51
|
Hanly JJ, Robertson ECN, Corning OBWH, Martin A. Porcupine/Wntless-dependent trafficking of the conserved WntA ligand in butterflies. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:470-481. [PMID: 34010515 DOI: 10.1002/jez.b.23046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 11/11/2022]
Abstract
Wnt ligands are key signaling molecules in animals, but little is known about the evolutionary dynamics and mode of action of the WntA orthologs, which are not present in the vertebrates or in Drosophila. Here we show that the WntA subfamily evolved at the base of the Bilateria + Cnidaria clade, and conserved the thumb region and Ser209 acylation site present in most other Wnts, suggesting WntA requires the core Wnt secretory pathway. WntA proteins are distinguishable from other Wnts by a synapomorphic Iso/Val/Ala216 amino-acid residue that replaces the otherwise ubiquitous Thr216 position. WntA embryonic expression is conserved between beetles and butterflies, suggesting functionality, but the WntA gene was lost three times within arthropods, in podoplean copepods, in the cyclorrhaphan fly radiation, and in ensiferan crickets and katydids. Finally, CRISPR mosaic knockouts (KOs) of porcupine and wntless phenocopied the pattern-specific effects of WntA KOs in the wings of Vanessa cardui butterflies. These results highlight the molecular conservation of the WntA protein across invertebrates, and imply it functions as a typical Wnt ligand that is acylated and secreted through the Porcupine/Wntless secretory pathway.
Collapse
Affiliation(s)
- Joseph J Hanly
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Erica C N Robertson
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Olaf B W H Corning
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
52
|
The color pattern inducing gene wingless is expressed in specific cell types of campaniform sensilla of a polka-dotted fruit fly, Drosophila guttifera. Dev Genes Evol 2021; 231:85-93. [PMID: 33774724 DOI: 10.1007/s00427-021-00674-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022]
Abstract
A polka-dotted fruit fly, Drosophila guttifera, has a unique pigmentation pattern on its wings and is used as a model for evo-devo studies exploring the mechanism of evolutionary gain of novel traits. In this species, a morphogen-encoding gene, wingless, is expressed in species-specific positions and induces a unique pigmentation pattern. To produce some of the pigmentation spots on wing veins, wingless is thought to be expressed in developing campaniform sensillum cells, but it was unknown which of the four cell types there express(es) wingless. Here we show that two of the cell types, dome cells and socket cells, express wingless, as indicated by in situ hybridization together with immunohistochemistry. This is a unique case in which non-neuronal SOP (sensory organ precursor) progeny cells produce Wingless as an inducer of pigmentation pattern formation. Our finding opens a path to clarifying the mechanism of evolutionary gain of a unique wingless expression pattern by analyzing gene regulation in dome cells and socket cells.
Collapse
|
53
|
Saranathan V, Finet C. Cellular and developmental basis of avian structural coloration. Curr Opin Genet Dev 2021; 69:56-64. [PMID: 33684846 DOI: 10.1016/j.gde.2021.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
Vivid structural colors in birds are a conspicuous and vital part of their phenotype. They are produced by a rich diversity of integumentary photonic nanostructures in skin and feathers. Unlike pigmentary coloration, whose genetic basis is being elucidated, little is known regarding the pathways underpinning organismal structural coloration. Here, we review available data on the development of avian structural colors. In particular, feather photonic nanostructures are understood to be intracellularly self-assembled by physicochemical forces typically seen in soft colloidal systems. We identify promising avenues for future research that can address current knowledge gaps, which are also highly relevant for the sustainable engineering of advanced bioinspired and biomimetic materials.
Collapse
Affiliation(s)
- Vinodkumar Saranathan
- Division of Science, Yale-NUS College, 10 College Avenue West, 138609, Singapore; NUS Nanotechnology and Nanoscience Initiative, National University of Singapore, 117581, Singapore.
| | - Cédric Finet
- Division of Science, Yale-NUS College, 10 College Avenue West, 138609, Singapore
| |
Collapse
|
54
|
Does Structural Color Exist in True Fungi? J Fungi (Basel) 2021; 7:jof7020141. [PMID: 33669274 PMCID: PMC7920071 DOI: 10.3390/jof7020141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 12/25/2022] Open
Abstract
Structural color occurs by the interaction of light with regular structures and so generates colors by completely different optical mechanisms to dyes and pigments. Structural color is found throughout the tree of life but has not, to date, been reported in the fungi. Here we give an overview of structural color across the tree of life and provide a brief guide aimed at stimulating the search for this phenomenon in fungi.
Collapse
|
55
|
The evolution of structural colour in butterflies. Curr Opin Genet Dev 2021; 69:28-34. [PMID: 33540167 DOI: 10.1016/j.gde.2021.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/21/2020] [Accepted: 01/01/2021] [Indexed: 01/23/2023]
Abstract
Butterflies display some of the most striking examples of structural colour in nature. These colours originate from cuticular scales that cover the wing surface, which have evolved a diverse suite of optical nanostructures capable of manipulating light. In this review we explore recent advances in the evolution of structural colour in butterflies. We discuss new insights into the underlying genetics and development of the structural colours in various nanostructure types. Improvements in -omic and imaging technologies have been paramount to these new advances and have permitted an increased appreciation of their development and evolution.
Collapse
|
56
|
Aguillon SM, Walsh J, Lovette IJ. Extensive hybridization reveals multiple coloration genes underlying a complex plumage phenotype. Proc Biol Sci 2021; 288:20201805. [PMID: 33468000 DOI: 10.1098/rspb.2020.1805] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Coloration is an important target of both natural and sexual selection. Discovering the genetic basis of colour differences can help us to understand how this visually striking phenotype evolves. Hybridizing taxa with both clear colour differences and shallow genomic divergences are unusually tractable for associating coloration phenotypes with their causal genotypes. Here, we leverage the extensive admixture between two common North American woodpeckers-yellow-shafted and red-shafted flickers-to identify the genomic bases of six distinct plumage patches involving both melanin and carotenoid pigments. Comparisons between flickers across approximately 7.25 million genome-wide SNPs show that these two forms differ at only a small proportion of the genome (mean FST = 0.008). Within the few highly differentiated genomic regions, we identify 368 SNPs significantly associated with four of the six plumage patches. These SNPs are linked to multiple genes known to be involved in melanin and carotenoid pigmentation. For example, a gene (CYP2J19) known to cause yellow to red colour transitions in other birds is strongly associated with the yellow versus red differences in the wing and tail feathers of these flickers. Additionally, our analyses suggest novel links between known melanin genes and carotenoid coloration. Our finding of patch-specific control of plumage coloration adds to the growing body of literature suggesting colour diversity in animals could be created through selection acting on novel combinations of coloration genes.
Collapse
Affiliation(s)
- Stepfanie M Aguillon
- Department of Ecology and Evolutionary Biology, Cornell University, 215 Tower Road, Ithaca, NY 14853, USA.,Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA
| | - Jennifer Walsh
- Department of Ecology and Evolutionary Biology, Cornell University, 215 Tower Road, Ithaca, NY 14853, USA.,Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA
| | - Irby J Lovette
- Department of Ecology and Evolutionary Biology, Cornell University, 215 Tower Road, Ithaca, NY 14853, USA.,Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA
| |
Collapse
|
57
|
Pieczynski JN, Kee HL. "Designer babies?!" A CRISPR-based learning module for undergraduates built around the CCR5 gene. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 49:80-93. [PMID: 32777177 PMCID: PMC7891609 DOI: 10.1002/bmb.21395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/12/2020] [Accepted: 05/26/2020] [Indexed: 05/11/2023]
Abstract
CRISPR-cas technology is being incorporated into undergraduate biology curriculum through lab experiences to immerse students in modern technology that is rapidly changing the landscape of science, medicine and agriculture. We developed and implemented an educational module that introduces students to CRISPR-cas technology in a Genetic course and an Advanced Genetics course. Our primary teaching objective was to immerse students in the design, strategy, conceptual modeling, and application of CRISPR-cas technology using the current research claim of the modification of the CCR5 gene in twin girls. This also allowed us to engage students in an open conversation about the bioethical implications of heritable germline and non-heritable somatic genomic editing. We assessed student-learning outcomes and conclude that this learning module is an effective strategy for teaching undergraduates the fundamentals and application of CRISPR-cas gene editing technology and can be adapted to other genes and diseases that are currently being treated with CRISPR-cas technology.
Collapse
Affiliation(s)
- Jay N Pieczynski
- Department of Biology, Rollins College, Winter Park, Florida, USA
| | - Hooi Lynn Kee
- Department of Biology, Stetson University, DeLand, Florida, USA
| |
Collapse
|
58
|
Araki Y, Sota T. Population genetic structure underlying the geographic variation in beetle structural colour with multiple transition zones. Mol Ecol 2020; 30:670-684. [PMID: 33253446 DOI: 10.1111/mec.15758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/12/2020] [Accepted: 11/24/2020] [Indexed: 11/27/2022]
Abstract
We studied the population genetic structure underlying the geographic variation in the structural colour of the geotrupid dung beetle, Phelotrupes auratus, which exhibits metallic body colours of different reflectance wavelengths perceived as red, green and indigo. These forms occur parapatrically in an area of Japan. The colour variation was not related to variation in climatic factors. Using single nucleotide polymorphisms (SNPs) from restriction-site-associated DNA sequences, we discriminated five groups of populations (west/red, south/green, south/indigo, south/red and east/red) by a combination of genetic clusters (west, south and east) and three colour forms. There were three transition zones for the colour forms: two between the red and green forms were hybrid zones with steep genetic clines, which implies the existence of barriers to gene flow between regions with different colours. The remaining transition zone between the green and indigo forms lacked genetic differentiation, despite the evident colour changes, which implies regionally specific selection on the different colours. In a genomewide association study, we identified four SNPs that were associated with the red/green or indigo colour and were not linked with one another, which implies that the coloration was controlled by multiple loci, each affecting the expression of a different colour range. These loci may have controlled the transitions between different combinations of colours. Our study demonstrates that geographic colour variation within a species can be maintained by nonuniform interactions among barriers to gene flow, locally specific selection on different colours, and the effects of different colour loci.
