51
|
The Long Linker Region of Telomere-Binding Protein TRF2 Is Responsible for Interactions with Lamins. Int J Mol Sci 2021; 22:ijms22073293. [PMID: 33804854 PMCID: PMC8036907 DOI: 10.3390/ijms22073293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
Telomere-binding factor 2 (TRF2) is part of the shelterin protein complex found at chromosome ends. Lamin A/C interacts with TRF2 and influences telomere position. TRF2 has an intrinsically disordered region between the ordered dimerization and DNA-binding domains. This domain is referred to as the long linker region of TRF2, or udTRF2. We suggest that udTRF2 might be involved in the interaction between TRF2 and lamins. The recombinant protein corresponding to the udTRF2 region along with polyclonal antibodies against this region were used in co-immunoprecipitation with purified lamina and nuclear extracts. Co-immunoprecipitation followed by Western blots and mass spectrometry indicated that udTRF2 interacts with lamins, preferably lamins A/C. The interaction did not involve any lamin-associated proteins, was not dependent on the post-translation modification of lamins, nor did it require their higher-order assembly. Besides lamins, a number of other udTRF2-interacting proteins were identified by mass spectrometry, including several heterogeneous nuclear ribonucleoproteins (hnRNP A2/B1, hnRNPA1, hnRNP A3, hnRNP K, hnRNP L, hnRNP M), splicing factors (SFPQ, NONO, SRSF1, and others), helicases (DDX5, DHX9, and Eif4a3l1), topoisomerase I, and heat shock protein 71, amongst others. Some of the identified interactors are known to be involved in telomere biology; the roles of the others remain to be investigated. Thus, the long linker region of TRF2 (udTRF2) is a regulatory domain responsible for the association between TRF2 and lamins and is involved in interactions with other proteins.
Collapse
|
52
|
dos Santos Á, Toseland CP. Regulation of Nuclear Mechanics and the Impact on DNA Damage. Int J Mol Sci 2021; 22:3178. [PMID: 33804722 PMCID: PMC8003950 DOI: 10.3390/ijms22063178] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
In eukaryotic cells, the nucleus houses the genomic material of the cell. The physical properties of the nucleus and its ability to sense external mechanical cues are tightly linked to the regulation of cellular events, such as gene expression. Nuclear mechanics and morphology are altered in many diseases such as cancer and premature ageing syndromes. Therefore, it is important to understand how different components contribute to nuclear processes, organisation and mechanics, and how they are misregulated in disease. Although, over the years, studies have focused on the nuclear lamina-a mesh of intermediate filament proteins residing between the chromatin and the nuclear membrane-there is growing evidence that chromatin structure and factors that regulate chromatin organisation are essential contributors to the physical properties of the nucleus. Here, we review the main structural components that contribute to the mechanical properties of the nucleus, with particular emphasis on chromatin structure. We also provide an example of how nuclear stiffness can both impact and be affected by cellular processes such as DNA damage and repair.
Collapse
Affiliation(s)
- Ália dos Santos
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | - Christopher P. Toseland
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
- Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield S10 2RX, UK
| |
Collapse
|
53
|
Wang S, Hashemi S, Stratton S, Arinzeh TL. The Effect of Physical Cues of Biomaterial Scaffolds on Stem Cell Behavior. Adv Healthc Mater 2021; 10:e2001244. [PMID: 33274860 DOI: 10.1002/adhm.202001244] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/09/2020] [Indexed: 02/06/2023]
Abstract
Stem cells have been sought as a promising cell source in the tissue engineering field due to their proliferative capacity as well as differentiation potential. Biomaterials have been utilized to facilitate the delivery of stem cells in order to improve their engraftment and long-term viability upon implantation. Biomaterials also have been developed as scaffolds to promote stem cell induced tissue regeneration. This review focuses on the latter where the biomaterial scaffold is designed to provide physical cues to stem cells in order to promote their behavior for tissue formation. Recent work that explores the effect of scaffold physical properties, topography, mechanical properties and electrical properties, is discussed. Although still being elucidated, the biological mechanisms, including cell shape, focal adhesion distribution, and nuclear shape, are presented. This review also discusses emerging areas and challenges in clinical translation.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Biomedical Engineering New Jersey Institute of Technology Newark NJ 07102 USA
| | - Sharareh Hashemi
- Department of Biomedical Engineering New Jersey Institute of Technology Newark NJ 07102 USA
| | - Scott Stratton
- Department of Biomedical Engineering New Jersey Institute of Technology Newark NJ 07102 USA
| | | |
Collapse
|
54
|
Pennacchio FA, Nastały P, Poli A, Maiuri P. Tailoring Cellular Function: The Contribution of the Nucleus in Mechanotransduction. Front Bioeng Biotechnol 2021; 8:596746. [PMID: 33490050 PMCID: PMC7820809 DOI: 10.3389/fbioe.2020.596746] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Cells sense a variety of different mechanochemical stimuli and promptly react to such signals by reshaping their morphology and adapting their structural organization and tensional state. Cell reactions to mechanical stimuli arising from the local microenvironment, mechanotransduction, play a crucial role in many cellular functions in both physiological and pathological conditions. To decipher this complex process, several studies have been undertaken to develop engineered materials and devices as tools to properly control cell mechanical state and evaluate cellular responses. Recent reports highlight how the nucleus serves as an important mechanosensor organelle and governs cell mechanoresponse. In this review, we will introduce the basic mechanisms linking cytoskeleton organization to the nucleus and how this reacts to mechanical properties of the cell microenvironment. We will also discuss how perturbations of nucleus-cytoskeleton connections, affecting mechanotransduction, influence health and disease. Moreover, we will present some of the main technological tools used to characterize and perturb the nuclear mechanical state.
Collapse
Affiliation(s)
- Fabrizio A. Pennacchio
- FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Paulina Nastały
- FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
- Laboratory of Translational Oncology, Institute of Medical Biotechnology and Experimental Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | - Alessandro Poli
- FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Paolo Maiuri
- FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| |
Collapse
|
55
|
Antmen E, Demirci U, Hasirci V. Micropatterned Surfaces Expose the Coupling between Actin Cytoskeleton-Lamin/Nesprin and Nuclear Deformability of Breast Cancer Cells with Different Malignancies. Adv Biol (Weinh) 2021; 5:e2000048. [PMID: 33724728 PMCID: PMC9049775 DOI: 10.1002/adbi.202000048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 10/16/2020] [Indexed: 12/18/2022]
Abstract
Mechanotransduction proteins transfer mechanical stimuli through nucleo-cytoskeletal coupling and affect the nuclear morphology of cancer cells. However, the contribution of actin filament integrity has never been studied directly. It is hypothesized that differences in nuclear deformability of cancer cells are influenced by the integrity of actin filaments. In this study, transparent micropatterned surfaces as simple tools to screen cytoskeletal and nuclear distortions are presented. Surfaces decorated with micropillars are used to culture and image breast cancer cells and quantify their deformation using shape descriptors (circularity, area, perimeter). Using two drugs (cytochalasin D and jasplakinolide), actin filaments are disrupted. Deformation of cells on micropillars is decreased upon drug treatment as shown by increased circularity. However, the effect is much smaller on benign MCF10A than on malignant MCF7 and MDAMB231 cells. On micropatterned surfaces, molecular analysis shows that Lamin A/C and Nesprin-2 expressions decreased but, after drug treatment, increased in malignant cells but not in benign cells. These findings suggest that Lamin A/C, Nesprin-2 and actin filaments are critical in mechanotransduction of cancer cells. Consequently, transparent micropatterned surfaces can be used as image analysis platforms to provide robust, high throughput measurements of nuclear deformability of cancer cells, including the effect of cytoskeletal elements.
Collapse
Affiliation(s)
- Ezgi Antmen
- BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- METU, Department of Biotechnology, Ankara, Turkey
| | - Utkan Demirci
- Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Vasif Hasirci
- BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- METU, Department of Biological Sciences, Ankara, Turkey
- Acibadem Mehmet Ali Aydinlar University, Department of Medical Engineering, Atasehir, Istanbul, Turkey
| |
Collapse
|
56
|
Jun I, Han HS, Lee JW, Lee K, Kim YC, Ok MR, Seok HK, Kim YJ, Song IS, Shin H, Edwards JR, Lee KY, Jeon H. On/off switchable physical stimuli regulate the future direction of adherent cellular fate. J Mater Chem B 2021; 9:5560-5571. [PMID: 34169302 DOI: 10.1039/d1tb00908g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The utilization of cell-manipulating techniques reveals information about biological behaviors suited to address a wide range of questions in the field of life sciences. Here, we introduced an on/off switchable physical stimuli technique that offers precise stimuli for reversible cell patterning to allow regulation of the future direction of adherent cellular behavior by leveraging enzymatically degradable alginate hydrogels with defined chemistry and topography. As a proof of concept, targeted muscle cells adherent to TCP exhibited a reshaped structure when the hydrogel-based physical stimuli were applied. This simple tool offers easy manipulation of adherent cells to reshape their morphology and to influence future direction depending on the characteristics of the hydrogel without limitations of time and space. The findings from this study are broadly applicable to investigations into the relationships between cells and physiological extracellular matrix environments as well as has potential to open new horizons for regenerative medicine with manipulated cells.
Collapse
Affiliation(s)
- Indong Jun
- Environmental Safety Group, Korea Institute of Science and Technology Europe (KIST-EUROPE), Saarbrücken, 66123, Germany
| | - Hyung-Seop Han
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| | - Jae Won Lee
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Kyungwoo Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| | - Yu-Chan Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| | - Myoung-Ryul Ok
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| | - Hyun-Kwang Seok
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| | - Young Jun Kim
- Environmental Safety Group, Korea Institute of Science and Technology Europe (KIST-EUROPE), Saarbrücken, 66123, Germany
| | - In-Seok Song
- Department of Oral and Maxillofacial Surgery, Korea University Anam Hospital, Seoul, 02841, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - James R Edwards
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, OX3 7LD, UK
| | - Kuen Yong Lee
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hojeong Jeon
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea. and Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea and KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
57
|
Actin on and around the Nucleus. Trends Cell Biol 2020; 31:211-223. [PMID: 33376040 DOI: 10.1016/j.tcb.2020.11.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022]
Abstract
Actin plays roles in many important cellular processes, including cell motility, organelle movement, and cell signaling. The discovery of transmembrane actin-binding proteins at the outer nuclear membrane (ONM) raises the exciting possibility that actin can play a role in direct force transmission to the nucleus and the genome at its interior. Actin-dependent nucleus displacement was first described a decade ago. We are now gaining a more detailed understanding of its mechanisms, as well as new roles for actin during mitosis and meiosis, for gene expression, and in the cell's response to mechanical stimuli. Here we review these recent developments, the actin-binding proteins involved, the tissue specificity of these mechanisms, and methods developed to reconstitute and study this interaction in vitro.
