51
|
Kato S, Garenne D, Noireaux V, Maeda YT. Phase Separation and Protein Partitioning in Compartmentalized Cell-Free Expression Reactions. Biomacromolecules 2021; 22:3451-3459. [PMID: 34258998 DOI: 10.1021/acs.biomac.1c00546] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Liquid-liquid phase separation (LLPS) is important to control a wide range of reactions from gene expression to protein degradation in a cell-sized space. To bring a better understanding of the compatibility of such phase-separated structures with protein synthesis, we study emergent LLPS in a cell-free transcription-translation (TXTL) reaction. When the TXTL reaction composed of many proteins is concentrated, the uniformly mixed state becomes unstable, and membrane-less phases form spontaneously. This LLPS droplet formation is induced when the TXTL reaction is enclosed in water-in-oil emulsion droplets, in which water evaporates from the surface. As the emulsion droplets shrink, smaller LLPS droplets appear inside the emulsion droplets and coalesce into large phase-separated domains that partition the localization of synthesized reporter proteins. The presence of PEG in the TXTL reaction is important not only for versatile cell-free protein synthesis but also for the formation of two large domains capable of protein partitioning. Our results may shed light on the dynamic interplay of LLPS formation and cell-free protein synthesis toward the construction of synthetic organelles.
Collapse
Affiliation(s)
- Shuzo Kato
- Department of Physics, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - David Garenne
- School of Physics and Astronomy, University of Minnesota, 115 Union Street Se, Minneapolis, Minnesota 55455, United States
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, 115 Union Street Se, Minneapolis, Minnesota 55455, United States
| | - Yusuke T Maeda
- Department of Physics, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| |
Collapse
|
52
|
Zhang L, Lin X, Wang T, Guo W, Lu Y. Development and comparison of cell-free protein synthesis systems derived from typical bacterial chassis. BIORESOUR BIOPROCESS 2021; 8:58. [PMID: 34249606 PMCID: PMC8258279 DOI: 10.1186/s40643-021-00413-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Cell-free protein synthesis (CFPS) systems have become an ideal choice for pathway prototyping, protein production, and biosensing, due to their high controllability, tolerance, stability, and ability to produce proteins in a short time. At present, the widely used CFPS systems are mainly based on Escherichia coli strain. Bacillus subtilis, Corynebacterium glutamate, and Vibrio natriegens are potential chassis cells for many biotechnological applications with their respective characteristics. Therefore, to expand the platform of the CFPS systems and options for protein production, four prokaryotes, E. coli, B. subtilis, C. glutamate, and V. natriegens were selected as host organisms to construct the CFPS systems and be compared. Moreover, the process parameters of the CFPS system were optimized, including the codon usage, plasmid synthesis competent cell selection, plasmid concentration, ribosomal binding site (RBS), and CFPS system reagent components. By optimizing and comparing the main influencing factors of different CFPS systems, the systems can be optimized directly for the most influential factors to further improve the protein yield of the systems. In addition, to demonstrate the applicability of the CFPS systems, it was proved that the four CFPS systems all had the potential to produce therapeutic proteins, and they could produce the receptor-binding domain (RBD) protein of SARS-CoV-2 with functional activity. They not only could expand the potential options for in vitro protein production, but also could increase the application range of the system by expanding the cell-free protein synthesis platform. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s40643-021-00413-2.
Collapse
Affiliation(s)
- Liyuan Zhang
- Department of Ecology, Shenyang Agricultural University, Shenyang, 110866 Liaoning Province China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
| | - Xiaomei Lin
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
| | - Ting Wang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
| | - Wei Guo
- Department of Ecology, Shenyang Agricultural University, Shenyang, 110866 Liaoning Province China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
53
|
Shim J, Zhou C, Gong T, Iserlis DA, Linjawi HA, Wong M, Pan T, Tan C. Building protein networks in synthetic systems from the bottom-up. Biotechnol Adv 2021; 49:107753. [PMID: 33857631 PMCID: PMC9558565 DOI: 10.1016/j.biotechadv.2021.107753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/18/2021] [Accepted: 04/06/2021] [Indexed: 01/01/2023]
Abstract
The recent development of synthetic biology has expanded the capability to design and construct protein networks outside of living cells from the bottom-up. The new capability has enabled us to assemble protein networks for the basic study of cellular pathways, expression of proteins outside cells, and building tissue materials. Furthermore, the integration of natural and synthetic protein networks has enabled new functions of synthetic or artificial cells. Here, we review the underlying technologies for assembling protein networks in liposomes, water-in-oil droplets, and biomaterials from the bottom-up. We cover the recent applications of protein networks in biological transduction pathways, energy self-supplying systems, cellular environmental sensors, and cell-free protein scaffolds. We also review new technologies for assembling protein networks, including multiprotein purification methods, high-throughput assay screen platforms, and controllable fusion of liposomes. Finally, we present existing challenges towards building protein networks that rival the complexity and dynamic response akin to natural systems. This review addresses the gap in our understanding of synthetic and natural protein networks. It presents a vision towards developing smart and resilient protein networks for various biomedical applications.
Collapse
Affiliation(s)
- Jiyoung Shim
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America
| | - Chuqing Zhou
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America
| | - Ting Gong
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America
| | - Dasha Aleksandra Iserlis
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America
| | - Hamad Abdullah Linjawi
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America
| | - Matthew Wong
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America
| | - Tingrui Pan
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America; Suzhou Institute for Advanced Research, University of Science and Technology, Suzhou, China.
