51
|
Davenport KM, Ortega MS, Liu H, O’Neil EV, Kelleher AM, Warren WC, Spencer TE. Single-nuclei RNA sequencing (snRNA-seq) uncovers trophoblast cell types and lineages in the mature bovine placenta. Proc Natl Acad Sci U S A 2023; 120:e2221526120. [PMID: 36913592 PMCID: PMC10041116 DOI: 10.1073/pnas.2221526120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/14/2023] [Indexed: 03/15/2023] Open
Abstract
Ruminants have a semi-invasive placenta, which possess highly vascularized placentomes formed by maternal endometrial caruncles and fetal placental cotyledons and required for fetal development to term. The synepitheliochorial placenta of cattle contains at least two trophoblast cell populations, including uninucleate (UNC) and binucleate (BNC) cells that are most abundant in the cotyledonary chorion of the placentomes. The interplacentomal placenta is more epitheliochorial in nature with the chorion developing specialized areolae over the openings of uterine glands. Of note, the cell types in the placenta and cellular and molecular mechanisms governing trophoblast differentiation and function are little understood in ruminants. To fill this knowledge gap, the cotyledonary and intercotyledonary areas of the mature day 195 bovine placenta were analyzed by single nuclei analysis. Single-nuclei RNA-seq analysis found substantial differences in cell type composition and transcriptional profiles between the two distinct regions of the placenta. Based on clustering and cell marker gene expression, five different trophoblast cell types were identified in the chorion, including proliferating and differentiating UNC and two different types of BNC in the cotyledon. Cell trajectory analyses provided a framework for understanding the differentiation of trophoblast UNC into BNC. The upstream transcription factor binding analysis of differentially expressed genes identified a candidate set of regulator factors and genes regulating trophoblast differentiation. This foundational information is useful to discover essential biological pathways underpinning the development and function of the bovine placenta.
Collapse
Affiliation(s)
| | - M. Sofia Ortega
- Division of Animal Sciences, University of Missouri, Columbia, MO65211
| | - Hongyu Liu
- Division of Animal Sciences, University of Missouri, Columbia, MO65211
| | | | - Andrew M. Kelleher
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO65211
| | - Wesley C. Warren
- Division of Animal Sciences, University of Missouri, Columbia, MO65211
- Institute for Data Science and Informatics, University of Missouri, ColumbiaMO65211
| | - Thomas E. Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO65211
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO65211
| |
Collapse
|
52
|
Naydenov DD, Vashukova ES, Barbitoff YA, Nasykhova YA, Glotov AS. Current Status and Prospects of the Single-Cell Sequencing Technologies for Revealing the Pathogenesis of Pregnancy-Associated Disorders. Genes (Basel) 2023; 14:756. [PMID: 36981026 PMCID: PMC10048492 DOI: 10.3390/genes14030756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) is a method that focuses on the analysis of gene expression profile in individual cells. This method has been successfully applied to answer the challenging questions of the pathogenesis of multifactorial diseases and open up new possibilities in the prognosis and prevention of reproductive diseases. In this article, we have reviewed the application of scRNA-seq to the analysis of the various cell types and their gene expression changes in normal pregnancy and pregnancy complications. The main principle, advantages, and limitations of single-cell technologies and data analysis methods are described. We discuss the possibilities of using the scRNA-seq method for solving the fundamental and applied tasks related to various pregnancy-associated disorders. Finally, we provide an overview of the scRNA-seq findings for the common pregnancy-associated conditions, such as hyperglycemia in pregnancy, recurrent pregnancy loss, preterm labor, polycystic ovary syndrome, and pre-eclampsia.
Collapse
Affiliation(s)
- Dmitry D. Naydenov
- Faculty of Biology, St. Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Elena S. Vashukova
- D. O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, 199034 Saint-Petersburg, Russia
| | - Yury A. Barbitoff
- Faculty of Biology, St. Petersburg State University, 199034 Saint-Petersburg, Russia
- D. O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, 199034 Saint-Petersburg, Russia
| | - Yulia A. Nasykhova
- D. O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, 199034 Saint-Petersburg, Russia
| | - Andrey S. Glotov
- Faculty of Biology, St. Petersburg State University, 199034 Saint-Petersburg, Russia
- D. O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, 199034 Saint-Petersburg, Russia
| |
Collapse
|
53
|
Campbell KA, Colacino JA, Puttabyatappa M, Dou JF, Elkin ER, Hammoud SS, Domino SE, Dolinoy DC, Goodrich JM, Loch-Caruso R, Padmanabhan V, Bakulski KM. Placental cell type deconvolution reveals that cell proportions drive preeclampsia gene expression differences. Commun Biol 2023; 6:264. [PMID: 36914823 PMCID: PMC10011423 DOI: 10.1038/s42003-023-04623-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
The placenta mediates adverse pregnancy outcomes, including preeclampsia, which is characterized by gestational hypertension and proteinuria. Placental cell type heterogeneity in preeclampsia is not well-understood and limits mechanistic interpretation of bulk gene expression measures. We generated single-cell RNA-sequencing samples for integration with existing data to create the largest deconvolution reference of 19 fetal and 8 maternal cell types from placental villous tissue (n = 9 biological replicates) at term (n = 40,494 cells). We deconvoluted eight published microarray case-control studies of preeclampsia (n = 173 controls, 157 cases). Preeclampsia was associated with excess extravillous trophoblasts and fewer mesenchymal and Hofbauer cells. Adjustment for cellular composition reduced preeclampsia-associated differentially expressed genes (log2 fold-change cutoff = 0.1, FDR < 0.05) from 1154 to 0, whereas downregulation of mitochondrial biogenesis, aerobic respiration, and ribosome biogenesis were robust to cell type adjustment, suggesting direct changes to these pathways. Cellular composition mediated a substantial proportion of the association between preeclampsia and FLT1 (37.8%, 95% CI [27.5%, 48.8%]), LEP (34.5%, 95% CI [26.0%, 44.9%]), and ENG (34.5%, 95% CI [25.0%, 45.3%]) overexpression. Our findings indicate substantial placental cellular heterogeneity in preeclampsia contributes to previously observed bulk gene expression differences. This deconvolution reference lays the groundwork for cellular heterogeneity-aware investigation into placental dysfunction and adverse birth outcomes.
Collapse
Affiliation(s)
- Kyle A Campbell
- Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Justin A Colacino
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | - John F Dou
- Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Elana R Elkin
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Saher S Hammoud
- Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Obstetrics and Gynecology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Steven E Domino
- Obstetrics and Gynecology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jaclyn M Goodrich
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Rita Loch-Caruso
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Vasantha Padmanabhan
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Obstetrics and Gynecology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kelly M Bakulski
- Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
54
|
Kuperwaser F, Avital G, Vaz MJ, Noble KN, Dammann AN, Randis TM, Aronoff DM, Ratner AJ, Yanai I. Host inflammatory dynamics reveal placental immune modulation by Group B Streptococcus during pregnancy. Mol Syst Biol 2023; 19:e11021. [PMID: 36744393 PMCID: PMC9996236 DOI: 10.15252/msb.202211021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 02/07/2023] Open
Abstract
Group B Streptococcus (GBS) is a pathobiont that can ascend to the placenta and cause adverse pregnancy outcomes, in part through production of the toxin β-hemolysin/cytolysin (β-h/c). Innate immune cells have been implicated in the response to GBS infection, but the impact of β-h/c on their response is poorly defined. We show that GBS modulates innate immune cell states by subversion of host inflammation through β-h/c, allowing worse outcomes. We used an ascending mouse model of GBS infection to measure placental cell state changes over time following infection with a β-h/c-deficient and isogenic wild type GBS strain. Transcriptomic analysis suggests that β-h/c-producing GBS elicit a worse phenotype through suppression of host inflammatory signaling in placental macrophages and neutrophils, and comparison of human placental macrophages infected with the same strains recapitulates these results. Our findings have implications for identification of new targets in GBS disease to support host defense against pathogenic challenge.
Collapse
Affiliation(s)
- Felicia Kuperwaser
- Institute for Computational MedicineNYU Grossman School of MedicineNew YorkNYUSA
| | - Gal Avital
- Institute for Computational MedicineNYU Grossman School of MedicineNew YorkNYUSA
| | - Michelle J Vaz
- Department of PediatricsNYU Grossman School of MedicineNew YorkNYUSA
| | - Kristen N Noble
- Division of Neonatology, Department of PediatricsVanderbilt University Medical CenterNashvilleTNUSA
| | - Allison N Dammann
- Renaissance School of Medicine at Stony Brook UniversityStony BrookNYUSA
| | - Tara M Randis
- Departments of Pediatrics and Molecular Medicine, Morsani School of MedicineUniversity of South FloridaFLTampaUSA
| | | | - Adam J Ratner
- Department of PediatricsNYU Grossman School of MedicineNew YorkNYUSA
- Department of MicrobiologyNYU Grossman School of MedicineNew YorkNYUSA
| | - Itai Yanai
- Institute for Computational MedicineNYU Grossman School of MedicineNew YorkNYUSA
- Department of Biochemistry and Molecular PharmacologyNYU Grossman School of MedicineNew YorkNYUSA
| |
Collapse
|
55
|
Kao CY, Chang CT, Kuo PY, Lin CJ, Chiu HH, Liao HW. Sequential isolation of metabolites and lipids from a single sample to achieve multiomics by using TRIzol reagent. Talanta 2023; 258:124416. [PMID: 36889188 DOI: 10.1016/j.talanta.2023.124416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
Simultaneous extraction of various types of biomolecule from a single sample can be beneficial for multiomics studies of unique specimens. An efficient and convenient sample preparation approach must be developed that can comprehensively isolate and extract biomolecules from one sample. TRIzol reagent is widely used in biological studies for DNA, RNA, and protein isolation. This study evaluated the feasibility of using TRIzol reagent for the simultaneous isolation of not only DNA, RNA, and proteins but also metabolites and lipids from a single sample. Through the comparison of known metabolites and lipids obtained using the conventional methanol (MeOH) and methyl-tert-butyl ether (MTBE) extraction methods, we determined the presence of metabolites and lipids in the supernatant during TRIzol sequential isolation. Finally, we performed untargeted metabolomics and lipidomics to examine metabolite and lipid alterations associated with the jhp0417 mutation in Helicobacter pylori by using the TRIzol sequential isolation protocol and MeOH and MTBE extraction methods. Metabolites and lipids with significant differences isolated using the TRIzol sequential isolation protocol were consistent with those obtained using the conventional MeOH and MTBE extraction methods. These results indicated that TRIzol reagent can be used to simultaneously isolate metabolites and lipids from a single sample. Thus, TRIzol reagent can be used in biological and clinical research, especially in multiomics studies.
Collapse
Affiliation(s)
- Cheng-Yen Kao
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Chung-Te Chang
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Pei-Yun Kuo
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Chia-Jen Lin
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Huai-Hsuan Chiu
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, 10617, Taiwan; Department of Medical Research, National Taiwan University Hospital, Taipei, 10617, Taiwan
| | - Hsiao-Wei Liao
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| |
Collapse
|
56
|
Motomura K, Hara M, Ito I, Morita H, Matsumoto K. Roles of human trophoblasts' pattern recognition receptors in host defense and pregnancy complications. J Reprod Immunol 2023; 156:103811. [PMID: 36669386 DOI: 10.1016/j.jri.2023.103811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/24/2022] [Accepted: 01/12/2023] [Indexed: 01/14/2023]
Abstract
The immune system in pregnancy is able to protect pregnant mothers and fetuses from pathogenic microorganisms even while permitting the mother to tolerate the semi-allogenic fetus. Trophoblasts, which are fetal-derived placental cells, play a central role on both sides of this duality at the maternal-fetal interface. In brief, the trophoblasts express pattern recognition receptors (PRRs) and are involved in the local innate immune response in the placenta. That response eliminates pathogenic microbes but also causes tissue damage. In this review, we summarize the research findings to date regarding the roles of those human trophoblast PRRs. Multiple types of PRRs (Toll-like receptors, Nod-like receptors, and RIG-I-like receptors) are expressed in the placenta and on trophoblasts. Trophoblasts' PRRs participate in protecting the fetus against viruses, bacteria, and parasites by triggering production of proinflammatory cytokines and chemokines in the placenta. On the negative side, PRR signaling in trophoblasts can also initiate inflammation and trophoblast cell death, which can lead to placental inflammation-associated pregnancy complications such as preeclampsia, anti-phospholipid antibody syndrome, and miscarriage. Further elucidation of these dual roles of trophoblasts' PRRs may shed light on the mechanisms by which fetuses are protected against congenital infections and also give us a better understanding of the etiologies of pregnancy complications, which can help us prevent/reduce adverse prenatal/neonatal outcomes.