Collapse
|
58
|
Jo J, Abdi Nansa S, Kim DH. Molecular Regulators of Cellular Mechanoadaptation at Cell-Material Interfaces. Front Bioeng Biotechnol 2020; 8:608569. [PMID: 33364232 PMCID: PMC7753015 DOI: 10.3389/fbioe.2020.608569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022] Open
Abstract
Diverse essential cellular behaviors are determined by extracellular physical cues that are detected by highly orchestrated subcellular interactions with the extracellular microenvironment. To maintain the reciprocity of cellular responses and mechanical properties of the extracellular matrix, cells utilize a variety of signaling pathways that transduce biophysical stimuli to biochemical reactions. Recent advances in the micromanipulation of individual cells have shown that cellular responses to distinct physical and chemical features of the material are fundamental determinants of cellular mechanosensation and mechanotransduction. In the process of outside-in signal transduction, transmembrane protein integrins facilitate the formation of focal adhesion protein clusters that are connected to the cytoskeletal architecture and anchor the cell to the substrate. The linkers of nucleoskeleton and cytoskeleton molecular complexes, collectively termed LINC, are critical signal transducers that relay biophysical signals between the extranuclear cytoplasmic region and intranuclear nucleoplasmic region. Mechanical signals that involve cytoskeletal remodeling ultimately propagate into the nuclear envelope comprising the nuclear lamina in assistance with various nuclear membrane proteins, where nuclear mechanics play a key role in the subsequent alteration of gene expression and epigenetic modification. These intracellular mechanical signaling cues adjust cellular behaviors directly associated with mechanohomeostasis. Diverse strategies to modulate cell-material interfaces, including alteration of surface rigidity, confinement of cell adhesive region, and changes in surface topology, have been proposed to identify cellular signal transduction at the cellular and subcellular levels. In this review, we will discuss how a diversity of alterations in the physical properties of materials induce distinct cellular responses such as adhesion, migration, proliferation, differentiation, and chromosomal organization. Furthermore, the pathological relevance of misregulated cellular mechanosensation and mechanotransduction in the progression of devastating human diseases, including cardiovascular diseases, cancer, and aging, will be extensively reviewed. Understanding cellular responses to various extracellular forces is expected to provide new insights into how cellular mechanoadaptation is modulated by manipulating the mechanics of extracellular matrix and the application of these materials in clinical aspects.
Collapse
Affiliation(s)
| | | | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| |
Collapse
|
59
|
Veerasubramanian PK, Trinh A, Akhtar N, Liu WF, Downing TL. Biophysical and epigenetic regulation of cancer stemness, invasiveness and immune action. CURRENT TISSUE MICROENVIRONMENT REPORTS 2020; 1:277-300. [PMID: 33817661 PMCID: PMC8015331 DOI: 10.1007/s43152-020-00021-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW The tumor microenvironment (TME) is an amalgam of multiple dysregulated biophysical cues that can alter cellular behavior through mechanotransductive signaling and epigenetic modifications. Through this review, we seek to characterize the extent of biophysical and epigenetic regulation of cancer stemness and tumor-associated immune cells in order to identify ideal targets for cancer therapy. RECENT FINDINGS Recent studies have identified cancer stemness and immune action as significant contributors to neoplastic disease, due to their susceptibility to microenvironmental influences. Matrix stiffening, altered vasculature, and resultant hypoxia within the TME can influence cancer stem cell (CSC) and immune cell behavior, as well as alter the epigenetic landscapes involved in cancer development. SUMMARY This review highlights the importance of aberrant biophysical cues in driving cancer progression through altered behavior of CSCs and immune cells, which in turn sustains further biophysical dysregulation. We examine current and potential therapeutic approaches that break this self-sustaining cycle of disease progression by targeting the presented biophysical and epigenetic signatures of cancer. We also summarize strategies including the normalization of the TME, targeted drug delivery, and inhibition of cancer-enabling epigenetic players.
Collapse
Affiliation(s)
- Praveen Krishna Veerasubramanian
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California-Irvine, Irvine, CA, USA
| | - Annie Trinh
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California-Irvine, Irvine, CA, USA
- Department of Microbiology and Molecular Genetics, University of California-Irvine, Irvine, CA, USA
| | - Navied Akhtar
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California-Irvine, Irvine, CA, USA
| | - Wendy F. Liu
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California-Irvine, Irvine, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California-Irvine, Irvine, CA, USA
| | - Timothy L. Downing
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California-Irvine, Irvine, CA, USA
- Department of Microbiology and Molecular Genetics, University of California-Irvine, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
60
|
Steering cell behavior through mechanobiology in 3D: A regenerative medicine perspective. Biomaterials 2020; 268:120572. [PMID: 33285439 DOI: 10.1016/j.biomaterials.2020.120572] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/04/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022]
Abstract
Mechanobiology, translating mechanical signals into biological ones, greatly affects cellular behavior. Steering cellular behavior for cell-based regenerative medicine approaches requires a thorough understanding of the orchestrating molecular mechanisms, among which mechanotransducive ones are being more and more elucidated. Because of their wide use and highly mechanotransduction dependent differentiation, this review focuses on mesenchymal stromal cells (MSCs), while also briefly relating the discussed results to other cell types. While the mechanotransduction pathways are relatively well-studied in 2D, much remains unknown of the role and regulation of these pathways in 3D. Ultimately, cells need to be cultured in a 3D environment to create functional de novo tissue. In this review, we explore the literature on the roles of different material properties on cellular behavior and mechanobiology in 2D and 3D. For example, while stiffness plays a dominant role in 2D MSCs differentiation, it seems to be of subordinate importance in 3D MSCs differentiation, where matrix remodeling seems to be key. Also, the role and regulation of some of the main mechanotransduction players are discussed, focusing on MSCs. We have only just begun to fundamentally understand MSCs and other stem cells behavior in 3D and more fundamental research is required to advance biomaterials able to replicate the stem cell niche and control cell activity. This better understanding will contribute to smarter tissue engineering scaffold design and the advancement of regenerative medicine.
Collapse
|
61
|
Nuclear Morphological Remodeling in Human Granulocytes Is Linked to Prenylation Independently from Cytoskeleton. Cells 2020; 9:cells9112509. [PMID: 33233551 PMCID: PMC7699803 DOI: 10.3390/cells9112509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/30/2020] [Accepted: 11/07/2020] [Indexed: 12/14/2022] Open
Abstract
Nuclear shape modulates cell behavior and function, while aberrant nuclear morphologies correlate with pathological phenotype severity. Nevertheless, functions of specific nuclear morphological features and underlying molecular mechanisms remain poorly understood. Here, we investigate a nucleus-intrinsic mechanism driving nuclear lobulation and segmentation concurrent with granulocyte specification, independently from extracellular forces and cytosolic cytoskeleton contributions. Transcriptomic regulation of cholesterol biosynthesis is equally concurrent with nuclear remodeling. Its putative role as a regulatory element is supported by morphological aberrations observed upon pharmacological impairment of several enzymatic steps of the pathway, most prominently the sterol ∆14-reductase activity of laminB-receptor and protein prenylation. Thus, we support the hypothesis of a nuclear-intrinsic mechanism for nuclear shape control with the putative involvement of the recently discovered GGTase III complex. Such process could be independent from or complementary to the better studied cytoskeleton-based nuclear remodeling essential for cell migration in both physiological and pathological contexts such as immune system function and cancer metastasis.
Collapse
|
62
|
Biedzinski S, Agsu G, Vianay B, Delord M, Blanchoin L, Larghero J, Faivre L, Théry M, Brunet S. Microtubules control nuclear shape and gene expression during early stages of hematopoietic differentiation. EMBO J 2020; 39:e103957. [PMID: 33089509 DOI: 10.15252/embj.2019103957] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 12/27/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPC) can differentiate into all hematopoietic lineages to support hematopoiesis. Cells from the myeloid and lymphoid lineages fulfill distinct functions with specific shapes and intra-cellular architectures. The role of cytokines in the regulation of HSPC differentiation has been intensively studied but our understanding of the potential contribution of inner cell architecture is relatively poor. Here, we show that large invaginations are generated by microtubule constraints on the swelling nucleus of human HSPC during early commitment toward the myeloid lineage. These invaginations are associated with a local reduction of lamin B density, local loss of heterochromatin H3K9me3 and H3K27me3 marks, and changes in expression of specific hematopoietic genes. This establishes the role of microtubules in defining the unique lobulated nuclear shape observed in myeloid progenitor cells and suggests that this shape is important to establish the gene expression profile specific to this hematopoietic lineage. It opens new perspectives on the implications of microtubule-generated forces, in the early commitment to the myeloid lineage.
Collapse
Affiliation(s)
- Stefan Biedzinski
- INSERM, CEA, U976 - HIPI, Institut de Recherche Saint Louis, Université de Paris, Paris, France.,CEA, INRA, CNRS, UMR5168 - LPCV, Interdisciplinary Research Institute of Grenoble, Université Grenoble-Alpes, Grenoble, France
| | - Gökçe Agsu
- INSERM, CEA, U976 - HIPI, Institut de Recherche Saint Louis, Université de Paris, Paris, France.,CEA, INRA, CNRS, UMR5168 - LPCV, Interdisciplinary Research Institute of Grenoble, Université Grenoble-Alpes, Grenoble, France
| | - Benoit Vianay
- INSERM, CEA, U976 - HIPI, Institut de Recherche Saint Louis, Université de Paris, Paris, France.,CEA, INRA, CNRS, UMR5168 - LPCV, Interdisciplinary Research Institute of Grenoble, Université Grenoble-Alpes, Grenoble, France
| | - Marc Delord
- Recherche Clinique et Investigation, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Laurent Blanchoin
- INSERM, CEA, U976 - HIPI, Institut de Recherche Saint Louis, Université de Paris, Paris, France.,CEA, INRA, CNRS, UMR5168 - LPCV, Interdisciplinary Research Institute of Grenoble, Université Grenoble-Alpes, Grenoble, France
| | - Jerome Larghero
- INSERM, CEA, U976 - HIPI, Institut de Recherche Saint Louis, Université de Paris, Paris, France.,Unité de Thérapie Cellulaire, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Lionel Faivre
- INSERM, CEA, U976 - HIPI, Institut de Recherche Saint Louis, Université de Paris, Paris, France.,Unité de Thérapie Cellulaire, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Manuel Théry
- INSERM, CEA, U976 - HIPI, Institut de Recherche Saint Louis, Université de Paris, Paris, France.,CEA, INRA, CNRS, UMR5168 - LPCV, Interdisciplinary Research Institute of Grenoble, Université Grenoble-Alpes, Grenoble, France
| | - Stéphane Brunet
- INSERM, CEA, U976 - HIPI, Institut de Recherche Saint Louis, Université de Paris, Paris, France.,CEA, INRA, CNRS, UMR5168 - LPCV, Interdisciplinary Research Institute of Grenoble, Université Grenoble-Alpes, Grenoble, France
| |
Collapse
|
63
|
Zidovska A. The rich inner life of the cell nucleus: dynamic organization, active flows, and emergent rheology. Biophys Rev 2020; 12:1093-1106. [PMID: 33064286 PMCID: PMC7575674 DOI: 10.1007/s12551-020-00761-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/03/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
The cell nucleus stores the genetic material essential for life, and provides the environment for transcription, maintenance, and replication of the genome. Moreover, the nucleoplasm is filled with subnuclear bodies such as nucleoli that are responsible for other vital functions. Overall, the nucleus presents a highly heterogeneous and dynamic environment with diverse functionality. Here, we propose that its biophysical complexity can be organized around three inter-related and interactive facets: heterogeneity, activity, and rheology. Most nuclear constituents are sites of active, ATP-dependent processes and are thus inherently dynamic: The genome undergoes constant rearrangement, the nuclear envelope flickers and fluctuates, nucleoli migrate and coalesce, and many of these events are mediated by nucleoplasmic flows and interactions. And yet there is spatiotemporal organization in terms of hierarchical structure of the genome, its coherently moving regions and membrane-less compartmentalization via phase-separated nucleoplasmic constituents. Moreover, the non-equilibrium or activity-driven nature of the nucleus gives rise to emergent rheology and material properties that impact all cellular processes via the central dogma of molecular biology. New biophysical insights into the cell nucleus can come from appreciating this rich inner life.
