxygen species at stationary phase in cells lacking an intact respiratory chain.
Collapse
Affiliation(s)
- Alicia F Dubinski
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Raffaele Camasta
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Tyler G B Soule
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Bruce H Reed
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - D Moira Glerum
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada; Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
70
|
Bragoszewski P, Turek M, Chacinska A. Control of mitochondrial biogenesis and function by the ubiquitin-proteasome system. Open Biol 2018; 7:rsob.170007. [PMID: 28446709 PMCID: PMC5413908 DOI: 10.1098/rsob.170007] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/31/2017] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are pivotal organelles in eukaryotic cells. The complex proteome of mitochondria comprises proteins that are encoded by nuclear and mitochondrial genomes. The biogenesis of mitochondrial proteins requires their transport in an unfolded state with a high risk of misfolding. The mislocalization of mitochondrial proteins is deleterious to the cell. The electron transport chain in mitochondria is a source of reactive oxygen species that damage proteins. Mitochondrial dysfunction is linked to many pathological conditions and, together with the loss of cellular protein homeostasis (proteostasis), are hallmarks of ageing and ageing-related degeneration diseases. The pathogenesis of neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease, has been associated with mitochondrial and proteostasis failure. Thus, mitochondrial proteins require sophisticated surveillance mechanisms. Although mitochondria form a proteasome-exclusive compartment, multiple lines of evidence indicate a crucial role for the cytosolic ubiquitin-proteasome system (UPS) in the quality control of mitochondrial proteins. The proteasome affects mitochondrial proteins at stages of their biogenesis and maturity. The effects of the UPS go beyond the removal of damaged proteins and include the adjustment of mitochondrial proteome composition, the regulation of organelle dynamics and the protection of cellular homeostasis against mitochondrial failure. In turn, mitochondrial activity and mitochondrial dysfunction adjust the activity of the UPS, with implications at the cellular level.
Collapse
Affiliation(s)
- Piotr Bragoszewski
- Laboratory of Mitochondrial Biogenesis, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Michal Turek
- Laboratory of Mitochondrial Biogenesis, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Agnieszka Chacinska
- Laboratory of Mitochondrial Biogenesis, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, 02-109 Warsaw, Poland .,Centre of New Technologies, Warsaw University, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
71
|
Comprehensive list of SUMO targets in Caenorhabditis elegans and its implication for evolutionary conservation of SUMO signaling. Sci Rep 2018; 8:1139. [PMID: 29348603 PMCID: PMC5773548 DOI: 10.1038/s41598-018-19424-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/02/2018] [Indexed: 02/07/2023] Open
Abstract
Post-translational modification by small ubiquitin-related modifier (SUMO) is a key regulator of cell physiology, modulating protein-protein and protein-DNA interactions. Recently, SUMO modifications were postulated to be involved in response to various stress stimuli. We aimed to identify the near complete set of proteins modified by SUMO and the dynamics of the modification in stress conditions in the higher eukaryote, Caenorhabditis elegans. We identified 874 proteins modified by SUMO in the worm. We have analyzed the SUMO modification in stress conditions including heat shock, DNA damage, arsenite induced cellular stress, ER and osmotic stress. In all these conditions the global levels of SUMOylation was significantly increased. These results show the evolutionary conservation of SUMO modifications in reaction to stress. Our analysis showed that SUMO targets are highly conserved throughout species. By comparing the SUMO targets among species, we approximated the total number of proteins modified in a given proteome to be at least 15–20%. We developed a web server designed for convenient prediction of potential SUMO modification based on experimental evidences in other species.