Collapse
Affiliation(s)
- Kenichiro Motomura
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo 157-8535, Japan.
| | - Mariko Hara
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; Department of Otorhinolaryngology, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Ikuyo Ito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; Department of Pediatrics, School of Medicine, Yokohama City University, Kanagawa 236-0004, Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; Allergy Center, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan.
| |
Collapse
|
57
|
Garcia-Flores V, Xu Y, Pusod E, Romero R, Pique-Regi R, Gomez-Lopez N. Preparation of single-cell suspensions from the human placenta. Nat Protoc 2023; 18:732-754. [PMID: 36451054 PMCID: PMC10355223 DOI: 10.1038/s41596-022-00772-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/17/2022] [Indexed: 12/03/2022]
Abstract
Single-cell RNA-sequencing (scRNA-seq) allows the characterization of cellular composition and interactions in complex tissues. An essential prerequisite for scRNA-seq is the preparation of high-quality single-cell suspensions. So far, no protocols have been described for preparing such suspensions from the placenta, an essential organ for fetal development and a site of maternal-fetal immune interaction. Here we describe a protocol for the preparation of high-quality single-cell suspensions from human placental tissues-namely, the basal plate, placental villi and chorioamniotic membranes. The protocol outlines the collection of tissues from the placenta, tailored dissociation procedures for each tissue, and the cryopreservation of single-cell suspensions for multiplex sequencing library preparation. The protocol can be performed by a qualified investigator with basic working knowledge of placental structure. Moreover, the single-cell suspensions generated by using this protocol are compatible with droplet-based scRNA-seq technology, such as the 10x Genomics Chromium system. This protocol reliably produces single-cell suspensions from the placental tissues with high yield and viability for scRNA-seq. This protocol takes ~6 h to complete from tissue collection to cryopreservation of single-cell suspensions, and an additional 2 h for thawing of cryopreserved single cells.
Collapse
Affiliation(s)
- Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Errile Pusod
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Detroit Medical Center, Detroit, MI, USA
| | - Roger Pique-Regi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD and Detroit, MI, USA.
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
58
|
Wang H, Zhang Z, Li H, Li J, Li H, Liu M, Liang P, Xi Q, Xing Y, Yang L, Zuo Y. A cost-effective machine learning-based method for preeclampsia risk assessment and driver genes discovery. Cell Biosci 2023; 13:41. [PMID: 36849879 PMCID: PMC9972636 DOI: 10.1186/s13578-023-00991-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/15/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND The placenta, as a unique exchange organ between mother and fetus, is essential for successful human pregnancy and fetal health. Preeclampsia (PE) caused by placental dysfunction contributes to both maternal and infant morbidity and mortality. Accurate identification of PE patients plays a vital role in the formulation of treatment plans. However, the traditional clinical methods of PE have a high misdiagnosis rate. RESULTS Here, we first designed a computational biology method that used single-cell transcriptome (scRNA-seq) of healthy pregnancy (38 wk) and early-onset PE (28-32 wk) to identify pathological cell subpopulations and predict PE risk. Based on machine learning methods and feature selection techniques, we observed that the Tuning ReliefF (TURF) score hybrid with XGBoost (TURF_XGB) achieved optimal performance, with 92.61% accuracy and 92.46% recall for classifying nine cell subpopulations of healthy placentas. Biological landscapes of placenta heterogeneity could be mapped by the 110 marker genes screened by TURF_XGB, which revealed the superiority of the TURF feature mining. Moreover, we processed the PE dataset with LASSO to obtain 497 biomarkers. Integration analysis of the above two gene sets revealed that dendritic cells were closely associated with early-onset PE, and C1QB and C1QC might drive preeclampsia by mediating inflammation. In addition, an ensemble model-based risk stratification card was developed to classify preeclampsia patients, and its area under the receiver operating characteristic curve (AUC) could reach 0.99. For broader accessibility, we designed an accessible online web server ( http://bioinfor.imu.edu.cn/placenta ). CONCLUSION Single-cell transcriptome-based preeclampsia risk assessment using an ensemble machine learning framework is a valuable asset for clinical decision-making. C1QB and C1QC may be involved in the development and progression of early-onset PE by affecting the complement and coagulation cascades pathway that mediate inflammation, which has important implications for better understanding the pathogenesis of PE.
Collapse
Affiliation(s)
- Hao Wang
- grid.411643.50000 0004 1761 0411The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070 China ,Digital College, Inner Mongolia Intelligent Union Big Data Academy, Inner Mongolia Wesure Date Technology Co., Ltd., Hohhot, 010010 China
| | - Zhaoyue Zhang
- grid.54549.390000 0004 0369 4060School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Haicheng Li
- grid.411643.50000 0004 1761 0411The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070 China ,Digital College, Inner Mongolia Intelligent Union Big Data Academy, Inner Mongolia Wesure Date Technology Co., Ltd., Hohhot, 010010 China
| | - Jinzhao Li
- grid.411643.50000 0004 1761 0411The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070 China
| | - Hanshuang Li
- grid.411643.50000 0004 1761 0411The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070 China
| | - Mingzhu Liu
- grid.411643.50000 0004 1761 0411The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070 China ,Digital College, Inner Mongolia Intelligent Union Big Data Academy, Inner Mongolia Wesure Date Technology Co., Ltd., Hohhot, 010010 China
| | - Pengfei Liang
- grid.411643.50000 0004 1761 0411The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070 China
| | - Qilemuge Xi
- grid.411643.50000 0004 1761 0411The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070 China
| | - Yongqiang Xing
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China.
| | - Lei Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Yongchun Zuo
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China. .,Digital College, Inner Mongolia Intelligent Union Big Data Academy, Inner Mongolia Wesure Date Technology Co., Ltd., Hohhot, 010010, China.
| |
Collapse
|
59
|
Horii M, To C, Morey R, Jacobs MB, Li Y, Nelson KK, Meads M, Siegel BA, Pizzo D, Adami R, Zhang-Rutledge K, Lamale-Smith L, Laurent LC, Parast MM. Histopathologic and Transcriptomic Profiling Identifies Novel Trophoblast Defects in Patients With Preeclampsia and Maternal Vascular Malperfusion. Mod Pathol 2023; 36:100035. [PMID: 36853788 PMCID: PMC10081686 DOI: 10.1016/j.modpat.2022.100035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/03/2022] [Accepted: 09/28/2022] [Indexed: 01/11/2023]
Abstract
Preeclampsia (PE) is a heterogeneous disease for which the current clinical classification system is based on the presence or absence of specific clinical features. PE-associated placentas also show heterogeneous findings on pathologic examination, suggesting that further subclassification is possible. We combined clinical, pathologic, immunohistochemical, and transcriptomic profiling of placentas to develop integrated signatures for multiple subclasses of PE. In total, 303 PE and 1388 nonhypertensive control placentas were included. We found that maternal vascular malperfusion (MVM) in the placenta was associated with preterm PE with severe features and with small-for-gestational-age neonates. Interestingly, PE placentas with either MVM or no histologic pattern of injury showed a linear decrease in proliferative (p63+) cytotrophoblast per villous area with increasing gestational age, similar to placentas obtained from the nonhypertensive patient cohort; however, PE placentas with fetal vascular malperfusion or villitis of unknown etiology lost this phenotype. This is mainly because of cases of fetal vascular malperfusion in placentas of patients with preterm PE and villitis of unknown etiology in placentas of patients with term PE, which are associated with a decrease or increase, respectively, in the cytotrophoblast per villous area. Finally, a transcriptomic analysis identified pathways associated with hypoxia, inflammation, and reduced cell proliferation in PE-MVM placentas and further subclassified this group into extravillous trophoblast-high and extravillous trophoblast-low PE, confirmed using an immunohistochemical analysis of trophoblast lineage-specific markers. Our findings suggest that within specific histopathologic patterns of placental injury, PE can be subclassified based on specific cellular and molecular defects, allowing the identification of pathways that may be targeted for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Mariko Horii
- Department of Pathology, University of California San Diego, La Jolla, California; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California
| | - Cuong To
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California
| | - Robert Morey
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California
| | - Marni B Jacobs
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California
| | - Yingchun Li
- Department of Pathology, University of California San Diego, La Jolla, California; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California
| | - Katharine K Nelson
- Department of Pathology, University of California San Diego, La Jolla, California; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California
| | - Morgan Meads
- Department of Pathology, University of California San Diego, La Jolla, California; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California
| | - Brent A Siegel
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Donald Pizzo
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Rebecca Adami
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California
| | - Kathy Zhang-Rutledge
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California
| | - Leah Lamale-Smith
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California
| | - Louise C Laurent
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California
| | - Mana M Parast
- Department of Pathology, University of California San Diego, La Jolla, California; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California.
| |
Collapse
|
60
|
Garcia-Flores V, Romero R, Peyvandipour A, Galaz J, Pusod E, Panaitescu B, Miller D, Xu Y, Tao L, Liu Z, Tarca AL, Pique-Regi R, Gomez-Lopez N. A single-cell atlas of murine reproductive tissues during preterm labor. Cell Rep 2023; 42:111846. [PMID: 36599348 PMCID: PMC9946687 DOI: 10.1016/j.celrep.2022.111846] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/11/2022] [Accepted: 11/24/2022] [Indexed: 01/05/2023] Open
Abstract
Preterm birth, the leading cause of perinatal morbidity and mortality worldwide, frequently results from the syndrome of preterm labor. The best-established causal link to preterm labor is intra-amniotic infection, which involves premature activation of the parturition cascade in the reproductive tissues. Herein, we utilize single-cell RNA sequencing (scRNA-seq) to generate a single-cell atlas of the murine uterus, decidua, and cervix in a model of infection-induced preterm labor. We show that preterm labor affects the transcriptomic profiles of specific immune and non-immune cell subsets. Shared and tissue-specific gene expression signatures are identified among affected cells. Determination of intercellular communications implicates specific cell types in preterm labor-associated signaling pathways across tissues. In silico comparison of murine and human uterine cell-cell interactions reveals conserved signaling pathways implicated in labor. Thus, our scRNA-seq data provide insights into the preterm labor-driven cellular landscape and communications in reproductive tissues.
Collapse
Affiliation(s)
- Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; Detroit Medical Center, Detroit, MI 48201, USA.
| | - Azam Peyvandipour
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA,Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Errile Pusod
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Li Tao
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Zhenjie Liu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA,Department of Computer Science, Wayne State University College of Engineering, Detroit, MI 48202, USA
| | - Roger Pique-Regi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA.
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
61
|
Dines V, Suvakov S, Kattah A, Vermunt J, Narang K, Jayachandran M, Abou Hassan C, Norby AM, Garovic VD. Preeclampsia and the Kidney: Pathophysiology and Clinical Implications. Compr Physiol 2023; 13:4231-4267. [PMID: 36715282 DOI: 10.1002/cphy.c210051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Preeclampsia and other hypertensive disorders of pregnancy are major contributors to maternal morbidity and mortality worldwide. This group of disorders includes chronic hypertension, gestational hypertension, preeclampsia, preeclampsia superimposed on chronic hypertension, and eclampsia. The body undergoes important physiological changes during pregnancy to allow for normal placental and fetal development. Several mechanisms have been proposed that may lead to preeclampsia, including abnormal placentation and placental hypoxia, impaired angiogenesis, excessive pro-inflammatory response, immune system imbalance, abnormalities of cellular senescence, alterations in regulation and activity of angiotensin II, and oxidative stress, ultimately resulting in upregulation of multiple mediators of endothelial cell dysfunction leading to maternal disease. The clinical implications of preeclampsia are significant as there are important short-term and long-term health consequences for those affected. Preeclampsia leads to increased risk of preterm delivery and increased morbidity and mortality of both the developing fetus and mother. Preeclampsia also commonly leads to acute kidney injury, and women who experience preeclampsia or another hypertensive disorder of pregnancy are at increased lifetime risk of chronic kidney disease and cardiovascular disease. An understanding of normal pregnancy physiology and the pathophysiology of preeclampsia is essential to develop novel treatment approaches and manage patients with preeclampsia and hypertensive disorders of pregnancy. © 2023 American Physiological Society. Compr Physiol 13:4231-4267, 2023.