Collapse
Affiliation(s)
- Alexandra Zidovska
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY, USA.
| |
Collapse
|
64
|
Veerati PC, Mitchel JA, Reid AT, Knight DA, Bartlett NW, Park JA, Grainge CL. Airway mechanical compression: its role in asthma pathogenesis and progression. Eur Respir Rev 2020; 29:190123. [PMID: 32759373 PMCID: PMC8008491 DOI: 10.1183/16000617.0123-2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/30/2020] [Indexed: 12/22/2022] Open
Abstract
The lung is a mechanically active organ, but uncontrolled or excessive mechanical forces disrupt normal lung function and can contribute to the development of disease. In asthma, bronchoconstriction leads to airway narrowing and airway wall buckling. A growing body of evidence suggests that pathological mechanical forces induced by airway buckling alone can perpetuate disease processes in asthma. Here, we review the data obtained from a variety of experimental models, including in vitro, ex vivo and in vivo approaches, which have been used to study the impact of mechanical forces in asthma pathogenesis. We review the evidence showing that mechanical compression alters the biological and biophysical properties of the airway epithelium, including activation of the epidermal growth factor receptor pathway, overproduction of asthma-associated mediators, goblet cell hyperplasia, and a phase transition of epithelium from a static jammed phase to a mobile unjammed phase. We also define questions regarding the impact of mechanical forces on the pathology of asthma, with a focus on known triggers of asthma exacerbations such as viral infection.
Collapse
Affiliation(s)
- Punnam Chander Veerati
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, Australia
| | - Jennifer A Mitchel
- Molecular and Integrative Physiological Sciences Program, Dept of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrew T Reid
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, Australia
| | - Darryl A Knight
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
- Dept of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
- Research and Academic Affairs, Providence Health Care Research Institute, Vancouver, Canada
| | - Nathan W Bartlett
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
| | - Jin-Ah Park
- Molecular and Integrative Physiological Sciences Program, Dept of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Chris L Grainge
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, Australia
- Dept of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, Australia
| |
Collapse
|
65
|
Park JW, Han SB, Hah J, Lee G, Kim JK, Kim SH, Kim DH. Biological Aging Modulates Cell Migration via Lamin A/C-Dependent Nuclear Motion. MICROMACHINES 2020; 11:E801. [PMID: 32847135 PMCID: PMC7570206 DOI: 10.3390/mi11090801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
Abstract
Aging is a progressive functional decline in organs and tissues over time and typically represents the accumulation of psychological and social changes in a human being. Diverse diseases, such as cardiovascular, musculoskeletal, and neurodegenerative disorders, are now understood to be caused by aging. While biological assessment of aging mainly focuses on the gradual changes that occur either on the molecular scale, for example, alteration of gene expression and epigenetic modification, or on larger scales, for example, changes in muscle strength and cardiac function, the mechanics that regulates the behavior of individual cells and interactions between the internal elements of cells, are largely missing. In this study, we show that the dynamic features of migrating cells across different human ages could help to establish the underlying mechanism of biological age-dependent cellular functional decline. To determine the relationship between cellular dynamics and human age, we identify the characteristic relationship between cell migration and nuclear motion which is tightly regulated by nucleus-bound cytoskeletal organization. This analysis demonstrates that actomyosin contractility-dependent nuclear motion plays a key role in cell migration. We anticipate this study to provide noble biophysical insights on biological aging in order to precisely diagnose age-related chronic diseases.
Collapse
Affiliation(s)
- Jung-Won Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (J.-W.P.); (S.-B.H.); (J.H.); (G.L.); (J.-K.K.); (S.H.K.)
| | - Seong-Beom Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (J.-W.P.); (S.-B.H.); (J.H.); (G.L.); (J.-K.K.); (S.H.K.)
| | - Jungwon Hah
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (J.-W.P.); (S.-B.H.); (J.H.); (G.L.); (J.-K.K.); (S.H.K.)
| | - Geonhui Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (J.-W.P.); (S.-B.H.); (J.H.); (G.L.); (J.-K.K.); (S.H.K.)
| | - Jeong-Ki Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (J.-W.P.); (S.-B.H.); (J.H.); (G.L.); (J.-K.K.); (S.H.K.)
| | - Soo Hyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (J.-W.P.); (S.-B.H.); (J.H.); (G.L.); (J.-K.K.); (S.H.K.)
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (J.-W.P.); (S.-B.H.); (J.H.); (G.L.); (J.-K.K.); (S.H.K.)
| |
Collapse
|
66
|
3D Microwell Platforms for Control of Single Cell 3D Geometry and Intracellular Organization. Cell Mol Bioeng 2020; 14:1-14. [PMID: 33643464 DOI: 10.1007/s12195-020-00646-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
Introduction Cell structure and migration is impacted by the mechanical properties and geometry of the cell adhesive environment. Most studies to date investigating the effects of 3D environments on cells have not controlled geometry at the single-cell level, making it difficult to understand the influence of 3D environmental cues on single cells. Here, we developed microwell platforms to investigate the effects of 2D vs. 3D geometries on single-cell F-actin and nuclear organization. Methods We used microfabrication techniques to fabricate three polyacrylamide platforms: 3D microwells with a 3D adhesive environment (3D/3D), 3D microwells with 2D adhesive areas at the bottom only (3D/2D), and flat 2D gels with 2D patterned adhesive areas (2D/2D). We measured geometric swelling and Young's modulus of the platforms. We then cultured C2C12 myoblasts on each platform and evaluated the effects of the engineered microenvironments on F-actin structure and nuclear shape. Results We tuned the mechanical characteristics of the microfabricated platforms by manipulating the gel formulation. Crosslinker ratio strongly influenced geometric swelling whereas total polymer content primarily affected Young's modulus. When comparing cells in these platforms, we found significant effects on F-actin and nuclear structures. Our analysis showed that a 3D/3D environment was necessary to increase actin and nuclear height. A 3D/2D environment was sufficient to increase actin alignment and nuclear aspect ratio compared to a 2D/2D environment. Conclusions Using our novel polyacrylamide platforms, we were able to decouple the effects of 3D confinement and adhesive environment, finding that both influenced actin and nuclear structure.
Collapse
|
67
|
Durand-Smet P, Spelman TA, Meyerowitz EM, Jönsson H. Cytoskeletal organization in isolated plant cells under geometry control. Proc Natl Acad Sci U S A 2020; 117:17399-17408. [PMID: 32641513 PMCID: PMC7382239 DOI: 10.1073/pnas.2003184117] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The cytoskeleton plays a key role in establishing robust cell shape. In animals, it is well established that cell shape can also influence cytoskeletal organization. Cytoskeletal proteins are well conserved between animal and plant kingdoms; nevertheless, because plant cells exhibit major structural differences to animal cells, the question arises whether the plant cytoskeleton also responds to geometrical cues. Recent numerical simulations predicted that a geometry-based rule is sufficient to explain the microtubule (MT) organization observed in cells. Due to their high flexural rigidity and persistence length of the order of a few millimeters, MTs are rigid over cellular dimensions and are thus expected to align along their long axis if constrained in specific geometries. This hypothesis remains to be tested in cellulo Here, we explore the relative contribution of geometry to the final organization of actin and MT cytoskeletons in single plant cells of Arabidopsis thaliana We show that the cytoskeleton aligns with the long axis of the cells. We find that actin organization relies on MTs but not the opposite. We develop a model of self-organizing MTs in three dimensions, which predicts the importance of MT severing, which we confirm experimentally. This work is a first step toward assessing quantitatively how cellular geometry contributes to the control of cytoskeletal organization in living plant cells.
Collapse
Affiliation(s)
- Pauline Durand-Smet
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Tamsin A Spelman
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Elliot M Meyerowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125;
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125
| | - Henrik Jönsson
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom;
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom
- Department of Astronomy and Theoretical Physics, Computational Biology and Biological Physics, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
68
|
Abstract
The presence of actin in the nucleus has historically been a highly contentious issue. It is now, however, well accepted that actin has physiologically important roles in the nucleus. In this Review, we describe the evolution of our thinking about actin in the nucleus starting with evidence supporting its involvement in transcription, chromatin remodeling and intranuclear movements. We also review the growing literature on the mechanisms that regulate the import and export of actin and how post-translational modifications of actin could regulate nuclear actin. We end with an extended discussion of the role of nuclear actin in the repair of DNA double stranded breaks.
Collapse
Affiliation(s)
- Leonid Serebryannyy
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Primal de Lanerolle
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, United States.
| |
Collapse
|
69
|
Chang R, Yan Q, Kingshott P, Tsai WB, Wang PY. Harnessing the perinuclear actin cap (pnAC) to influence nanocarrier trafficking and gene transfection efficiency in skeletal myoblasts using nanopillars. Acta Biomater 2020; 111:221-231. [PMID: 32442782 DOI: 10.1016/j.actbio.2020.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/29/2022]
Abstract
Gene transfection is important in biotechnology and is used to modify cells intrinsically. It can be conducted in cell suspension or after cell adhesion, where the efficiency is dependent on many factors such as the type of nanocarrier used and cell division processes. Anchor-dependent cells are sensitive to the substrate they are attached to and adapt their behavior accordingly, including plasmid trafficking during gene transfection. Previously, it was shown in our group that the cytoskeleton is an essential factor in influencing gene transfection in skeletal myoblasts using nanogrooves as a substrate. In this study, the effect of the cytoskeleton on gene transfection efficiency of skeletal myoblasts was studied using various nanopillars and nanocarriers. Nanopillars with different diameters (200-1000 nm) and depths (200 or 400 nm) were fabricated using colloidal self-assembly and reactive ion etching. All surfaces were treated with oxygen plasma or polydopamine (PD) to further control cell morphology. Plasmid DNA was delivered into cells using jetPRIME or Lipofectamine 3000 nanocarriers. After screening hundreds of images, two distinguishable F-actin distributions were found, i.e., cells with or without a perinuclear actin cap (pnAC). Cells attached to nanopillars, especially the deep pillars, had a smaller spreading area, shorter F-actin, more 3D-like cell nuclei, and a lower percentage of pnAC, which lead to a higher gene transfection efficiency using jetPRIME. On the other hand, cells attached to the shallow nanopillars or flat surfaces had a larger spreading area, longer F-actin, more 2D-like cell nuclei, and a higher percentage of pnAC that facilitates gene transfection using Lipofectamine. The effects of cell density, cytoskeleton (cytoD), and focal adhesions (RGD) on gene transfection were also studied, and the results were consistent with our hypothesis that F-actin distribution is one of the critical factors in gene transfection. In conclusion, pnAC plays a vital role in the intracellular trafficking of nanocarrier/plasmid complexes and this study provides new insights into gene transfection in anchor-dependent cells. STATEMENT OF SIGNIFICANCE: This study provides a new perspective in gene transfection using attached cells where perinuclear actin cap (pnAC) is an essential factor involved in transfection efficiency. A series of nanopillars were used to harness cell and cytoskeleton morphology. Two distinguishable cytoskeletal structures were found including cells with or without pnAC. 2D-like cells with pnAC facilitate gene delivery using liposome-based nanocarriers, while 3D-like cells without pnAC benefit gene delivery using cationic polymer-based nanocarriers. This study reveals the importance of the cytoskeleton during gene transfection that is beneficial in tissue transfection.