Collapse
|
72
|
Backes S, Herrmann JM. Protein Translocation into the Intermembrane Space and Matrix of Mitochondria: Mechanisms and Driving Forces. Front Mol Biosci 2017; 4:83. [PMID: 29270408 PMCID: PMC5725982 DOI: 10.3389/fmolb.2017.00083] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/24/2017] [Indexed: 11/17/2022] Open
Abstract
Mitochondria contain two aqueous subcompartments, the matrix and the intermembrane space (IMS). The matrix is enclosed by both the inner and outer mitochondrial membranes, whilst the IMS is sandwiched between the two. Proteins of the matrix are synthesized in the cytosol as preproteins, which contain amino-terminal matrix targeting sequences that mediate their translocation through translocases embedded in the outer and inner membrane. For these proteins, the translocation reaction is driven by the import motor which is part of the inner membrane translocase. The import motor employs matrix Hsp70 molecules and ATP hydrolysis to ratchet proteins into the mitochondrial matrix. Most IMS proteins lack presequences and instead utilize the IMS receptor Mia40, which facilitates their translocation across the outer membrane in a reaction that is coupled to the formation of disulfide bonds within the protein. This process requires neither ATP nor the mitochondrial membrane potential. Mia40 fulfills two roles: First, it acts as a holdase, which is crucial in the import of IMS proteins and second, it functions as a foldase, introducing disulfide bonds into newly imported proteins, which induces and stabilizes their natively folded state. For several Mia40 substrates, oxidative folding is an essential prerequisite for their assembly into oligomeric complexes. Interestingly, recent studies have shown that the two functions of Mia40 can be experimentally separated from each other by the use of specific mutants, hence providing a powerful new way to dissect the different physiological roles of Mia40. In this review we summarize the current knowledge relating to the mitochondrial matrix-targeting and the IMS-targeting/Mia40 pathway. Moreover, we discuss the mechanistic properties by which the mitochondrial import motor on the one hand and Mia40 on the other, drive the translocation of their substrates into the organelle. We propose that the lateral diffusion of Mia40 in the inner membrane and the oxidation-mediated folding of incoming polypeptides supports IMS import.
Collapse
Affiliation(s)
- Sandra Backes
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | | |
Collapse
|
73
|
Zeng RF, Lan JS, Li XD, Liang HF, Liao Y, Lu YJ, Zhang T, Ding Y. A Fluorescent Coumarin-Based Probe for the Fast Detection of Cysteine with Live Cell Application. Molecules 2017; 22:E1618. [PMID: 28954423 PMCID: PMC6151380 DOI: 10.3390/molecules22101618] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/14/2022] Open
Abstract
A new coumarin-based fluorescent probe, containing an allylic esters group, has been designed and synthesized for sensing cysteine in physiological pH. In this fluorescent probe, the coumarin was applied as the fluorophore and an allylic esters group was combined as both a fluorescence quencher and a recognition unit. The probe can selectively and sensitively detect cysteine (Cys) over homocysteine, glutathione, and other amino acids, and has a rapid response time of 30 min and a low detection limit of 47.7 nM. In addition, the probe could be applied for cell imaging with low cytotoxicity.
Collapse
Affiliation(s)
- Rui-Feng Zeng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jin-Shuai Lan
- Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xiao-Die Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hui-Fen Liang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yan Liao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ying-Jie Lu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yue Ding
- Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
74
|
Straub SP, Stiller SB, Wiedemann N, Pfanner N. Dynamic organization of the mitochondrial protein import machinery. Biol Chem 2017; 397:1097-1114. [PMID: 27289000 DOI: 10.1515/hsz-2016-0145] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 05/17/2016] [Indexed: 01/12/2023]
Abstract
Mitochondria contain elaborate machineries for the import of precursor proteins from the cytosol. The translocase of the outer mitochondrial membrane (TOM) performs the initial import of precursor proteins and transfers the precursors to downstream translocases, including the presequence translocase and the carrier translocase of the inner membrane, the mitochondrial import and assembly machinery of the intermembrane space, and the sorting and assembly machinery of the outer membrane. Although the protein translocases can function as separate entities in vitro, recent studies revealed a close and dynamic cooperation of the protein import machineries to facilitate efficient transfer of precursor proteins in vivo. In addition, protein translocases were found to transiently interact with distinct machineries that function in the respiratory chain or in the maintenance of mitochondrial membrane architecture. Mitochondrial protein import is embedded in a regulatory network that ensures protein biogenesis, membrane dynamics, bioenergetic activity and quality control.