Collapse
Affiliation(s)
- Virginia Dines
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Sonja Suvakov
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrea Kattah
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Jane Vermunt
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Kavita Narang
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Coline Abou Hassan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Alexander M Norby
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Vesna D Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA.,Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
62
|
Li N, Gu Y, Tang J, Li Y, Chen D, Xu Z. Circulating Non-coding RNAs and Exosomes: Liquid Biopsies for Monitoring Preeclampsia. Methods Mol Biol 2023; 2695:263-277. [PMID: 37450125 DOI: 10.1007/978-1-0716-3346-5_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Preeclampsia (PE) remains a leading cause of maternal and fetal mortality, due to ineffective treatment and diagnostic strategies, compounded by the lack of clarity on the etiology of the disorder. The early prediction or accurate diagnosis of PE is a concern of researchers. Liquid biopsy can be analyzed for cell-free nucleic acids and exosomes. Because circulating non-coding RNAs (ncRNAs) and peripheral blood exosomes can be detected in the peripheral blood of women in early pregnancy, these vesicles and their contents have become the focus of research on early predictive and diagnostic biomarkers for preeclampsia. In this review, we focus on recent studies addressing the roles of circulating ncRNAs and exosomes in PE, with particular attention paid to the potential application value of placenta-derived exosomes and circulating ncRNAs as PE-specific biomarkers.
Collapse
Affiliation(s)
- Na Li
- Lab of Perinatal Medicine, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Ying Gu
- Lab of Perinatal Medicine, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Jiaqi Tang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Yongmei Li
- Department of Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Daozhen Chen
- Lab of Perinatal Medicine, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Zhice Xu
- Lab of Perinatal Medicine, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| |
Collapse
|
63
|
Paquette AG, MacDonald J, Bammler T, Day DB, Loftus CT, Buth E, Mason WA, Bush NR, Lewinn KZ, Marsit C, Litch JA, Gravett M, Enquobahrie DA, Sathyanarayana S. Placental transcriptomic signatures of spontaneous preterm birth. Am J Obstet Gynecol 2023; 228:73.e1-73.e18. [PMID: 35868418 PMCID: PMC9790028 DOI: 10.1016/j.ajog.2022.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/01/2022] [Accepted: 07/09/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Spontaneous preterm birth accounts for most preterm births and leads to significant morbidity in the newborn and childhood period. This subtype of preterm birth represents an increasing proportion of all preterm births when compared with medically indicated preterm birth, yet it is understudied in omics analyses. The placenta is a key regulator of fetal and newborn health, and the placental transcriptome can provide insight into pathologic changes that lead to spontaneous preterm birth. OBJECTIVE This analysis aimed to identify genes for which placental expression was associated with spontaneous preterm birth (including early preterm and late preterm birth). STUDY DESIGN The ECHO PATHWAYS consortium extracted RNA from placental samples collected from the Conditions Affecting Neurocognitive Development and Learning in Early Childhood and the Global Alliance to Prevent Prematurity and Stillbirth studies. Placental transcriptomic data were obtained by RNA sequencing. Linear models were fit to estimate differences in placental gene expression between term birth and spontaneous preterm birth (including gestational age subgroups defined by the American College of Obstetricians and Gynecologists). Models were adjusted for numerous confounding variables, including labor status, cohort, and RNA sequencing batch. This analysis excluded patients with induced labor, chorioamnionitis, multifetal gestations, or medical indications for preterm birth. Our combined cohort contained gene expression data for 14,023 genes in 48 preterm and 540 term samples. Genes and pathways were considered statistically significantly different at false discovery rate-adjusted P value of <.05. RESULTS In total, we identified 1728 genes for which placental expression was associated with spontaneous preterm birth with more differences in expression in early preterm samples than late preterm samples when compared with full-term samples. Of those, 9 genes were significantly decreased in both early and late spontaneous preterm birth, and the strongest associations involved placental expression of IL1B, ALPL, and CRLF1. In early and late preterm samples, we observed decreased expression of genes involved in immune signaling, signal transduction, and endocrine function. CONCLUSION This study provides a comprehensive assessment of the differences in the placental transcriptome associated with spontaneous preterm birth with robust adjustment for confounding. Results of this study are in alignment with the known etiology of spontaneous preterm birth, because we identified multiple genes and pathways for which the placental and chorioamniotic membrane expression was previously associated with prematurity, including IL1B. We identified decreased expression in key signaling pathways that are essential for placental growth and function, which may be related to the etiology of spontaneous preterm birth. We identified increased expression of genes within metabolic pathways associated exclusively with early preterm birth. These signaling and metabolic pathways may provide clinically targetable pathways and biomarkers. The findings presented here can be used to understand underlying pathologic changes in premature placentas, which can inform and improve clinical obstetrics practice.
Collapse
Affiliation(s)
- Alison G Paquette
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA; Department of Pediatrics, University of Washington, Seattle, WA.
| | - James MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
| | - Theo Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
| | - Drew B Day
- Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA
| | - Christine T Loftus
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
| | - Erin Buth
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
| | - W Alex Mason
- Department of Preventative Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Nicole R Bush
- Department of Psychiatry and Behavioral Sciences, University of San Francisco, San Francisco, CA; Department of Pediatrics, University of San Francisco, San Francisco, CA
| | - Kaja Z Lewinn
- Department of Psychiatry and Behavioral Sciences, University of San Francisco, San Francisco, CA
| | - Carmen Marsit
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA
| | - James A Litch
- Global Alliance to Prevent Preterm Birth and Stillbirth (GAPPS), Lynnwood, WA
| | - Michael Gravett
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA
| | | | - Sheela Sathyanarayana
- Department of Pediatrics, University of Washington, Seattle, WA; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA; Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA; Department of Epidemiology, University of Washington, Seattle, WA
| |
Collapse
|
64
|
Zhang C, Guo Y, Yang Y, Du Z, Fan Y, Zhao Y, Yuan S. Oxidative stress on vessels at the maternal-fetal interface for female reproductive system disorders: Update. Front Endocrinol (Lausanne) 2023; 14:1118121. [PMID: 36967779 PMCID: PMC10036807 DOI: 10.3389/fendo.2023.1118121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Considerable evidence shows that oxidative stress exists in the pathophysiological process of female reproductive system diseases. At present, there have been many studies on oxidative stress of placenta during pregnancy, especially for preeclampsia. However, studies that directly focus on the effects of oxidative stress on blood vessels at the maternal-fetal interface and their associated possible outcomes are still incomplete and ambiguous. To provide an option for early clinical prediction and therapeutic application of oxidative stress in female reproductive system diseases, this paper briefly describes the composition of the maternal-fetal interface and the molecular mediators produced by oxidative stress, focuses on the sources of oxidative stress and the signaling pathways of oxidative stress at the maternal-fetal interface, expounds the adverse consequences of oxidative stress on blood vessels, and deeply discusses the relationship between oxidative stress and some pregnancy complications and other female reproductive system diseases.
Collapse
Affiliation(s)
- Chenlu Zhang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yaxin Guo
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Yang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaojin Du
- Reproductive Medical Center, Qingdao Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Yunhui Fan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Yin Zhao, ; Suzhen Yuan,
| | - Suzhen Yuan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Yin Zhao, ; Suzhen Yuan,
| |
Collapse
|
65
|
Li H, Peng H, Hong W, Wei Y, Tian H, Huang X, Jia L, Zheng J, Duan T, He Q, Wang K. Human Placental Endothelial Cell and Trophoblast Heterogeneity and Differentiation Revealed by Single-Cell RNA Sequencing. Cells 2022; 12:cells12010087. [PMID: 36611882 PMCID: PMC9818681 DOI: 10.3390/cells12010087] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The placenta is an important organ for fetal and maternal health during pregnancy and impacts offspring health late in life. Defects in placental vasculature and trophoblast have been identified in several pregnancy complications. Thus, the detailed molecular profile and heterogeneity of endothelial cells and trophoblasts in placentas will aid us in better understanding placental behaviors and improving pregnancy outcomes. METHODS Single-cell RNA sequencing (scRNA-seq) was performed to profile the transcriptomics of human placental villous tissues from eleven patients with normal pregnancies in the first and second trimesters (6-16 weeks of gestation). RESULTS The transcriptomic landscape of 52,179 single cells was obtained, and the cells were classified as trophoblasts, fibroblasts, endothelial cells, erythroid cells, Hofbauer cells, and macrophages. Our analysis further revealed the three subtypes of placental endothelial cells, with distinct metabolic signatures and transcription factor regulatory networks. We also determined the transcriptomic features of the trophoblast subpopulations and characterized two distinct populations of progenitor cells in cytotrophoblasts, which were capable of differentiating to extravillous trophoblasts and syncytiotrophoblasts, respectively. CONCLUSIONS Our study provided a high-resolution molecular profile of the human placenta between 6 and 16 weeks of gestation. Our data revealed the placental cell complexity and demonstrated the transcriptional networks and signaling involved in placental endothelial and trophoblast differentiation during early pregnancy, which will be a resource for future studies of the human placental development.
Collapse
Affiliation(s)
- Han Li
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Hao Peng
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Wei Hong
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Yingying Wei
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Haojun Tian
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Xiaojie Huang
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Linyan Jia
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Tao Duan
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Qizhi He
- Department of Pathology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
- Correspondence: (Q.H.); (K.W.)
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
- Correspondence: (Q.H.); (K.W.)
| |
Collapse
|
66
|
Liu Z, Zhai M, Zhang Q, Yang T, Wan Z, Li J, Liu X, Xu B, Du L, Chan RWS, Zhang L, Yeung WSB, Cheung KW, Chiu PCN, Wang WJ, Lee CL, Gao Y. Resolving the gene expression maps of human first-trimester chorionic villi with spatial transcriptome. Front Cell Dev Biol 2022; 10:1060298. [PMID: 36561369 PMCID: PMC9763897 DOI: 10.3389/fcell.2022.1060298] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
The placenta is important for fetal development in mammals, and spatial transcriptomic profiling of placenta helps to resolve its structure and function. In this study, we described the landscape of spatial transcriptome of human placental villi obtained from two pregnant women at the first trimester using the modified Stereo-seq method applied for paraformaldehyde (PFA) fixation samples. The PFA fixation of human placenta villi was better than fresh villi embedded in optimum cutting temperature (OCT) compound, since it greatly improved tissue morphology and the specificity of RNA signals. The main cell types in chorionic villi such as syncytiotrophoblasts (SCT), villous cytotrophoblasts (VCT), fibroblasts (FB), and extravillous trophoblasts (EVT) were identified with the spatial transcriptome data, whereas the minor cell types of Hofbauer cells (HB) and endothelial cells (Endo) were spatially located by deconvolution of scRNA-seq data. We demonstrated that the Stereo-seq data of human villi could be used for sophisticated analyses such as spatial cell-communication and regulatory activity. We found that the SCT and VCT exhibited the most ligand-receptor pairs that could increase differentiation of the SCT, and that the spatial localization of specific regulons in different cell types was associated with the pathways related to hormones transport and secretion, regulation of mitotic cell cycle, and nutrient transport pathway in SCT. In EVT, regulatory pathways such as the epithelial to mesenchyme transition, epithelial development and differentiation, and extracellular matrix organization were identified. Finally, viral receptors and drug transporters were identified in villi according to the pathway analysis, which could help to explain the vertical transmission of several infectious diseases and drug metabolism efficacy. Our study provides a valuable resource for further investigation of the placenta development, physiology and pathology in a spatial context.
Collapse
Affiliation(s)
| | | | - Qingqing Zhang
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Tingyu Yang
- BGI-Shenzhen, Shenzhen, China,Shenzhen Engineering Laboratory for Birth Defects Screening, Shenzhen, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Jianlin Li
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xiaofeng Liu
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Bo Xu
- Department of Obstetrics and Gynaecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Libei Du
- Department of Obstetrics and Gynaecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Rachel W. S. Chan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Li Zhang
- Department of Obstetrics and Gynaecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S. B. Yeung
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ka Wang Cheung
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Philip C. N. Chiu
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Wen-Jing Wang
- BGI-Shenzhen, Shenzhen, China,*Correspondence: Wen-Jing Wang, ; Cheuk-Lun Lee, ; Ya Gao,
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China,*Correspondence: Wen-Jing Wang, ; Cheuk-Lun Lee, ; Ya Gao,
| | - Ya Gao
- BGI-Shenzhen, Shenzhen, China,Shenzhen Engineering Laboratory for Birth Defects Screening, Shenzhen, China,*Correspondence: Wen-Jing Wang, ; Cheuk-Lun Lee, ; Ya Gao,
| |
Collapse
|
67
|
Hu J, Guo Q, Liu C, Yu Q, Ren Y, Wu Y, Li Q, Li Y, Liu J. Immune cell profiling of preeclamptic pregnant and postpartum women by single-cell RNA sequencing. Int Rev Immunol 2022; 43:1-12. [PMID: 36369864 DOI: 10.1080/08830185.2022.2144291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/30/2022] [Indexed: 11/15/2022]
Abstract
Preeclampsia (PE), a leading cause of maternal and fetal morbidity and mortality, is closely related to the immune system alterations. However, little is known about the landscape and heterogeneity of maternal immune system at single-cell level among PE patients. In this study, peripheral blood mononuclear cells (PBMCs) were isolated from three early-onset preeclamptic pregnant women and two healthy control, respectively. Single-cell RNA sequencing was performed on 10× genomics platform and single-cell transcriptomes were obtained to characterize immune cell subgroups at the pregnant and postpartum stages. In total, 80,429 single-cell transcriptomes were obtained. 19 cellular compositions were identified, which were categorized into six cell types including T cells, natural killer (NK) cells, B cells, monocytes, plasmacytoid dendritic cells and conventional dendritic cells. There were excessive activation of B cells, monocytes and NK cells in PE patients at the pregnant stage based on comparative analysis. Lower immune response activation was noticed in CD4+ and CD8+ T cells in PE patients, especially the low-activation of memory T cells at the pregnant and postpartum stages. PE patients showed high activation of B cells in pregnancy persisted postpartum and lower activation of memory T cells, indicating their persistent effects on the pathogenesis and recurrence risk of PE. This study provide a broad characterization of the single-cell transcriptome of PBMCs in PE, which contributes to identification of immune imbalance for its monitoring and treatment.
