51
|
Schmidt C, Peyronnet R. Voltage-gated and stretch-activated potassium channels in the human heart : Pathophysiological and clinical significance. Herzschrittmacherther Elektrophysiol 2018; 29:36-42. [PMID: 29305705 DOI: 10.1007/s00399-017-0541-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/14/2017] [Indexed: 12/14/2022]
Abstract
Ion channels are essential for electrical signaling and contractility in cardiomyocytes. Detailed knowledge about the molecular function and regulation of cardiac ion channels is crucial for understanding cardiac physiology and pathophysiology especially in the field of arrhythmias. This review aims at providing a general overview on the identity, functional characteristics, and roles of voltage-gated as well as stretch-activated potassium selective channels in the heart. In particular, we will highlight potential therapeutic targets as well as the emerging fields of future investigations.
Collapse
Affiliation(s)
- Constanze Schmidt
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center, Medical Center - University of Freiburg, and Faculty of Medicine, University of Freiburg, Elsässer Straße 2q, 79110, Freiburg, Germany.
| |
Collapse
|
52
|
Cho CH, Hwang EM, Park JY. Emerging Roles of TWIK-1 Heterodimerization in the Brain. Int J Mol Sci 2017; 19:E51. [PMID: 29295556 PMCID: PMC5796001 DOI: 10.3390/ijms19010051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/29/2022] Open
Abstract
Two-pore domain K⁺ (K2P) channels play essential roles in regulating resting membrane potential and cellular excitability. Although TWIK-1 (TWIK-tandem of pore domains in a weak inward rectifying K⁺ channel) was the first identified member of the K2P channel family, it is only in recent years that the physiological roles of TWIK-1 have been studied in depth. A series of reports suggest that TWIK-1 may underlie diverse functions, such as intrinsic excitability of neurons, astrocytic passive conductance, and astrocytic glutamate release, as a homodimer or heterodimer with other K2P isotypes. Here, we summarize expression patterns and newly identified functions of TWIK-1 in the brain.
Collapse
Affiliation(s)
- Chang-Hoon Cho
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 136-703, Korea.
| | - Eun Mi Hwang
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul 02792, Korea.
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea.
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 136-703, Korea.
| |
Collapse
|
53
|
Kim EJ, Lee DK, Hong SG, Han J, Kang D. Activation of TREK-1, but Not TREK-2, Channel by Mood Stabilizers. Int J Mol Sci 2017; 18:ijms18112460. [PMID: 29156592 PMCID: PMC5713426 DOI: 10.3390/ijms18112460] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 01/22/2023] Open
Abstract
Earlier studies have demonstrated that the tandem pore domain weak inward rectifying K+ channel (TWIK)-related K+ (TREK)-1 channel is inhibited by antidepressants and is associated with major depression. However, little is known about the effect of mood stabilizers that are commonly used for treatment of bipolar disorder on TREK channels, members of the two-pore domain K+ (K2P) channel family. This study sought to investigate the effect of mood stabilizers on TREK-1 and TREK-2 channels. HEK-293A cells were transfected with human TREK-1 or TREK-2 DNA. The effect of mood stabilizers on TREK-1 and TREK-2 was studied using the patch clamp technique. Changes in TREK protein expression by mood stabilizers were studied in the HT-22 mouse hippocampal neuronal cells using western blot analysis. Lithium chloride (LiCl, 1 mM), gabapentin (100 μM), valproate (100 μM), and carbamazepine (100 μM) increased TREK-1 currents by 31 ± 14%, 25 ± 11%, 28 ± 12%, and 72 ± 12%, respectively, whereas they had no effect on TREK-2 channel activity. In addition, western blot analysis showed LiCl and carbamazepine slightly upregulated TREK-1 expression, but not TREK-2 in the HT-22 cells. These results suggest that TREK-1 could be a potential therapeutic target for treatment of bipolar disorders as well as depression, while TREK-2 is a target well suited for treatment of major depression.