Collapse
|
75
|
Abstract
Mitochondria are essential organelles with numerous functions in cellular metabolism and homeostasis. Most of the >1,000 different mitochondrial proteins are synthesized as precursors in the cytosol and are imported into mitochondria by five transport pathways. The protein import machineries of the mitochondrial membranes and aqueous compartments reveal a remarkable variability of mechanisms for protein recognition, translocation, and sorting. The protein translocases do not operate as separate entities but are connected to each other and to machineries with functions in energetics, membrane organization, and quality control. Here, we discuss the versatility and dynamic organization of the mitochondrial protein import machineries. Elucidating the molecular mechanisms of mitochondrial protein translocation is crucial for understanding the integration of protein translocases into a large network that controls organelle biogenesis, function, and dynamics.
Collapse
Affiliation(s)
- Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, and BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany; ,
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, and BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany; ,
| |
Collapse
|
76
|
Braun RJ, Westermann B. With the Help of MOM: Mitochondrial Contributions to Cellular Quality Control. Trends Cell Biol 2017; 27:441-452. [PMID: 28291566 DOI: 10.1016/j.tcb.2017.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 11/16/2022]
Abstract
Mitochondria are essential organelles because they have key roles in cellular energy metabolism and many other metabolic pathways. Several quality control systems have evolved to ensure that dysfunctional mitochondria are either repaired or eliminated. The activities of these pathways are crucial for cellular health because they maintain functional mitochondria. In addition, the cytosolic ubiquitin-proteasome system (UPS) and the mitochondria-associated degradation pathway (MAD) share some of their core components, are functionally tightly interconnected, and mutually modulate their activities. Thus, the mitochondrial outer membrane (MOM) actively supports quality control systems in extramitochondrial compartments. Furthermore, mitochondrial quality surveillance systems also act on cytosolic or endoplasmic reticulum (ER) substrates and modulate immune responses. Therefore, mitochondria contribute to cellular quality control and homeostasis on several levels.
Collapse
Affiliation(s)
- Ralf J Braun
- Institut für Zellbiologie, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany.
| | - Benedikt Westermann
- Institut für Zellbiologie, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany.
| |
Collapse
|
77
|
Abstract
Structure determination by cryo-electron microscopy has approached atomic resolution and helped solve structures of large membrane-protein complexes that resisted crystallography. The 4.0 Å cryo-EM structure of one of the most intricate enzyme systems, the respirasome, in the mitochondrial inner membrane is reported in this issue of Cell.
Collapse
Affiliation(s)
- Andrew Melber
- University of Utah Health Sciences Center, Salt Lake City UT 84132, USA
| | - Dennis R Winge
- University of Utah Health Sciences Center, Salt Lake City UT 84132, USA.
| |
Collapse
|
78
|
Wasilewski M, Chojnacka K, Chacinska A. Protein trafficking at the crossroads to mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:125-137. [PMID: 27810356 DOI: 10.1016/j.bbamcr.2016.10.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/14/2022]
Abstract
Mitochondria are central power stations in the cell, which additionally serve as metabolic hubs for a plethora of anabolic and catabolic processes. The sustained function of mitochondria requires the precisely controlled biogenesis and expression coordination of proteins that originate from the nuclear and mitochondrial genomes. Accuracy of targeting, transport and assembly of mitochondrial proteins is also needed to avoid deleterious effects on protein homeostasis in the cell. Checkpoints of mitochondrial protein transport can serve as signals that provide information about the functional status of the organelles. In this review, we summarize recent advances in our understanding of mitochondrial protein transport and discuss examples that involve communication with the nucleus and cytosol.