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America.
| |
Collapse
|
54
|
Wong M, Badri A, Gasparis C, Belfort G, Koffas M. Modular optimization in metabolic engineering. Crit Rev Biochem Mol Biol 2021; 56:587-602. [PMID: 34180323 DOI: 10.1080/10409238.2021.1937928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
There is an increasing demand for bioproducts produced by metabolically engineered microbes, such as pharmaceuticals, biofuels, biochemicals and other high value compounds. In order to meet this demand, modular optimization, the optimizing of subsections instead of the whole system, has been adopted to engineer cells to overproduce products. Research into modularity has focused on traditional approaches such as DNA, RNA, and protein-level modularity of intercellular machinery, by optimizing metabolic pathways for enhanced production. While research into these traditional approaches continues, limitations such as scale-up and time cost hold them back from wider use, while at the same time there is a shift to more novel methods, such as moving from episomal expression to chromosomal integration. Recently, nontraditional approaches such as co-culture systems and cell-free metabolic engineering (CFME) are being investigated for modular optimization. Co-culture modularity looks to optimally divide the metabolic burden between different hosts. CFME seeks to modularly optimize metabolic pathways in vitro, both speeding up the design of such systems and eliminating the issues associated with live hosts. In this review we will examine both traditional and nontraditional approaches for modular optimization, examining recent developments and discussing issues and emerging solutions for future research in metabolic engineering.
Collapse
Affiliation(s)
- Matthew Wong
- Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Abinaya Badri
- Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Christopher Gasparis
- Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Georges Belfort
- Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mattheos Koffas
- Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
55
|
Choi YN, Shin YR, Park JM, Lee JW. Cell-Free Transcription-Coupled CRISPR/Cas12a Assay for Prototyping Cyanobacterial Promoters. ACS Synth Biol 2021; 10:1300-1307. [PMID: 34015913 DOI: 10.1021/acssynbio.1c00148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cyanobacteria are promising microbial hosts for the production of diverse biofuels and biochemicals. However, compared to other model microbial hosts such as Escherichia coli and yeast, it takes a long time to genetically modify cyanobacteria. One way to efficiently engineer cyanobacteria while minimizing genetic engineering would be to develop a fast, high-throughput prototyping tool for cyanobacteria. In this study, we developed a CRISPR/Cas12a-based assay coupled with cyanobacteria cell-free systems to rapidly prototype promoter characteristics. Using this newly developed assay, we demonstrated cyanobacteria cell-free transcription for the first time and confirmed a positive correlation between the in vitro and in vivo transcription performance. Furthermore, we generated a synthetic promoter library and evaluated the characteristics of promoter subregions by using the assay. Varied promoter strength derived from random mutations were rapidly and effectively measured in a high-throughput way. We believe that this study offers an easily applicable and rapid prototyping platform to characterize promoters for cyanobacterial engineering.
Collapse
Affiliation(s)
- Yun-Nam Choi
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Ye Rim Shin
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Jong Moon Park
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- School of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- School of Integrated Technology, Yonsei University (POSTECH-Yonsei Open Campus), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk, 37673, Korea
| | - Jeong Wook Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- School of Integrated Technology, Yonsei University (POSTECH-Yonsei Open Campus), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk, 37673, Korea
| |
Collapse
|
56
|
Prototyping of microbial chassis for the biomanufacturing of high-value chemical targets. Biochem Soc Trans 2021; 49:1055-1063. [PMID: 34100907 DOI: 10.1042/bst20200017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/19/2022]
Abstract
Metabolic engineering technologies have been employed with increasing success over the last three decades for the engineering and optimization of industrial host strains to competitively produce high-value chemical targets. To this end, continued reductions in the time taken from concept, to development, to scale-up are essential. Design-Build-Test-Learn pipelines that are able to rapidly deliver diverse chemical targets through iterative optimization of microbial production strains have been established. Biofoundries are employing in silico tools for the design of genetic parts, alongside combinatorial design of experiments approaches to optimize selection from within the potential design space of biological circuits based on multi-criteria objectives. These genetic constructs can then be built and tested through automated laboratory workflows, with performance data analysed in the learn phase to inform further design. Successful examples of rapid prototyping processes for microbially produced compounds reveal the potential role of biofoundries in leading the sustainable production of next-generation bio-based chemicals.
Collapse
|
57
|
Nishio T, Yoshikawa Y, Yoshikawa K, Sato SI. Longer DNA exhibits greater potential for cell-free gene expression. Sci Rep 2021; 11:11739. [PMID: 34083658 PMCID: PMC8175755 DOI: 10.1038/s41598-021-91243-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
Cell-free gene expression systems have been valuable tools for understanding how transcription/translation can be regulated in living cells. Many studies have investigated the determining factors that affect gene expression. Here we report the effect of the length of linearized reporter DNAs encoding the firefly luciferase gene so as to exclude the influence of supercoiling. It is found that longer DNA molecules exhibit significantly greater potency in gene expression; for example, the expression level for DNA with 25.7 kbp is 1000-times higher than that for DNA of 1.7 kbp. AFM observation of the DNA conformation indicates that longer DNA takes shrunken conformation with a higher segment density in the reaction mixture for gene expression, in contrast to the stiff conformation of shorter DNA. We propose an underlying mechanism for the favorable effect of longer DNA on gene expression in terms of the enhancement of access of RNA polymerase to the shrunken conformation. It is expected that the enhancement of gene expression efficiency with a shrunken DNA conformation would also be a rather general mechanism in living cellular environments.