Collapse
Affiliation(s)
- Eun-Jin Kim
- Department of Physiology, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea.
| | - Dong Kun Lee
- Department of Physiology, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea.
| | - Seong-Geun Hong
- Department of Physiology, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea.
| | - Jaehee Han
- Department of Physiology, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea.
| | - Dawon Kang
- Department of Physiology, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea.
| |
Collapse
|
54
|
Heterodimerization of two pore domain K+ channel TASK1 and TALK2 in living heterologous expression systems. PLoS One 2017; 12:e0186252. [PMID: 29016681 PMCID: PMC5634629 DOI: 10.1371/journal.pone.0186252] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/27/2017] [Indexed: 11/19/2022] Open
Abstract
Two-pore-domain K+ (K2P) channels sense a wide variety of stimuli such as mechanical stress, inhalational anesthetics, and changes in extracellular pH or temperature. The K2P channel activity forms a background K+ current and, thereby, contributes to resting membrane potentials. Six subfamilies including fifteen subtypes of K2P channels have been identified. Each K2P channel molecule with two pores consists of a homodimer of each subtype. In addition, a few heterodimers mainly within the same subfamilies have been found recently. In the present study, the possibility of heterodimerization between TASK1 (TWIK-Related Acid-Sensitive K+ channel) and TALK2 (TWIK-Related Alkaline pH-Activated K+ channel) was examined. These channels belong to separate subfamilies and show extremely different channel properties. Surprisingly, single molecular imaging analyses in this study using a total internal reflection microscope suggested the heterodimerization of TASK1 and TALK2 in a pancreatic cell line, QGP-1. This heterodimer was also detected using a bimolecular fluorescence complementation assay in a HEK293 heterologous expression system. Fluorescence resonance energy transfer analyses showed that the affinity between TASK1 and TALK2 appeared to be close to those of homodimers. Whole-cell patch-clamp recordings revealed that TASK1 currents in HEK293 cells were significantly attenuated by co-expression of a dominant-negative form of TALK2 in comparison with that of wild-type TALK2. The sensitivities of TASK1-TALK2 tandem constructs to extracellular pH and halothane were characterized as a unique hybrid of TASK1 and TALK2. These results suggested that heterodimerization of TASK1 and TALK2 provides cells with the ability to make multiple responses to a variety of physiological and pharmacological stimuli.
Collapse
|
55
|
Guo H, Peng Z, Yang L, Liu X, Xie Y, Cai Y, Xiong L, Zeng Y. TREK-1 mediates isoflurane-induced cytotoxicity in astrocytes. BMC Anesthesiol 2017; 17:124. [PMID: 28870160 PMCID: PMC5584525 DOI: 10.1186/s12871-017-0420-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 08/27/2017] [Indexed: 12/03/2022] Open
Abstract
Background There are growing concerns that anaesthetic exposure can cause extensive apoptotic degeneration of neurons and the impairment of normal synaptic development and remodelling. However, little attention has been paid to exploring the possible cytotoxicity of inhalation anaesthetics, such as isoflurane, in astrocytes. In this research, we determined that prolonged exposure to an inhalation anaesthetic caused cytotoxicity in astrocytes, and we identified the underlying molecular mechanism responsible for this process. Methods Astrocytes were exposed to isoflurane, and astrocytic survival was then measured via LDH release assays, MTT assays, and TUNEL staining. TWIK-related potassium (K+) channel-1 (TREK-1) over-expression and knockdown models were also created using lentiviruses. The levels of TREK-1 and brain-derived neurotrophic factor (BDNF) were measured via Western blot and qRT-PCR. Results Prolonged exposure to isoflurane decreased primary astrocytic viability in a dose- and time-dependent manner. Moreover, with prolonged exposure to isoflurane, the TREK-1 level increased, and the BDNF level was reduced. TREK-1 knockdown promoted the survival of astrocytes and increased BDNF expression following isoflurane exposure. Conclusions Overdoses of and prolonged exposure to isoflurane induce cytotoxicity in primary astrocytes. TREK-1 plays an important role in isoflurane-induced cultured astrocytic cytotoxicity by down-regulating the expression of BDNF.