Collapse
Affiliation(s)
- Yoshifumi Araki
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Teiji Sota
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
59
|
Lewis JJ, Van Belleghem SM, Papa R, Danko CG, Reed RD. Many functionally connected loci foster adaptive diversification along a neotropical hybrid zone. SCIENCE ADVANCES 2020; 6:6/39/eabb8617. [PMID: 32978147 PMCID: PMC7518860 DOI: 10.1126/sciadv.abb8617] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/11/2020] [Indexed: 05/02/2023]
Abstract
Characterizing the genetic complexity of adaptation and trait evolution is a major emphasis of evolutionary biology and genetics. Incongruent findings from genetic studies have resulted in conceptual models ranging from a few large-effect loci to massively polygenic architectures. Here, we combine chromatin immunoprecipitation sequencing, Hi-C, RNA sequencing, and 40 whole-genome sequences from Heliconius butterflies to show that red color pattern diversification occurred via many genomic loci. We find that the red wing pattern master regulatory transcription factor Optix binds dozens of loci also under selection, which frequently form three-dimensional adaptive hubs with selection acting on multiple physically interacting genes. Many Optix-bound genes under selection are tied to pigmentation and wing development, and these loci collectively maintain separation between adaptive red color pattern phenotypes in natural populations. We propose a model of trait evolution where functional connections between loci may resolve much of the disparity between large-effect and polygenic evolutionary models.
Collapse
Affiliation(s)
- James J Lewis
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA
| | | | - Riccardo Papa
- Department of Biology, University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico
- Molecular Sciences and Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Charles G Danko
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA
| | - Robert D Reed
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
60
|
Peng CL, Mazo-Vargas A, Brack BJ, Reed RD. Multiple roles forlaccase2 in butterfly wing pigmentation, scale development, and cuticle tanning. Evol Dev 2020; 22:336-341. [PMID: 32720437 DOI: 10.1111/ede.12338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Lepidopteran wing scales play important roles in a number of functions including color patterning and thermoregulation. Despite the importance of wing scales, however, we still have a limited understanding of the genetic mechanisms that underlie scale patterning, development, and coloration. Here, we explore the function of the phenoloxidase-encoding gene laccase2 in wing and scale development in the nymphalid butterfly Vanessa cardui. Somatic deletion mosaics of laccase2 generated by CRISPR/Cas9 genome editing presented several distinct mutant phenotypes. Consistent with the work in other nonlepidopteran insect groups, we observed reductions in melanin pigmentation and defects in cuticle formation. We were also surprised, however, to see distinct effects on scale development including complete loss of wing scales. This study highlights laccase2 as a gene that plays multiple roles in wing and scale development and provides new insight into the evolution of lepidopteran wing coloration.
Collapse
Affiliation(s)
- Ceili L Peng
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York
| | - Anyi Mazo-Vargas
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York
| | - Benjamin J Brack
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York
| | - Robert D Reed
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York
| |
Collapse
|
61
|
McMillan WO, Livraghi L, Concha C, Hanly JJ. From Patterning Genes to Process: Unraveling the Gene Regulatory Networks That Pattern Heliconius Wings. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
62
|
Van Belleghem SM, Alicea Roman PA, Carbia Gutierrez H, Counterman BA, Papa R. Perfect mimicry between Heliconius butterflies is constrained by genetics and development. Proc Biol Sci 2020; 287:20201267. [PMID: 32693728 PMCID: PMC7423669 DOI: 10.1098/rspb.2020.1267] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Müllerian mimicry strongly exemplifies the power of natural selection. However, the exact measure of such adaptive phenotypic convergence and the possible causes of its imperfection often remain unidentified. Here, we first quantify wing colour pattern differences in the forewing region of 14 co-mimetic colour pattern morphs of the butterfly species Heliconius erato and Heliconius melpomene and measure the extent to which mimicking colour pattern morphs are not perfectly identical. Next, using gene-editing CRISPR/Cas9 KO experiments of the gene WntA, which has been mapped to colour pattern diversity in these butterflies, we explore the exact areas of the wings in which WntA affects colour pattern formation differently in H. erato and H. melpomene. We find that, while the relative size of the forewing pattern is generally nearly identical between co-mimics, the CRISPR/Cas9 KO results highlight divergent boundaries in the wing that prevent the co-mimics from achieving perfect mimicry. We suggest that this mismatch may be explained by divergence in the gene regulatory network that defines wing colour patterning in both species, thus constraining morphological evolution even between closely related species.
Collapse
Affiliation(s)
| | - Paola A Alicea Roman
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico.,Department of Biology, University of Puerto Rico, Humacao, Puerto Rico
| | - Heriberto Carbia Gutierrez
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico.,Department of Mathematics, University of Puerto Rico, Rio Piedras, Puerto Rico
| | - Brian A Counterman
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Riccardo Papa
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico.,Smithsonian Tropical Research Institution, Panama, Republic of Panama.,Molecular Sciences and Research Center, University of Puerto Rico, Puerto Rico
| |
Collapse
|
63
|
Kuwalekar M, Deshmukh R, Padvi A, Kunte K. Molecular Evolution and Developmental Expression of Melanin Pathway Genes in Lepidoptera. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
64
|
Reed RD, Selegue JE, Zhang L, Brunetti CR. Transcription factors underlying wing margin color patterns and pupal cuticle markings in butterflies. EvoDevo 2020; 11:10. [PMID: 32514330 PMCID: PMC7254719 DOI: 10.1186/s13227-020-00155-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/19/2020] [Indexed: 11/30/2022] Open
Abstract
Background The diversity of butterfly color patterns can be attributed to a relatively small number of pattern elements that are homologous across Lepidoptera. Although genes involved in patterning some of these elements have been identified, the development of several major elements remains poorly understood. To identify genes underlying wing pupal cuticle markings and wing margin color patterns, we examined expression of the candidate transcription factors Engrailed/Invected (En/Inv), Distal-less (Dll), Cubitus interruptus (Ci), and Spalt in two nymphalids: Junonia coenia and Bicyclus anynana. Results We found that En/Inv, Dll, and Ci mark domains on the J. coenia last-instar forewing disc that closely correspond to the position and shape of pupal cuticle markings. We also found that Spalt demarcates wing margin color patterns in both J. coenia and B. anynana, and that CRISPR/Cas9 deletions in the spalt gene result in reduction and loss of wing margin color patterns in J. coenia. These data demonstrate a role for spalt in promoting wing margin color patterning, in addition to its previously described role in eyespot patterning. Conclusion Our observations support the model that a core set of regulatory genes are redeployed multiple times, and in multiple roles, during butterfly wing pattern development. Of these genes, spalt is of special interest as it plays a dual role in both eyespot and margin color pattern development.
Collapse
Affiliation(s)
- Robert D Reed
- Department of Ecology and Evolutionary Biology, Cornell University, 215 Tower Road, Ithaca, NY 14853-7202 USA
| | - Jayne E Selegue
- School of Pharmacy, University of Wisconsin, 777 Highland Ave, Madison, WI 53705 USA
| | - Linlin Zhang
- Department of Ecology and Evolutionary Biology, Cornell University, 215 Tower Road, Ithaca, NY 14853-7202 USA.,Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266003 China
| | - Craig R Brunetti
- Department of Biology, Trent University, 1600 East Bank Dr., Peterborough, ON K9J 7B8 Canada
| |
Collapse
|
65
|
Rêgo A, Chaturvedi S, Springer A, Lish AM, Barton CL, Kapheim KM, Messina FJ, Gompert Z. Combining Experimental Evolution and Genomics to Understand How Seed Beetles Adapt to a Marginal Host Plant. Genes (Basel) 2020; 11:genes11040400. [PMID: 32276323 PMCID: PMC7230198 DOI: 10.3390/genes11040400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/21/2022] Open
Abstract
Genes that affect adaptive traits have been identified, but our knowledge of the genetic basis of adaptation in a more general sense (across multiple traits) remains limited. We combined population-genomic analyses of evolve-and-resequence experiments, genome-wide association mapping of performance traits, and analyses of gene expression to fill this knowledge gap and shed light on the genomics of adaptation to a marginal host (lentil) by the seed beetle Callosobruchus maculatus. Using population-genomic approaches, we detected modest parallelism in allele frequency change across replicate lines during adaptation to lentil. Mapping populations derived from each lentil-adapted line revealed a polygenic basis for two host-specific performance traits (weight and development time), which had low to modest heritabilities. We found less evidence of parallelism in genotype-phenotype associations across these lines than in allele frequency changes during the experiments. Differential gene expression caused by differences in recent evolutionary history exceeded that caused by immediate rearing host. Together, the three genomic datasets suggest that genes affecting traits other than weight and development time are likely to be the main causes of parallel evolution and that detoxification genes (especially cytochrome P450s and beta-glucosidase) could be especially important for colonization of lentil by C. maculatus.