Collapse
Affiliation(s)
- Ray Chang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Qingfeng Yan
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia; ARC Training Centre for Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Wei-Bor Tsai
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.
| |
Collapse
|
70
|
Dreger M, Madrazo E, Hurlstone A, Redondo-Muñoz J. Novel contribution of epigenetic changes to nuclear dynamics. Nucleus 2020; 10:42-47. [PMID: 30784352 PMCID: PMC6527383 DOI: 10.1080/19491034.2019.1580100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Migrating cells have to cross many physical barriers and confined in 3D environments. The surrounding environment promotes mechano- and biological signals that orchestrate cellular changes, such as cytoskeletal and adhesion rearrangements and proteolytic digestion. Recent studies provide new insights into how the nucleus must alter its shape, localization and mechanical properties in order to promote nuclear deformability, chromatin compaction and gene reprogramming. It is known that the chromatin structure contributes directly to genomic and non-genomic functions, such as gene transcription and the physical properties of the nucleus. Here, we appraise paradigms and novel insights regarding the functional role of chromatin during nuclear deformation. In so doing, we review how constraint and mechanical conditions influence the structure, localization and chromatin decompaction. Finally, we highlight the emerging roles of mechanogenomics and the molecular basis of nucleoskeletal components, which open unexplored territory to understand how cells regulate their chromatin and modify the nucleus.
Collapse
Affiliation(s)
- Marcel Dreger
- a Faculty of Biology, Medicine and Health, Division of Cancer Studies , School of Medical Sciences, The University of Manchester , Manchester , UK
| | - Elena Madrazo
- b Department of Immunology Ophthalmology and ENT, Hospital 12 de Octubre Health Research Institute (imas12) , Complutense University, School of Medicine , Madrid , Spain
| | - Adam Hurlstone
- a Faculty of Biology, Medicine and Health, Division of Cancer Studies , School of Medical Sciences, The University of Manchester , Manchester , UK
| | - Javier Redondo-Muñoz
- b Department of Immunology Ophthalmology and ENT, Hospital 12 de Octubre Health Research Institute (imas12) , Complutense University, School of Medicine , Madrid , Spain.,c Lydia Becker Institute for Inflammation and Immunity , The University of Manchester , Manchester , UK
| |
Collapse
|
71
|
Yang KD, Damodaran K, Venkatachalapathy S, Soylemezoglu AC, Shivashankar GV, Uhler C. Predicting cell lineages using autoencoders and optimal transport. PLoS Comput Biol 2020; 16:e1007828. [PMID: 32343706 PMCID: PMC7209334 DOI: 10.1371/journal.pcbi.1007828] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/08/2020] [Accepted: 03/27/2020] [Indexed: 12/17/2022] Open
Abstract
Lineage tracing involves the identification of all ancestors and descendants of a given cell, and is an important tool for studying biological processes such as development and disease progression. However, in many settings, controlled time-course experiments are not feasible, for example when working with tissue samples from patients. Here we present ImageAEOT, a computational pipeline based on autoencoders and optimal transport for predicting the lineages of cells using time-labeled datasets from different stages of a cellular process. Given a single-cell image from one of the stages, ImageAEOT generates an artificial lineage of this cell based on the population characteristics of the other stages. These lineages can be used to connect subpopulations of cells through the different stages and identify image-based features and biomarkers underlying the biological process. To validate our method, we apply ImageAEOT to a benchmark task based on nuclear and chromatin images during the activation of fibroblasts by tumor cells in engineered 3D tissues. We further validate ImageAEOT on chromatin images of various breast cancer cell lines and human tissue samples, thereby linking alterations in chromatin condensation patterns to different stages of tumor progression. Our results demonstrate the promise of computational methods based on autoencoding and optimal transport principles for lineage tracing in settings where existing experimental strategies cannot be used. Many key biological processes, such as development and disease progression, require analyzing lineages of cells backwards as well as forwards in time. However, current single-cell experiments tend to be destructive to cells, so that a single lineage can only be measured at one point in time. In this work, we introduce a computational framework for predicting the lineage of cells from a single snapshot in time based on measurements of other cells at other time points. The method generates these lineages by computing the most plausible path for a population of cells to transition from one time point to the next, assuming that a cell is more likely to transition to similar cells compared to dissimilar cells. We validate our computational method on imaging data of fibroblasts and cancer cells, though our method could also be applied to other modalities of single-cell data such as genomics and transcriptomics as well as multi-modal single-cell datasets.
Collapse
Affiliation(s)
- Karren Dai Yang
- Institute for Data, Systems and Society, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Electrical Engineering & Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Karthik Damodaran
- Mechanobiology Institute, National University of Singapore, Singapore
| | | | - Ali C. Soylemezoglu
- Institute for Data, Systems and Society, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - G. V. Shivashankar
- Mechanobiology Institute, National University of Singapore, Singapore
- FIRC Institute of Molecular Oncology (IFOM), Milan, Italy
- Department of Health Sciences and Technology, ETH Zurich and Paul Scherrer Institute, Villigen, Switzerland
| | - Caroline Uhler
- Institute for Data, Systems and Society, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Electrical Engineering & Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
72
|
Doolin MT, Moriarty RA, Stroka KM. Mechanosensing of Mechanical Confinement by Mesenchymal-Like Cells. Front Physiol 2020; 11:365. [PMID: 32390868 PMCID: PMC7193100 DOI: 10.3389/fphys.2020.00365] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) and tumor cells have the unique capability to migrate out of their native environment and either home or metastasize, respectively, through extremely heterogeneous environments to a distant location. Once there, they can either aid in tissue regrowth or impart an immunomodulatory effect in the case of MSCs, or form secondary tumors in the case of tumor cells. During these journeys, cells experience physically confining forces that impinge on the cell body and the nucleus, ultimately causing a multitude of cellular changes. Most drastically, confining individual MSCs within hydrogels or confining monolayers of MSCs within agarose wells can sway MSC lineage commitment, while applying a confining compressive stress to metastatic tumor cells can increase their invasiveness. In this review, we seek to understand the signaling cascades that occur as cells sense confining forces and how that translates to behavioral changes, including elongated and multinucleated cell morphologies, novel migrational mechanisms, and altered gene expression, leading to a unique MSC secretome that could hold great promise for anti-inflammatory treatments. Through comparison of these altered behaviors, we aim to discern how MSCs alter their lineage selection, while tumor cells may become more aggressive and invasive. Synthesizing this information can be useful for employing MSCs for therapeutic approaches through systemic injections or tissue engineered grafts, and developing improved strategies for metastatic cancer therapies.
Collapse
Affiliation(s)
- Mary T. Doolin
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, United States
| | - Rebecca A. Moriarty
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, United States
| | - Kimberly M. Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, United States
- Maryland Biophysics Program, University of Maryland, College Park, College Park, MD, United States
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Baltimore, MD, United States
| |
Collapse
|
73
|
Chromatin and Cytoskeletal Tethering Determine Nuclear Morphology in Progerin-Expressing Cells. Biophys J 2020; 118:2319-2332. [PMID: 32320674 DOI: 10.1016/j.bpj.2020.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/18/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
The nuclear morphology of eukaryotic cells is determined by the interplay between the lamina forming the nuclear skeleton, the chromatin inside the nucleus, and the coupling with the cytoskeleton. Nuclear alterations are often associated with pathological conditions as in Hutchinson-Gilford progeria syndrome, in which a mutation in the lamin A gene yields an altered form of the protein, named progerin, and an aberrant nuclear shape. Here, we introduce an inducible cellular model of Hutchinson-Gilford progeria syndrome in HeLa cells in which increased progerin expression leads to alterations in the coupling of the lamin shell with cytoskeletal or chromatin tethers as well as with polycomb group proteins. Furthermore, our experiments show that progerin expression leads to enhanced nuclear shape fluctuations in response to cytoskeletal activity. To interpret the experimental results, we introduce a computational model of the cell nucleus that explicitly includes chromatin fibers, the nuclear shell, and coupling with the cytoskeleton. The model allows us to investigate how the geometrical organization of the chromatin-lamin tether affects nuclear morphology and shape fluctuations. In sum, our findings highlight the crucial role played by lamin-chromatin and lamin-cytoskeletal alterations in determining nuclear shape morphology and in affecting cellular functions and gene regulation.
Collapse
|
74
|
Ros E, Encina M, González F, Contreras R, Luz-Crawford P, Khoury M, Acevedo JP. Single cell migration profiling on a microenvironmentally tunable hydrogel microstructure device that enables stem cell potency evaluation. LAB ON A CHIP 2020; 20:958-972. [PMID: 31990283 DOI: 10.1039/c9lc00988d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cell migration is a key function in a myriad of physiological events and disease conditions. Efficient, quick and descriptive profiling of migration behaviour in response to different treatments or conditions is highly desirable in a series of applications, ranging from fundamental studies of the migration mechanism to drug discovery and cell therapy. This investigation applied the use of methacrylamide gelatin (GelMA) to microfabricate migration lanes based on GelMA hydrogel with encapsulated migration stimuli and structural stability under culture medium conditions, providing the possibility of tailoring the microenvironment during cell-based assays. The actual device provides 3D topography, cell localization and a few step protocol, allowing the quick evaluation and quantification of individual migrated distances of a cell sample by an ImageJ plugin for automated microscopy processing. The detailed profiling of migration behaviour given by the new device has demonstrated a broader assay sensitivity compared to other migration assays and higher versatility to study cell migration in different settings of applications. In this study, parametric information extracted from the migration profiling was successfully used to develop predictive models of immunosuppressive cell function that could be applied as a potency test for mesenchymal stem cells.
Collapse
Affiliation(s)
- Enrique Ros
- Cells for Cells, Santiago, Chile and Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Matías Encina
- Cells for Cells, Santiago, Chile and Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Fabián González
- Cells for Cells, Santiago, Chile and Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Rafael Contreras
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Maroun Khoury
- Cells for Cells, Santiago, Chile and Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile and Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.
| | - Juan Pablo Acevedo
- Cells for Cells, Santiago, Chile and Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile and Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.
| |
Collapse
|
75
|
Higgins SG, Becce M, Belessiotis-Richards A, Seong H, Sero JE, Stevens MM. High-Aspect-Ratio Nanostructured Surfaces as Biological Metamaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903862. [PMID: 31944430 PMCID: PMC7610849 DOI: 10.1002/adma.201903862] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/02/2019] [Indexed: 04/14/2023]
Abstract
Materials patterned with high-aspect-ratio nanostructures have features on similar length scales to cellular components. These surfaces are an extreme topography on the cellular level and have become useful tools for perturbing and sensing the cellular environment. Motivation comes from the ability of high-aspect-ratio nanostructures to deliver cargoes into cells and tissues, access the intracellular environment, and control cell behavior. These structures directly perturb cells' ability to sense and respond to external forces, influencing cell fate, and enabling new mechanistic studies. Through careful design of their nanoscale structure, these systems act as biological metamaterials, eliciting unusual biological responses. While predominantly used to interface eukaryotic cells, there is growing interest in nonanimal and prokaryotic cell interfacing. Both experimental and theoretical studies have attempted to develop a mechanistic understanding for the observed behaviors, predominantly focusing on the cell-nanostructure interface. This review considers how high-aspect-ratio nanostructured surfaces are used to both stimulate and sense biological systems.