Collapse
Affiliation(s)
- Haiyun Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhengwu Peng
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Liu Yang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, 710032, China
| | - Xue Liu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yaning Xie
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yanhui Cai
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Lize Xiong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Yi Zeng
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
56
|
Leithe E, Mesnil M, Aasen T. The connexin 43 C-terminus: A tail of many tales. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:48-64. [PMID: 28526583 DOI: 10.1016/j.bbamem.2017.05.008] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022]
Abstract
Connexins are chordate gap junction channel proteins that, by enabling direct communication between the cytosols of adjacent cells, create a unique cell signalling network. Gap junctional intercellular communication (GJIC) has important roles in controlling cell growth and differentiation and in tissue development and homeostasis. Moreover, several non-canonical connexin functions unrelated to GJIC have been discovered. Of the 21 members of the human connexin family, connexin 43 (Cx43) is the most widely expressed and studied. The long cytosolic C-terminus (CT) of Cx43 is subject to extensive post-translational modifications that modulate its intracellular trafficking and gap junction channel gating. Moreover, the Cx43 CT contains multiple domains involved in protein interactions that permit crosstalk between Cx43 and cytoskeletal and regulatory proteins. These domains endow Cx43 with the capacity to affect cell growth and differentiation independently of GJIC. Here, we review the current understanding of the regulation and unique functions of the Cx43 CT, both as an essential component of full-length Cx43 and as an independent signalling hub. We highlight the complex regulatory and signalling networks controlled by the Cx43 CT, including the extensive protein interactome that underlies both gap junction channel-dependent and -independent functions. We discuss these data in relation to the recent discovery of the direct translation of specific truncated forms of Cx43. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Edward Leithe
- Department of Molecular Oncology, Institute for Cancer Research, University of Oslo, NO-0424 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, NO-0424 Oslo, Norway
| | - Marc Mesnil
- STIM Laboratory ERL 7368 CNRS - Faculté des Sciences Fondamentales et Appliquées, Université de Poitiers, Poitiers 86073, France
| | - Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, 08035 Barcelona, Spain.
| |
Collapse
|
57
|
Decher N, Kiper AK, Rinné S. Stretch-activated potassium currents in the heart: Focus on TREK-1 and arrhythmias. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:223-232. [PMID: 28526352 DOI: 10.1016/j.pbiomolbio.2017.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/09/2017] [Accepted: 05/15/2017] [Indexed: 12/26/2022]
Abstract
This review focuses on the role and the molecular candidates of the cardiac stretch-activated potassium current (SAK). The functional properties of the two-pore domain potassium (K2P) channel TREK-1, a major candidate for the cardiac SAK, are analyzed and the molecular mechanism of stretch-activation in K2P potassium channels is discussed. Furthermore, the functional modulation of TREK-1 by different cardiac interaction partners, as well as evidence for the functional role of the stretch-dependent TREK-1 and its putative subunits in the heart is reviewed. In addition, we summarize the recent evidence that TREK-1 is involved in the pathogenesis of human cardiac arrhythmias.
Collapse
Affiliation(s)
- Niels Decher
- Institute for Physiology and Pathophysiology, AG Vegetative Physiology, Deutschhausstrasse 1-2, 35037 Marburg, Germany.
| | - Aytug K Kiper
- Institute for Physiology and Pathophysiology, AG Vegetative Physiology, Deutschhausstrasse 1-2, 35037 Marburg, Germany
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, AG Vegetative Physiology, Deutschhausstrasse 1-2, 35037 Marburg, Germany
| |
Collapse
|
58
|
Dadi PK, Vierra NC, Days E, Dickerson MT, Vinson PN, Weaver CD, Jacobson DA. Selective Small Molecule Activators of TREK-2 Channels Stimulate Dorsal Root Ganglion c-Fiber Nociceptor Two-Pore-Domain Potassium Channel Currents and Limit Calcium Influx. ACS Chem Neurosci 2017; 8:558-568. [PMID: 27805811 PMCID: PMC5901755 DOI: 10.1021/acschemneuro.6b00301] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The two-pore-domain potassium (K2P) channel TREK-2 serves to modulate plasma membrane potential in dorsal root ganglia c-fiber nociceptors, which tunes electrical excitability and nociception. Thus, TREK-2 channels are considered a potential therapeutic target for treating pain; however, there are currently no selective pharmacological tools for TREK-2 channels. Here we report the identification of the first TREK-2 selective activators using a high-throughput fluorescence-based thallium (Tl+) flux screen (HTS). An initial pilot screen with a bioactive lipid library identified 11-deoxy prostaglandin F2α as a potent activator of TREK-2 channels (EC50 ≈ 0.294 μM), which was utilized to optimize the TREK-2 Tl+ flux assay (Z' = 0.752). A HTS was then performed with 76 575 structurally diverse small molecules. Many small molecules that selectively activate TREK-2 were discovered. As these molecules were able to activate single TREK-2 channels in excised membrane patches, they are likely direct TREK-2 activators. Furthermore, TREK-2 activators reduced primary dorsal root ganglion (DRG) c-fiber Ca2+ influx. Interestingly, some of the selective TREK-2 activators such as 11-deoxy prostaglandin F2α were found to inhibit the K2P channel TREK-1. Utilizing chimeric channels containing portions of TREK-1 and TREK-2, the region of the TREK channels that allows for either small molecule activation or inhibition was identified. This region lies within the second pore domain containing extracellular loop and is predicted to play an important role in modulating TREK channel activity. Moreover, the selective TREK-2 activators identified in this HTS provide important tools for assessing human TREK-2 channel function and investigating their therapeutic potential for treating chronic pain.