Collapse
Affiliation(s)
- Jing Hu
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qi Guo
- Berry Genomics Corporation, Beijing, China
| | - Congcong Liu
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qian Yu
- Berry Genomics Corporation, Beijing, China
| | - Yuan Ren
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yueni Wu
- Berry Genomics Corporation, Beijing, China
| | - Qin Li
- Berry Genomics Corporation, Beijing, China
| | - Yuezhen Li
- Berry Genomics Corporation, Beijing, China
| | - Juntao Liu
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
68
|
Wei P, Dong M, Bi Y, Chen S, Huang W, Li T, Liu B, Fu X, Yang Y. Identification and validation of a signature based on macrophage cell marker genes to predict recurrent miscarriage by integrated analysis of single-cell and bulk RNA-sequencing. Front Immunol 2022; 13:1053819. [PMID: 36439123 PMCID: PMC9692009 DOI: 10.3389/fimmu.2022.1053819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/24/2022] [Indexed: 09/12/2023] Open
Abstract
Recurrent miscarriage (RM) is a chronic, heterogeneous autoimmune disease that has serious social and personal consequences. No valid and reliable diagnostic markers or therapeutic targets for RM have been identified. Macrophages impact the innate immune system and can be used as diagnostic and prognostic markers for many diseases. We first collected 16 decidua and villi tissue samples from 5 normal patients and 3 RM patients for single-cell RNA sequencing data analysis and identified 1293 macrophage marker genes. We then screened a recurrent miscarriage cohort (GSE165004) for 186 macrophage-associated marker genes that were significantly differentially expressed between RM patients and the normal pregnancy endometrial tissues, and performed a functional enrichment analysis of differentially expressed genes. We then identified seven core genes (ACTR2, CD2AP, MBNL2, NCSTN, PUM1, RPN2, and TBC1D12) from the above differentially expressed gene group that are closely related to RM using the LASSO, Random Forest and SVM-RFE algorithms. We also used GSE26787 and our own collection of clinical specimens to further evaluate the diagnostic value of the target genes. A nomogram was constructed of the expression levels of these seven target genes to predict RM, and the ROC and calibration curves showed that our nomogram had a high diagnostic value for RM. These results suggest that ACTR2 and NCSTN may be potential targets for preventative RM treatments.
Collapse
Affiliation(s)
- Peiru Wei
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
- The Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Mingyou Dong
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- The Key Laboratory of Molecular Pathology (For Hepatobiliary Diseases) of Guangxi, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yin Bi
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
- The Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Saiqiong Chen
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Weiyu Huang
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
- The Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Ting Li
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
- The Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Bo Liu
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoqian Fu
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yihua Yang
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
- The Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| |
Collapse
|
69
|
Tarca AL, Romero R, Bhatti G, Gotsch F, Done B, Gudicha DW, Gallo DM, Jung E, Pique-Regi R, Berry SM, Chaiworapongsa T, Gomez-Lopez N. Human Plasma Proteome During Normal Pregnancy. J Proteome Res 2022; 21:2687-2702. [PMID: 36154181 PMCID: PMC10445406 DOI: 10.1021/acs.jproteome.2c00391] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human plasma proteome is underexplored despite its potential value for monitoring health and disease. Herein, using a recently developed aptamer-based platform, we profiled 7288 proteins in 528 plasma samples from 91 normal pregnancies (Gene Expression Omnibus identifier GSE206454). The coefficient of variation was <20% for 93% of analytes (median 7%), and a cross-platform correlation for selected key angiogenic and anti-angiogenic proteins was significant. Gestational age was associated with changes in 953 proteins, including highly modulated placenta- and decidua-specific proteins, and they were enriched in biological processes including regulation of growth, angiogenesis, immunity, and inflammation. The abundance of proteins corresponding to RNAs specific to populations of cells previously described by single-cell RNA-Seq analysis of the placenta was highly modulated throughout gestation. Furthermore, machine learning-based prediction of gestational age and of time from sampling to term delivery compared favorably with transcriptomic models (mean absolute error of 2 weeks). These results suggested that the plasma proteome may provide a non-invasive readout of placental cellular dynamics and serve as a blueprint for investigating obstetrical disease.
Collapse
Affiliation(s)
- Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan48202, United States
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan48103, United States
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan48824, United States
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan48202, United States
- Detroit Medical Center, Detroit, Michigan48201, United States
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
| | - Dereje W Gudicha
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
| | - Dahiana M Gallo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, University of Valle 13, Cali, Valle del Cauca100-00, Colombia
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
| | - Roger Pique-Regi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan48202, United States
| | - Stanley M Berry
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
| |
Collapse
|
70
|
Miller D, Garcia-Flores V, Romero R, Galaz J, Pique-Regi R, Gomez-Lopez N. Single-Cell Immunobiology of the Maternal-Fetal Interface. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1450-1464. [PMID: 36192116 PMCID: PMC9536179 DOI: 10.4049/jimmunol.2200433] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/31/2022] [Indexed: 11/06/2022]
Abstract
Pregnancy success requires constant dialogue between the mother and developing conceptus. Such crosstalk is facilitated through complex interactions between maternal and fetal cells at distinct tissue sites, collectively termed the "maternal-fetal interface." The emergence of single-cell technologies has enabled a deeper understanding of the unique processes taking place at the maternal-fetal interface as well as the discovery of novel pathways and immune and nonimmune cell types. Single-cell approaches have also been applied to decipher the cellular dynamics throughout pregnancy, in parturition, and in obstetrical syndromes such as recurrent spontaneous abortion, preeclampsia, and preterm labor. Furthermore, single-cell technologies have been used during the recent COVID-19 pandemic to evaluate placental viral cell entry and the impact of SARS-CoV-2 infection on maternal and fetal immunity. In this brief review, we summarize the current knowledge of cellular immunobiology in pregnancy and its complications that has been generated through single-cell investigations of the maternal-fetal interface.
Collapse
Affiliation(s)
- Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
- Detroit Medical Center, Detroit, MI
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile; and
| | - Roger Pique-Regi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI;
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
71
|
Romero R, Jung E, Chaiworapongsa T, Erez O, Gudicha DW, Kim YM, Kim JS, Kim B, Kusanovic JP, Gotsch F, Taran AB, Yoon BH, Hassan SS, Hsu CD, Chaemsaithong P, Gomez-Lopez N, Yeo L, Kim CJ, Tarca AL. Toward a new taxonomy of obstetrical disease: improved performance of maternal blood biomarkers for the great obstetrical syndromes when classified according to placental pathology. Am J Obstet Gynecol 2022; 227:615.e1-615.e25. [PMID: 36180175 PMCID: PMC9525890 DOI: 10.1016/j.ajog.2022.04.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND The major challenge for obstetrics is the prediction and prevention of the great obstetrical syndromes. We propose that defining obstetrical diseases by the combination of clinical presentation and disease mechanisms as inferred by placental pathology will aid in the discovery of biomarkers and add specificity to those already known. OBJECTIVE To describe the longitudinal profile of placental growth factor (PlGF), soluble fms-like tyrosine kinase-1 (sFlt-1), and the PlGF/sFlt-1 ratio throughout gestation, and to determine whether the association between abnormal biomarker profiles and obstetrical syndromes is strengthened by information derived from placental examination, eg, the presence or absence of placental lesions of maternal vascular malperfusion. STUDY DESIGN This retrospective case cohort study was based on a parent cohort of 4006 pregnant women enrolled prospectively. The case cohort of 1499 pregnant women included 1000 randomly selected patients from the parent cohort and all additional patients with obstetrical syndromes from the parent cohort. Pregnant women were classified into six groups: 1) term delivery without pregnancy complications (n=540; control); 2) preterm labor and delivery (n=203); 3) preterm premature rupture of the membranes (n=112); 4) preeclampsia (n=230); 5) small-for-gestational-age neonate (n=334); and 6) other pregnancy complications (n=182). Maternal plasma concentrations of PlGF and sFlt-1 were determined by enzyme-linked immunosorbent assays in 7560 longitudinal samples. Placental pathologists, masked to clinical outcomes, diagnosed the presence or absence of placental lesions of maternal vascular malperfusion. Comparisons between mean biomarker concentrations in cases and controls were performed by utilizing longitudinal generalized additive models. Comparisons were made between controls and each obstetrical syndrome with and without subclassifying cases according to the presence or absence of placental lesions of maternal vascular malperfusion. RESULTS 1) When obstetrical syndromes are classified based on the presence or absence of placental lesions of maternal vascular malperfusion, significant differences in the mean plasma concentrations of PlGF, sFlt-1, and the PlGF/sFlt-1 ratio between cases and controls emerge earlier in gestation; 2) the strength of association between an abnormal PlGF/sFlt-1 ratio and the occurrence of obstetrical syndromes increases when placental lesions of maternal vascular malperfusion are present (adjusted odds ratio [aOR], 13.6 vs 6.7 for preeclampsia; aOR, 8.1 vs 4.4 for small-for-gestational-age neonates; aOR, 5.5 vs 2.1 for preterm premature rupture of the membranes; and aOR, 3.3 vs 2.1 for preterm labor (all P<0.05); and 3) the PlGF/sFlt-1 ratio at 28 to 32 weeks of gestation is abnormal in patients who subsequently delivered due to preterm labor with intact membranes and in those with preterm premature rupture of the membranes if both groups have placental lesions of maternal vascular malperfusion. Such association is not significant in patients with these obstetrical syndromes who do not have placental lesions. CONCLUSION Classification of obstetrical syndromes according to the presence or absence of placental lesions of maternal vascular malperfusion allows biomarkers to be informative earlier in gestation and enhances the strength of association between biomarkers and clinical outcomes. We propose that a new taxonomy of obstetrical disorders informed by placental pathology will facilitate the discovery and implementation of biomarkers as well as the prediction and prevention of such disorders.
Collapse
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI; Detroit Medical Center, Detroit, MI.
| | - Eunjung Jung
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Offer Erez
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Faculty of Health Sciences, Division of Obstetrics and Gynecology, Maternity Department "D," Soroka University Medical Center, School of Medicine, Ben-Gurion University of the Negev, Beersheba, Israel; Department of Obstetrics and Gynecology, HaEmek Medical Center, Afula, Israel
| | - Dereje W Gudicha
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Yeon Mee Kim
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Pathology, Wayne State University School of Medicine, Detroit, MI; Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Jung-Sun Kim
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Pathology, Wayne State University School of Medicine, Detroit, MI; Department of Pathology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Bomi Kim
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Pathology, Wayne State University School of Medicine, Detroit, MI; Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; División de Obstetricia y Ginecología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Investigación e Innovación en Medicina Materno-Fetal, Unidad de Alto Riesgo Obstétrico, Hospital Sotero Del Rio, Santiago, Chile
| | - Francesca Gotsch
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Andreea B Taran
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Bo Hyun Yoon
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sonia S Hassan
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Office of Women's Health, Integrative Biosciences Center, Wayne State University, Detroit, MI; Department of Physiology, Wayne State University School of Medicine, Detroit, MI
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Physiology, Wayne State University School of Medicine, Detroit, MI; Department of Obstetrics and Gynecology, University of Arizona, College of Medicine - Tucson, Tucson, AZ
| | - Piya Chaemsaithong
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Faculty of Medicine, Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI
| | - Lami Yeo
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Chong Jai Kim
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Pathology, Wayne State University School of Medicine, Detroit, MI; Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Adi L Tarca
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Department of Computer Science, Wayne State University College of Engineering, Detroit, MI
| |
Collapse
|
72
|
Zhang B, Zhang F, Lu F, Wang J, Zhou W, Wang H, Yu B. Reduced cell invasion may be a characteristic of placental defects in pregnant women of advanced maternal age at single-cell level. J Zhejiang Univ Sci B 2022; 23:747-759. [PMID: 36111571 DOI: 10.1631/jzus.b2101024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mechanisms underlying pregnancy complications caused by advanced maternal age (AMA) remain unclear. We analyzed the cellular signature and transcriptomes of human placentas in AMA women to elucidate these mechanisms. Placental tissues from two AMA women and two controls were used for single-cell RNA-sequencing (scRNA-seq). Controls consisted of AMA women who did not experience any pregnancy complications and pregnant women below the age of 35 years without pregnancy complications. Trophoblast cells were obtained from the placentas of another six pregnant women (three AMA women and three controls), and in-vitro transwell assays were conducted to observe the cell invasion ability. Thirty additional samples (from 15 AMA women and 15 controls) were analyzed to verify the specific expression of serine protease inhibitor clade E member 1 (SERPINE1). Preliminary study of the role of SERPINE1 in cell invasion was carried out with HTR8-S/Vneo cells. High-quality transcriptomes of 27 607 cells were detected. Three types of trophoblast cells were detected, which were further classified into eight subtypes according to differences in gene expression and Gene Ontology (GO) function. We identified 110 differentially expressed genes (DEGs) in trophoblast cells between the AMA and control groups, and the DEGs were enriched in multiple pathways related to cell invasion. In-vitro transwell assays suggested that the invading trophoblast cells in AMA women were reduced. SERPINE1 was specifically expressed in the trophoblast, and its expression was higher in AMA women (P<0.05). Transfection of human SERPINE1 (hSERPINE1) into HTR8-S/Vneo trophoblast cells showed fewer invading cells in the hSERPINE1 group. Impaired cell invasion may underlie the increased risk of adverse pregnancy outcomes in AMA women. Abnormal expression of SERPINE1 in extravillous trophoblast (EVT) cells appears to play an important role.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Medical Genetics, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Feng Zhang
- Department of Medical Genetics, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Fengying Lu
- Department of Medical Genetics, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Jing Wang
- Department of Medical Genetics, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Wenbai Zhou
- Department of Medical Genetics, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Huihui Wang
- Department of Medical Genetics, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Bin Yu
- Department of Medical Genetics, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China.