Collapse
Affiliation(s)
- Alexandre Rêgo
- Department of Biology, Utah State University, Logan, UT 84322, USA; (A.R.); (A.S.); (A.M.L.); (C.L.B.); (K.M.K.); (F.J.M.)
- Department of Zoology, Stockholm University, 114 19 Stockholm, Sweden
| | - Samridhi Chaturvedi
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA;
| | - Amy Springer
- Department of Biology, Utah State University, Logan, UT 84322, USA; (A.R.); (A.S.); (A.M.L.); (C.L.B.); (K.M.K.); (F.J.M.)
| | - Alexandra M. Lish
- Department of Biology, Utah State University, Logan, UT 84322, USA; (A.R.); (A.S.); (A.M.L.); (C.L.B.); (K.M.K.); (F.J.M.)
| | - Caroline L. Barton
- Department of Biology, Utah State University, Logan, UT 84322, USA; (A.R.); (A.S.); (A.M.L.); (C.L.B.); (K.M.K.); (F.J.M.)
| | - Karen M. Kapheim
- Department of Biology, Utah State University, Logan, UT 84322, USA; (A.R.); (A.S.); (A.M.L.); (C.L.B.); (K.M.K.); (F.J.M.)
| | - Frank J. Messina
- Department of Biology, Utah State University, Logan, UT 84322, USA; (A.R.); (A.S.); (A.M.L.); (C.L.B.); (K.M.K.); (F.J.M.)
| | - Zachariah Gompert
- Department of Biology, Utah State University, Logan, UT 84322, USA; (A.R.); (A.S.); (A.M.L.); (C.L.B.); (K.M.K.); (F.J.M.)
- Correspondence:
| |
Collapse
|
66
|
Thayer RC, Allen FI, Patel NH. Structural color in Junonia butterflies evolves by tuning scale lamina thickness. eLife 2020; 9:52187. [PMID: 32254023 PMCID: PMC7138606 DOI: 10.7554/elife.52187] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/24/2020] [Indexed: 11/13/2022] Open
Abstract
In diverse organisms, nanostructures that coherently scatter light create structural color, but how such structures are built remains mysterious. We investigate the evolution and genetic regulation of butterfly scale laminae, which are simple photonic nanostructures. In a lineage of buckeye butterflies artificially selected for blue wing color, we found that thickened laminae caused a color shift from brown to blue. Deletion of the optix patterning gene also altered color via lamina thickening, revealing shared regulation of pigments and lamina thickness. Finally, we show how lamina thickness variation contributes to the color diversity that distinguishes sexes and species throughout the genus Junonia. Thus, quantitatively tuning one dimension of scale architecture facilitates both the microevolution and macroevolution of a broad spectrum of hues. Because the lamina is an intrinsic component of typical butterfly scales, our findings suggest that tuning lamina thickness is an available mechanism to create structural color across the Lepidoptera. From iridescent blues to vibrant purples, many butterflies display dazzling ‘structural colors’ created not by pigments but by microscopic structures that interfere with light. For instance, the scales that coat their wings can contain thin films of chitin, the substance that normally makes the external skeleton of insects. In slim layers, however, chitin can also scatter light to produce color, the way that oil can create iridescence at the surface of water. The thickness of the film, which is encoded by the genes of the butterfly, determines what color will be produced. Yet, little is known about how common thin films are in butterflies, exactly how genetic information codes for them, and how their thickness and the colors they produce can evolve. To investigate, Thayer et al. used a technique called Helium Ion Microscopy and examined the wings of ten related species of butterflies, showing that thin film structures were present across this sample. However, the different species have evolved many different structural colors over the past millions of years by changing the thickness of the films. Next, Thayer et al. showed that this evolution could be reproduced at a faster pace in the laboratory using common buckeye butterflies. These insects mostly have brown wings, but they can have specks of blue created by thin film structures. Individuals with more blue on their wings were mated and over the course of a year, the thickness of the film structures increased by 74%, leading to shiny blue butterflies. Deleting a gene called optix from the insects also led to blue wings. Optix was already known to control the patterns of pigments in butterflies, but it now appears that it controls structural colors as well. From solar panels to new fabrics, microscopic structures that can scatter light are useful in a variety of industries. Understanding how these elements exist and evolve in organisms may help to better design them for human purposes.
Collapse
Affiliation(s)
- Rachel C Thayer
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
| | - Frances I Allen
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Nipam H Patel
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States.,Marine Biological Laboratory, Woods Hole, United States
| |
Collapse
|
67
|
Koshikawa S. Evolution of wing pigmentation in Drosophila: Diversity, physiological regulation, and cis-regulatory evolution. Dev Growth Differ 2020; 62:269-278. [PMID: 32171022 PMCID: PMC7384037 DOI: 10.1111/dgd.12661] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022]
Abstract
Fruit flies (Drosophila and its close relatives, or “drosophilids”) are a group that includes an important model organism, Drosophila melanogaster, and also very diverse species distributed worldwide. Many of these species have black or brown pigmentation patterns on their wings, and have been used as material for evo‐devo research. Pigmentation patterns are thought to have evolved rapidly compared with body plans or body shapes; hence they are advantageous model systems for studying evolutionary gains of traits and parallel evolution. Various groups of drosophilids, including genus Idiomyia (Hawaiian Drosophila), have a variety of pigmentations, ranging from simple black pigmentations around crossveins to a single antero‐distal spot and a more complex mottled pattern. Pigmentation patterns are sometimes obviously used for sexual displays; however, in some cases they may have other functions. The process of wing formation in Drosophila, the general mechanism of pigmentation formation, and the transport of substances necessary for pigmentation, including melanin precursors, through wing veins are summarized here. Lastly, the evolution of the expression of genes regulating pigmentation patterns, the role of cis‐regulatory regions, and the conditions required for the evolutionary emergence of pigmentation patterns are discussed. Future prospects for research on the evolution of wing pigmentation pattern formation in drosophilids are presented, particularly from the point of view of how they compare with other studies of the evolution of new traits.
Collapse
Affiliation(s)
- Shigeyuki Koshikawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan.,Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
68
|
Otaki JM. Butterfly eyespot color pattern formation requires physical contact of the pupal wing epithelium with extracellular materials for morphogenic signal propagation. BMC DEVELOPMENTAL BIOLOGY 2020; 20:6. [PMID: 32234033 PMCID: PMC7110832 DOI: 10.1186/s12861-020-00211-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/13/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Eyespot color pattern formation on butterfly wings is sensitive to physical damage and physical distortion as well as physical contact with materials on the surface of wing epithelial tissue at the pupal stage. Contact-mediated eyespot color pattern changes may imply a developmental role of the extracellular matrix in morphogenic signal propagation. Here, we examined eyespot responses to various contact materials, focusing on the hindwing posterior eyespots of the blue pansy butterfly, Junonia orithya. RESULTS Contact with various materials, including both nonbiological and biological materials, induced eyespot enlargement, reduction, or no change in eyespot size, and each material was characterized by a unique response profile. For example, silicone glassine paper almost always induced a considerable reduction, while glass plates most frequently induced enlargement, and plastic plates generally produced no change. The biological materials tested here (fibronectin, polylysine, collagen type I, and gelatin) resulted in various responses, but polylysine induced more cases of enlargement, similar to glass plates. The response profile of the materials was not readily predictable from the chemical composition of the materials but was significantly correlated with the water contact angle (water repellency) of the material surface, suggesting that the surface physical chemistry of materials is a determinant of eyespot size. When the proximal side of a prospective eyespot was covered with a size-reducing material (silicone glassine paper) and the distal side and the organizer were covered with a material that rarely induced size reduction (plastic film), the proximal side of the eyespot was reduced in size in comparison with the distal side, suggesting that signal propagation but not organizer activity was inhibited by silicone glassine paper. CONCLUSIONS These results suggest that physical contact with an appropriate hydrophobic surface is required for morphogenic signals from organizers to propagate normally. The binding of the apical surface of the epithelium with an opposing surface may provide mechanical support for signal propagation. In addition to conventional molecular morphogens, there is a possibility that mechanical distortion of the epithelium that is propagated mechanically serves as a nonmolecular morphogen to induce subsequent molecular changes, in accordance with the distortion hypothesis for butterfly wing color pattern formation.
Collapse
Affiliation(s)
- Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa, 903-0213, Japan.
| |
Collapse
|
69
|
VanKuren NW, Massardo D, Nallu S, Kronforst MR. Butterfly Mimicry Polymorphisms Highlight Phylogenetic Limits of Gene Reuse in the Evolution of Diverse Adaptations. Mol Biol Evol 2020; 36:2842-2853. [PMID: 31504750 DOI: 10.1093/molbev/msz194] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Some genes have repeatedly been found to control diverse adaptations in a wide variety of organisms. Such gene reuse reveals not only the diversity of phenotypes these unique genes control but also the composition of developmental gene networks and the genetic routes available to and taken by organisms during adaptation. However, the causes of gene reuse remain unclear. A small number of large-effect Mendelian loci control a huge diversity of mimetic butterfly wing color patterns, but reasons for their reuse are difficult to identify because the genetic basis of mimicry has primarily been studied in two systems with correlated factors: female-limited Batesian mimicry in Papilio swallowtails (Papilionidae) and non-sex-limited Müllerian mimicry in Heliconius longwings (Nymphalidae). Here, we break the correlation between phylogenetic relationship and sex-limited mimicry by identifying loci controlling female-limited mimicry polymorphism Hypolimnas misippus (Nymphalidae) and non-sex-limited mimicry polymorphism in Papilio clytia (Papilionidae). The Papilio clytia polymorphism is controlled by the genome region containing the gene cortex, the classic P supergene in Heliconius numata, and loci controlling color pattern variation across Lepidoptera. In contrast, female-limited mimicry polymorphism in Hypolimnas misippus is associated with a locus not previously implicated in color patterning. Thus, although many species repeatedly converged on cortex and its neighboring genes over 120 My of evolution of diverse color patterns, female-limited mimicry polymorphisms each evolved using a different gene. Our results support conclusions that gene reuse occurs mainly within ∼10 My and highlight the puzzling diversity of genes controlling seemingly complex female-limited mimicry polymorphisms.