Collapse
Affiliation(s)
- Prasanna K. Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Nicholas C. Vierra
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Emily Days
- Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Matthew T. Dickerson
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Paige N. Vinson
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - C. David Weaver
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
59
|
Antollini SS, Barrantes FJ. Fatty Acid Regulation of Voltage- and Ligand-Gated Ion Channel Function. Front Physiol 2016; 7:573. [PMID: 27965583 PMCID: PMC5124694 DOI: 10.3389/fphys.2016.00573] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/09/2016] [Indexed: 12/25/2022] Open
Abstract
Free fatty acids (FFA) are essential components of the cell, where they play a key role in lipid and carbohydrate metabolism, and most particularly in cell membranes, where they are central actors in shaping the physicochemical properties of the lipid bilayer and the cellular adaptation to the environment. FFA are continuously being produced and degraded, and a feedback regulatory function has been attributed to their turnover. The massive increase observed under some pathological conditions, especially in brain, has been interpreted as a protective mechanism possibly operative on ion channels, which in some cases is of stimulatory nature and in other cases inhibitory. Here we discuss the correlation between the structure of FFA and their ability to modulate protein function, evaluating the influence of saturation/unsaturation, number of double bonds, and cis vs. trans isomerism. We further focus on the mechanisms of FFA modulation operating on voltage-gated and ligand-gated ion channel function, contrasting the still conflicting evidence on direct vs. indirect mechanisms of action.
Collapse
Affiliation(s)
- Silvia S Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (CONICET-UNS)Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del SurBahía Blanca, Argentina
| | | |
Collapse
|
60
|
Zúñiga L, Zúñiga R. Understanding the Cap Structure in K2P Channels. Front Physiol 2016; 7:228. [PMID: 27378938 PMCID: PMC4906011 DOI: 10.3389/fphys.2016.00228] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/30/2016] [Indexed: 12/25/2022] Open
Affiliation(s)
- Leandro Zúñiga
- Escuela de Medicina, Centro de Investigaciones Médicas, Universidad de Talca Talca, Chile
| | - Rafael Zúñiga
- Escuela de Medicina, Centro de Investigaciones Médicas, Universidad de Talca Talca, Chile
| |
Collapse
|
61
|
Lengyel M, Czirják G, Enyedi P. Formation of Functional Heterodimers by TREK-1 and TREK-2 Two-pore Domain Potassium Channel Subunits. J Biol Chem 2016; 291:13649-61. [PMID: 27129242 DOI: 10.1074/jbc.m116.719039] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Indexed: 11/06/2022] Open
Abstract
Two-pore domain (K2P) potassium channels are the major molecular correlates of the background (leak) K(+) current in a wide variety of cell types. They generally play a key role in setting the resting membrane potential and regulate the response of excitable cells to various stimuli. K2P channels usually function as homodimers, and only a few examples of heteromerization have been previously reported. Expression of the TREK (TWIK-related K(+) channel) subfamily members of K2P channels often overlaps in neurons and in other excitable cells. Here, we demonstrate that heterologous coexpression of TREK-1 and TREK-2 subunits results in the formation of functional heterodimers. Taking advantage of a tandem construct (in which the two different subunits were linked together to enforce heterodimerization), we characterized the biophysical and pharmacological properties of the TREK-1/TREK-2 current. The heteromer was inhibited by extracellular acidification and by spadin similarly to TREK-1, and its ruthenium red sensitivity was intermediate between TREK-1 and TREK-2 homodimers. The heterodimer has also been distinguished from the homodimers by its unique single channel conductance. Assembly of the two different subunits was confirmed by coimmunoprecipitation of epitope-tagged TREK-1 and TREK-2 subunits, coexpressed in Xenopus oocytes. Formation of TREK-1/TREK-2 channels was also demonstrated in native dorsal root ganglion neurons indicating that heterodimerization may provide greater diversity of leak K(+) conductances also in native tissues.
Collapse
Affiliation(s)
- Miklós Lengyel
- From the Department of Physiology, Semmelweis University, H-1428 Budapest, Hungary
| | - Gábor Czirják
- From the Department of Physiology, Semmelweis University, H-1428 Budapest, Hungary
| | - Péter Enyedi
- From the Department of Physiology, Semmelweis University, H-1428 Budapest, Hungary
| |
Collapse
|