| |
Collapse
|
73
|
Dolatshahi S, Butler AL, Pou C, Henckel E, Bernhardsson AK, Gustafsson A, Bohlin K, Shin SA, Lauffenburger DA, Brodin P, Alter G. Selective transfer of maternal antibodies in preterm and fullterm children. Sci Rep 2022; 12:14937. [PMID: 36056073 PMCID: PMC9440225 DOI: 10.1038/s41598-022-18973-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 08/23/2022] [Indexed: 01/11/2023] Open
Abstract
Preterm newborns are more likely to suffer from infectious diseases at birth compared to children delivered at term. Whether this is due to compromised cellular, humoral, or organ-specific development remains unclear. To begin to define whether maternal-fetal antibody transfer profiles differ across preterm (PT) and fullterm (FT) infants, the overall quantity and functional quality of an array of 24 vaccine-, endemic pathogen-, and common antigen-specific antibodies were assessed across a cohort of 11 PT and 12 term-delivered maternal:infant pairs from birth through week 12. While total IgG levels to influenza, pneumo, measles, rubella, EBV, and RSV were higher in FT newborns, selective Fc-receptor binding antibodies was noted in PT newborns. In fact, near equivalent antibody-effector functions were observed across PT and FT infants, despite significant quantitative differences in transferred antibody levels. Moreover, temporal transfer analysis revealed the selective early transfer of FcRn, FcγR2, and FcγR3 binding antibodies, pointing to differential placental sieving mechanisms across gestation. These data point to selectivity in placental transfer at distinct gestational ages, to ensure that children are endowed with the most robust humoral immunity even if born preterm.
Collapse
Affiliation(s)
- Sepideh Dolatshahi
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Biomedical Engineering Department, University of Virginia, Charlottesville, VA, USA
| | | | - Christian Pou
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Ewa Henckel
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
| | - Anna Karin Bernhardsson
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
| | - Anna Gustafsson
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
| | - Kajsa Bohlin
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
| | - Sally A Shin
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering and Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Petter Brodin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
- Karolinska University Hospital, Stockholm, Sweden.
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
74
|
Potoczak PS, Strassmann BI, Vincenz C. A new method for the sampling and preservation of placental specimens in low-resource settings for the identification of P. falciparum and analysis of nucleic acids. J Histotechnol 2022; 45:116-119. [PMID: 35766215 PMCID: PMC9437128 DOI: 10.1080/01478885.2022.2088191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Collection, preservation, and shipment of histological specimens in low-resource settings is challenging. We present a novel method that achieved excellent preservation of placental specimens from rural Mali by using formalin fixation, ethanol dehydration, and long-term storage in a solar-powered freezer. Sample preservation success was 92%, permitting evaluation of current and past malaria infection, anemia, placental maturity, and inflammation. Using RNAscope® hybridization we were able to visualize cell-specific gene expression patterns in the formalin-fixed paraffin-embedded (FFPE) specimens. Additionally, our method entailed mirrored sampling from the two cut faces of a cotyledon, one for the FFPE workflows and the other for storage in RNAlater™ and RNA-seq.
Collapse
Affiliation(s)
| | - Beverly I. Strassmann
- Research Center for Group Dynamics, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
| | - Claudius Vincenz
- Research Center for Group Dynamics, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
75
|
Blaisdell A, Zhou Y, Kattah MG, Fisher SJ, Mahadevan U. Vedolizumab Antagonizes MAdCAM-1-Dependent Human Placental Cytotrophoblast Adhesion and Invasion In Vitro. Inflamm Bowel Dis 2022; 28:1219-1228. [PMID: 35349682 DOI: 10.1093/ibd/izac056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Anti-α4β7 (Vedolizumab) treats inflammatory bowel disease (IBD) by blocking the interaction between integrin α4β7 on leukocytes and mucosal addressin cell-adhesion molecule-1 (MAdCAM-1) on the gut endothelium. Women with IBD often require continuing biologic therapy during pregnancy to avoid disease flare. To date, there have been no reports of an increase in adverse events with Vedolizumab use during pregnancy. Notably, integrins play a major role in human placental development during pregnancy. It is unknown whether Vedolizumab disrupts placental cell (cytotrophoblast) invasion and/or adhesion by blocking interactions with MAdCAM-1. We therefore investigated human placental expression of MAdCAM-1, the role of MAdCAM-1/α4β7 interactions in cytotrophoblast invasion/adhesion in vitro, and whether Vedolizumab administration in vivo alters the placental structure. METHODS Histological sections of placentas from normal pregnancies were evaluated for MAdCAM-1 expression by immunofluorescence. The impacts of Vedolizumab or anti-integrin β7 on human cytotrophoblast invasion and adhesion were assessed. Histology results from term placentas of 2 patients with IBD receiving Vedolizumab were compared to those of untreated healthy controls. RESULTS Placental MAdCAM-1 expression was predominantly associated with invading extravillous cytotrophoblasts at the maternal-fetal interface. Treatment of isolated primary cytotrophoblasts with Vedolizumab or anti-integrin β7 significantly reduced Matrigel invasion, adherence to a MAdCAM-1-coated substrate, and interactions with HuT-78 cells. Placentas from 2 Vedolizumab-treated patients with IBD exhibited pronounced pathologic features as compared to healthy control specimens. CONCLUSIONS This study revealed a previously unrecognized role for α4β7 and MAdCAM-1 in human placentation. More clinical and histological data from Vedolizumab-treated pregnant patients will be necessary to determine whether this medication poses any risk to the mother and fetus.
Collapse
Affiliation(s)
- Adam Blaisdell
- *Division of Gastroenterology, Department of Medicine, University of California, San Francisco, California, USA
| | - Yan Zhou
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco (UCSF), San Francisco, California, USA
| | - Michael G Kattah
- *Division of Gastroenterology, Department of Medicine, University of California, San Francisco, California, USA
| | - Susan J Fisher
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco (UCSF), San Francisco, California, USA
| | - Uma Mahadevan
- *Division of Gastroenterology, Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
76
|
Kaur G, Porter CBM, Ashenberg O, Lee J, Riesenfeld SJ, Hofree M, Aggelakopoulou M, Subramanian A, Kuttikkatte SB, Attfield KE, Desel CAE, Davies JL, Evans HG, Avraham-Davidi I, Nguyen LT, Dionne DA, Neumann AE, Jensen LT, Barber TR, Soilleux E, Carrington M, McVean G, Rozenblatt-Rosen O, Regev A, Fugger L. Mouse fetal growth restriction through parental and fetal immune gene variation and intercellular communications cascade. Nat Commun 2022; 13:4398. [PMID: 35906236 PMCID: PMC9338297 DOI: 10.1038/s41467-022-32171-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 07/18/2022] [Indexed: 11/08/2022] Open
Abstract
Fetal growth restriction (FGR) affects 5-10% of pregnancies, and can have serious consequences for both mother and child. Prevention and treatment are limited because FGR pathogenesis is poorly understood. Genetic studies implicate KIR and HLA genes in FGR, however, linkage disequilibrium, genetic influence from both parents, and challenges with investigating human pregnancies make the risk alleles and their functional effects difficult to map. Here, we demonstrate that the interaction between the maternal KIR2DL1, expressed on uterine natural killer (NK) cells, and the paternally inherited HLA-C*0501, expressed on fetal trophoblast cells, leads to FGR in a humanized mouse model. We show that the KIR2DL1 and C*0501 interaction leads to pathogenic uterine arterial remodeling and modulation of uterine NK cell function. This initial effect cascades to altered transcriptional expression and intercellular communication at the maternal-fetal interface. These findings provide mechanistic insight into specific FGR risk alleles, and provide avenues of prevention and treatment.
Collapse
Affiliation(s)
- Gurman Kaur
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Caroline B M Porter
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jack Lee
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Samantha J Riesenfeld
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Matan Hofree
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Maria Aggelakopoulou
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | - Subita Balaram Kuttikkatte
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Kathrine E Attfield
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Christiane A E Desel
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- University Department of Neurology, University Hospital Magdeburg, Magdeburg, Germany
| | - Jessica L Davies
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hayley G Evans
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Inbal Avraham-Davidi
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lan T Nguyen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Danielle A Dionne
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Lise Torp Jensen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas R Barber
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Elizabeth Soilleux
- Department of Pathology, Tennis Court Rd, University of Cambridge, Cambridge, England
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research in the Laboratory of Integrative Cancer Immunology, National Cancer Institute, Bethesda, MD, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Gil McVean
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Massachusetts Institute of Technology, Department of Biology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Genentech, 1 DNA Way, South San Francisco, CA, USA.
| | - Lars Fugger
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
77
|
Wang Y, Li B, Zhao Y. Inflammation in Preeclampsia: Genetic Biomarkers, Mechanisms, and Therapeutic Strategies. Front Immunol 2022; 13:883404. [PMID: 35880174 PMCID: PMC9307876 DOI: 10.3389/fimmu.2022.883404] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/20/2022] [Indexed: 01/05/2023] Open
Abstract
Objective Preeclampsia is a common and serious complication of pregnancy, posing a threat to maternal and fetal safety due to the lack of effective biomarkers and treatment strategies. This study aimed to identify potential biomarkers that can be used to predict preeclampsia and identify the molecular mechanisms of preeclampsia pathogenesis and drug prediction at the transcriptome level. Methods We analyzed differential expression genes (DEGs) in preeclampsia and non-preeclampsia groups in the GSE75010 dataset, cross-linking with extracted inflammatory response-related genes to obtain differentially expressed inflammation-related genes (DINRGs). Enrichment analysis and protein-protein interaction (PPI) networks were constructed to understand the functions and enrichment pathways. Machine learning models were used to identify key genes associated with preeclampsia and build a nomogram in the training set, which was validated in the validation set. The R package RcisTarget was used to predict transcription factors, and Cytoscape was used to construct miRNA-mRNA pathways, which could identify the molecular mechanisms. Then, we conducted molecular docking of the obtained key genes INHBA (inhibin subunit beta A), OPRK1 (opioid receptor kappa 1), and TPBG (trophoblast glycoprotein), as well as predicted transcription factors with drug molecules. Additionally, the CIBERSORT method explored the differences in immune cell infiltration between preeclampsia and non-preeclampsia samples based on the GSE75010 dataset. Results A total of 69 DINRGs associated with preeclampsia patients were screened. INHBA, OPRK1, and TPBG were the key genes based on machine learning models. A nomogram for prediction was further constructed, and the receiver operating curves (ROCs) showed good performance. Based on the transcriptome level of key genes, we proposed that RELA-miR-548K/miR-1206-TPBG may be a potential RNA regulatory pathway regulating the progression of early preeclampsia. Molecular docking suggested the effectiveness of curcumin in the treatment of preeclampsia. Additionally, regulatory T cells (Tregs) and resting mast cells were significantly different between the two groups. Conclusion In summary, we identified three key inflammation-associated genes, namely INHBA, OPRK1, and TPBG, which can be used as potential genetic biomarkers for preeclampsia prediction and treatment, and established a nomogram as a predictive model. Additionally, we provided insights into the mechanisms of preeclampsia development at the transcriptome level and performed corresponding drug predictions.