Collapse
Affiliation(s)
- Michal Wasilewski
- International Institute of Molecular and Cell Biology in Warsaw, Poland.
| | | | | |
Collapse
|
79
|
Li ZY, Li QZ, Chen L, Chen BD, Zhang C, Wang X, Li WP. HPOB, an HDAC6 inhibitor, attenuates corticosterone-induced injury in rat adrenal pheochromocytoma PC12 cells by inhibiting mitochondrial GR translocation and the intrinsic apoptosis pathway. Neurochem Int 2016; 99:239-251. [PMID: 27522966 DOI: 10.1016/j.neuint.2016.08.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/04/2016] [Accepted: 08/10/2016] [Indexed: 02/05/2023]
Abstract
High levels of glucocorticoids (GCs) have been reported to damage normal hippocampal neurons, and such damage has been positively correlated with major depression (MD) and chronic stress. Our previous study showed that HDAC6 might be a potential target to regulate GC-induced glucocorticoid receptor (GR) translocation to the mitochondria and subsequent apoptosis. In the present study, we investigated the effect of HPOB, a selective HDAC6 inhibitor, on corticosterone (Cort)-induced apoptosis and explored the possible mechanism of action of HPOB in rat adrenal pheochromocytoma (PC12) cells, which possesses typical neuron features and expresses high levels of glucocorticoid receptors. We demonstrated that pre-treatment with HPOB remarkably reduced Cort-induced cytotoxicity and confirmed the anti-apoptotic effect of HPOB via the caspase-3 activity assay and H33342/PI and TUNEL double staining. Mechanistically, we demonstrated that HPOB reversed the Cort-induced elevation of GR levels in the mitochondria and blocked concomitant mitochondrial dysfunction and the intrinsic apoptosis pathway. Furthermore, HPOB was shown to attenuate expression of the multi-chaperone machinery (Hsp90-Hop-Hsp70) and cooperate with mitochondrial translocase of the outer/inner membrane (TOM/TIM) complex recruitment by triggering hyperacetylation of Hsps through HDAC6 inhibition. Considering all of these findings, the neuroprotective effect of HPOB demonstrated the crucial role of HDAC6 inhibition in reducing Cort-induced apoptosis in PC12 cells. The data further suggested that the anti-apoptotic activity of HDAC6 inhibition against the mitochondria-mediated impairment pathway might be mechanistically linked to the hyperacetylation of Hsps and consequent suppression of GR translocation to the mitochondria.
Collapse
Affiliation(s)
- Zong-Yang Li
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, 518035, China
| | - Qing-Zhong Li
- Shantou University Medical College, Shantou, 515041, China
| | - Lei Chen
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, 518035, China
| | - Bao-Dong Chen
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, 518035, China
| | - Ce Zhang
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, 518035, China
| | - Xiang Wang
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, 518035, China
| | - Wei-Ping Li
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, 518035, China.
| |
Collapse
|
80
|
Barile M, Giancaspero TA, Leone P, Galluccio M, Indiveri C. Riboflavin transport and metabolism in humans. J Inherit Metab Dis 2016; 39:545-57. [PMID: 27271694 DOI: 10.1007/s10545-016-9950-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/12/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022]
Abstract
Recent studies elucidated how riboflavin transporters and FAD forming enzymes work in humans and create a coordinated flavin network ensuring the maintenance of cellular flavoproteome. Alteration of this network may be causative of severe metabolic disorders such as multiple acyl-CoA dehydrogenase deficiency (MADD) or Brown-Vialetto-van Laere syndrome. A crucial step in the maintenance of FAD homeostasis is riboflavin uptake by plasma and mitochondrial membranes. Therefore, studies on recently identified human plasma membrane riboflavin transporters are presented, together with those in which still unidentified mitochondrial riboflavin transporter(s) have been described. A main goal of future research is to fill the gaps still existing as for some transcriptional, functional and structural details of human FAD synthases (FADS) encoded by FLAD1 gene, a novel "redox sensing" enzyme. In the frame of the hypothesis that FADS, acting as a "FAD chaperone", could play a crucial role in the biogenesis of mitochondrial flavo-proteome, several basic functional aspects of flavin cofactor delivery to cognate apo-flavoenzyme are also briefly dealt with. The establishment of model organisms performing altered FAD homeostasis will improve the molecular description of human pathologies. The molecular and functional studies of transporters and enzymes herereported, provide guidelines for improving therapies which may have beneficial effects on the altered metabolism.