Collapse
Affiliation(s)
- Stuart G. Higgins
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | | | | | - Hyejeong Seong
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Julia E. Sero
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
76
|
Hou Y, Xie W, Yu L, Camacho LC, Nie C, Zhang M, Haag R, Wei Q. Surface Roughness Gradients Reveal Topography-Specific Mechanosensitive Responses in Human Mesenchymal Stem Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905422. [PMID: 32064782 DOI: 10.1002/smll.201905422] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/28/2019] [Indexed: 05/24/2023]
Abstract
The topographic features of an implant, which mechanically regulate cell behaviors and functions, are critical for the clinical success in tissue regeneration. How cells sense and respond to the topographical cues, e.g., interfacial roughness, is yet to be fully understood and even debatable. Here, the mechanotransduction and fate determination of human mesenchymal stem cells (MSCs) on surface roughness gradients are systematically studied. The broad range of topographical scales and high-throughput imaging is achieved based on a catecholic polyglycerol coating fabricated by a one-step-tilted dip-coating approach. It is revealed that the adhesion of MSCs is biphasically regulated by interfacial roughness. The cell mechanotransduction is investigated from focal adhesion to transcriptional activity, which explains that cellular response to interfacial roughness undergoes a direct force-dependent mechanism. Moreover, the optimized roughness for promoting cell fate specification is explored.
Collapse
Affiliation(s)
- Yong Hou
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Wenyan Xie
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2 + 4, 14195, Berlin, Germany
| | - Leixiao Yu
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Luis Cuellar Camacho
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Chuanxiong Nie
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Man Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, 610065, Chengdu, China
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, 610065, Chengdu, China
| |
Collapse
|
77
|
Werner M, Kurniawan NA, Bouten CVC. Cellular Geometry Sensing at Different Length Scales and its Implications for Scaffold Design. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E963. [PMID: 32098110 PMCID: PMC7078773 DOI: 10.3390/ma13040963] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 12/22/2022]
Abstract
Geometrical cues provided by the intrinsic architecture of tissues and implanted biomaterials have a high relevance in controlling cellular behavior. Knowledge of how cells sense and subsequently respond to complex geometrical cues of various sizes and origins is needed to understand the role of the architecture of the extracellular environment as a cell-instructive parameter. This is of particular interest in the field of tissue engineering, where the success of scaffold-guided tissue regeneration largely depends on the formation of new tissue in a native-like organization in order to ensure proper tissue function. A well-considered internal scaffold design (i.e., the inner architecture of the porous structure) can largely contribute to the desired cell and tissue organization. Advances in scaffold production techniques for tissue engineering purposes in the last years have provided the possibility to accurately create scaffolds with defined macroscale external and microscale internal architectures. Using the knowledge of how cells sense geometrical cues of different size ranges can drive the rational design of scaffolds that control cellular and tissue architecture. This concise review addresses the recently gained knowledge of the sensory mechanisms of cells towards geometrical cues of different sizes (from the nanometer to millimeter scale) and points out how this insight can contribute to informed architectural scaffold designs.
Collapse
Affiliation(s)
- Maike Werner
- Soft Tissue Engineering and Mechanobiology, Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AP Eindhoven, The Netherlands; (M.W.); (C.V.C.B.)
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Nicholas A. Kurniawan
- Soft Tissue Engineering and Mechanobiology, Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AP Eindhoven, The Netherlands; (M.W.); (C.V.C.B.)
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Carlijn V. C. Bouten
- Soft Tissue Engineering and Mechanobiology, Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AP Eindhoven, The Netherlands; (M.W.); (C.V.C.B.)
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
78
|
Venkatachalapathy S, Jokhun DS, Shivashankar GV. Multivariate analysis reveals activation-primed fibroblast geometric states in engineered 3D tumor microenvironments. Mol Biol Cell 2020; 31:803-812. [PMID: 32023167 PMCID: PMC7185960 DOI: 10.1091/mbc.e19-08-0420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fibroblasts are a heterogeneous group of cells comprising subpopulations that have been found to be activated in the stromal microenvironment that regulates tumor initiation and growth. The underlying mechanisms of such selective activation of fibroblasts are not understood. We propose that the intrinsic geometric heterogeneity of fibroblasts modulates the nuclear mechanotransduction of signals from the microenvironment, resulting in their selective activation. To test this, we developed an engineered 3D fibroblast tumor coculture system and used high resolution images to quantify multiple cell geometry sensitive nuclear morphological and chromatin organizational features. These features were then mapped to activation levels as measured by the nuclear abundance of transcription cofactor, megakaryoblastic leukemia, and protein levels of its target, αSMA. Importantly, our results indicate the presence of activation-“primed” cell geometries that present higher activation levels, which are further enhanced in the presence of stimuli from cancer cells. Further, we show that by enriching the population of activation-primed cell geometric states by either increasing matrix rigidity or micropatterning primed cell shapes, fibroblast activation levels can be increased. Collectively, our results reveal important cellular geometric states that select for fibroblast activation within the heterogenous tumor microenvironment.
Collapse
Affiliation(s)
- Saradha Venkatachalapathy
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, 117411, Singapore
| | - Doorgesh Sharma Jokhun
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, 117411, Singapore
| | - G V Shivashankar
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, 117411, Singapore.,FIRC Institute for Molecular Oncology, Milan 20139, Italy.,Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Paul Scherrer Institut, 5232 Villigen, Switzerland
| |
Collapse
|
79
|
Targeting cell plasticity for regeneration: From in vitro to in vivo reprogramming. Adv Drug Deliv Rev 2020; 161-162:124-144. [PMID: 32822682 DOI: 10.1016/j.addr.2020.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022]
Abstract
The discovery of induced pluripotent stem cells (iPSCs), reprogrammed to pluripotency from somatic cells, has transformed the landscape of regenerative medicine, disease modelling and drug discovery pipelines. Since the first generation of iPSCs in 2006, there has been enormous effort to develop new methods that increase reprogramming efficiency, and obviate the need for viral vectors. In parallel to this, the promise of in vivo reprogramming to convert cells into a desired cell type to repair damage in the body, constitutes a new paradigm in approaches for tissue regeneration. This review article explores the current state of reprogramming techniques for iPSC generation with a specific focus on alternative methods that use biophysical and biochemical stimuli to reduce or eliminate exogenous factors, thereby overcoming the epigenetic barrier towards vector-free approaches with improved clinical viability. We then focus on application of iPSC for therapeutic approaches, by giving an overview of ongoing clinical trials using iPSCs for a variety of health conditions and discuss future scope for using materials and reagents to reprogram cells in the body.
Collapse
|
80
|
Rausch V, Hansen CG. The Hippo Pathway, YAP/TAZ, and the Plasma Membrane. Trends Cell Biol 2019; 30:32-48. [PMID: 31806419 DOI: 10.1016/j.tcb.2019.10.005] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022]
Abstract
The plasma membrane allows the cell to sense and adapt to changes in the extracellular environment by relaying external inputs via intracellular signaling networks. One central cellular signaling pathway is the Hippo pathway, which regulates homeostasis and plays chief roles in carcinogenesis and regenerative processes. Recent studies have found that mechanical stimuli and diffusible chemical components can regulate the Hippo pathway primarily through receptors embedded in the plasma membrane. Morphologically defined structures within the plasma membrane, such as cellular junctions, focal adhesions, primary cilia, caveolae, clathrin-coated pits, and plaques play additional key roles. Here, we discuss recent evidence highlighting the importance of these specialized plasma membrane domains in cellular feedback via the Hippo pathway.
Collapse
Affiliation(s)
- Valentina Rausch
- Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Institute for Regeneration and Repair, University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Carsten G Hansen
- Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Institute for Regeneration and Repair, University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK.
| |
Collapse
|
81
|
Wang J, Wu Y, Zhang X, Zhang F, Lü D, Shangguan B, Gao Y, Long M. Flow-enhanced priming of hESCs through H2B acetylation and chromatin decondensation. Stem Cell Res Ther 2019; 10:349. [PMID: 31775893 PMCID: PMC6880446 DOI: 10.1186/s13287-019-1454-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/21/2019] [Accepted: 10/15/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Distinct mechanical stimuli are known to manipulate the behaviors of embryonic stem cells (ESCs). Fundamental rationale of how ESCs respond to mechanical forces and the potential biological effects remain elusive. Here we conducted the mechanobiological study for hESCs upon mechanomics analysis to unravel typical mechanosensitive processes on hESC-specific fluid shear. METHODS hESC line H1 was subjected to systematically varied shear flow, and mechanosensitive proteins were obtained by mass spectrometry (MS) analysis. Then, function enrichment analysis was performed to identify the enriched gene sets. Under a steady shear flow of 1.1 Pa for 24 h, protein expressions were further detected using western blotting (WB), quantitative real-time PCR (qPCR), and immunofluorescence (IF) staining. Meanwhile, the cells were treated with 200 nM trichostatin (TSA) for 1 h as positive control to test chromatin decondensation. Actin, DNA, and RNA were then visualized with TRITC-labeled phalloidin, Hoechst 33342, and SYTO® RNASelect™ green fluorescent cell stain (Life Technologies), respectively. In addition, cell stiffness was determined with atomic force microscopy (AFM) and annexin V-PE was used to determine the apoptosis with a flow cytometer (FCM). RESULTS Typical mechanosensitive proteins were unraveled upon mechanomics analysis under fluid shear related to hESCs in vivo. Functional analyses revealed significant alterations in histone acetylation, nuclear size, and cytoskeleton for hESC under shear flow. Shear flow was able to induce H2B acetylation and nuclear spreading by CFL2/F-actin cytoskeletal reorganization. The resulting chromatin decondensation and a larger nucleus readily accommodate signaling molecules and transcription factors. CONCLUSIONS Shear flow regulated chromatin dynamics in hESCs via cytoskeleton and nucleus alterations and consolidated their primed state.
Collapse
Affiliation(s)
- Jiawen Wang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wu
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Fan Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Dongyuan Lü
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Bing Shangguan
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuxin Gao
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Mian Long
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China. .,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
82
|
McColloch A, Rabiei M, Rabbani P, Bowling A, Cho M. Correlation between Nuclear Morphology and Adipogenic Differentiation: Application of a Combined Experimental and Computational Modeling Approach. Sci Rep 2019; 9:16381. [PMID: 31705037 PMCID: PMC6842088 DOI: 10.1038/s41598-019-52926-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022] Open
Abstract
Stem cells undergo drastic morphological alterations during differentiation. While extensive studies have been performed to examine the cytoskeletal remodeling, there is a growing interest to determine the morphological, structural and functional changes of the nucleus. The current study is therefore aimed at quantifying the extent of remodeling of the nuclear morphology of human mesenchymal stem cells during biochemically-induced adipogenic differentiation. Results show the size of nuclei decreased exponentially over time as the lipid accumulation is up-regulated. Increases in the lipid accumulation appear to lag the nuclear reorganization, suggesting the nuclear deformation is a prerequisite to adipocyte maturation. Furthermore, the lamin A/C expression was increased and redistributed to the nuclear periphery along with a subsequent increase in the nuclear aspect ratio. To further assess the role of the nucleus, a nuclear morphology with a high aspect ratio was achieved using microcontact-printed substrate. The cells with an elongated nuclear shape did not efficiently undergo adipogenesis, suggesting the cellular and nuclear processes associated with stem cell differentiation at the early stage of adipogenesis cause a change in the nuclear morphology and cannot be abrogated by the morphological cues. In addition, a novel computational biomechanical model was generated to simulate the nuclear shape change during differentiation and predict the forces acting upon the nucleus. This effort led to the development of computational scaling approach to simulate the experimentally observed adipogenic differentiation processes over 15 days in less than 1.5 hours.