Collapse
|
78
|
Single-cell transcriptional profiling reveals cellular and molecular divergence in human maternal-fetal interface. Sci Rep 2022; 12:10892. [PMID: 35764880 PMCID: PMC9240006 DOI: 10.1038/s41598-022-14516-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/08/2022] [Indexed: 12/19/2022] Open
Abstract
Placenta plays essential role in successful pregnancy, as the most important organ connecting and interplaying between mother and fetus. However, the cellular characteristics and molecular interaction of cell populations within the fetomaternal interface is still poorly understood. Here, we surveyed the single-cell transcriptomic landscape of human full-term placenta and revealed the heterogeneity of cytotrophoblast cell (CTB) and stromal cell (STR) with the fetal/maternal origin consecutively localized from fetal section (FS), middle section (Mid_S) to maternal section (Mat_S) of maternal–fetal interface. Then, we highlighted a subpopulation of CTB, named trophoblast progenitor-like cells (TPLCs) existed in the full-term placenta and mainly distributed in Mid_S, with high expression of a pool of putative cell surface markers. Further, we revealed the putative key transcription factor PRDM6 that might promote the differentiation of endovascular extravillous trophoblast cells (enEVT) by inhibiting cell proliferation, and down-regulation of PRDM6 might lead to an abnormal enEVT differentiation process in PE. Together, our study offers important resources for better understanding of human placenta and stem cell-based therapy, and provides new insights on the study of tissue heterogeneity, the clinical prevention and control of PE as well as the maternal–fetal interface.
Collapse
|
79
|
Longitudinal Proteomic Analysis of Plasma across Healthy Pregnancies Reveals Indicators of Gestational Age. Int J Mol Sci 2022; 23:ijms23137076. [PMID: 35806078 PMCID: PMC9266720 DOI: 10.3390/ijms23137076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Longitudinal changes in the blood proteome during gestation relate to fetal development and maternal homeostasis. Charting the maternal blood proteome in normal pregnancies is critical for establishing a baseline reference when assessing complications and disease. Using mass spectrometry-based shotgun proteomics, we surveyed the maternal plasma proteome across uncomplicated pregnancies. Results indicate a significant rise in proteins that govern placentation and are vital to the development and health of the fetus. Importantly, we uncovered proteome signatures that strongly correlated with gestational age. Fold increases and correlations between the plasma concentrations of ADAM12 (ρ = 0.973), PSG1 (ρ = 0.936), and/or CSH1/2 (ρ = 0.928) with gestational age were validated with ELISA. Proteomic and validation analyses demonstrate that the maternal plasma concentration of ADAM12, either independently or in combination with either PSG1 or CSH1/2, correlates with gestational age within ±8 days throughout pregnancy. These findings suggest that the gestational age in healthy pregnancies may be determined by referencing the concentration of select plasma proteins.
Collapse
|
80
|
Transcription factor networks in trophoblast development. Cell Mol Life Sci 2022; 79:337. [PMID: 35657505 PMCID: PMC9166831 DOI: 10.1007/s00018-022-04363-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022]
Abstract
The placenta sustains embryonic development and is critical for a successful pregnancy outcome. It provides the site of exchange between the mother and the embryo, has immunological functions and is a vital endocrine organ. To perform these diverse roles, the placenta comprises highly specialized trophoblast cell types, including syncytiotrophoblast and extravillous trophoblast. The coordinated actions of transcription factors (TFs) regulate their emergence during development, subsequent specialization, and identity. These TFs integrate diverse signaling cues, form TF networks, associate with chromatin remodeling and modifying factors, and collectively determine the cell type-specific characteristics. Here, we summarize the general properties of TFs, provide an overview of TFs involved in the development and function of the human trophoblast, and address similarities and differences to their murine orthologs. In addition, we discuss how the recent establishment of human in vitro models combined with -omics approaches propel our knowledge and transform the human trophoblast field.
Collapse
|
81
|
Wang LL, Li ZH, Wang H, Kwak-Kim J, Liao AH. Cutting edge: the regulatory mechanisms of macrophage polarization and function during pregnancy. J Reprod Immunol 2022; 151:103627. [DOI: 10.1016/j.jri.2022.103627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023]
|
82
|
Vorperian SK, Moufarrej MN, Quake SR. Cell types of origin of the cell-free transcriptome. Nat Biotechnol 2022; 40:855-861. [PMID: 35132263 PMCID: PMC9200634 DOI: 10.1038/s41587-021-01188-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022]
Abstract
Cell-free RNA from liquid biopsies can be analyzed to determine disease tissue of origin. We extend this concept to identify cell types of origin using the Tabula Sapiens transcriptomic cell atlas as well as individual tissue transcriptomic cell atlases in combination with the Human Protein Atlas RNA consensus dataset. We define cell type signature scores, which allow the inference of cell types that contribute to cell-free RNA for a variety of diseases.
Collapse
Affiliation(s)
- Sevahn K Vorperian
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- ChEM-H, Stanford University, Stanford, CA, USA
| | - Mira N Moufarrej
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Applied Physics, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
83
|
Zhou W, Wang H, Yang Y, Guo F, Yu B, Su Z. Trophoblast Cell Subtypes and Dysfunction in the Placenta of Individuals with Preeclampsia Revealed by Single‑Cell RNA Sequencing. Mol Cells 2022; 45:317-328. [PMID: 35289305 PMCID: PMC9095508 DOI: 10.14348/molcells.2021.0211] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/13/2021] [Accepted: 11/16/2021] [Indexed: 12/03/2022] Open
Abstract
Trophoblasts, important functional cells in the placenta, play a critical role in maintaining placental function. The heterogeneity of trophoblasts has been reported, but little is known about the trophoblast subtypes and distinctive functions during preeclampsia (PE). In this study, we aimed to gain insight into the cell type-specific transcriptomic changes by performing unbiased single-cell RNA sequencing (scRNA-seq) of placental tissue samples, including those of patients diagnosed with PE and matched healthy controls. A total of 29,006 cells were identified in 11 cell types, including trophoblasts and immune cells, and the functions of the trophoblast subtypes in the PE group and the control group were also analyzed. As an important trophoblast subtype, extravillous trophoblasts (EVTs) were further divided into 4 subgroups, and their functions were preliminarily analyzed. We found that some biological processes related to pregnancy, hormone secretion and immunity changed in the PE group. We also identified and analyzed the regulatory network of transcription factors (TFs) identified in the EVTs, among which 3 modules were decreased in the PE group. Then, through in vitro cell experiments, we found that in one of the modules, CEBPB and GTF2B may be involved in EVT dysfunction in PE. In conclusion, our study showed the different transcriptional profiles and regulatory modules in trophoblasts between placentas in the control and PE groups at the single-cell level; these changes may be involved in the pathological process of PE, providing a new molecular theoretical basis for preeclamptic trophoblast dysfunction.
Collapse
Affiliation(s)
- Wenbo Zhou
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
- Changzhou Maternal and Child Health Care Hospital, Nanjing Medical University, Changzhou 213000, China
| | - Huiyan Wang
- Changzhou Maternal and Child Health Care Hospital, Nanjing Medical University, Changzhou 213000, China
| | - Yuqi Yang
- Changzhou Maternal and Child Health Care Hospital, Nanjing Medical University, Changzhou 213000, China
| | - Fang Guo
- Changzhou Maternal and Child Health Care Hospital, Nanjing Medical University, Changzhou 213000, China
| | - Bin Yu
- Changzhou Maternal and Child Health Care Hospital, Nanjing Medical University, Changzhou 213000, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
84
|
Eikmans M, van der Keur C, Anholts JDH, Drabbels JJM, van Beelen E, de Sousa Lopes SMC, van der Hoorn ML. Primary Trophoblast Cultures: Characterization of HLA Profiles and Immune Cell Interactions. Front Immunol 2022; 13:814019. [PMID: 35634345 PMCID: PMC9136060 DOI: 10.3389/fimmu.2022.814019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Trophoblasts are essential in fetal-maternal interaction during pregnancy. The goal was to study HLA profiles of primary trophoblasts derived from placentas, and to investigate their usefulness in studying interaction with immune cells. Methods After enzymatic digestion of first-trimester placental tissue from seven donors (6-9 weeks gestation) and trophoblast enrichment we cultured cytotrophoblasts (CTB) in stem cell medium. CTB were differentiated into EVT in a Matrigel-containing medium. A subset of CTB/EVT was profiled for microRNA levels. Expression of classical HLA molecules and of HLA-G was studied by flow cytometry, qPCR, and ELISA. Secondary trophoblast cell lines JAR and JEG-3 were studied as controls. Lymphocytes were investigated during co-culturing with EVT. Results The trophoblasts could be easily maintained for several passages, upregulated classical trophoblast markers (GATA3, TFAP2C, chromosome-19 microRNAs), and upon differentiation to EVT they were selective in expressing HLA-C. EVT showed increasing expression of total HLA-G, an increasing proportion of HLA-G1 over G2- and G3 isoforms, and elevated excretion of soluble HLA-G. These features were distinct from those of the secondary trophoblast cell lines. TNF-α and IL-8 represented the most abundantly secreted cytokines by CTB, but their levels were minimal in EVT cultures. As proof of principle, we showed that EVT affect lymphocytes in three-day co-cultures (n=4) by decreasing activation marker HLA-DR. Conclusion We verified the possibility culturing trophoblasts from first-term placentas, and their capability of differentiating to HLA-G expressing EVT. This culture model better represents the in-vivo situation than previously studied secondary trophoblast cell lines and enables mechanistic studies of fetal-maternal interactions.
Collapse
Affiliation(s)
- Michael Eikmans
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Michael Eikmans,
| | - Carin van der Keur
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Jos J. M. Drabbels
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Els van Beelen
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | | | | |
Collapse
|
85
|
Marečková M, Massalha H, Lorenzi V, Vento-Tormo R. Mapping Human Reproduction with Single-Cell Genomics. Annu Rev Genomics Hum Genet 2022; 23:523-547. [PMID: 35567278 DOI: 10.1146/annurev-genom-120121-114415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The trillions of cells in the human body develop as a result of the fusion of two extremely specialized cells: an oocyte and a sperm. This process is essential for the continuation of our species, as it ensures that parental genetic information is mixed and passed on from generation to generation. In addition to producing oocytes, the female reproductive system must provide the environment for the appropriate development of the fetus until birth. New genomic and computational tools offer unique opportunities to study the tight spatiotemporal regulatory mechanisms that are required for the cycle of human reproduction. This review explores how single-cell technologies have been used to build cellular atlases of the human reproductive system across the life span and how these maps have proven useful to better understand reproductive pathologies and dissect the heterogeneity of in vitro model systems. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Magda Marečková
- Wellcome Sanger Institute, Cambridge, United Kingdom; .,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom;
| | - Hassan Massalha
- Wellcome Sanger Institute, Cambridge, United Kingdom; .,Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
86
|
Lampiasi N. Interactions between Macrophages and Mast Cells in the Female Reproductive System. Int J Mol Sci 2022; 23:ijms23105414. [PMID: 35628223 PMCID: PMC9142086 DOI: 10.3390/ijms23105414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Mast cells (MCs) and macrophages (Mϕs) are innate immune cells that differentiate from early common myeloid precursors and reside in all body tissues. MCs have a unique capacity to neutralize/degrade toxic proteins, and they are hypothesized as being able to adopt two alternative polarization profiles, similar to Mϕs, with distinct or even opposite roles. Mϕs are very plastic phagocytic cells that are devoted to the elimination of senescent/anomalous endogenous entities (to maintain tissue homeostasis), and to the recognition and elimination of exogenous threats. They can adopt several functional phenotypes in response to microenvironmental cues, whose extreme profiles are the inflammatory/killing phenotype (M1) and the anti-inflammatory/healing phenotype (M2). The concomitant and abundant presence of these two cell types and the partial overlap of their defensive and homeostatic functions leads to the hypothesis that their crosstalk is necessary for the optimal coordination of their functions, both under physiological and pathological conditions. This review will examine the relationship between MCs and Mϕs in some situations of homeostatic regulation (menstrual cycle, embryo implantation), and in some inflammatory conditions in the same organs (endometriosis, preeclampsia), in order to appreciate the importance of their cross-regulation.