Collapse
Affiliation(s)
| | - Darli Massardo
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL
| | - Sumitha Nallu
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL
| | - Marcus R Kronforst
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL
| |
Collapse
|
70
|
Martin A, Wolcott NS, O'Connell LA. Bringing immersive science to undergraduate laboratory courses using CRISPR gene knockouts in frogs and butterflies. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb208793. [PMID: 32034043 DOI: 10.1242/jeb.208793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The use of CRISPR/Cas9 for gene editing offers new opportunities for biology students to perform genuine research exploring the gene-to-phenotype relationship. It is important to introduce the next generation of scientists, health practitioners and other members of society to the technical and ethical aspects of gene editing. Here, we share our experience leading hands-on undergraduate laboratory classes, where students formulate hypotheses regarding the roles of candidate genes involved in development, perform loss-of-function experiments using programmable nucleases and analyze the phenotypic effects of mosaic mutant animals. This is enabled by the use of the amphibian Xenopus laevis and the butterfly Vanessa cardui, two organisms that reliably yield hundreds of large and freshly fertilized eggs in a scalable manner. Frogs and butterflies also present opportunities to teach key biological concepts about gene regulation and development. To complement these practical aspects, we describe learning activities aimed at equipping students with a broad understanding of genome editing techniques, their application in fundamental and translational research, and the bioethical challenges they raise. Overall, our work supports the introduction of CRISPR technology into undergraduate classrooms and, when coupled with classroom undergraduate research experiences, enables hypothesis-driven research by undergraduates.
Collapse
Affiliation(s)
- Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Nora S Wolcott
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | | |
Collapse
|
71
|
Tomoyasu Y, Halfon MS. How to study enhancers in non-traditional insect models. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb212241. [PMID: 32034049 DOI: 10.1242/jeb.212241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcriptional enhancers are central to the function and evolution of genes and gene regulation. At the organismal level, enhancers play a crucial role in coordinating tissue- and context-dependent gene expression. At the population level, changes in enhancers are thought to be a major driving force that facilitates evolution of diverse traits. An amazing array of diverse traits seen in insect morphology, physiology and behavior has been the subject of research for centuries. Although enhancer studies in insects outside of Drosophila have been limited, recent advances in functional genomic approaches have begun to make such studies possible in an increasing selection of insect species. Here, instead of comprehensively reviewing currently available technologies for enhancer studies in established model organisms such as Drosophila, we focus on a subset of computational and experimental approaches that are likely applicable to non-Drosophila insects, and discuss the pros and cons of each approach. We discuss the importance of validating enhancer function and evaluate several possible validation methods, such as reporter assays and genome editing. Key points and potential pitfalls when establishing a reporter assay system in non-traditional insect models are also discussed. We close with a discussion of how to advance enhancer studies in insects, both by improving computational approaches and by expanding the genetic toolbox in various insects. Through these discussions, this Review provides a conceptual framework for studying the function and evolution of enhancers in non-traditional insect models.
Collapse
Affiliation(s)
| | - Marc S Halfon
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
| |
Collapse
|
72
|
Courtier-Orgogozo V, Martin A. The coding loci of evolution and domestication: current knowledge and implications for bio-inspired genome editing. J Exp Biol 2020; 223:223/Suppl_1/jeb208934. [DOI: 10.1242/jeb.208934] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
ABSTRACT
One promising application of CRISPR/Cas9 is to create targeted mutations to introduce traits of interest into domesticated organisms. However, a major current limitation for crop and livestock improvement is to identify the precise genes and genetic changes that must be engineered to obtain traits of interest. Here, we discuss the advantages of bio-inspired genome editing, i.e. the engineered introduction of natural mutations that have already been associated with traits of interest in other lineages (breeds, populations or species). To obtain a landscape view of potential targets for genome editing, we used Gephebase (www.gephebase.org), a manually curated database compiling published data about the genes responsible for evolutionary and domesticated changes across eukaryotes, and examined the >1200 mutations that have been identified in the coding regions of more than 700 genes in animals, plants and yeasts. We observe that our genetic knowledge is relatively important for certain traits, such as xenobiotic resistance, and poor for others. We also note that protein-null alleles, often owing to nonsense and frameshift mutations, represent a large fraction of the known loci of domestication (42% of identified coding mutations), compared with intraspecific (27%) and interspecific evolution (11%). Although this trend may be subject to detection, publication and curation biases, it is consistent with the idea that breeders have selected large-effect mutations underlying adaptive traits in specific settings, but that these mutations and associated phenotypes would not survive the vagaries of changing external and internal environments. Our compilation of the loci of evolution and domestication uncovers interesting options for bio-inspired and transgene-free genome editing.
Collapse
Affiliation(s)
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
73
|
Tsai CC, Childers RA, Nan Shi N, Ren C, Pelaez JN, Bernard GD, Pierce NE, Yu N. Physical and behavioral adaptations to prevent overheating of the living wings of butterflies. Nat Commun 2020; 11:551. [PMID: 31992708 PMCID: PMC6987309 DOI: 10.1038/s41467-020-14408-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/11/2019] [Indexed: 11/08/2022] Open
Abstract
The wings of Lepidoptera contain a matrix of living cells whose function requires appropriate temperatures. However, given their small thermal capacity, wings can overheat rapidly in the sun. Here we analyze butterfly wings across a wide range of simulated environmental conditions, and find that regions containing living cells are maintained at cooler temperatures. Diverse scale nanostructures and non-uniform cuticle thicknesses create a heterogeneous distribution of radiative cooling that selectively reduces the temperature of structures such as wing veins and androconial organs. These tissues are supplied by circulatory, neural and tracheal systems throughout the adult lifetime, indicating that the insect wing is a dynamic, living structure. Behavioral assays show that butterflies use wings to sense visible and infrared radiation, responding with specialized behaviors to prevent overheating of their wings. Our work highlights the physiological importance of wing temperature and how it is exquisitely regulated by structural and behavioral adaptations.
Collapse
Affiliation(s)
- Cheng-Chia Tsai
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, 10027, USA
| | - Richard A Childers
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Norman Nan Shi
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, 10027, USA
- Western Digital, San Jose, CA, 95119, USA
| | - Crystal Ren
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, 10027, USA
| | - Julianne N Pelaez
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Gary D Bernard
- Department of Electrical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA.
| | - Nanfang Yu
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
74
|
Banerjee TD, Monteiro A. Dissection of Larval and Pupal Wings of Bicyclus anynana Butterflies. Methods Protoc 2020; 3:E5. [PMID: 31936719 PMCID: PMC7189656 DOI: 10.3390/mps3010005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 11/16/2022] Open
Abstract
The colorful wings of butterflies are emerging as model systems for evolutionary and developmental studies. Some of these studies focus on localizing gene transcripts and proteins in wings at the larval and pupal stages using techniques such as immunostaining and in situ hybridization. Other studies quantify mRNA expression levels or identify regions of open chromatin that are bound by proteins at different stages of wing development. All these techniques require dissection of the wings from the animal but a detailed video protocol describing this procedure has not been available until now. Here, we present a written and accompanying video protocol where we describe the tools and the method we use to remove the larval and pupal wings of the African Squinting Bush Brown butterfly Bicyclus anynana. This protocol should be easy to adapt to other species.
Collapse
Affiliation(s)
- Tirtha Das Banerjee
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore;
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore;
- Yale-NUS College, 10 College Avenue West, Singapore 138609, Singapore
| |
Collapse
|
75
|
Woronik A, Tunström K, Perry MW, Neethiraj R, Stefanescu C, Celorio-Mancera MDLP, Brattström O, Hill J, Lehmann P, Käkelä R, Wheat CW. A transposable element insertion is associated with an alternative life history strategy. Nat Commun 2019; 10:5757. [PMID: 31848330 PMCID: PMC6917731 DOI: 10.1038/s41467-019-13596-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Tradeoffs affect resource allocation during development and result in fitness consequences that drive the evolution of life history strategies. Yet despite their importance, we know little about the mechanisms underlying life history tradeoffs. Many species of Colias butterflies exhibit an alternative life history strategy (ALHS) where females divert resources from wing pigment synthesis to reproductive and somatic development. Due to this reallocation, a wing color polymorphism is associated with the ALHS: either yellow/orange or white. Here we map the locus associated with this ALHS in Colias crocea to a transposable element insertion located downstream of the Colias homolog of BarH-1, a homeobox transcription factor. Using CRISPR/Cas9 gene editing, antibody staining, and electron microscopy we find white-specific expression of BarH-1 suppresses the formation of pigment granules in wing scales and gives rise to white wing color. Lipid and transcriptome analyses reveal physiological differences associated with the ALHS. Together, these findings characterize a mechanism for a female-limited ALHS. Tradeoffs are central to life history theory and evolutionary biology, yet almost nothing is known about their mechanistic basis. Here the authors characterize one such mechanism and find a transposable element insertion is associated with the switch between alternative life history strategies.