Collapse
Affiliation(s)
- Andrew McColloch
- University of Texas at Arlington, Department of Biomedical Engineering, Arlington, 76010, USA
| | - Manoochehr Rabiei
- University of Texas at Arlington, Department of Mechanical and Aerospace Engineering, Arlington, TX, 76010, USA
| | - Parisa Rabbani
- University of Texas at Arlington, Department of Biomedical Engineering, Arlington, 76010, USA
| | - Alan Bowling
- University of Texas at Arlington, Department of Mechanical and Aerospace Engineering, Arlington, TX, 76010, USA
| | - Michael Cho
- University of Texas at Arlington, Department of Biomedical Engineering, Arlington, 76010, USA.
| |
Collapse
|
83
|
Seirin-Lee S, Osakada F, Takeda J, Tashiro S, Kobayashi R, Yamamoto T, Ochiai H. Role of dynamic nuclear deformation on genomic architecture reorganization. PLoS Comput Biol 2019; 15:e1007289. [PMID: 31509522 PMCID: PMC6738595 DOI: 10.1371/journal.pcbi.1007289] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/28/2019] [Indexed: 11/18/2022] Open
Abstract
Higher-order genomic architecture varies according to cell type and changes dramatically during differentiation. One of the remarkable examples of spatial genomic reorganization is the rod photoreceptor cell differentiation in nocturnal mammals. The inverted nuclear architecture found in adult mouse rod cells is formed through the reorganization of the conventional architecture during terminal differentiation. However, the mechanisms underlying these changes remain largely unknown. Here, we found that the dynamic deformation of nuclei via actomyosin-mediated contractility contributes to chromocenter clustering and promotes genomic architecture reorganization during differentiation by conducting an in cellulo experiment coupled with phase-field modeling. Similar patterns of dynamic deformation of the nucleus and a concomitant migration of the nuclear content were also observed in rod cells derived from the developing mouse retina. These results indicate that the common phenomenon of dynamic nuclear deformation, which accompanies dynamic cell behavior, can be a universal mechanism for spatiotemporal genomic reorganization. The motion and spatial reorganization of sub-nuclear domains have been extensively studied using microscopy, but the underlying mechanisms that promote the reorganization are still poorly understood. We found that dynamic nuclear deformation provides a driving force for long-range migration and aggressive clustering of chromocenters, which ultimately induces nuclear architecture reorganization. This study significantly contributes to an improved understanding of the role of nuclear deformation and reorganization of nuclear architecture that seems complex but is based on simple physical properties of the cell.
Collapse
Affiliation(s)
- Sungrim Seirin-Lee
- Department of Mathematics, School of Science, Hiroshima University, Higashi-Hiroshima, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
- * E-mail: (SSL); (HO)
| | - Fumitaka Osakada
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Junichi Takeda
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Satoshi Tashiro
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Ryo Kobayashi
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hiroshi Ochiai
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
- * E-mail: (SSL); (HO)
| |
Collapse
|
84
|
Modelling Cell Origami via a Tensegrity Model of the Cytoskeleton in Adherent Cells. Appl Bionics Biomech 2019; 2019:8541303. [PMID: 31485268 PMCID: PMC6710780 DOI: 10.1155/2019/8541303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/29/2019] [Accepted: 07/30/2019] [Indexed: 11/28/2022] Open
Abstract
Cell origami has been widely used in the field of three-dimensional (3D) cell-populated microstructures due to their multiple advantages, including high biocompatibility, the lack of special requirements for substrate materials, and the lack of damage to cells. A 3D finite element method (FEM) model of an adherent cell based on the tensegrity structure is constructed to describe cell origami by using the principle of the origami folding technique and cell traction forces. Adherent cell models contain a cytoskeleton (CSK), which is primarily composed of microtubules (MTs), microfilaments (MFs), intermediate filaments (IFs), and a nucleoskeleton (NSK), which is mainly made up of the nuclear lamina and chromatin. The microplate is assumed to be an isotropic linear-elastic solid material with a flexible joint that is connected to the cell tensegrity structure model by spring elements representing focal adhesion complexes (FACs). To investigate the effects of the degree of complexity of the tensegrity structure and NSK on the folding angle of the microplate, four models are established in the study. The results demonstrate that the inclusion of the NSK can increase the folding angle of the microplate, indicating that the cell is closer to its physiological environment, while increased complexity can reduce the folding angle of the microplate since the folding angle is depended on the cell types. The proposed adherent cell FEM models are validated by comparisons with reported results. These findings can provide theoretical guidance for the application of biotechnology and the analysis of 3D structures of cells and have profound implications for the self-assembly of cell-based microscale medical devices.
Collapse
|
85
|
Studying nucleic envelope and plasma membrane mechanics of eukaryotic cells using confocal reflectance interferometric microscopy. Nat Commun 2019; 10:3652. [PMID: 31409824 PMCID: PMC6692322 DOI: 10.1038/s41467-019-11645-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/29/2019] [Indexed: 12/18/2022] Open
Abstract
Mechanical stress on eukaryotic nucleus has been implicated in a diverse range of diseases including muscular dystrophy and cancer metastasis. Today, there are very few non-perturbative methods to quantify nuclear mechanical properties. Interferometric microscopy, also known as quantitative phase microscopy (QPM), is a powerful tool for studying red blood cell biomechanics. The existing QPM tools, however, have not been utilized to study biomechanics of complex eukaryotic cells either due to lack of depth sectioning, limited phase measurement sensitivity, or both. Here, we present depth-resolved confocal reflectance interferometric microscopy as the next generation QPM to study nuclear and plasma membrane biomechanics. The proposed system features multiple confocal scanning foci, affording 1.5 micron depth-resolution and millisecond frame rate. Furthermore, a near common-path interferometer enables quantifying nanometer-scale membrane fluctuations with better than 200 picometers sensitivity. Our results present accurate quantification of nucleic envelope and plasma membrane fluctuations in embryonic stem cells. Biomechanical studies of eukaryotic cells have been limited due to low sensitivity and axial resolution in interferometric imaging. Here, the authors present depth-resolved confocal reflectance interferometric microscopy with high sensitivity and temporal resolution, which enables quantification of nucleic envelope and plasma membrane fluctuations.
Collapse
|
86
|
Alisafaei F, Jokhun DS, Shivashankar GV, Shenoy VB. Regulation of nuclear architecture, mechanics, and nucleocytoplasmic shuttling of epigenetic factors by cell geometric constraints. Proc Natl Acad Sci U S A 2019; 116:13200-13209. [PMID: 31209017 PMCID: PMC6613080 DOI: 10.1073/pnas.1902035116] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cells sense mechanical signals from their microenvironment and transduce them to the nucleus to regulate gene expression programs. To elucidate the physical mechanisms involved in this regulation, we developed an active 3D chemomechanical model to describe the three-way feedback between the adhesions, the cytoskeleton, and the nucleus. The model shows local tensile stresses generated at the interface of the cell and the extracellular matrix regulate the properties of the nucleus, including nuclear morphology, levels of lamin A,C, and histone deacetylation, as these tensile stresses 1) are transmitted to the nucleus through cytoskeletal physical links and 2) trigger an actomyosin-dependent shuttling of epigenetic factors. We then show how cell geometric constraints affect the local tensile stresses and subsequently the three-way feedback and induce cytoskeleton-mediated alterations in the properties of the nucleus such as nuclear lamina softening, chromatin stiffening, nuclear lamina invaginations, increase in nuclear height, and shrinkage of nuclear volume. We predict a phase diagram that describes how the disruption of cytoskeletal components impacts the feedback and subsequently induce contractility-dependent alterations in the properties of the nucleus. Our simulations show that these changes in contractility levels can be also used as predictors of nucleocytoplasmic shuttling of transcription factors and the level of chromatin condensation. The predictions are experimentally validated by studying the properties of nuclei of fibroblasts on micropatterned substrates with different shapes and areas.
Collapse
Affiliation(s)
- Farid Alisafaei
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104
| | | | - G V Shivashankar
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
- Department of Biological Sciences, National University of Singapore, 117411, Singapore
- FIRC Institute for Molecular Oncology (IFOM), 20139 Milan, Italy
| | - Vivek B Shenoy
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104;
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
87
|
Gill NK, Ly C, Kim PH, Saunders CA, Fong LG, Young SG, Luxton GWG, Rowat AC. DYT1 Dystonia Patient-Derived Fibroblasts Have Increased Deformability and Susceptibility to Damage by Mechanical Forces. Front Cell Dev Biol 2019; 7:103. [PMID: 31294022 PMCID: PMC6606767 DOI: 10.3389/fcell.2019.00103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/27/2019] [Indexed: 12/24/2022] Open
Abstract
DYT1 dystonia is a neurological movement disorder that is caused by a loss-of-function mutation in the DYT1/TOR1A gene, which encodes torsinA, a conserved luminal ATPases-associated with various cellular activities (AAA+) protein. TorsinA is required for the assembly of functional linker of nucleoskeleton and cytoskeleton (LINC) complexes, and consequently the mechanical integration of the nucleus and the cytoskeleton. Despite the potential implications of altered mechanobiology in dystonia pathogenesis, the role of torsinA in regulating cellular mechanical phenotype, or mechanotype, in DYT1 dystonia remains unknown. Here, we define the deformability of mouse fibroblasts lacking functional torsinA as well as human fibroblasts isolated from DYT1 dystonia patients. We find that the deletion of torsinA or the expression of torsinA containing the DYT1 dystonia-causing ΔE302/303 (ΔE) mutation results in more deformable cells. We observe a similar increased deformability of mouse fibroblasts that lack lamina-associated polypeptide 1 (LAP1), which interacts with and stimulates the ATPase activity of torsinA in vitro, as well as with the absence of the LINC complex proteins, Sad1/UNC-84 1 (SUN1) and SUN2, lamin A/C, or lamin B1. Consistent with these findings, we also determine that DYT1 dystonia patient-derived fibroblasts are more compliant than fibroblasts isolated from unafflicted individuals. DYT1 dystonia patient-derived fibroblasts also exhibit increased nuclear strain and decreased viability following mechanical stretch. Taken together, our results establish the foundation for future mechanistic studies of the role of cellular mechanotype and LINC-dependent nuclear-cytoskeletal coupling in regulating cell survival following exposure to mechanical stresses.
Collapse
Affiliation(s)
- Navjot Kaur Gill
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Chau Ly
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Paul H Kim
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Cosmo A Saunders
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, United States
| | - Loren G Fong
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - G W Gant Luxton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, United States.,Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
88
|
The nucleus feels the force, LINCed in or not! Curr Opin Cell Biol 2019; 58:114-119. [DOI: 10.1016/j.ceb.2019.02.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/23/2019] [Accepted: 02/28/2019] [Indexed: 12/14/2022]
|
89
|
Stephens AD, Banigan EJ, Marko JF. Chromatin's physical properties shape the nucleus and its functions. Curr Opin Cell Biol 2019; 58:76-84. [PMID: 30889417 PMCID: PMC6692209 DOI: 10.1016/j.ceb.2019.02.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/06/2019] [Accepted: 02/20/2019] [Indexed: 12/13/2022]
Abstract
The cell nucleus encloses, organizes, and protects the genome. Chromatin maintains nuclear mechanical stability and shape in coordination with lamins and the cytoskeleton. Abnormal nuclear shape is a diagnostic marker for human diseases, and it can cause nuclear dysfunction. Chromatin mechanics underlies this link, as alterations to chromatin and its physical properties can disrupt or rescue nuclear shape. The cell can regulate nuclear shape through mechanotransduction pathways that sense and respond to extracellular cues, thus modulating chromatin compaction and rigidity. These findings reveal how chromatin's physical properties can regulate cellular function and drive abnormal nuclear morphology and dysfunction in disease.