Collapse
Affiliation(s)
- Takashi Nishio
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Yuko Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Shin-Ichi Sato
- Institute for Chemical Research, Kyoto University, Kyoto, 611-0011, Japan.
| |
Collapse
|
58
|
Blum SM, Lee MS, Mgboji GE, Funk VL, Beabout K, Harbaugh SV, Roth PA, Liem AT, Miklos AE, Emanuel PA, Walper SA, Chávez JL, Lux MW. Impact of Porous Matrices and Concentration by Lyophilization on Cell-Free Expression. ACS Synth Biol 2021; 10:1116-1131. [PMID: 33843211 DOI: 10.1021/acssynbio.0c00634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cell-free expression systems have drawn increasing attention as a tool to achieve complex biological functions outside of the cell. Several applications of the technology involve the delivery of functionality to challenging environments, such as field-forward diagnostics or point-of-need manufacturing of pharmaceuticals. To achieve these goals, cell-free reaction components are preserved using encapsulation or lyophilization methods, both of which often involve an embedding of components in porous matrices like paper or hydrogels. Previous work has shown a range of impacts of porous materials on cell-free expression reactions. Here, we explored a panel of 32 paperlike materials and 5 hydrogel materials for the impact on reaction performance. The screen included a tolerance to lyophilization for reaction systems based on both cell lysates and purified expression components. For paperlike materials, we found that (1) materials based on synthetic polymers were mostly incompatible with cell-free expression, (2) lysate-based reactions were largely insensitive to the matrix for cellulosic and microfiber materials, and (3) purified systems had an improved performance when lyophilized in cellulosic but not microfiber matrices. The impact of hydrogel materials ranged from completely inhibitory to a slight enhancement. The exploration of modulating the rehydration volume of lyophilized reactions yielded reaction speed increases using an enzymatic colorimetric reporter of up to twofold with an optimal ratio of 2:1 lyophilized reaction to rehydration volume for the lysate system and 1.5:1 for the purified system. The effect was independent of the matrices assessed. Testing with a fluorescent nonenzymatic reporter and no matrix showed similar improvements in both yields and reaction speeds for the lysate system and yields but not reaction speeds for the purified system. We finally used these observations to show an improved performance of two sensors that span reaction types, matrix, and reporters. In total, these results should enhance efforts to develop field-forward applications of cell-free expression systems.
Collapse
Affiliation(s)
- Steven M. Blum
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
| | - Marilyn S. Lee
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
| | - Glory E. Mgboji
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830-6209, United States
| | - Vanessa L. Funk
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
| | - Kathryn Beabout
- UES, Inc., Dayton, Ohio 45432, United States
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Svetlana V. Harbaugh
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Pierce A. Roth
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
- DCS Corporation, 4696 Millenium Drive, Suite 450, Belcamp, Maryland 21017, United States
| | - Alvin T. Liem
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
- DCS Corporation, 4696 Millenium Drive, Suite 450, Belcamp, Maryland 21017, United States
| | - Aleksandr E. Miklos
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
| | - Peter A. Emanuel
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
| | - Scott A. Walper
- Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, District of Columbia 20375, United States
| | - Jorge Luis Chávez
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Matthew W. Lux
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
| |
Collapse
|
59
|
Fackler N, Heijstra BD, Rasor BJ, Brown H, Martin J, Ni Z, Shebek KM, Rosin RR, Simpson SD, Tyo KE, Giannone RJ, Hettich RL, Tschaplinski TJ, Leang C, Brown SD, Jewett MC, Köpke M. Stepping on the Gas to a Circular Economy: Accelerating Development of Carbon-Negative Chemical Production from Gas Fermentation. Annu Rev Chem Biomol Eng 2021; 12:439-470. [PMID: 33872517 DOI: 10.1146/annurev-chembioeng-120120-021122] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Owing to rising levels of greenhouse gases in our atmosphere and oceans, climate change poses significant environmental, economic, and social challenges globally. Technologies that enable carbon capture and conversion of greenhouse gases into useful products will help mitigate climate change by enabling a new circular carbon economy. Gas fermentation usingcarbon-fixing microorganisms offers an economically viable and scalable solution with unique feedstock and product flexibility that has been commercialized recently. We review the state of the art of gas fermentation and discuss opportunities to accelerate future development and rollout. We discuss the current commercial process for conversion of waste gases to ethanol, including the underlying biology, challenges in process scale-up, and progress on genetic tool development and metabolic engineering to expand the product spectrum. We emphasize key enabling technologies to accelerate strain development for acetogens and other nonmodel organisms.