Collapse
Affiliation(s)
- Maria Barile
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", via Orabona 4, I-70126, Bari, Italy.
| | - Teresa Anna Giancaspero
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", via Orabona 4, I-70126, Bari, Italy
| | - Piero Leone
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", via Orabona 4, I-70126, Bari, Italy
| | - Michele Galluccio
- Dipartimento DiBEST (Biologia, Ecologia, Scienze della Terra), Unità di Biochimica e Biotecnologie Molecolari, Università della Calabria, via Bucci 4c, I-87036, Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Dipartimento DiBEST (Biologia, Ecologia, Scienze della Terra), Unità di Biochimica e Biotecnologie Molecolari, Università della Calabria, via Bucci 4c, I-87036, Arcavacata di Rende, Italy
| |
Collapse
|
81
|
Peleh V, Cordat E, Herrmann JM. Mia40 is a trans-site receptor that drives protein import into the mitochondrial intermembrane space by hydrophobic substrate binding. eLife 2016; 5. [PMID: 27343349 PMCID: PMC4951193 DOI: 10.7554/elife.16177] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/24/2016] [Indexed: 11/13/2022] Open
Abstract
Many proteins of the mitochondrial IMS contain conserved cysteines that are oxidized to disulfide bonds during their import. The conserved IMS protein Mia40 is essential for the oxidation and import of these proteins. Mia40 consists of two functional elements: an N-terminal cysteine-proline-cysteine motif conferring substrate oxidation, and a C-terminal hydrophobic pocket for substrate binding. In this study, we generated yeast mutants to dissect both Mia40 activities genetically and biochemically. Thereby we show that the substrate-binding domain of Mia40 is both necessary and sufficient to promote protein import, indicating that trapping by Mia40 drives protein translocation. An oxidase-deficient Mia40 mutant is inviable, but can be partially rescued by the addition of the chemical oxidant diamide. Our results indicate that Mia40 predominantly serves as a trans-site receptor of mitochondria that binds incoming proteins via hydrophobic interactions thereby mediating protein translocation across the outer membrane by a ‘holding trap’ rather than a ‘folding trap’ mechanism. DOI:http://dx.doi.org/10.7554/eLife.16177.001 Human, yeast and other eukaryotic cells contain compartments called mitochondria that perform several vital tasks, including supplying the cell with energy. Each mitochondrion is surrounded by an inner and an outer membrane, which are separated by an intermembrane space that contains a host of molecules, including proteins. Intermembrane space proteins are made in the cytosol before being transported into the intermembrane space through pores in the mitochondrion’s outer membrane. Many of these proteins have the ability to form disulfide bonds within their structures, which help the proteins to fold and assemble correctly, but they only acquire these bonds once they have entered the intermembrane space. An enzyme called Mia40 sits inside the intermembrane space and helps other proteins to fold correctly. This Mia40-induced folding had been suggested to help proteins to move into the intermembrane space. Mia40 contains two important regions: one region acts as an enzyme and adds disulfide bonds to other proteins, and the other region binds to the intermembrane space proteins. Peleh et al. have now generated versions of Mia40 that lack one or the other of these regions in yeast cells, and then tested to see if these mutants could drive proteins across the outer membrane of mitochondria. The results show that it is the ability of Mia40 to bind proteins – and not its enzyme activity – that is essential for importing proteins into the intermembrane space. As disulfide bond formation is not critical for importing proteins into the intermembrane space, future studies could test whether Mia40 also helps to transport proteins that cannot form disulfide bonds. Presumably, Mia40 has a much broader relevance for importing mitochondrial proteins than was previously thought. DOI:http://dx.doi.org/10.7554/eLife.16177.002
Collapse
Affiliation(s)
- Valentina Peleh
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | | |
Collapse
|
82
|