Collapse
Affiliation(s)
- Alyssa Woronik
- Department of Zoology, Stockholm University, S106 91, Stockholm, Sweden. .,Department of Biology, New York University, New York, NY, 10003, USA.
| | - Kalle Tunström
- Department of Zoology, Stockholm University, S106 91, Stockholm, Sweden
| | - Michael W Perry
- Department of Biology, New York University, New York, NY, 10003, USA.,Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Constanti Stefanescu
- Museum of Natural Sciences of Granollers, Granollers, Catalonia, 08402, Spain.,CREAF, Cerdanyola del Valles, Catalonia, 08193, Spain
| | | | - Oskar Brattström
- Department of Zoology, University of Cambridge, Cambridge, CB23EJ, UK
| | - Jason Hill
- Department of Zoology, Stockholm University, S106 91, Stockholm, Sweden.,Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Philipp Lehmann
- Department of Zoology, Stockholm University, S106 91, Stockholm, Sweden
| | - Reijo Käkelä
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Science (HiLIFE) and Molecular and Integrative Biosciences Research Programme, University of Helsinki, FI00014, Helsinki, Finland
| | | |
Collapse
|
76
|
Hines HM, Rahman SR. Evolutionary genetics in insect phenotypic radiations: the value of a comparative genomic approach. CURRENT OPINION IN INSECT SCIENCE 2019; 36:90-95. [PMID: 31541856 DOI: 10.1016/j.cois.2019.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Expanding genome sequencing and transgenic technologies are enabling the discovery of genes driving phenotypic diversity across insect taxa. Limitations in downstream functional genetic approaches, however, have been an obstacle for developing non-model systems for evolutionary genetics. Phenotypically diverse radiations, such as those exhibiting convergence and divergence as a result of mimicry, are ideal for evolutionary genetics as they can lead to insights using comparative genomic approaches alone. The varied and repeated instances of phenotypes in highly polymorphic systems allow assessment of whether similar loci are repeatedly targeted by selection and can inform how alleles sort across lineages. Comparative genomics of these taxa can be used to decipher components of gene regulatory networks, dissect regulatory regions, and validate genes.
Collapse
Affiliation(s)
- Heather M Hines
- Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA, 16802, USA.
| | - Sarthok Rasique Rahman
- Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA, 16802, USA
| |
Collapse
|
77
|
Interplay between Developmental Flexibility and Determinism in the Evolution of Mimetic Heliconius Wing Patterns. Curr Biol 2019; 29:3996-4009.e4. [DOI: 10.1016/j.cub.2019.10.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/26/2019] [Accepted: 10/08/2019] [Indexed: 11/20/2022]
|
78
|
Piszter G, Kertész K, Horváth ZE, Bálint Z, Biró LP. Reproducible phenotype alteration due to prolonged cooling of the pupae of Polyommatus icarus butterflies. PLoS One 2019; 14:e0225388. [PMID: 31765404 PMCID: PMC6876796 DOI: 10.1371/journal.pone.0225388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/15/2019] [Indexed: 12/22/2022] Open
Abstract
The phenotypic changes induced by prolonged cooling (2-12 weeks at 5 °C in the dark) of freshly formed Polyommatus icarus pupae were investigated. Cooling halted the imaginal development of pupae collected shortly after transformation from the larval stage. After cooling, the pupae were allowed to continue their developmental cycle. The wings of the eclosed specimens were investigated by optical microscopy, scanning and cross-sectional transmission electron microscopy, UV-VIS spectroscopy and microspectroscopy. The eclosed adults presented phenotypic alterations that reproduced results that we published previously for smaller groups of individuals remarkably well; these changes included i) a linear increase in the magnitude of quantified deviation from normal ventral wing patterns with increasing cooling time; ii) slight alteration of the blue coloration of males; and iii) an increasing number of blue scales on the dorsal wing surface of females with increasing cooling time. Several independent factors, including disordering of regular scale rows in males, the number of blue scales in females, eclosion probability and the probability of defect-free eclosion, showed that the cooling time can be divided into three periods: 0-4 weeks, 4-8 weeks, and 8-12 weeks, each of which is characterized by specific changes. The shift from brown female scales to first blue scales with a female-specific shape and then to blue scales with a male-specific shape with longer cooling times suggests slow decomposition of a substance governing scale formation.
Collapse
Affiliation(s)
- Gábor Piszter
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary
| | - Krisztián Kertész
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary
| | - Zsolt Endre Horváth
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary
| | - Zsolt Bálint
- Hungarian Natural History Museum, Budapest, Hungary
| | - László Péter Biró
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary
| |
Collapse
|
79
|
Parallel evolution of ancient, pleiotropic enhancers underlies butterfly wing pattern mimicry. Proc Natl Acad Sci U S A 2019; 116:24174-24183. [PMID: 31712408 DOI: 10.1073/pnas.1907068116] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Color pattern mimicry in Heliconius butterflies is a classic case study of complex trait adaptation via selection on a few large effect genes. Association studies have linked color pattern variation to a handful of noncoding regions, yet the presumptive cis-regulatory elements (CREs) that control color patterning remain unknown. Here we combine chromatin assays, DNA sequence associations, and genome editing to functionally characterize 5 cis-regulatory elements of the color pattern gene optix We were surprised to find that the cis-regulatory architecture of optix is characterized by pleiotropy and regulatory fragility, where deletion of individual cis-regulatory elements has broad effects on both color pattern and wing vein development. Remarkably, we found orthologous cis-regulatory elements associate with wing pattern convergence of distantly related comimics, suggesting that parallel coevolution of ancestral elements facilitated pattern mimicry. Our results support a model of color pattern evolution in Heliconius where changes to ancient, multifunctional cis-regulatory elements underlie adaptive radiation.
Collapse
|
80
|
Saenko SV, Chouteau M, Piron-Prunier F, Blugeon C, Joron M, Llaurens V. Unravelling the genes forming the wing pattern supergene in the polymorphic butterfly Heliconius numata. EvoDevo 2019; 10:16. [PMID: 31406559 PMCID: PMC6686539 DOI: 10.1186/s13227-019-0129-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/12/2019] [Indexed: 11/25/2022] Open
Abstract
Background Unravelling the genetic basis of polymorphic characters is central to our understanding of the origins and diversification of living organisms. Recently, supergenes have been implicated in a wide range of complex polymorphisms, from adaptive colouration in butterflies and fish to reproductive strategies in birds and plants. The concept of a supergene is now a hot topic in biology, and identification of its functional elements is needed to shed light on the evolution of highly divergent adaptive traits. Here, we apply different gene expression analyses to study the supergene P that controls polymorphism of mimetic wing colour patterns in the neotropical butterfly Heliconius numata. Results We performed de novo transcriptome assembly and differential expression analyses using high-throughput Illumina RNA sequencing on developing wing discs of different H. numata morphs. Within the P interval, 30 and 17 of the 191 transcripts were expressed differentially in prepupae and day-1 pupae, respectively. Among these is the gene cortex, known to play a role in wing pattern formation in Heliconius and other Lepidoptera. Our in situ hybridization experiments confirmed the relationship between cortex expression and adult wing patterns. Conclusions This study found the majority of genes in the P interval to be expressed in the developing wing discs during the critical stages of colour pattern formation, and detect drastic changes in expression patterns in multiple genes associated with structural variants. The patterns of expression of cortex only partially recapitulate the variation in adult phenotype, suggesting that the remaining phenotypic variation could be controlled by other genes within the P interval. Although functional studies on cortex are now needed to determine its exact developmental role, our results are in accordance with the classical supergene hypothesis, whereby several genes inherited together due to tight linkage control a major developmental switch. Electronic supplementary material The online version of this article (10.1186/s13227-019-0129-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suzanne V Saenko
- 1Institut de Systématique, Evolution et Biodiversité, UMR 7205 (CNRS, MNHN, Sorbonne Université, EPHE), Muséum National d'Histoire Naturelle CP50, 57 rue Cuvier, 75005 Paris, France
| | - Mathieu Chouteau
- 2Laboratoire Ecologie, Evolution, Interactions Des Systèmes Amazoniens (LEEISA), USR 3456, CNRS Guyane, Université De Guyane, 275 route de Montabo, 97334 Cayenne, French Guiana
| | - Florence Piron-Prunier
- 1Institut de Systématique, Evolution et Biodiversité, UMR 7205 (CNRS, MNHN, Sorbonne Université, EPHE), Muséum National d'Histoire Naturelle CP50, 57 rue Cuvier, 75005 Paris, France
| | - Corinne Blugeon
- Genomic Facility, Institut de Biologie de l'Ecole normale superieure (IBENS), École normale supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Mathieu Joron
- 4Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CNRS-Université de Montpellier, École Pratique des Hautes Études, Université Paul Valéry, 34293 Montpellier 5, France
| | - Violaine Llaurens
- 1Institut de Systématique, Evolution et Biodiversité, UMR 7205 (CNRS, MNHN, Sorbonne Université, EPHE), Muséum National d'Histoire Naturelle CP50, 57 rue Cuvier, 75005 Paris, France
| |
Collapse
|
81
|
Morris J, Navarro N, Rastas P, Rawlins LD, Sammy J, Mallet J, Dasmahapatra KK. The genetic architecture of adaptation: convergence and pleiotropy in Heliconius wing pattern evolution. Heredity (Edinb) 2019; 123:138-152. [PMID: 30670842 PMCID: PMC6781118 DOI: 10.1038/s41437-018-0180-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022] Open
Abstract
Unravelling the genetic basis of adaptive traits is a major challenge in evolutionary biology. Doing so informs our understanding of evolution towards an adaptive optimum, the distribution of locus effect sizes, and the influence of genetic architecture on the evolvability of a trait. In the Müllerian co-mimics Heliconius melpomene and Heliconius erato some Mendelian loci affecting mimicry shifts are well known. However, several phenotypes in H. melpomene remain to be mapped, and the quantitative genetics of colour pattern variation has rarely been analysed. Here we use quantitative trait loci (QTL) analyses of crosses between H. melpomene races from Peru and Suriname to map, for the first time, the control of the broken band phenotype to WntA and identify a ~100 kb region controlling this variation. Additionally, we map variation in basal forewing red-orange pigmentation to a locus centred around the gene ventral veins lacking (vvl). The locus also appears to affect medial band shape variation as it was previously known to do in H. erato. This adds to the list of homologous regions controlling convergent phenotypes between these two species. Finally we show that Heliconius wing-patterning genes are strikingly pleiotropic among wing pattern traits. Our results demonstrate how genetic architecture can shape, aid and constrain adaptive evolution.