Collapse
Affiliation(s)
- Nick Fackler
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| | | | - Blake J Rasor
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Hunter Brown
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Jacob Martin
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Zhuofu Ni
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Kevin M Shebek
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Rick R Rosin
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| | - Séan D Simpson
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| | - Keith E Tyo
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Richard J Giannone
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA; ,
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA; ,
| | | | - Ching Leang
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| | - Steven D Brown
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , , .,Robert H. Lurie Comprehensive Cancer Center and Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, USA
| | - Michael Köpke
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| |
Collapse
|
60
|
Yong C, Gyorgy A. Stability and Robustness of Unbalanced Genetic Toggle Switches in the Presence of Scarce Resources. Life (Basel) 2021; 11:271. [PMID: 33805212 PMCID: PMC8064337 DOI: 10.3390/life11040271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/24/2022] Open
Abstract
While the vision of synthetic biology is to create complex genetic systems in a rational fashion, system-level behaviors are often perplexing due to the context-dependent dynamics of modules. One major source of context-dependence emerges due to the limited availability of shared resources, coupling the behavior of disconnected components. Motivated by the ubiquitous role of toggle switches in genetic circuits ranging from controlling cell fate differentiation to optimizing cellular performance, here we reveal how their fundamental dynamic properties are affected by competition for scarce resources. Combining a mechanistic model with nullcline-based stability analysis and potential landscape-based robustness analysis, we uncover not only the detrimental impacts of resource competition, but also how the unbalancedness of the switch further exacerbates them. While in general both of these factors undermine the performance of the switch (by pushing the dynamics toward monostability and increased sensitivity to noise), we also demonstrate that some of the unwanted effects can be alleviated by strategically optimized resource competition. Our results provide explicit guidelines for the context-aware rational design of toggle switches to mitigate our reliance on lengthy and expensive trial-and-error processes, and can be seamlessly integrated into the computer-aided synthesis of complex genetic systems.
Collapse
Affiliation(s)
- Chentao Yong
- Department of Chemical and Biological Engineering, New York University, New York, NY 10003, USA;
| | - Andras Gyorgy
- Department of Electrical and Computer Engineering, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| |
Collapse
|
61
|
Vogele K, Falgenhauer E, von Schönberg S, Simmel FC, Pirzer T. Small Antisense DNA-Based Gene Silencing Enables Cell-Free Bacteriophage Manipulation and Genome Replication. ACS Synth Biol 2021; 10:459-465. [PMID: 33577295 PMCID: PMC7611488 DOI: 10.1021/acssynbio.0c00402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell-free systems allow interference with gene expression processes without requiring elaborate genetic engineering procedures. This makes it ideally suited for rapid prototyping of synthetic biological parts. Inspired by nature's strategies for the control of gene expression via short antisense RNA molecules, we here investigated the use of small DNA (sDNA) for translational inhibition in the context of cell-free protein expression. We designed sDNA molecules to be complementary to the ribosome binding site (RBS) and the downstream coding sequence of targeted mRNA molecules. Depending on sDNA concentration and the promoter used for transcription of the mRNA, this resulted in a reduction of gene expression of targeted genes by up to 50-fold. We applied the cell-free sDNA technique (CF-sDNA) to modulate cell-free gene expression from the native T7 phage genome by suppressing the production of the major capsid protein of the phage. This resulted in a reduced phage titer, but at the same time drastically improved cell-free replication of the phage genome, which we utilized to amplify the T7 genome by more than 15 000-fold in a droplet-based serial dilution experiment. Our simple antisense sDNA approach extends the possibilities to exert translational control in cell-free expression systems, which should prove useful for cell-free prototyping of native phage genomes and also cell-free phage manipulation.
Collapse
Affiliation(s)
- Kilian Vogele
- Physics of Synthetic Biological Systems–E14, Physics Department and ZNN, Technische Universität München, 85748 Garching, Germany
| | - Elisabeth Falgenhauer
- Physics of Synthetic Biological Systems–E14, Physics Department and ZNN, Technische Universität München, 85748 Garching, Germany
| | - Sophie von Schönberg
- Physics of Synthetic Biological Systems–E14, Physics Department and ZNN, Technische Universität München, 85748 Garching, Germany
| | - Friedrich C. Simmel
- Physics of Synthetic Biological Systems–E14, Physics Department and ZNN, Technische Universität München, 85748 Garching, Germany
| | - Tobias Pirzer
- Physics of Synthetic Biological Systems–E14, Physics Department and ZNN, Technische Universität München, 85748 Garching, Germany
| |
Collapse
|
62
|
Swank Z, Maerkl SJ. CFPU: A Cell-Free Processing Unit for High-Throughput, Automated In Vitro Circuit Characterization in Steady-State Conditions. BIODESIGN RESEARCH 2021; 2021:2968181. [PMID: 37849954 PMCID: PMC10521719 DOI: 10.34133/2021/2968181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/24/2021] [Indexed: 10/19/2023] Open
Abstract
Forward engineering synthetic circuits are at the core of synthetic biology. Automated solutions will be required to facilitate circuit design and implementation. Circuit design is increasingly being automated with design software, but innovations in experimental automation are lagging behind. Microfluidic technologies made it possible to perform in vitro transcription-translation (tx-tl) reactions with increasing throughput and sophistication, enabling screening and characterization of individual circuit elements and complete circuit designs. Here, we developed an automated microfluidic cell-free processing unit (CFPU) that extends high-throughput screening capabilities to a steady-state reaction environment, which is essential for the implementation and analysis of more complex and dynamic circuits. The CFPU contains 280 chemostats that can be individually programmed with DNA circuits. Each chemostat is periodically supplied with tx-tl reagents, giving rise to sustained, long-term steady-state conditions. Using microfluidic pulse width modulation (PWM), the device is able to generate tx-tl reagent compositions in real time. The device has higher throughput, lower reagent consumption, and overall higher functionality than current chemostat devices. We applied this technology to map transcription factor-based repression under equilibrium conditions and implemented dynamic gene circuits switchable by small molecules. We expect the CFPU to help bridge the gap between circuit design and experimental automation for in vitro development of synthetic gene circuits.