Collapse
Affiliation(s)
- Andrew D Stephens
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, United States.
| | - Edward J Banigan
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, United States; Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, United States.
| |
Collapse
|
90
|
Mierke CT. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:064602. [PMID: 30947151 DOI: 10.1088/1361-6633/ab1628] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The minimal structural unit of a solid tumor is a single cell or a cellular compartment such as the nucleus. A closer look inside the cells reveals that there are functional compartments or even structural domains determining the overall properties of a cell such as the mechanical phenotype. The mechanical interaction of these living cells leads to the complex organization such as compartments, tissues and organs of organisms including mammals. In contrast to passive non-living materials, living cells actively respond to the mechanical perturbations occurring in their microenvironment during diseases such as fibrosis and cancer. The transformation of single cancer cells in highly aggressive and hence malignant cancer cells during malignant cancer progression encompasses the basement membrane crossing, the invasion of connective tissue, the stroma microenvironments and transbarrier migration, which all require the immediate interaction of the aggressive and invasive cancer cells with the surrounding extracellular matrix environment including normal embedded neighboring cells. All these steps of the metastatic pathway seem to involve mechanical interactions between cancer cells and their microenvironment. The pathology of cancer due to a broad heterogeneity of cancer types is still not fully understood. Hence it is necessary to reveal the signaling pathways such as mechanotransduction pathways that seem to be commonly involved in the development and establishment of the metastatic and mechanical phenotype in several carcinoma cells. We still do not know whether there exist distinct metastatic genes regulating the progression of tumors. These metastatic genes may then be activated either during the progression of cancer by themselves on their migration path or in earlier stages of oncogenesis through activated oncogenes or inactivated tumor suppressor genes, both of which promote the metastatic phenotype. In more detail, the adhesion of cancer cells to their surrounding stroma induces the generation of intracellular contraction forces that deform their microenvironments by alignment of fibers. The amplitude of these forces can adapt to the mechanical properties of the microenvironment. Moreover, the adhesion strength of cancer cells seems to determine whether a cancer cell is able to migrate through connective tissue or across barriers such as the basement membrane or endothelial cell linings of blood or lymph vessels in order to metastasize. In turn, exposure of adherent cancer cells to physical forces, such as shear flow in vessels or compression forces around tumors, reinforces cell adhesion, regulates cell contractility and restructures the ordering of the local stroma matrix that leads subsequently to secretion of crosslinking proteins or matrix degrading enzymes. Hence invasive cancer cells alter the mechanical properties of their microenvironment. From a mechanobiological point-of-view, the recognized physical signals are transduced into biochemical signaling events that guide cellular responses such as cancer progression after the malignant transition of cancer cells from an epithelial and non-motile phenotype to a mesenchymal and motile (invasive) phenotype providing cellular motility. This transition can also be described as the physical attempt to relate this cancer cell transitional behavior to a T1 phase transition such as the jamming to unjamming transition. During the invasion of cancer cells, cell adaptation occurs to mechanical alterations of the local stroma, such as enhanced stroma upon fibrosis, and therefore we need to uncover underlying mechano-coupling and mechano-regulating functional processes that reinforce the invasion of cancer cells. Moreover, these mechanisms may also be responsible for the awakening of dormant residual cancer cells within the microenvironment. Physicists were initially tempted to consider the steps of the cancer metastasis cascade as single events caused by a single mechanical alteration of the overall properties of the cancer cell. However, this general and simple view has been challenged by the finding that several mechanical properties of cancer cells and their microenvironment influence each other and continuously contribute to tumor growth and cancer progression. In addition, basement membrane crossing, cell invasion and transbarrier migration during cancer progression is explained in physical terms by applying physical principles on living cells regardless of their complexity and individual differences of cancer types. As a novel approach, the impact of the individual microenvironment surrounding cancer cells is also included. Moreover, new theories and models are still needed to understand why certain cancers are malignant and aggressive, while others stay still benign. However, due to the broad variety of cancer types, there may be various pathways solely suitable for specific cancer types and distinct steps in the process of cancer progression. In this review, physical concepts and hypotheses of cancer initiation and progression including cancer cell basement membrane crossing, invasion and transbarrier migration are presented and discussed from a biophysical point-of-view. In addition, the crosstalk between cancer cells and a chronically altered microenvironment, such as fibrosis, is discussed including the basic physical concepts of fibrosis and the cellular responses to mechanical stress caused by the mechanically altered microenvironment. Here, is highlighted how biophysical approaches, both experimentally and theoretically, have an impact on classical hallmarks of cancer and fibrosis and how they contribute to the understanding of the regulation of cancer and its progression by sensing and responding to the physical environmental properties through mechanotransduction processes. Finally, this review discusses various physical models of cell migration such as blebbing, nuclear piston, protrusive force and unjamming transition migration modes and how they contribute to cancer progression. Moreover, these cellular migration modes are influenced by microenvironmental perturbances such as fibrosis that can induce mechanical alterations in cancer cells, which in turn may impact the environment. Hence, the classical hallmarks of cancer need to be refined by including biomechanical properties of cells, cell clusters and tissues and their microenvironment to understand mechano-regulatory processes within cancer cells and the entire organism.
Collapse
|
91
|
Touchstone H, Bryd R, Loisate S, Thompson M, Kim S, Puranam K, Senthilnathan AN, Pu X, Beard R, Rubin J, Alwood J, Oxford JT, Uzer G. Recovery of stem cell proliferation by low intensity vibration under simulated microgravity requires LINC complex. NPJ Microgravity 2019; 5:11. [PMID: 31123701 PMCID: PMC6520402 DOI: 10.1038/s41526-019-0072-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/20/2019] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSC) rely on their ability to integrate physical and spatial signals at load bearing sites to replace and renew musculoskeletal tissues. Designed to mimic unloading experienced during spaceflight, preclinical unloading and simulated microgravity models show that alteration of gravitational loading limits proliferative activity of stem cells. Emerging evidence indicates that this loss of proliferation may be linked to loss of cellular cytoskeleton and contractility. Low intensity vibration (LIV) is an exercise mimetic that promotes proliferation and differentiation of MSCs by enhancing cell structure. Here, we asked whether application of LIV could restore the reduced proliferative capacity seen in MSCs that are subjected to simulated microgravity. We found that simulated microgravity (sMG) decreased cell proliferation and simultaneously compromised cell structure. These changes included increased nuclear height, disorganized apical F-actin structure, reduced expression, and protein levels of nuclear lamina elements LaminA/C LaminB1 as well as linker of nucleoskeleton and cytoskeleton (LINC) complex elements Sun-2 and Nesprin-2. Application of LIV restored cell proliferation and nuclear proteins LaminA/C and Sun-2. An intact LINC function was required for LIV effect; disabling LINC functionality via co-depletion of Sun-1, and Sun-2 prevented rescue of cell proliferation by LIV. Our findings show that sMG alters nuclear structure and leads to decreased cell proliferation, but does not diminish LINC complex mediated mechanosensitivity, suggesting LIV as a potential candidate to combat sMG-induced proliferation loss.
Collapse
Affiliation(s)
- H. Touchstone
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID 83725 USA
| | - R. Bryd
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID 83725 USA
| | - S. Loisate
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID 83725 USA
| | - M. Thompson
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID 83725 USA
| | - S. Kim
- Department of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
| | - K. Puranam
- Department of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
| | - A. N. Senthilnathan
- Department of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
| | - X. Pu
- Biomolecular Research Center, Boise State University, Boise, ID 83725 USA
| | - R. Beard
- Biomolecular Research Center, Boise State University, Boise, ID 83725 USA
| | - J. Rubin
- Department of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
| | - J. Alwood
- Space Biosciences Division, NASA-Ames Research Center, Mountain View, CA 94035 USA
| | - J. T. Oxford
- Biomolecular Research Center, Boise State University, Boise, ID 83725 USA
| | - G. Uzer
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID 83725 USA
| |
Collapse
|
92
|
Sankaran J, Uzer G, van Wijnen AJ, Rubin J. Gene regulation through dynamic actin control of nuclear structure. Exp Biol Med (Maywood) 2019; 244:1345-1353. [PMID: 31084213 DOI: 10.1177/1535370219850079] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bone marrow mesenchymal stem cells exist in a multipotential state, where osteogenic and adipogenic genomes are silenced in heterochromatin at the inner nuclear leaflet. Physical force, generated in the marrow space during dynamic exercise exerts control overexpression of differentiation. Mesenchymal stem cells experience mechanical force through their cytoskeletal attachments to substrate, inducing signaling that alters gene expression. The generated force is further transferred from the cytoskeleton to the nucleoskeleton through tethering of actin to Linker of Nucleus and Cytoskeleton (LINC) complexes. Forces exerted on LINC alter the shape and placement of the nucleus within the cell, and are ultimately transferred into the nucleus. LINC complexes transverse the nuclear membrane and connect to the internal nucleoskeleton that is made up of lamin filaments and actin. Force transfer through LINC thus causes structural rearrangements of the nuclear scaffolding upon which chromosomes are arranged. Gene availability is not only modulated through heterochromatin remodeling enzymes and active transcription factors but also by control of nucleoskeletal structure and nuclear enzymes that mediate actin polymerization in the nucleus. Nuclear actin structure may be affected by similar force-activated pathways as those controlling the cytoplasmic actin cytoskeleton and represent a critical determinant of mesenchymal stem cell lineage commitment. Impact statement Gene expression is controlled by nuclear structure which is modulated by both internal and external forces exerted on the nucleoskeleton. Extracellular forces experienced through the actin cytoskeleton are transmitted to the internal nucleoskeleton via Linker of Nucleus and Cytoskeleton (LINC) protein connections. LINC complexes directly alter nuclear shape and entry of molecules that regulate transcription. New mechanistic models indicate that nuclear actin is a dynamic component of the filamentous nucleoskeleton and modified by an intranuclear “actin toolbox”, a set of enzymes that regulate linear and branched polymerization of nuclear actin. External stimulation of both biomechanical and biochemical pathways alters nuclear actin structure and has profound effects on gene expression by controlling chromatin architecture and transcription factor access to gene targets. The available data indicate that nucleoskeletal control of gene expression is critical for self-renewal and mesenchymal lineage-allocation in stem cells.
Collapse
Affiliation(s)
- Jeyantt Sankaran
- Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Gunes Uzer
- College of Mechanical and Biomedical Engineering, Boise State University, Boise, ID 83725, USA
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Janet Rubin
- Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
93
|
Helical nanofiber yarn enabling highly stretchable engineered microtissue. Proc Natl Acad Sci U S A 2019; 116:9245-9250. [PMID: 31019088 DOI: 10.1073/pnas.1821617116] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Development of microtissues that possess mechanical properties mimicking those of native stretchable tissues, such as muscle and tendon, is in high demand for tissue engineering and regenerative medicine. However, regardless of the significant advances in synthetic biomaterials, it remains challenging to fabricate living microtissue with high stretchability because application of large strains to microtissues can damage the cells by rupturing their structures. Inspired by the hierarchical helical structure of native fibrous tissues and its behavior of nonaffine deformation, we develop a highly stretchable and tough microtissue fiber made up of a hierarchical helix yarn scaffold, scaling from nanometers to millimeters, that can overcome this limitation. This microtissue can be stretched up to 15 times its initial length and has a toughness of 57 GJ m-3 More importantly, cells grown on this scaffold maintain high viability, even under severe cyclic strains (up to 600%) that can be attributed to the nonaffine deformation under large strains, mimicking native biopolymer scaffolds. Furthermore, as proof of principle, we demonstrate that the nanotopography of the helical nanofiber yarn is able to induce cytoskeletal alignment and nuclear elongation, which promote myogenic differentiation of mesenchymal stem cells by triggering nuclear translocation of transcriptional coactivator with PDZ-binding motif (TAZ). The highly stretchable microtissues we develop here will facilitate a variety of tissue engineering applications and the development of engineered living systems.