Collapse
Affiliation(s)
- Nadia Lampiasi
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
87
|
Seetharam AS, Vu HTH, Choi S, Khan T, Sheridan MA, Ezashi T, Roberts RM, Tuteja G. The product of BMP-directed differentiation protocols for human primed pluripotent stem cells is placental trophoblast and not amnion. Stem Cell Reports 2022; 17:1289-1302. [PMID: 35594861 PMCID: PMC9214062 DOI: 10.1016/j.stemcr.2022.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
The observation that trophoblast (TB) can be generated from primed pluripotent stem cells (PSCs) by exposure to bone morphogenetic protein-4 (BMP4) when FGF2 and ACTIVIN signaling is minimized has recently been challenged with the suggestion that the procedure instead produces amnion. Here, by analyzing transcriptome data from multiple sources, including bulk and single-cell data, we show that the BMP4 procedure generates bona fide TB with similarities to both placental villous TB and TB generated from TB stem cells. The analyses also suggest that the transcriptomic signatures between embryonic amnion and different forms of TB have commonalities. Our data provide justification for the continued use of TB derived from PSCs as a model for investigating placental development. Cells differentiated by using BAP protocols resemble TB more than embryonic amnion Deviation from the standard BAP protocol results in less differentiated TB Single-cell/nucleus RNA-seq analysis identifies two syncytiotrophoblast populations
Collapse
Affiliation(s)
- Arun S Seetharam
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA; Genetics Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Ha T H Vu
- Genetics Development and Cell Biology, Iowa State University, Ames, IA, USA; Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA
| | - Sehee Choi
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Department of Obstetrics and Gynecology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Teka Khan
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Division of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Megan A Sheridan
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Department of Obstetrics and Gynecology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Toshihiko Ezashi
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Division of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - R Michael Roberts
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Division of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Department of Biochemistry, University of Missouri, Columbia, MO, USA.
| | - Geetu Tuteja
- Genetics Development and Cell Biology, Iowa State University, Ames, IA, USA; Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
88
|
Li Q, Wu H, Wang Y, Wang H. Current understanding in deciphering trophoblast cell differentiation during human placentation. Biol Reprod 2022; 107:317-326. [PMID: 35478014 DOI: 10.1093/biolre/ioac083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 11/14/2022] Open
Abstract
The placenta is a unique organ that forms during gestation and supports fetus survival and communication with the mother. However, of such an arguably essential organ for a successful pregnancy, our knowledge is limited. New progress has been made for human placenta study in recent years. We herein summarize the current understanding of human placental trophoblast differentiation and the molecules that govern trophoblast cell lineage specification. More importantly, the powerful tools for placental studies are also explained, such as human trophoblast stem cells (hTSCs), 3-dimensional (3D) trophoblast organoids, engineering-based placental devices, and single-cell RNA sequencing (sc-RNAseq). These advances have brought us new insights into placental development and provided multiple investigation strategies for deciphering molecular mechanisms.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Hao Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yue Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| |
Collapse
|
89
|
True H, Blanton M, Sureshchandra S, Messaoudi I. Monocytes and macrophages in pregnancy: The good, the bad, and the ugly. Immunol Rev 2022; 308:77-92. [PMID: 35451089 DOI: 10.1111/imr.13080] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022]
Abstract
A successful human pregnancy requires precisely timed adaptations by the maternal immune system to support fetal growth while simultaneously protecting mother and fetus against microbial challenges. The first trimester of pregnancy is characterized by a robust increase in innate immune activity that promotes successful implantation of the blastocyst and placental development. Moreover, early pregnancy is also a state of increased vulnerability to vertically transmitted pathogens notably, human immunodeficiency virus (HIV), Zika virus (ZIKV), SARS-CoV-2, and Listeria monocytogenes. As gestation progresses, the second trimester is marked by the establishment of an immunosuppressive environment that promotes fetal tolerance and growth while preventing preterm birth, spontaneous abortion, and other gestational complications. Finally, the period leading up to labor and parturition is characterized by the reinstatement of an inflammatory milieu triggering childbirth. These dynamic waves of carefully orchestrated changes have been dubbed the "immune clock of pregnancy." Monocytes in maternal circulation and tissue-resident macrophages at the maternal-fetal interface play a critical role in this delicate balance. This review will summarize the current data describing the longitudinal changes in the phenotype and function of monocyte and macrophage populations in healthy and complicated pregnancies.
Collapse
Affiliation(s)
- Heather True
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky, USA
| | - Madison Blanton
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky, USA
| | | | - Ilhem Messaoudi
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
90
|
Dynamic genome-wide gene expression and immune cell composition in the developing human placenta. J Reprod Immunol 2022; 151:103624. [DOI: 10.1016/j.jri.2022.103624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/23/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022]
|
91
|
Chatterjee S, Zeng X, Ouidir M, Tesfaye M, Zhang C, Tekola-Ayele F. Sex-specific placental gene expression signatures of small for gestational age at birth. Placenta 2022; 121:82-90. [PMID: 35303517 PMCID: PMC9010378 DOI: 10.1016/j.placenta.2022.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/14/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Small for gestational age at birth (SGA), often a consequence of placental dysfunction, is a risk factor for neonatal morbidity and later life cardiometabolic diseases. There are sex differences in placental gene expression and fetal growth. Here, we investigated sex-specific associations between gene expression in human placenta measured using RNA sequencing and SGA status using data from ethnic diverse pregnant women in the NICHD Fetal Growth Studies cohort (n = 74). METHODS Gene expression measures were obtained using RNA-Sequencing and differential gene expression between SGA (birthweight <10th percentile) and appropriate for gestational age (AGA: ≥10th and <90th percentile) was tested separately in males (12 SGA and 27 AGA) and females (9 SGA and 26 AGA) using a weighted mean of log ratios method with adjustment for mode of delivery and ethnicity. RESULTS At 5% false discovery rate (FDR), we identified 40 differentially expressed genes (DEGs) related to SGA status among males (95% up- and 5% down-regulated) and 314 DEGs among females (32.5% up- and 67.5% down-regulated). Seven female-specific DEGs overlapped with known imprinted genes (AXL, CYP24A1, GPR1, PLAGL1, CMTM1, DLX5, LY6D). The DEGs in males were significantly enriched for immune response and inflammation signaling pathways whereas the DEGs in females were enriched for organ development signaling pathways (FDR<0.05). Sex-combined analysis identified no additional DEGs, rather 98% of the sex-specific DEGs were no longer significant and the remaining 2% were attenuated. DISCUSSION This study revealed sex-specific human placental gene expression changes and molecular pathways associated with SGA and underscored that unravelling the pathogenesis of SGA warrants consideration of fetal sex as a biological variable. TRIAL REGISTRATION https://www. CLINICALTRIALS gov, Unique identifier: NCT00912132.
Collapse
Affiliation(s)
- Suvo Chatterjee
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Xuehuo Zeng
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Marion Ouidir
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Markos Tesfaye
- Section of Sensory Science and Metabolism (SenSMet), National Institute on Alcohol Abuse and Alcoholism & National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Cuilin Zhang
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892, MD, USA.
| |
Collapse
|
92
|
Telkar N, Stewart GL, Pewarchuk ME, Cohn DE, Robinson WP, Lam WL. Small Non-Coding RNAs in the Human Placenta: Regulatory Roles and Clinical Utility. Front Genet 2022; 13:868598. [PMID: 35432451 PMCID: PMC9006164 DOI: 10.3389/fgene.2022.868598] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/11/2022] [Indexed: 12/26/2022] Open
Abstract
The placenta is a vital organ formed during pregnancy, and being the interface between the mother and fetus, it is paramount that placental functioning is strictly controlled. Gene expression in the placenta is finely tuned-with aberrant expression causing placental pathologies and inducing stress on both mother and fetus. Gene regulation is brought upon by several mechanisms, and small non-coding RNAs (sncRNAs) have recently been appreciated for their contribution in gene repression. Their dysregulation has been implicated in a range of somatic and inherited disorders, highlighting their importance in maintaining healthy organ function. Their specific roles within the placenta, however, are not well understood, and require further exploration. To this end, we summarize the mechanisms of microRNAs (miRNAs), Piwi-interacting RNAs (piRNAs), small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), and transfer RNAs (tRNAs), their known contributions to human placental health and disease, the relevance of sncRNAs as promising biomarkers throughout pregnancy, and the current challenges faced by placental sncRNA studies.
Collapse
Affiliation(s)
- Nikita Telkar
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Greg L. Stewart
- British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | | | - David E. Cohn
- British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Wendy P. Robinson
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Wan L. Lam
- British Columbia Cancer Research Centre, Vancouver, BC, Canada
| |
Collapse
|
93
|
Choi S, Khan T, Roberts RM, Schust DJ. Leveraging Optimized Transcriptomic and Personalized Stem Cell Technologies to Better Understand Syncytialization Defects in Preeclampsia. Front Genet 2022; 13:872818. [PMID: 35432469 PMCID: PMC9006100 DOI: 10.3389/fgene.2022.872818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022] Open
Abstract
Understanding the process of human placentation is important to the development of strategies for treatment of pregnancy complications. Several animal and in vitro human model systems for the general study human placentation have been used. The field has expanded rapidly over the past decades to include stem cell-derived approaches that mimic preclinical placental development, and these stem cell-based models have allowed us to better address the physiology and pathophysiology of normal and compromised trophoblast (TB) sublineage development. The application of transcriptomic approaches to these models has uncovered limitations that arise when studying the distinctive characteristics of the large and fragile multinucleated syncytiotrophoblast (STB), which plays a key role in fetal-maternal communication during pregnancy. The extension of these technologies to induced pluripotent stem cells (iPSCs) is just now being reported and will allow, for the first time, a reproducible and robust approach to the study of the developmental underpinnings of late-manifesting diseases such as preeclampsia (PE) and intrauterine growth retardation in a manner that is patient- and disease-specific. Here, we will first focus on the application of various RNA-seq technologies to TB, prior limitations in fully accessing the STB transcriptome, and recent leveraging of single nuclei RNA sequencing (snRNA-seq) technology to improve our understanding of the STB transcriptome. Next, we will discuss new stem-cell derived models that allow for disease- and patient-specific study of pregnancy disorders, with a focus on the study of STB developmental abnormalities in PE that combine snRNA-seq approaches and these new in vitro models.
Collapse
Affiliation(s)
- Sehee Choi
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri School of Medicine, Columbia, MO, United States
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Teka Khan
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - R. Michael Roberts
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Danny J. Schust
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri School of Medicine, Columbia, MO, United States
- *Correspondence: Danny J. Schust,
| |
Collapse
|
94
|
何 建, 唐 健, 苏 虹, 沈 翠, 罗 胜, 王 海, 钱 源, 吕 梦. [Whole-transcriptome sequencing analysis of placental differential miRNA expression profile in Down syndrome]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:418-424. [PMID: 35426807 PMCID: PMC9010987 DOI: 10.12122/j.issn.1673-4254.2022.03.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To identify new biomarkers and molecular pathogenesis of Down syndrome (DS) by analyzing differentially expressed miRNAs in the placentas and their biological pathways. METHODS Whole transcriptome sequencing was used to identify the differentially expressed miRNAs in DS (n=3) and normal placental samples (n=3) diagnosed by prenatal diagnosis. The target genes were predicted using miRWalk, Targetscan and miRDB, and GO and KEGG pathway analyses were performed for gene enrichment studies. RESULTS We identified a total of 82 differentially expressed miRNAs in the placental tissues of DS, including 29 up-regulated miRNAs (fold change ≥2, P < 0.05) and 15 down-regulated miRNAs (fold change ≥2, P < 0.05), among which 10 miRNAs with relatively high expression abundance were selected for further analysis, including 4 up-regulated and 6 down-regulated miRNAs. These selected miRNAs shared the common target genes BTBD3 and AUTS2, both of which were associated with neurodevelopment. GO analysis showed that the target genes of the selected miRNAs were mainly enriched in protein binding, hydrolytic enzymes, metal ion binding protein combining, transferase activity, nucleotide, cytoplasmic constituents, nucleus composition, transcriptional regulation, RNA metabolism regulation, DNA-dependent RNA polymerase Ⅱ promoter transcriptional regulation, eye development, and sensory organ development. KEGG enrichment analysis showed that the target genes of these differentially expressed miRNAs were involved in the signaling pathways including tumor-related signaling pathway, PI3K-Akt signaling pathway, Ras signaling pathway, Rap1 signaling pathway, cytoskeletal regulatory signaling pathway, purine metabolization-related signaling pathway and P53 signaling pathway. CONCLUSION The differentially expressed miRNAs may play important roles in placental damage and pregnancy pathology in DS and provide clues for the prevention and treatment of mental retardation-related diseases.