Collapse
Affiliation(s)
- Zoe Swank
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Sebastian J. Maerkl
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Switzerland
| |
Collapse
|
63
|
Moore SJ, Lai HE, Chee SM, Toh M, Coode S, Chengan K, Capel P, Corre C, de los Santos ELC, Freemont PS. A Streptomyces venezuelae Cell-Free Toolkit for Synthetic Biology. ACS Synth Biol 2021; 10:402-411. [PMID: 33497199 PMCID: PMC7901020 DOI: 10.1021/acssynbio.0c00581] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Prokaryotic
cell-free coupled transcription–translation
(TX-TL) systems are emerging as a powerful tool to examine natural
product biosynthetic pathways in a test tube. The key advantages of
this approach are the reduced experimental time scales and controlled
reaction conditions. To realize this potential, it is essential to
develop specialized cell-free systems in organisms enriched for biosynthetic
gene clusters. This requires strong protein production and well-characterized
synthetic biology tools. The Streptomyces genus is
a major source of natural products. To study enzymes and pathways
from Streptomyces, we originally developed a homologous Streptomyces cell-free system to provide a native protein
folding environment, a high G+C (%) tRNA pool, and an active background
metabolism. However, our initial yields were low (36 μg/mL)
and showed a high level of batch-to-batch variation. Here, we present
an updated high-yield and robust Streptomyces TX-TL
protocol, reaching up to yields of 266 μg/mL of expressed recombinant
protein. To complement this, we rapidly characterize a range of DNA
parts with different reporters, express high G+C (%) biosynthetic
genes, and demonstrate an initial proof of concept for combined transcription,
translation, and biosynthesis of Streptomyces metabolic
pathways in a single “one-pot” reaction.
Collapse
Affiliation(s)
- Simon J. Moore
- Centre for Synthetic Biology and Innovation, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, U.K
- Department Section of Structural and Synthetic Biology, Department of Infectious Disease; Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, U.K
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, U.K
| | - Hung-En Lai
- Centre for Synthetic Biology and Innovation, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, U.K
- Department Section of Structural and Synthetic Biology, Department of Infectious Disease; Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, U.K
| | - Soo-Mei Chee
- Department Section of Structural and Synthetic Biology, Department of Infectious Disease; Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, U.K
- The London Biofoundry, Imperial College Translation & Innovation Hub, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Ming Toh
- Centre for Synthetic Biology and Innovation, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, U.K
- Department Section of Structural and Synthetic Biology, Department of Infectious Disease; Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, U.K
| | - Seth Coode
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, U.K
| | - Kameshwari Chengan
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, U.K
| | - Patrick Capel
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, U.K
| | - Christophe Corre
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, U.K
| | - Emmanuel LC de los Santos
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, U.K
| | - Paul S. Freemont
- Centre for Synthetic Biology and Innovation, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, U.K
- Department Section of Structural and Synthetic Biology, Department of Infectious Disease; Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, U.K
- The London Biofoundry, Imperial College Translation & Innovation Hub, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0N, U.K
| |
Collapse
|
64
|
Singhal V, Tuza ZA, Sun ZZ, Murray RM. A MATLAB toolbox for modeling genetic circuits in cell-free systems. Synth Biol (Oxf) 2021; 6:ysab007. [PMID: 33981862 PMCID: PMC8102020 DOI: 10.1093/synbio/ysab007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/07/2020] [Accepted: 12/23/2020] [Indexed: 01/19/2023] Open
Abstract
We introduce a MATLAB-based simulation toolbox, called txtlsim, for an Escherichia coli-based Transcription-Translation (TX-TL) system. This toolbox accounts for several cell-free-related phenomena, such as resource loading, consumption and degradation, and in doing so, models the dynamics of TX-TL reactions for the entire duration of solution phase batch-mode experiments. We use a Bayesian parameter inference approach to characterize the reaction rate parameters associated with the core transcription, translation and mRNA degradation mechanics of the toolbox, allowing it to reproduce constitutive mRNA and protein-expression trajectories. We demonstrate the use of this characterized toolbox in a circuit behavior prediction case study for an incoherent feed-forward loop.
Collapse
Affiliation(s)
- Vipul Singhal
- Spatial and Single Cell Systems Domain, Genome Institute of Singapore, 60 Biopolis St, 138672, Singapore
| | - Zoltan A Tuza
- Department of Bioengineering, Imperial College London, Exhibition Rd, South Kensington, SW7 2BU, London, UK
| | - Zachary Z Sun
- Tierra Bioscienes, 1933 Davis St #223, 94577, CA, USA
| | - Richard M Murray
- Control and Dynamical Systems and Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd, 91125, CA, USA
| |
Collapse
|
65
|
Zhang J, Chen Y, Fu L, Guo E, Wang B, Dai L, Si T. Accelerating strain engineering in biofuel research via build and test automation of synthetic biology. Curr Opin Biotechnol 2021; 67:88-98. [PMID: 33508635 DOI: 10.1016/j.copbio.2021.01.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/18/2022]
Abstract
Biofuels are a type of sustainable and renewable energy. However, for the economical production of bulk-volume biofuels, biosystems design is particularly challenging to achieve sufficient yield, titer, and productivity. Because of the lack of predictive modeling, high-throughput screening remains essential. Recently established biofoundries provide an emerging infrastructure to accelerate biological design-build-test-learn (DBTL) cycles through the integration of robotics, synthetic biology, and informatics. In this review, we first introduce the technical advances of build and test automation in synthetic biology, focusing on the use of industry-standard microplates for DNA assembly, chassis engineering, and enzyme and strain screening. Proof-of-concept studies on prototypes of automated foundries are then discussed, for improving biomass deconstruction, metabolic conversion, and host robustness. We conclude with future challenges and opportunities in creating a flexible, versatile, and data-driven framework to support biofuel research and development in biofoundries.