Collapse
|
94
|
MKL1-actin pathway restricts chromatin accessibility and prevents mature pluripotency activation. Nat Commun 2019; 10:1695. [PMID: 30979898 PMCID: PMC6461646 DOI: 10.1038/s41467-019-09636-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 03/01/2019] [Indexed: 12/19/2022] Open
Abstract
Actin cytoskeleton is well-known for providing structural/mechanical support, but whether and how it regulates chromatin and cell fate reprogramming is far less clear. Here, we report that MKL1, the key transcriptional co-activator of many actin cytoskeletal genes, regulates genomic accessibility and cell fate reprogramming. The MKL1-actin pathway weakens during somatic cell reprogramming by pluripotency transcription factors. Cells that reprogram efficiently display low endogenous MKL1 and inhibition of actin polymerization promotes mature pluripotency activation. Sustained MKL1 expression at a level seen in typical fibroblasts yields excessive actin cytoskeleton, decreases nuclear volume and reduces global chromatin accessibility, stalling cells on their trajectory toward mature pluripotency. In addition, the MKL1-actin imposed block of pluripotency can be bypassed, at least partially, when the Sun2-containing linker of the nucleoskeleton and cytoskeleton (LINC) complex is inhibited. Thus, we unveil a previously unappreciated aspect of control on chromatin and cell fate reprogramming exerted by the MKL1-actin pathway. MKL1 is a key transcriptional co-activator of actin cytoskeleton genes. Here the authors show that MKL1 activation in somatic cells reduces chromatin accessibility and hinders full reprogramming to pluripotency. Reduction of MKL1, disruption of actin cytoskeleton and its links to the nucleus relieve this repression.
Collapse
|
95
|
Haydont V, Neiveyans V, Fortunel NO, Asselineau D. Transcriptome profiling of human papillary and reticular fibroblasts from adult interfollicular dermis pinpoints the ‘tissue skeleton’ gene network as a component of skin chrono-ageing. Mech Ageing Dev 2019; 179:60-77. [DOI: 10.1016/j.mad.2019.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/23/2018] [Accepted: 01/07/2019] [Indexed: 10/27/2022]
|
96
|
Hansel C, Crowder SW, Cooper S, Gopal S, João Pardelha da Cruz M, de Oliveira Martins L, Keller D, Rothery S, Becce M, Cass AEG, Bakal C, Chiappini C, Stevens MM. Nanoneedle-Mediated Stimulation of Cell Mechanotransduction Machinery. ACS NANO 2019; 13:2913-2926. [PMID: 30829469 PMCID: PMC6439438 DOI: 10.1021/acsnano.8b06998] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/21/2019] [Indexed: 05/21/2023]
Abstract
Biomaterial substrates can be engineered to present topographical signals to cells which, through interactions between the material and active components of the cell membrane, regulate key cellular processes and guide cell fate decisions. However, targeting mechanoresponsive elements that reside within the intracellular domain is a concept that has only recently emerged. Here, we show that mesoporous silicon nanoneedle arrays interact simultaneously with the cell membrane, cytoskeleton, and nucleus of primary human cells, generating distinct responses at each of these cellular compartments. Specifically, nanoneedles inhibit focal adhesion maturation at the membrane, reduce tension in the cytoskeleton, and lead to remodeling of the nuclear envelope at sites of impingement. The combined changes in actin cytoskeleton assembly, expression and segregation of the nuclear lamina, and localization of Yes-associated protein (YAP) correlate differently from what is canonically observed upon stimulation at the cell membrane, revealing that biophysical cues directed to the intracellular space can generate heretofore unobserved mechanosensory responses. These findings highlight the ability of nanoneedles to study and direct the phenotype of large cell populations simultaneously, through biophysical interactions with multiple mechanoresponsive components.
Collapse
Affiliation(s)
- Catherine
S. Hansel
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| | - Spencer W. Crowder
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| | - Samuel Cooper
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
- Chester Beatty
Laboratories, Institute for Cancer Research, London SW3 6JB, U.K.
| | - Sahana Gopal
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| | - Maria João Pardelha da Cruz
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de
Lisboa, 1649-004 Lisbon, Portugal
| | - Leonardo de Oliveira Martins
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| | - Debora Keller
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| | - Stephen Rothery
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| | - Michele Becce
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| | - Anthony E. G. Cass
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| | - Chris Bakal
- Chester Beatty
Laboratories, Institute for Cancer Research, London SW3 6JB, U.K.
| | - Ciro Chiappini
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| | - Molly M. Stevens
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
97
|
Hah J, Kim DH. Deciphering Nuclear Mechanobiology in Laminopathy. Cells 2019; 8:E231. [PMID: 30862117 PMCID: PMC6468464 DOI: 10.3390/cells8030231] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/23/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022] Open
Abstract
Extracellular mechanical stimuli are translated into biochemical signals inside the cell via mechanotransduction. The nucleus plays a critical role in mechanoregulation, which encompasses mechanosensing and mechanotransduction. The nuclear lamina underlying the inner nuclear membrane not only maintains the structural integrity, but also connects the cytoskeleton to the nuclear envelope. Lamin mutations, therefore, dysregulate the nuclear response, resulting in abnormal mechanoregulations, and ultimately, disease progression. Impaired mechanoregulations even induce malfunction in nuclear positioning, cell migration, mechanosensation, as well as differentiation. To know how to overcome laminopathies, we need to understand the mechanisms of laminopathies in a mechanobiological way. Recently, emerging studies have demonstrated the varying defects from lamin mutation in cellular homeostasis within mechanical surroundings. Therefore, this review summarizes recent findings highlighting the role of lamins, the architecture of nuclear lamina, and their disease relevance in the context of nuclear mechanobiology. We will also provide an overview of the differentiation of cellular mechanics in laminopathy.
Collapse
Affiliation(s)
- Jungwon Hah
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea.
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea.
| |
Collapse
|
98
|
Balakrishnan S, Mathad SS, Sharma G, Raju SR, Reddy UB, Das S, Ananthasuresh GK. A Nondimensional Model Reveals Alterations in Nuclear Mechanics upon Hepatitis C Virus Replication. Biophys J 2019; 116:1328-1339. [PMID: 30879645 DOI: 10.1016/j.bpj.2019.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/31/2019] [Accepted: 02/07/2019] [Indexed: 02/05/2023] Open
Abstract
Morphology of the nucleus is an important regulator of gene expression. Nuclear morphology is in turn a function of the forces acting on it and the mechanical properties of the nuclear envelope. Here, we present a two-parameter, nondimensional mechanical model of the nucleus that reveals a relationship among nuclear shape parameters, such as projected area, surface area, and volume. Our model fits the morphology of individual nuclei and predicts the ratio between forces and modulus in each nucleus. We analyzed the changes in nuclear morphology of liver cells due to hepatitis C virus (HCV) infection using this model. The model predicted a decrease in the elastic modulus of the nuclear envelope and an increase in the pre-tension in cortical actin as the causes for the change in nuclear morphology. These predictions were validated biomechanically by showing that liver cells expressing HCV proteins possessed enhanced cellular stiffness and reduced nuclear stiffness. Concomitantly, cells expressing HCV proteins showed downregulation of lamin-A,C and upregulation of β-actin, corroborating the predictions of the model. Our modeling assumptions are broadly applicable to adherent, monolayer cell cultures, making the model amenable to investigate changes in nuclear mechanics due to other stimuli by merely measuring nuclear morphology. Toward this, we present two techniques, graphical and numerical, to use our model for predicting physical changes in the nucleus.
Collapse
Affiliation(s)
- Sreenath Balakrishnan
- BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Suma S Mathad
- Mechanical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Geetika Sharma
- Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Shilpa R Raju
- Mechanical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Uma B Reddy
- Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Saumitra Das
- BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka, India; Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka, India.
| | - G K Ananthasuresh
- BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka, India; Mechanical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India.
| |
Collapse
|
99
|
Kim JK, Shin YJ, Ha LJ, Kim DH, Kim DH. Unraveling the Mechanobiology of the Immune System. Adv Healthc Mater 2019; 8:e1801332. [PMID: 30614636 PMCID: PMC7700013 DOI: 10.1002/adhm.201801332] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/01/2018] [Indexed: 12/20/2022]
Abstract
Cells respond and actively adapt to environmental cues in the form of mechanical stimuli. This extends to immune cells and their critical role in the maintenance of tissue homeostasis. Multiple recent studies have begun illuminating underlying mechanisms of mechanosensation in modulating immune cell phenotypes. Since the extracellular microenvironment is critical to modify cellular physiology that ultimately determines the functionality of the cell, understanding the interactions between immune cells and their microenvironment is necessary. This review focuses on mechanoregulation of immune responses mediated by macrophages, dendritic cells, and T cells, in the context of modern mechanobiology.
Collapse
Affiliation(s)
- Jeong-Ki Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Yu Jung Shin
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA
| | - Leslie Jaesun Ha
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
100
|
Liu L, Luo Q, Sun J, Song G. Cytoskeletal control of nuclear morphology and stiffness are required for OPN-induced bone-marrow-derived mesenchymal stem cell migration. Biochem Cell Biol 2019; 97:463-470. [PMID: 30608867 DOI: 10.1139/bcb-2018-0263] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
During cell migration, the movement of the nucleus must be coordinated with the cytoskeletal dynamics that influence the efficiency of cell migration. Our previous study demonstrated that osteopontin (OPN) significantly promotes the migration of bone-marrow-derived mesenchymal stem cells (BMSCs). However, the mechanism that regulates nuclear mechanics of the cytoskeleton during OPN-promoted BMSC migration remains unclear. In this study, we investigated how the actin cytoskeleton influences nuclear mechanics in BMSCs. We assessed the morphology and mechanics of the nuclei in the OPN-treated BMSCs subjected to disruption or polymerization of the actin cytoskeleton. We found that disruption of actin organization by cytochalasin D (Cyto D) resulted in a decrease in the nuclear projected area and nuclear stiffness. Stabilizing the actin assembly with jasplakinolide (JASP) resulted in an increase in the nuclear projected area and nuclear stiffness. SUN1 (Sad-1/UNC-84 1) is a component of the LINC (linker of nucleoskeleton and cytoskeleton) complex involved in the connections between the nucleus and the cytoskeleton. We found that SUN1 depletion by RNAi decreased the nuclear stiffness and OPN-promoted BMSC migration. Thus, the F-actin cytoskeleton plays an important role in determining the morphology and mechanical properties of the nucleus. We suggest that the cytoskeletal-nuclear interconnectivity through SUN1 proteins plays an important role in OPN-promoted BMSC migration.
Collapse
Affiliation(s)
- Lingling Liu
- a Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China.,b School of Medical Laboratory Science, Chengdu Medical College, Chengdu 610500, People's Republic of China
| | - Qing Luo
- a Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Jinghui Sun
- a Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China.,b School of Medical Laboratory Science, Chengdu Medical College, Chengdu 610500, People's Republic of China
| | - Guanbin Song
- a Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|