Kojima W, Kujuro Y, Okatsu K, Bruno Q, Koyano F, Kimura M, Yamano K, Tanaka K, Matsuda N. Unexpected mitochondrial matrix localization of Parkinson's disease-related DJ-1 mutants but not wild-type DJ-1. Genes Cells 2016; 21:772-88. [PMID: 27270837 DOI: 10.1111/gtc.12382] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/02/2016] [Indexed: 12/30/2022]
Abstract
DJ-1 has been identified as a gene responsible for recessive familial Parkinson's disease (familial Parkinsonism), which is caused by a mutation in the PARK7 locus. Consistent with the inferred correlation between Parkinson's disease and mitochondrial impairment, mitochondrial localization of DJ-1 and its implied role in mitochondrial quality control have been reported. However, the mechanism by which DJ-1 affects mitochondrial function remains poorly defined, and the mitochondrial localization of DJ-1 is still controversial. Here, we show the mitochondrial matrix localization of various pathogenic and artificial DJ-1 mutants by multiple independent experimental approaches including cellular fractionation, proteinase K protection assays, and specific immunocytochemistry. Localization of various DJ-1 mutants to the matrix is dependent on the membrane potential and translocase activity in both the outer and the inner membranes. Nevertheless, DJ-1 possesses neither an amino-terminal alpha-helix nor a predictable matrix-targeting signal, and a post-translocation processing-derived molecular weight change is not observed. In fact, wild-type DJ-1 does not show any evidence of mitochondrial localization at all. Such a mode of matrix localization of DJ-1 is difficult to explain by conventional mechanisms and implies a unique matrix import mechanism for DJ-1 mutants.
Collapse
Affiliation(s)
- Waka Kojima
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Yuki Kujuro
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan.,Tachikawa Hospital, 4-2-22 Nishikimachi, Tachikawa, Tokyo, 190-8531, Japan.,Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Kei Okatsu
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan.,Structural Biology Laboratory, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-0032, Japan
| | - Queliconi Bruno
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan.,Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Fumika Koyano
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Mayumi Kimura
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan.,Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Koji Yamano
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Keiji Tanaka
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.,Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Noriyuki Matsuda
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan.,PRESTO, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
83
|
The presence of disulfide bonds reveals an evolutionarily conserved mechanism involved in mitochondrial protein translocase assembly. Sci Rep 2016; 6:27484. [PMID: 27265872 PMCID: PMC4893733 DOI: 10.1038/srep27484] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/17/2016] [Indexed: 11/23/2022] Open
Abstract
Disulfide bond formation is crucial for the biogenesis and structure of many proteins that are localized in the intermembrane space of mitochondria. The importance of disulfide bond formation within mitochondrial proteins was extended beyond soluble intermembrane space proteins. Tim22, a membrane protein and core component of the mitochondrial translocase TIM22, forms an intramolecular disulfide bond in yeast. Tim22 belongs to the Tim17/Tim22/Tim23 family of protein translocases. Here, we present evidence of the high evolutionary conservation of disulfide bond formation in Tim17 and Tim22 among fungi and metazoa. Topological models are proposed that include the location of disulfide bonds relative to the predicted transmembrane regions. Yeast and human Tim22 variants that are not oxidized do not properly integrate into the membrane complex. Moreover, the lack of Tim17 oxidation disrupts the TIM23 translocase complex. This underlines the importance of disulfide bond formation for mature translocase assembly through membrane stabilization of weak transmembrane domains.