Collapse
Affiliation(s)
- Jianzhi Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yongcan Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lihao Fu
- CAS Key Laboratory of Quantitative Engineering Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Erpeng Guo
- CAS Key Laboratory of Quantitative Engineering Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bo Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tong Si
- CAS Key Laboratory of Quantitative Engineering Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
66
|
Setting Up an Automated Biomanufacturing Laboratory. Methods Mol Biol 2021; 2229:137-155. [PMID: 33405219 DOI: 10.1007/978-1-0716-1032-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Laboratory automation is a key enabling technology for genetic engineering that can lead to higher throughput, more efficient and accurate experiments, better data management and analysis, decrease in the DBT (Design, Build, and Test) cycle turnaround, increase of reproducibility, and savings in lab resources. Choosing the correct framework among so many options available in terms of software, hardware, and skills needed to operate them is crucial for the success of any automation project. This chapter explores the multiple aspects to be considered for the solid development of a biofoundry project including available software and hardware tools, resources, strategies, partnerships, and collaborations in the field needed to speed up the translation of research results to solve important society problems.
Collapse
|
67
|
Abstract
One of the fundamental properties of engineered large-scale complex systems is modularity. In synthetic biology, genetic parts exhibit context-dependent behavior. Here, we describe and quantify a major source of such behavior: retroactivity. In particular, we provide a step-by-step guide for characterizing retroactivity to restore the modular description of genetic modules. Additionally, we also discuss how retroactivity can be leveraged to quantify and maximize robustness to perturbations due to interconnection of genetic modules.
Collapse
Affiliation(s)
- Andras Gyorgy
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
68
|
Young R, Haines M, Storch M, Freemont PS. Combinatorial metabolic pathway assembly approaches and toolkits for modular assembly. Metab Eng 2020; 63:81-101. [PMID: 33301873 DOI: 10.1016/j.ymben.2020.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022]
Abstract
Synthetic Biology is a rapidly growing interdisciplinary field that is primarily built upon foundational advances in molecular biology combined with engineering design principles such as modularity and interoperability. The field considers living systems as programmable at the genetic level and has been defined by the development of new platform technologies and methodological advances. A key concept driving the field is the Design-Build-Test-Learn cycle which provides a systematic framework for building new biological systems. One major application area for synthetic biology is biosynthetic pathway engineering that requires the modular assembly of different genetic regulatory elements and biosynthetic enzymes. In this review we provide an overview of modular DNA assembly and describe and compare the plethora of in vitro and in vivo assembly methods for combinatorial pathway engineering. Considerations for part design and methods for enzyme balancing are also presented, and we briefly discuss alternatives to intracellular pathway assembly including microbial consortia and cell-free systems for biosynthesis. Finally, we describe computational tools and automation for pathway design and assembly and argue that a deeper understanding of the many different variables of genetic design, pathway regulation and cellular metabolism will allow more predictive pathway design and engineering.
Collapse
Affiliation(s)
- Rosanna Young
- Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK
| | - Matthew Haines
- Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK
| | - Marko Storch
- Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK; London Biofoundry, Imperial College Translation & Innovation Hub, London, W12 0BZ, UK
| | - Paul S Freemont
- Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK; London Biofoundry, Imperial College Translation & Innovation Hub, London, W12 0BZ, UK; UK DRI Care Research and Technology Centre, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
69
|
|
70
|
Cole SD, Miklos AE, Chiao AC, Sun ZZ, Lux MW. Methodologies for preparation of prokaryotic extracts for cell-free expression systems. Synth Syst Biotechnol 2020; 5:252-267. [PMID: 32775710 PMCID: PMC7398980 DOI: 10.1016/j.synbio.2020.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022] Open
Abstract
Cell-free systems that mimic essential cell functions, such as gene expression, have dramatically expanded in recent years, both in terms of applications and widespread adoption. Here we provide a review of cell-extract methods, with a specific focus on prokaryotic systems. Firstly, we describe the diversity of Escherichia coli genetic strains available and their corresponding utility. We then trace the history of cell-extract methodology over the past 20 years, showing key improvements that lower the entry level for new researchers. Next, we survey the rise of new prokaryotic cell-free systems, with associated methods, and the opportunities provided. Finally, we use this historical perspective to comment on the role of methodology improvements and highlight where further improvements may be possible.