Collapse
Affiliation(s)
- 建萍 何
- 昆明市妇幼保健院医学遗传与产前诊断科,云南 昆明 650031Department of Medical Genetics and Prenatal Diagnosis, Kunming Maternal and Child Health Care Hospital, Kunming 650031, China
| | - 健 唐
- 昆明市妇幼保健院医学遗传与产前诊断科,云南 昆明 650031Department of Medical Genetics and Prenatal Diagnosis, Kunming Maternal and Child Health Care Hospital, Kunming 650031, China
| | - 虹 苏
- 昆明市妇幼保健院遗传咨询门诊,云南 昆明 650031Genetic Counseling Clinic, Kunming Maternal and Child Health Care Hospital, Kunming 650031, China
| | - 翠花 沈
- 昆明市妇幼保健院产科,云南 昆明 650031Department of Obstetrics, Kunming Maternal and Child Health Care Hospital, Kunming 650031, China
| | - 胜军 罗
- 昆明市妇幼保健院医学遗传与产前诊断科,云南 昆明 650031Department of Medical Genetics and Prenatal Diagnosis, Kunming Maternal and Child Health Care Hospital, Kunming 650031, China
| | - 海涛 王
- 昆明市妇幼保健院病理科,云南 昆明 650031Department of Pathology, Kunming Maternal and Child Health Care Hospital, Kunming 650031, China
| | - 源 钱
- 昆明市妇幼保健院医学遗传与产前诊断科,云南 昆明 650031Department of Medical Genetics and Prenatal Diagnosis, Kunming Maternal and Child Health Care Hospital, Kunming 650031, China
| | - 梦欣 吕
- 昆明市妇幼保健院医学遗传与产前诊断科,云南 昆明 650031Department of Medical Genetics and Prenatal Diagnosis, Kunming Maternal and Child Health Care Hospital, Kunming 650031, China
| |
Collapse
|
95
|
Liu X, Huang Y, Tan F, Wang HY, Chen JY, Zhang X, Zhao X, Liu K, Wang Q, Liu S, Piferrer F, Fan G, Shao C. Single-Cell Atlas of the Chinese Tongue Sole (Cynoglossus semilaevis) Ovary Reveals Transcriptional Programs of Oogenesis in Fish. Front Cell Dev Biol 2022; 10:828124. [PMID: 35300429 PMCID: PMC8921555 DOI: 10.3389/fcell.2022.828124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 01/04/2023] Open
Abstract
Oogenesis is a highly orchestrated process that depends on regulation by autocrine/paracrine hormones and growth factors. However, many details of the molecular mechanisms that regulate fish oogenesis remain elusive. Here, we performed a single-cell RNA sequencing (scRNA-seq) analysis of the molecular signatures of distinct ovarian cell categories in adult Chinese tongue sole (Cynoglossus semilaevis). We characterized the successive stepwise development of three germ cell subtypes. Notably, we identified the cellular composition of fish follicle walls, including four granulosa cell types and one theca cell type, and we proposed important transcription factors (TFs) showing high activity in the regulation of cell identity. Moreover, we found that the extensive niche–germline bidirectional communications regulate fish oogenesis, whereas ovulation in fish is accompanied by the coordination of simultaneous and tightly sequential processes across different granulosa cells. Additionally, a systems biology analysis of the homologous genes shared by Chinese tongue sole and macaques revealed remarkably conserved biological processes in germ cells and granulosa cells across vertebrates. Our results provide key insights into the cell-type-specific mechanisms underlying fish oogenesis at a single-cell resolution, which offers important clues for exploring fish breeding mechanisms and the evolution of vertebrate reproductive systems.
Collapse
Affiliation(s)
- Xiang Liu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yingyi Huang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Fujian Tan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,BGI-Shenzhen, Shenzhen, China
| | - Hong-Yan Wang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jian-Yang Chen
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,BGI-Shenzhen, Shenzhen, China.,Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, China
| | - Xianghui Zhang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
| | - Xiaona Zhao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,School of Marine Sciences, Ningbo University, Ningbo, China
| | - Kaiqiang Liu
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qian Wang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shanshan Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,BGI-Shenzhen, Shenzhen, China.,Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, China
| | - Francesc Piferrer
- Institut de Ciències Del Mar (ICM), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,BGI-Shenzhen, Shenzhen, China
| | - Changwei Shao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
96
|
Pique-Regi R, Romero R, Garcia-Flores V, Peyvandipour A, Tarca AL, Pusod E, Galaz J, Miller D, Bhatti G, Para R, Kanninen T, Hadaya O, Paredes C, Motomura K, Johnson JR, Jung E, Hsu CD, Berry SM, Gomez-Lopez N. A single-cell atlas of the myometrium in human parturition. JCI Insight 2022; 7:153921. [PMID: 35260533 PMCID: PMC8983148 DOI: 10.1172/jci.insight.153921] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/26/2022] [Indexed: 01/14/2023] Open
Abstract
Parturition is a well-orchestrated process characterized by increased uterine contractility, cervical ripening, and activation of the chorioamniotic membranes; yet, the transition from a quiescent to a contractile myometrium heralds the onset of labor. However, the cellular underpinnings of human parturition in the uterine tissues are still poorly understood. Herein, we performed a comprehensive study of the human myometrium during spontaneous term labor using single-cell RNA sequencing (scRNA-Seq). First, we established a single-cell atlas of the human myometrium and unraveled the cell type–specific transcriptomic activity modulated during labor. Major cell types included distinct subsets of smooth muscle cells, monocytes/macrophages, stromal cells, and endothelial cells, all of which communicated and participated in immune (e.g., inflammation) and nonimmune (e.g., contraction) processes associated with labor. Furthermore, integrating scRNA-Seq and microarray data with deconvolution of bulk gene expression highlighted the contribution of smooth muscle cells to labor-associated contractility and inflammatory processes. Last, myometrium-derived single-cell signatures can be quantified in the maternal whole-blood transcriptome throughout pregnancy and are enriched in women in labor, providing a potential means of noninvasively monitoring pregnancy and its complications. Together, our findings provide insights into the contributions of specific myometrial cell types to the biological processes that take place during term parturition.
Collapse
Affiliation(s)
- Roger Pique-Regi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and.,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA.,Detroit Medical Center, Detroit, Michigan, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | - Azam Peyvandipour
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and.,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and.,Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, USA
| | - Errile Pusod
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | - Robert Para
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | - Tomi Kanninen
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | - Ola Hadaya
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | - Carmen Paredes
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | - Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | | | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and.,Department of Physiology and
| | - Stanley M Berry
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and.,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
97
|
Than NG, Posta M, Györffy D, Orosz L, Orosz G, Rossi SW, Ambrus-Aikelin G, Szilágyi A, Nagy S, Hupuczi P, Török O, Tarca AL, Erez O, Papp Z, Romero R. Early pathways, biomarkers and four distinct molecular subclasses of preeclampsia: The intersection of clinical, pathological and high dimensional biology studies. Placenta 2022; 125:10-19. [DOI: 10.1016/j.placenta.2022.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 01/08/2023]
|
98
|
Prevalence and Factors Associated with Low Birth Weight and Preterm Delivery in the Ho Municipality of Ghana. ADVANCES IN PUBLIC HEALTH 2022. [DOI: 10.1155/2022/3955869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background. Low birth weight and preterm delivery are birth outcomes that can predict newborns’ survival, development, and long-term health outcomes. This study assessed the prevalence and factors associated with low birth weight and preterm delivery in the Ho Municipality of Ghana. Methods. This retrospective, cross-sectional study analysed data from 680 birth records between October and December 2018. Univariate and multivariate logistic regression models predicted low birth weight and preterm delivery factors. Results. The prevalence of low birth weight and preterm delivery was 12.9% and 14.1%, respectively. Increasing maternal age (AOR: 0.52; 95% CI: 0.28–0.98), multiparity (AOR: 0.54; 95% CI: 0.30–0.94) and increasing doses of sulphadoxine-pyrimethamine (AOR: 0.43; 95% CI: 0.22–0.84) significantly reduced the odds of low birth weight. However, caesarean section (AOR: 1.94; 95% CI: 0.1.16–3.27) and hypertension (AOR: 2.06; 95% CI: 1.27–03.33) significantly increased the likelihood of low birth weight. An increasing number of antenatal care visits (AOR: 0.38; 95% CI: 0.18–0.80) and doses of sulphadoxine-pyrimethamine (AOR: 0.43; 95% CI: 0.19–0.97) were significantly associated with decreased odds of preterm delivery, while caesarean section increased the odds of preterm delivery by two folds (AOR: 2.14; 95% CI: 1.15–3.99). Conclusion. This study shows that maternal age, parity, number of antenatal care visits, hypertension, SP/IPTp, and caesarean section were independently associated with low birth weight and preterm delivery. Education and interventions should be prioritised as vitally important on these factors to reduce the risk and complications associated with these birth outcomes.
Collapse
|
99
|
Broekhuizen M, Hitzerd E, van den Bosch TPP, Dumas J, Verdijk RM, van Rijn BB, Danser AHJ, van Eijck CHJ, Reiss IKM, Mustafa DAM. The Placental Innate Immune System Is Altered in Early-Onset Preeclampsia, but Not in Late-Onset Preeclampsia. Front Immunol 2022; 12:780043. [PMID: 34992598 PMCID: PMC8724430 DOI: 10.3389/fimmu.2021.780043] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022] Open
Abstract
Preeclampsia is a severe placenta-related pregnancy disorder that is generally divided into two subtypes named early-onset preeclampsia (onset <34 weeks of gestation), and late-onset preeclampsia (onset ≥34 weeks of gestation), with distinct pathophysiological origins. Both forms of preeclampsia have been associated with maternal systemic inflammation. However, alterations in the placental immune system have been less well characterized. Here, we studied immunological alterations in early- and late-onset preeclampsia placentas using a targeted expression profile approach. RNA was extracted from snap-frozen placenta samples (healthy n=13, early-onset preeclampsia n=13, and late-onset preeclampsia n=6). The expression of 730 immune-related genes from the Pan Cancer Immune Profiling Panel was measured, and the data were analyzed in the advanced analysis module of nSolver software (NanoString Technology). The results showed that early-onset preeclampsia placentas displayed reduced expression of complement, and toll-like receptor (TLR) associated genes, specifically TLR1 and TLR4. Mast cells and M2 macrophages were also decreased in early-onset preeclampsia compared to healthy placentas. The findings were confirmed by an immunohistochemistry approach using 20 healthy, 19 early-onset preeclampsia, and 10 late-onset preeclampsia placentas. We conclude that the placental innate immune system is altered in early-onset preeclampsia compared to uncomplicated pregnancies. The absence of these alterations in late-onset preeclampsia placentas indicates dissimilar immunological profiles. The study revealed distinct pathophysiological processes in early-onset and late-onset preeclampsia placentas and imply that a tailored treatment to each subtype is desirable.
Collapse
Affiliation(s)
- Michelle Broekhuizen
- Division of Neonatology, Department of Pediatrics, Erasmus University Medical Center, Rotterdam, Netherlands.,Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands.,Division of Experimental Cardiology, Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Emilie Hitzerd
- Division of Neonatology, Department of Pediatrics, Erasmus University Medical Center, Rotterdam, Netherlands.,Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Jasper Dumas
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands.,The Tumor Immuno-Pathology (TIP) Laboratory, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Robert M Verdijk
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Bas B van Rijn
- Department of Obstetrics and Gynecology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Casper H J van Eijck
- Department of Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Irwin K M Reiss
- Division of Neonatology, Department of Pediatrics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Dana A M Mustafa
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands.,The Tumor Immuno-Pathology (TIP) Laboratory, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
100
|
Aye IL, Aiken CE, Charnock-Jones DS, Smith GC. Placental energy metabolism in health and disease-significance of development and implications for preeclampsia. Am J Obstet Gynecol 2022; 226:S928-S944. [PMID: 33189710 DOI: 10.1016/j.ajog.2020.11.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023]
Abstract
The placenta is a highly metabolically active organ fulfilling the bioenergetic and biosynthetic needs to support its own rapid growth and that of the fetus. Placental metabolic dysfunction is a common occurrence in preeclampsia although its causal relationship to the pathophysiology is unclear. At the outset, this may simply be seen as an "engine out of fuel." However, placental metabolism plays a vital role beyond energy production and is linked to physiological and developmental processes. In this review, we discuss the metabolic basis for placental dysfunction and propose that the alterations in energy metabolism may explain many of the placental phenotypes of preeclampsia such as reduced placental and fetal growth, redox imbalance, oxidative stress, altered epigenetic and gene expression profiles, and the functional consequences of these aberrations. We propose that placental metabolic reprogramming reflects the dynamic physiological state allowing the tissue to adapt to developmental changes and respond to preeclampsia stress, whereas the inability to reprogram placental metabolism may result in severe preeclampsia phenotypes. Finally, we discuss common tested and novel therapeutic strategies for treating placental dysfunction in preeclampsia and their impact on placental energy metabolism as possible explanations into their potential benefits or harm.
Collapse
|