Collapse
Affiliation(s)
- Jake Morris
- Department of Biology, University of York, Heslington, YO10 5DD, UK.
| | - Nicolas Navarro
- EPHE, PSL University, 21000, Dijon, France
- Biogéosciences, UMR CNRS 6282, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Pasi Rastas
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Lauren D Rawlins
- Department of Environment and Geography, University of York, Heslington, YO10 5DD, UK
| | - Joshua Sammy
- Department of Biology, University of York, Heslington, YO10 5DD, UK
| | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | | |
Collapse
|
82
|
Hanly JJ, Wallbank RWR, McMillan WO, Jiggins CD. Conservation and flexibility in the gene regulatory landscape of heliconiine butterfly wings. EvoDevo 2019; 10:15. [PMID: 31341608 PMCID: PMC6631869 DOI: 10.1186/s13227-019-0127-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 06/21/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Many traits evolve by cis-regulatory modification, by which changes to noncoding sequences affect the binding affinity for available transcription factors and thus modify the expression profile of genes. Multiple examples of cis-regulatory evolution have been described at pattern switch genes responsible for butterfly wing pattern polymorphism, including in the diverse neotropical genus Heliconius, but the identities of the factors that can regulate these switch genes have not been identified. RESULTS We investigated the spatial transcriptomic landscape across the wings of three closely related butterfly species, two of which have a convergently evolved co-mimetic pattern and the other having a divergent pattern. We identified candidate factors for regulating the expression of wing patterning genes, including transcription factors with a conserved expression profile in all three species, and others, including both transcription factors and Wnt pathway genes, with markedly different profiles in each of the three species. We verified the conserved expression profile of the transcription factor homothorax by immunofluorescence and showed that its expression profile strongly correlates with that of the selector gene optix in butterflies with the Amazonian forewing pattern element 'dennis.' CONCLUSION Here we show that, in addition to factors with conserved expression profiles like homothorax, there are also a variety of transcription factors and signaling pathway components that appear to vary in their expression profiles between closely related butterfly species, highlighting the importance of genome-wide regulatory evolution between species.
Collapse
Affiliation(s)
- Joseph J. Hanly
- Department of Zoology, University of Cambridge, Downing St., Cambridge, CB2 3EJ UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
- Biological Sciences, The George Washington University, Washington, DC 20052 USA
| | - Richard W. R. Wallbank
- Department of Zoology, University of Cambridge, Downing St., Cambridge, CB2 3EJ UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
| | | | - Chris D. Jiggins
- Department of Zoology, University of Cambridge, Downing St., Cambridge, CB2 3EJ UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
| |
Collapse
|
83
|
Day CR, Hanly JJ, Ren A, Martin A. Sub-micrometer insights into the cytoskeletal dynamics and ultrastructural diversity of butterfly wing scales. Dev Dyn 2019; 248:657-670. [PMID: 31107575 DOI: 10.1002/dvdy.63] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The color patterns that adorn lepidopteran wings are ideal for studying cell type diversity using a phenomics approach. Color patterns are made of chitinous scales that are each the product of a single precursor cell, offering a 2D system where phenotypic diversity can be studied cell by cell, both within and between species. Those scales reveal complex ultrastructures in the sub-micrometer range that are often connected to a photonic function, including iridescent blues and greens, highly reflective whites, or light-trapping blacks. RESULTS We found that during scale development, Fascin immunostainings reveal punctate distributions consistent with a role in the control of actin patterning. We quantified the cytoskeleton regularity as well as its relationship to chitin deposition sites, and confirmed a role in the patterning of the ultrastructures of the adults scales. Then, in an attempt to characterize the range and variation in lepidopteran scale ultrastructures, we devised a high-throughput method to quickly derive multiple morphological measurements from fluorescence images and scanning electron micrographs. We imaged a multicolor eyespot element from the butterfly Vanessa cardui (V. cardui), taking approximately 200 000 individual measurements from 1161 scales. Principal component analyses revealed that scale structural features cluster by color type, and detected the divergence of non-reflective scales characterized by tighter cross-rib distances and increased orderedness. CONCLUSION We developed descriptive methods that advance the potential of butterfly wing scales as a model system for studying how a single cell type can differentiate into a multifaceted spectrum of complex morphologies. Our data suggest that specific color scales undergo a tight regulation of their ultrastructures, and that this involves cytoskeletal dynamics during scale growth.
Collapse
Affiliation(s)
- Christopher R Day
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia.,Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina
| | - Joseph J Hanly
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia
| | - Anna Ren
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia
| |
Collapse
|
84
|
Kertész K, Piszter G, Bálint Z, Biró LP. Biogeographical patterns in the structural blue of male Polyommatus icarus butterflies. Sci Rep 2019; 9:2338. [PMID: 30787341 PMCID: PMC6382816 DOI: 10.1038/s41598-019-38827-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 11/29/2018] [Indexed: 12/31/2022] Open
Abstract
Color is a widely used communication channel in the living world for a variety of functions ranging from sexual communication to warning colors. A particularly rich spectrum of colors appears on the wings of many butterflies. The males of lycaenid butterflies often exhibit a conspicuous blue coloration generated by photonic nanoarchitectures on their dorsal wing surfaces. Using UV-VIS spectroscopy, we investigated the spatio-temporal variations of this coloration for Polyommatus icarus butterflies, considering an interval of more than 100 years and a geographical range spanning Europe (west) and Asia (east). The blue coloration in Hungary is very stable both within a year (three broods typical in Hungary) and within the period of 100 years (more than 300 generations). East-west geographic variation was investigated among 314 male P. icarus butterflies. In agreement with earlier genetic and morphometric studies, it was found that the western males are not divided in distinct lineages. Clear differences in coloration were found between the eastern and western groups, with a transition in the region of Turkey. These differences are tentatively attributed to bottleneck effects during past glaciations.
Collapse
Affiliation(s)
- Krisztián Kertész
- Institute of Technical Physics and Materials Science, Centre for Energy Research, P.O. Box 49, H-1525, Budapest, Hungary.
| | - Gábor Piszter
- Institute of Technical Physics and Materials Science, Centre for Energy Research, P.O. Box 49, H-1525, Budapest, Hungary
| | - Zsolt Bálint
- Hungarian Natural History Museum, Baross utca 13, H-1088, Budapest, Hungary
| | - László P Biró
- Institute of Technical Physics and Materials Science, Centre for Energy Research, P.O. Box 49, H-1525, Budapest, Hungary
| |
Collapse
|
85
|
Oakeshott JG, Robin C, Gordon KH. Editorial overview: Revisiting Dobzhansky and the 'modern synthesis' in light of insect evolutionary genomics. CURRENT OPINION IN INSECT SCIENCE 2019; 31:iii-vi. [PMID: 31109682 DOI: 10.1016/j.cois.2019.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- John G Oakeshott
- CSIRO, Clunies Ross St, GPO Box 1700, Acton, ACT, 2601, Australia.
| | - Charles Robin
- School of Biosciences, University of Melbourne, Grattan St, Melbourne, VIC, 3010, Australia
| | - Karl Hj Gordon
- CSIRO, Clunies Ross St, GPO Box 1700, Acton, ACT, 2601, Australia
| |
Collapse
|
86
|
Airoldi CA, Ferria J, Glover BJ. The cellular and genetic basis of structural colour in plants. CURRENT OPINION IN PLANT BIOLOGY 2019; 47:81-87. [PMID: 30399605 DOI: 10.1016/j.pbi.2018.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 05/23/2023]
Abstract
While the pathways that produce plant pigments have been well studied for decades, the use by plants of nanoscale structures to produce colour effects has only recently begun to be studied. A variety of plants from across the plant kingdom have been shown to use different mechanism to generate structural colours in tissues as diverse as leaves, flowers and fruits. In this review we explore the cellular mechanisms by which these nanoscale structures are built and discuss the first insights that have been published into the genetic pathways underpinning these traits.