Collapse
Affiliation(s)
- Stephanie D. Cole
- US Army Combat Capabilities Development Command Chemical Biological Center, 8567 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA
| | - Aleksandr E. Miklos
- US Army Combat Capabilities Development Command Chemical Biological Center, 8567 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA
| | - Abel C. Chiao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Synvitrobio Inc., San Francisco, CA, USA
| | - Zachary Z. Sun
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Synvitrobio Inc., San Francisco, CA, USA
| | - Matthew W. Lux
- US Army Combat Capabilities Development Command Chemical Biological Center, 8567 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA
| |
Collapse
|
71
|
Müller J, Siemann-Herzberg M, Takors R. Modeling Cell-Free Protein Synthesis Systems-Approaches and Applications. Front Bioeng Biotechnol 2020; 8:584178. [PMID: 33195146 PMCID: PMC7655533 DOI: 10.3389/fbioe.2020.584178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/29/2020] [Indexed: 01/03/2023] Open
Abstract
In vitro systems are ideal setups to investigate the basic principles of biochemical reactions and subsequently the bricks of life. Cell-free protein synthesis (CFPS) systems mimic the transcription and translation processes of whole cells in a controlled environment and allow the detailed study of single components and reaction networks. In silico studies of CFPS systems help us to understand interactions and to identify limitations and bottlenecks in those systems. Black-box models laid the foundation for understanding the production and degradation dynamics of macromolecule components such as mRNA, ribosomes, and proteins. Subsequently, more sophisticated models revealed shortages in steps such as translation initiation and tRNA supply and helped to partially overcome these limitations. Currently, the scope of CFPS modeling has broadened to various applications, ranging from the screening of kinetic parameters to the stochastic analysis of liposome-encapsulated CFPS systems and the assessment of energy supply properties in combination with flux balance analysis (FBA).
Collapse
Affiliation(s)
| | | | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
72
|
Aw R, Spice AJ, Polizzi KM. Methods for Expression of Recombinant Proteins Using a
Pichia pastoris
Cell‐Free System. ACTA ACUST UNITED AC 2020; 102:e115. [DOI: 10.1002/cpps.115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Rochelle Aw
- Imperial College Centre for Synthetic Biology Imperial College London London United Kingdom
- Department of Chemical Engineering Imperial College London London United Kingdom
| | - Alex J. Spice
- Imperial College Centre for Synthetic Biology Imperial College London London United Kingdom
- Department of Chemical Engineering Imperial College London London United Kingdom
| | - Karen M. Polizzi
- Imperial College Centre for Synthetic Biology Imperial College London London United Kingdom
- Department of Chemical Engineering Imperial College London London United Kingdom
| |
Collapse
|
73
|
Yim SS, Johns NI, Noireaux V, Wang HH. Protecting Linear DNA Templates in Cell-Free Expression Systems from Diverse Bacteria. ACS Synth Biol 2020; 9:2851-2855. [PMID: 32926785 DOI: 10.1021/acssynbio.0c00277] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent advances in cell-free systems have opened up new capabilities in synthetic biology from rapid prototyping of genetic circuits and metabolic pathways to portable diagnostics and biomanufacturing. A current bottleneck in cell-free systems, especially those employing non-E. coli bacterial species, is the required use of plasmid DNA, which can be laborious to construct, clone, and verify. Linear DNA templates offer a faster and more direct route for many cell-free applications, but they are often rapidly degraded in cell-free reactions. In this study, we evaluated GamS from λ-phage, DNA fragments containing Chi-sites, and Ku from Mycobacterium tuberculosis for their ability to protect linear DNA templates in diverse bacterial cell-free systems. We show that these nuclease inhibitors exhibit differential protective activities against endogenous exonucleases in five different cell-free lysates, highlighting their utility for diverse bacterial species. We expect these linear DNA protection strategies will accelerate high-throughput approaches in cell-free synthetic biology.
Collapse
Affiliation(s)
- Sung Sun Yim
- Department of Systems Biology, Columbia University, New York, New York 10027, United States
| | - Nathan I. Johns
- Department of Systems Biology, Columbia University, New York, New York 10027, United States
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, New York 10027, United States
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Harris H. Wang
- Department of Systems Biology, Columbia University, New York, New York 10027, United States
- Department of Pathology and Cell Biology, Columbia University, New York, New York 10027, United States
| |
Collapse
|
74
|
Karim AS, Liew F(E, Garg S, Vögeli B, Rasor BJ, Gonnot A, Pavan M, Juminaga A, Simpson SD, Köpke M, Jewett MC. Modular cell-free expression plasmids to accelerate biological design in cells. Synth Biol (Oxf) 2020; 5:ysaa019. [PMID: 33344777 PMCID: PMC7737004 DOI: 10.1093/synbio/ysaa019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 01/28/2023] Open
Abstract
Industrial biotechnology aims to produce high-value products from renewable resources. This can be challenging because model microorganisms-organisms that are easy to use like Escherichia coli-often lack the machinery required to utilize desired feedstocks like lignocellulosic biomass or syngas. Non-model organisms, such as Clostridium, are industrially proven and have desirable metabolic features but have several hurdles to mainstream use. Namely, these species grow more slowly than conventional laboratory microbes, and genetic tools for engineering them are far less prevalent. To address these hurdles for accelerating cellular design, cell-free synthetic biology has matured as an approach for characterizing non-model organisms and rapidly testing metabolic pathways in vitro. Unfortunately, cell-free systems can require specialized DNA architectures with minimal regulation that are not compatible with cellular expression. In this work, we develop a modular vector system that allows for T7 expression of desired enzymes for cell-free expression and direct Golden Gate assembly into Clostridium expression vectors. Utilizing the Joint Genome Institute's DNA Synthesis Community Science Program, we designed and synthesized these plasmids and genes required for our projects allowing us to shuttle DNA easily between our in vitro and in vivo experiments. We next validated that these vectors were sufficient for cell-free expression of functional enzymes, performing on par with the previous state-of-the-art. Lastly, we demonstrated automated six-part DNA assemblies for Clostridium autoethanogenum expression with efficiencies ranging from 68% to 90%. We anticipate this system of plasmids will enable a framework for facile testing of biosynthetic pathways in vitro and in vivo by shortening development cycles.