Collapse
|
84
|
Wang Y, Lyu W, Berkowitz O, Radomiljac JD, Law SR, Murcha MW, Carrie C, Teixeira PF, Kmiec B, Duncan O, Van Aken O, Narsai R, Glaser E, Huang S, Roessner U, Millar AH, Whelan J. Inactivation of Mitochondrial Complex I Induces the Expression of a Twin Cysteine Protein that Targets and Affects Cytosolic, Chloroplastidic and Mitochondrial Function. MOLECULAR PLANT 2016; 9:696-710. [PMID: 26829715 DOI: 10.1016/j.molp.2016.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 12/09/2015] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
At12Cys-1 (At5g64400) and At12Cys-2 (At5g09570) are two closely related isogenes that encode small, twin cysteine proteins, typically located in mitochondria. At12Cys-2 transcript is induced in a variety of mutants with disrupted mitochondrial proteins, but an increase in At12Cys protein is only detected in mutants with reduced mitochondrial complex I abundance. Induction of At12Cys protein in mutants that lack mitochondrial complex I is accompanied by At12Cys protein located in mitochondria, chloroplasts, and the cytosol. Biochemical analyses revealed that even single gene deletions, i.e., At12cys-1 or At12cys-2, have an effect on mitochondrial and chloroplast functions. However, only double mutants, i.e., At12cys-1:At12cys-2, affect the abundance of protein and mRNA transcripts encoding translation elongation factors as well as rRNA abundance. Blue native PAGE showed that At12Cys co-migrated with mitochondrial supercomplex I + III. Likewise, deletion of both At12cys-1 and At12cys-2 genes, but not single gene deletions, results in enhanced tolerance to drought and light stress and increased anti-oxidant capacity. The induction and multiple localization of At12Cys upon a reduction in complex I abundance provides a mechanism to specifically signal mitochondrial dysfunction to the cytosol and then beyond to other organelles in the cell.
Collapse
Affiliation(s)
- Yan Wang
- Department of Animal, Plant and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Wenhui Lyu
- Department of Animal, Plant and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Jordan D Radomiljac
- Department of Animal, Plant and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Simon R Law
- Umeå Plant Science Centre (UPSC), Faculty of Science and Technology, Umeå University, Umeå, Sweden
| | - Monika W Murcha
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Chris Carrie
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, Großhaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
| | - Pedro F Teixeira
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, 10691 Stockholm, Sweden
| | - Beata Kmiec
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, 10691 Stockholm, Sweden
| | - Owen Duncan
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Olivier Van Aken
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Reena Narsai
- Department of Animal, Plant and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Elzbieta Glaser
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, 10691 Stockholm, Sweden
| | - Shaobai Huang
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
85
|
Chatty Mitochondria: Keeping Balance in Cellular Protein Homeostasis. Trends Cell Biol 2016; 26:577-586. [PMID: 27004699 DOI: 10.1016/j.tcb.2016.03.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/16/2016] [Accepted: 03/01/2016] [Indexed: 12/25/2022]
Abstract
Mitochondria are multifunctional cellular organelles that host many biochemical pathways including oxidative phosphorylation (OXPHOS). Defective mitochondria pose a threat to cellular homeostasis and compensatory responses exist to curtail the source of stress and/or its consequences. The mitochondrial proteome comprises proteins encoded by the nuclear and mitochondrial genomes. Disturbances in protein homeostasis may originate from mistargeting of nuclear encoded mitochondrial proteins. Defective protein import and accumulation of mistargeted proteins leads to stress that triggers translation alterations and proteasomal activation. These cytosolic pathways are complementary to the mitochondrial unfolded protein response (UPRmt) that aims to increase the capacity of protein quality control mechanisms inside mitochondria. They constitute putative targets for interventions aimed at increasing the fitness, stress resistance, and longevity of cells and organisms.