Collapse
Affiliation(s)
- Chiara A Airoldi
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Jordan Ferria
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
| |
Collapse
|
87
|
Figon F, Casas J. Ommochromes in invertebrates: biochemistry and cell biology. Biol Rev Camb Philos Soc 2019; 94:156-183. [PMID: 29989284 DOI: 10.1111/brv.12441] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/09/2018] [Accepted: 06/12/2018] [Indexed: 01/24/2023]
Abstract
Ommochromes are widely occurring coloured molecules of invertebrates, arising from tryptophan catabolism through the so-called Tryptophan → Ommochrome pathway. They are mainly known to mediate compound eye vision, as well as reversible and irreversible colour patterning. Ommochromes might also be involved in cell homeostasis by detoxifying free tryptophan and buffering oxidative stress. These biological functions are directly linked to their unique chromophore, the phenoxazine/phenothiazine system. The most recent reviews on ommochrome biochemistry were published more than 30 years ago, since when new results on the enzymes of the ommochrome pathway, on ommochrome photochemistry as well as on their antiradical capacities have been obtained. Ommochromasomes are the organelles where ommochromes are synthesised and stored. Hence, they play an important role in mediating ommochrome functions. Ommochromasomes are part of the lysosome-related organelles (LROs) family, which includes other pigmented organelles such as vertebrate melanosomes. Ommochromasomes are unique because they are the only LRO for which a recycling process during reversible colour change has been described. Herein, we provide an update on ommochrome biochemistry, photoreactivity and antiradical capacities to explain their diversity and behaviour both in vivo and in vitro. We also highlight new biochemical techniques, such as quantum chemistry, metabolomics and crystallography, which could lead to major advances in their chemical and functional characterisation. We then focus on ommochromasome structure and formation by drawing parallels with the well-characterised melanosomes of vertebrates. The biochemical, genetic, cellular and microscopic tools that have been applied to melanosomes should provide important information on the ommochromasome life cycle. We propose LRO-based models for ommochromasome biogenesis and recycling that could be tested in the future. Using the context of insect compound eyes, we finally emphasise the importance of an integrated approach in understanding the biological functions of ommochromes.
Collapse
Affiliation(s)
- Florent Figon
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, Université de Tours, 37200 Tours, France
| | - Jérôme Casas
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, Université de Tours, 37200 Tours, France
| |
Collapse
|
88
|
Yang M, Wang Y, Liu Q, Liu Z, Jiang F, Wang H, Guo X, Zhang J, Kang L. A β-carotene-binding protein carrying a red pigment regulates body-color transition between green and black in locusts. eLife 2019; 8:e41362. [PMID: 30616714 PMCID: PMC6324882 DOI: 10.7554/elife.41362] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/17/2018] [Indexed: 02/01/2023] Open
Abstract
Changes of body color have important effects for animals in adapting to variable environments. The migratory locust exhibits body color polyphenism between solitary and gregarious individuals, with the former displaying a uniform green coloration and the latter having a prominent pattern of black dorsal and brown ventral surface. However, the molecular mechanism underlying the density-dependent body color changes of conspecific locusts remain largely unknown. Here, we found that upregulation of β-carotene-binding protein promotes the accumulation of red pigment, which added to the green color palette present in solitary locusts changes it from green to black, and that downregulation of this protein led to the reverse, changing the color of gregarious locusts from black to green. Our results provide insight that color changes of locusts are dependent on variation in the red β-carotene pigment binding to βCBP. This finding of animal coloration corresponds with trichromatic theory of color vision.
Collapse
Affiliation(s)
- Meiling Yang
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Yanli Wang
- Institute of Applied BiologyShanxi UniversityTaiyuanChina
| | - Qing Liu
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Sino-Danish CollegeUniversity of Chinese Academy of SciencesBeijingChina
| | - Zhikang Liu
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Feng Jiang
- Beijing Institutes of Life Science, Chinese Academy of SciencesBeijingChina
| | - Huimin Wang
- Beijing Institutes of Life Science, Chinese Academy of SciencesBeijingChina
| | - Xiaojiao Guo
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Jianzhen Zhang
- Institute of Applied BiologyShanxi UniversityTaiyuanChina
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institutes of Life Science, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
89
|
Otaki JM. Long-Range Effects of Wing Physical Damage and Distortion on Eyespot Color Patterns in the Hindwing of the Blue Pansy Butterfly Junonia orithya. INSECTS 2018; 9:insects9040195. [PMID: 30572627 PMCID: PMC6316528 DOI: 10.3390/insects9040195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 11/24/2022]
Abstract
Butterfly eyespot color patterns have been studied using several different approaches, including applications of physical damage to the forewing. Here, damage and distortion experiments were performed, focusing on the hindwing eyespots of the blue pansy butterfly Junonia orithya. Physical puncture damage with a needle at the center of the eyespot reduced the eyespot size. Damage at the eyespot outer rings not only deformed the entire eyespot, but also diminished the eyespot core disk size, despite the distance from the damage site to the core disk. When damage was inflicted near the eyespot, the eyespot was drawn toward the damage site. The induction of an ectopic eyespot-like structure and its fusion with the innate eyespots were observed when damage was inflicted in the background area. When a small stainless ball was placed in close proximity to the eyespot using the forewing-lift method, the eyespot deformed toward the ball. Taken together, physical damage and distortion elicited long-range inhibitory, drawing (attracting), and inducing effects, suggesting that the innate and induced morphogenic signals travel long distances and interact with each other. These results are consistent with the distortion hypothesis, positing that physical distortions of wing tissue contribute to color pattern determination in butterfly wings.
Collapse
Affiliation(s)
- Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.
| |
Collapse
|
90
|
Brien MN, Enciso-Romero J, Parnell AJ, Salazar PA, Morochz C, Chalá D, Bainbridge HE, Zinn T, Curran EV, Nadeau NJ. Phenotypic variation in Heliconius erato crosses shows that iridescent structural colour is sex-linked and controlled by multiple genes. Interface Focus 2018; 9:20180047. [PMID: 30603067 DOI: 10.1098/rsfs.2018.0047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2018] [Indexed: 11/12/2022] Open
Abstract
Bright, highly reflective iridescent colours can be seen across nature and are produced by the scattering of light from nanostructures. Heliconius butterflies have been widely studied for their diversity and mimicry of wing colour patterns. Despite iridescence evolving multiple times in this genus, little is known about the genetic basis of the colour and the development of the structures which produce it. Heliconius erato can be found across Central and South America, but only races found in western Ecuador and Colombia have developed blue iridescent colour. Here, we use crosses between iridescent and non-iridescent races of H. erato to study phenotypic variation in the resulting F2 generation. Using measurements of blue colour from photographs, we find that iridescent structural colour is a quantitative trait controlled by multiple genes, with strong evidence for loci on the Z sex chromosome. Iridescence is not linked to the Mendelian colour pattern locus that also segregates in these crosses (controlled by the gene cortex). Small-angle X-ray scattering data show that spacing between longitudinal ridges on the scales, which affects the intensity of the blue reflectance, also varies quantitatively in F2 crosses.
Collapse
Affiliation(s)
- Melanie N Brien
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | - Juan Enciso-Romero
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK.,Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá, Colombia
| | - Andrew J Parnell
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
| | - Patricio A Salazar
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK.,Centro de Investigación en Biodiversidad y Cambio Climático (BioCamb), Universidad Tecnológica Indoamérica, Quito, Ecuador
| | | | | | - Hannah E Bainbridge
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | - Thomas Zinn
- ESRF - The European Synchrotron, 38043 Grenoble Cedex 9, France
| | - Emma V Curran
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | - Nicola J Nadeau
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
91
|
Developmental dynamics of butterfly wings: real-time in vivo whole-wing imaging of twelve butterfly species. Sci Rep 2018; 8:16848. [PMID: 30442931 PMCID: PMC6237780 DOI: 10.1038/s41598-018-34990-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/24/2018] [Indexed: 01/13/2023] Open
Abstract
Colour pattern development of butterfly wings has been studied from several different approaches. However, developmental changes in the pupal wing tissues have rarely been documented visually. In this study, we recorded real-time developmental changes of the pupal whole wings of 9 nymphalid, 2 lycaenid, and 1 pierid species in vivo, from immediately after pupation to eclosion, using the forewing-lift method. The developmental period was roughly divided into four sequential stages. At the very early stage, the wing tissue was transparent, but at the second stage, it became semi-transparent and showed dynamic peripheral adjustment and slow low-frequency contractions. At this stage, the wing peripheral portion diminished in size, but simultaneously, the ventral epithelium expanded in size. Likely because of scale growth, the wing tissue became deeply whitish at the second and third stages, followed by pigment deposition and structural colour expression at the fourth stage. Some red or yellow (light-colour) areas that emerged early were “overpainted” by expanding black areas, suggesting the coexistence of two morphogenic signals in some scale cells. The discal spot emerged first in some nymphalid species, as though it organised the entire development of colour patterns. These results indicated the dynamic wing developmental processes common in butterflies.
Collapse
|
92
|
Burg SL, Parnell AJ. Self-assembling structural colour in nature. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:413001. [PMID: 30137023 DOI: 10.1088/1361-648x/aadc95] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The diversity and vividness of structural colour in the natural world have been recognised as far back as William Hooke in the 17th century. Whilst it is only recently that advances in the field have revealed the elegance and finesse of the physics used to create these effects. In this topical review we will highlight some of the structures and effects responsible for colour in butterfly scales, bird feathers, plants, insects and beetle elytra that have been studied to date. We will discuss the structures responsible and look at similarities and differences in these structures between species. This will be alongside our current understanding of how these are created biologically, how they develop structurally and what control mechanisms nature has at its disposal to control structure formation.
Collapse
Affiliation(s)
- Stephanie L Burg
- The Department of Physics and Astronomy, The University of Sheffield, Hicks Building, Western Bank, Sheffield S3 7RH, United Kingdom
| | | |
Collapse
|
93
|
Liu Q, Onal P, Datta RR, Rogers JM, Schmidt-Ott U, Bulyk ML, Small S, Thornton JW. Ancient mechanisms for the evolution of the bicoid homeodomain's function in fly development. eLife 2018; 7:e34594. [PMID: 30298815 PMCID: PMC6177261 DOI: 10.7554/elife.34594] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/28/2018] [Indexed: 12/14/2022] Open
Abstract
The ancient mechanisms that caused developmental gene regulatory networks to diversify among distantly related taxa are not well understood. Here we use ancestral protein reconstruction, biochemical experiments, and developmental assays of transgenic animals carrying reconstructed ancestral genes to investigate how the transcription factor Bicoid (Bcd) evolved its central role in anterior-posterior patterning in flies. We show that most of Bcd's derived functions are attributable to evolutionary changes within its homeodomain (HD) during a phylogenetic interval >140 million years ago. A single substitution from this period (Q50K) accounts almost entirely for the evolution of Bcd's derived DNA specificity in vitro. In transgenic embryos expressing the reconstructed ancestral HD, however, Q50K confers activation of only a few of Bcd's transcriptional targets and yields a very partial rescue of anterior development. Adding a second historical substitution (M54R) confers regulation of additional Bcd targets and further rescues anterior development. These results indicate that two epistatically interacting mutations played a major role in the evolution of Bcd's controlling regulatory role in early development. They also show how ancestral sequence reconstruction can be combined with in vivo characterization of transgenic animals to illuminate the historical mechanisms of developmental evolution.
Collapse
Affiliation(s)
- Qinwen Liu
- Department of Ecology and EvolutionUniversity of ChicagoChicagoUnited States
| | - Pinar Onal
- Department of BiologyNew York UniversityNew YorkUnited States
| | - Rhea R Datta
- Department of BiologyNew York UniversityNew YorkUnited States
| | - Julia M Rogers
- Committee on Higher Degrees in BiophysicsHarvard UniversityCambridgeUnited States
- Division of Genetics, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Urs Schmidt-Ott
- Department of Organismal Biology and AnatomyUniversity of ChicagoChicagoUnited States
| | - Martha L Bulyk
- Committee on Higher Degrees in BiophysicsHarvard UniversityCambridgeUnited States
- Division of Genetics, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
- Department of PathologyBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Stephen Small
- Department of BiologyNew York UniversityNew YorkUnited States
| | - Joseph W Thornton
- Department of Ecology and EvolutionUniversity of ChicagoChicagoUnited States
- Department of Human GeneticsUniversity of ChicagoChicagoUnited States
| |
Collapse
|
94
|
From pattern to process: studies at the interface of gene regulatory networks, morphogenesis, and evolution. Curr Opin Genet Dev 2018; 51:103-110. [PMID: 30278289 DOI: 10.1016/j.gde.2018.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/17/2018] [Accepted: 08/25/2018] [Indexed: 12/12/2022]
Abstract
The development of anatomical structures is complex, beginning with patterning of gene expression by multiple gene regulatory networks (GRNs). These networks ultimately regulate the activity of effector molecules, which in turn alter cellular behavior during development. Together these processes biomechanically produce the three-dimensional shape that the anatomical structure adopts over time. However, the interfaces between these processes are often overlooked and also include counter-intuitive feedback mechanisms. In this review, we examine each step in this extraordinarily complex process and explore how evolutionary developmental biology model systems, such as butterfly scales, vertebrate teeth, and the Drosophila dorsal appendage offer a complementary approach to expose the multifactorial integration of genetics and morphogenesis from an alternative perspective.
Collapse
|
95
|
Panettieri S, Gjinaj E, John G, Lohman DJ. Different ommochrome pigment mixtures enable sexually dimorphic Batesian mimicry in disjunct populations of the common palmfly butterfly, Elymnias hypermnestra. PLoS One 2018; 13:e0202465. [PMID: 30208047 PMCID: PMC6135364 DOI: 10.1371/journal.pone.0202465] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/04/2018] [Indexed: 11/18/2022] Open
Abstract
With varied, brightly patterned wings, butterflies have been the focus of much work on the evolution and development of phenotypic novelty. However, the chemical structures of wing pigments from few butterfly species have been identified. We characterized the orange wing pigments of female Elymnias hypermnestra butterflies (Lepidoptera: Nymphalidae: Satyrinae) from two Southeast Asian populations. This species is a sexually dimorphic Batesian mimic of several model species. Females are polymorphic: in some populations, females are dark, resemble conspecific males, and mimic Euploea spp. In other populations, females differ from males and mimic orange Danaus spp. Using LC-MS/MS, we identified nine ommochrome pigments: six from a population in Chiang Mai, Thailand, and five compounds from a population in Bali, Indonesia. Two ommochromes were found in both populations, and only two of the nine compounds have been previously reported. The sexually dimorphic Thai and Balinese populations are separated spatially by monomorphic populations in peninsular Malaysia, Singapore, and Sumatra, suggesting independent evolution of mimetic female wing pigments in these disjunct populations. These results indicate that other butterfly wing pigments remain to be discovered.
Collapse
Affiliation(s)
- Silvio Panettieri
- Department of Chemistry and Biochemistry, City College of New York, City University of New York, New York, NY, United States of America
- Ph.D. Program in Chemistry, Graduate Center, City University of New York, New York, NY, United States of America
| | - Erisa Gjinaj
- Department of Chemistry and Biochemistry, City College of New York, City University of New York, New York, NY, United States of America
| | - George John
- Department of Chemistry and Biochemistry, City College of New York, City University of New York, New York, NY, United States of America
- Ph.D. Program in Chemistry, Graduate Center, City University of New York, New York, NY, United States of America
- * E-mail: (DJL); (GJ)
| | - David J. Lohman
- Biology Department, City College of New York, City University of New York, New York, NY, United States of America
- Ph.D. Program in Biology, Graduate Center, City University of New York, New York, NY, United States of America
- Entomology Section, National Museum of the Philippines, Manila, Philippines
- * E-mail: (DJL); (GJ)
| |
Collapse
|
96
|
Klaassen H, Wang Y, Adamski K, Rohner N, Kowalko JE. CRISPR mutagenesis confirms the role of oca2 in melanin pigmentation in Astyanax mexicanus. Dev Biol 2018; 441:313-318. [DOI: 10.1016/j.ydbio.2018.03.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/08/2018] [Accepted: 03/14/2018] [Indexed: 01/02/2023]
|
97
|
Haga SB. A Brief Comparative History Analysis. GENDER AND THE GENOME 2018. [DOI: 10.1177/2470289718787086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
With the advent of gene-editing tools, changes to sequences encoding genes or regulatory elements can be made with relative ease compared to prior technologies. The development and anticipated commercialization of new applications using gene-editing technologies may span the gamut from therapeutic interventions to agricultural applications to cosmetic or enhancement procedures. Although objections have been raised about the purpose and on whom gene editing should be performed, limiting its uses in the absence of demonstrated harm may be difficult and unwise at this time, even at this early stage of development. The fledgling field may benefit from a review of the history of plastic and cosmetic surgery that underwent a similarly rocky start and continues to evolve to this day. From this brief comparative historical analysis, we may gain some insight about the path forward regarding the use of gene-editing tools for cosmetic purposes.
Collapse
Affiliation(s)
- Susanne B. Haga
- Department of Medicine, Center for Applied Genomics & Precision Medicine and Genomic & Computational Biology, Duke School of Medicine, Durham, NC, USA
| |
Collapse
|
98
|
Melanin Pathway Genes Regulate Color and Morphology of Butterfly Wing Scales. Cell Rep 2018; 24:56-65. [DOI: 10.1016/j.celrep.2018.05.092] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/26/2018] [Accepted: 05/29/2018] [Indexed: 02/03/2023] Open
|
99
|
Campbell CR, Poelstra JW, Yoder AD. What is Speciation Genomics? The roles of ecology, gene flow, and genomic architecture in the formation of species. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly063] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - J W Poelstra
- Department of Biology, Duke University, Durham, NC, USA
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
100
|
Pritchard VL, Mäkinen H, Vähä JP, Erkinaro J, Orell P, Primmer CR. Genomic signatures of fine-scale local selection in Atlantic salmon suggest involvement of sexual maturation, energy homeostasis and immune defence-related genes. Mol Ecol 2018; 27:2560-2575. [DOI: 10.1111/mec.14705] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 12/14/2022]
Affiliation(s)
| | - Hannu Mäkinen
- Department of Biology; University of Turku; Turku Finland
- Department of Biosciences; University of Helsinki; Helsinki Finland
| | - Juha-Pekka Vähä
- Kevo Subarctic Research Institute; University of Turku; Turku Finland
| | | | - Panu Orell
- Natural Resources Institute Finland (LUKE); Oulu Finland
| | - Craig R. Primmer
- Department of Biology; University of Turku; Turku Finland
- Department of Biosciences; University of Helsinki; Helsinki Finland
- Institute of Biotechnology; University of Helsinki; Helsinki Finland
| |
Collapse
|