Collapse
|
86
|
Han C, Yang H, Chen M, Su Q, Feng W, Li F. Mitochondria-Targeted Near-Infrared Fluorescent Off-On Probe for Selective Detection of Cysteine in Living Cells and in Vivo. ACS APPLIED MATERIALS & INTERFACES 2015; 7:27968-75. [PMID: 26618279 DOI: 10.1021/acsami.5b10607] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cysteine (Cys) plays crucial roles in biological systems and in mitochondrial processes. Highly selective probes for specific detection of mitochondrial Cys over other biological thiols are rare. Herein, we designed and synthesized a mitochondria-targetable near-infrared (NIR) fluorescent off-on probe, NFL1, based on a fluorescein derivative for Cys detection. Probe NFL1 has a lipophilic cation unit as the mitochondria biomarker and an acrylate group as the Cys-recognition unit as well as a fluorescence quencher. The probe itself is nonfluorescent due to the photoinduced electron transfer process. Upon addition of Cys, marked enhancement in the NIR emission (735 nm) can be monitored due to cleavage of the acrylate moiety. This probe had great sensitivity and selectivity for the rapid detection of Cys over homocysteine (Hcy) and glutathione (GSH) with an ultralow detection limit of 14.5 nM. More importantly, the probe successfully targeted mitochondria, detected endogenous Cys, and assessed mitochondrial oxidative stress in living cells. Probe NFL1 was also capable of detecting and imaging Cys in living nude mice, indicating its significant potential in biological applications.
Collapse
Affiliation(s)
- Chunmiao Han
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Institutes of Biomedical Sciences & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University , 220 Handan Road, Shanghai 200433, P.R. China
| | - Huiran Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Institutes of Biomedical Sciences & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University , 220 Handan Road, Shanghai 200433, P.R. China
| | - Min Chen
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Institutes of Biomedical Sciences & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University , 220 Handan Road, Shanghai 200433, P.R. China
| | - Qianqian Su
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Institutes of Biomedical Sciences & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University , 220 Handan Road, Shanghai 200433, P.R. China
| | - Wei Feng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Institutes of Biomedical Sciences & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University , 220 Handan Road, Shanghai 200433, P.R. China
| | - Fuyou Li
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Institutes of Biomedical Sciences & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University , 220 Handan Road, Shanghai 200433, P.R. China
| |
Collapse
|
87
|
Affiliation(s)
- Dejana Mokranjac
- Department of Physiological Chemistry, Biomedical Center Munich, Ludwig-Maximilians University, 82152 Martinsried, Germany
| | - Walter Neupert
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
88
|
The Oxidation Status of Mic19 Regulates MICOS Assembly. Mol Cell Biol 2015; 35:4222-37. [PMID: 26416881 PMCID: PMC4648825 DOI: 10.1128/mcb.00578-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/04/2015] [Indexed: 02/04/2023] Open
Abstract
The function of mitochondria depends on the proper organization of mitochondrial membranes. The morphology of the inner membrane is regulated by the recently identified mitochondrial contact site and crista organizing system (MICOS) complex. MICOS mutants exhibit alterations in crista formation, leading to mitochondrial dysfunction. However, the mechanisms that underlie MICOS regulation remain poorly understood. MIC19, a peripheral protein of the inner membrane and component of the MICOS complex, was previously reported to be required for the proper function of MICOS in maintaining the architecture of the inner membrane. Here, we show that human and Saccharomyces cerevisiae MIC19 proteins undergo oxidation in mitochondria and require the mitochondrial intermembrane space assembly (MIA) pathway, which couples the oxidation and import of mitochondrial intermembrane space proteins for mitochondrial localization. Detailed analyses identified yeast Mic19 in two different redox forms. The form that contains an intramolecular disulfide bond is bound to Mic60 of the MICOS complex. Mic19 oxidation is not essential for its integration into the MICOS complex but plays a role in MICOS assembly and the maintenance of the proper inner membrane morphology. These findings suggest that Mic19 is a redox-dependent regulator of MICOS function.
Collapse
|
89
|
Mistargeted mitochondrial proteins activate a proteostatic response in the cytosol. Nature 2015; 524:485-8. [DOI: 10.1038/nature14951] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 07/17/2015] [Indexed: 01/25/2023]
|