Collapse
Affiliation(s)
- Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | | | | | - Bastian Vögeli
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Blake J Rasor
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | | | | | | | | | | | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
75
|
Liu R, Zhang Y, Zhai G, Fu S, Xia Y, Hu B, Cai X, Zhang Y, Li Y, Deng Z, Liu T. A Cell-Free Platform Based on Nisin Biosynthesis for Discovering Novel Lanthipeptides and Guiding their Overproduction In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001616. [PMID: 32995136 PMCID: PMC7507342 DOI: 10.1002/advs.202001616] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/10/2020] [Indexed: 05/12/2023]
Abstract
Lanthipeptides have extensive therapeutic and industrial applications. However, because many are bactericidal, traditional in vivo platforms are limited in their capacity to discover and mass produce novel lanthipeptides as bacterial organisms are often critical components in these systems. Herein, the development of a cell-free protein synthesis (CFPS) platform that enables rapid genome mining, screening, and guided overproduction of lanthipeptides in vivo is described. For proof-of-concept studies, a type I lanthipeptide, nisin, is selected. Four novel lanthipeptides with antibacterial activity are identified among all nisin analogs in the National Center for Biotechnology Information (NCBI) database in a single day. Further, the CFPS platform is coupled with a screening assay for anti-gram-negative bacteria growth, resulting in the identification of a potent nisin mutant, M5. The titers of nisin and the nisin analog are found to be improved with CFPS platform guidance. Owing to the similarities in biosynthesis, the CFPS platform is broadly applicable to other lanthipeptides, thereby providing a universal method for lanthipeptide discovery and overproduction.
Collapse
Affiliation(s)
- Ran Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and Wuhan University School of Pharmaceutical SciencesWuhan430071China
| | - Yuchen Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and Wuhan University School of Pharmaceutical SciencesWuhan430071China
| | - Guoqing Zhai
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and Wuhan University School of Pharmaceutical SciencesWuhan430071China
| | - Shuai Fu
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and Wuhan University School of Pharmaceutical SciencesWuhan430071China
| | - Yao Xia
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and Wuhan University School of Pharmaceutical SciencesWuhan430071China
| | - Ben Hu
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and Wuhan University School of Pharmaceutical SciencesWuhan430071China
| | - Xuan Cai
- Department of Clinical LaboratoryRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Yan Zhang
- Department of Clinical LaboratoryRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Yan Li
- Department of Clinical LaboratoryRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and Wuhan University School of Pharmaceutical SciencesWuhan430071China
- Hubei Engineering Laboratory for Synthetic MicrobiologyWuhan Institute of BiotechnologyWuhan430075China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and Wuhan University School of Pharmaceutical SciencesWuhan430071China
- Hubei Engineering Laboratory for Synthetic MicrobiologyWuhan Institute of BiotechnologyWuhan430075China
| |
Collapse
|
76
|
Spice AJ, Aw R, Bracewell DG, Polizzi KM. Improving the reaction mix of a Pichia pastoris cell-free system using a design of experiments approach to minimise experimental effort. Synth Syst Biotechnol 2020; 5:137-144. [PMID: 32637667 PMCID: PMC7320237 DOI: 10.1016/j.synbio.2020.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
A renaissance in cell-free protein synthesis (CFPS) is underway, enabled by the acceleration and adoption of synthetic biology methods. CFPS has emerged as a powerful platform technology for synthetic gene network design, biosensing and on-demand biomanufacturing. Whilst primarily of bacterial origin, cell-free extracts derived from a variety of host organisms have been explored, aiming to capitalise on cellular diversity and the advantageous properties associated with those organisms. However, cell-free extracts produced from eukaryotes are often overlooked due to their relatively low yields, despite the potential for improved protein folding and posttranslational modifications. Here we describe further development of a Pichia pastoris cell-free platform, a widely used expression host in both academia and the biopharmaceutical industry. Using a minimised Design of Experiments (DOE) approach, we were able to increase the productivity of the system by improving the composition of the complex reaction mixture. This was achieved in a minimal number of experimental runs, within the constraints of the design and without the need for liquid-handling robots. In doing so, we were able to estimate the main effects impacting productivity in the system and increased the protein synthesis of firefly luciferase and the biopharmaceutical HSA by 4.8-fold and 3.5-fold, respectively. This study highlights the P. pastoris-based cell-free system as a highly productive eukaryotic platform and displays the value of minimised DOE designs.
Collapse
Key Words
- AB, Albumin Blue
- CFPS, cell-free protein synthesis
- CHO, Chinese hamster ovary cells
- Cell-free protein synthesis
- DOE, design of Experiments
- DSD, definitive screening design
- Design of experiments (DOE)
- HSA, human serum albumin
- IRES, internal ribosome entry site
- Pichia pastoris
- RRL, rabbit reticulocyte lysate
- Synthetic biology
- VLP, virus-like particles
- WGE, wheat-germ etract
Collapse
Affiliation(s)
- Alex J. Spice
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, UK
| | - Rochelle Aw
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, UK
| | - Daniel G. Bracewell
- Department of Biochemical Engineering, University College London, London, UK
| | - Karen M. Polizzi
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, UK
| |
Collapse
|
77
|
Marucci L, Barberis M, Karr J, Ray O, Race PR, de Souza Andrade M, Grierson C, Hoffmann SA, Landon S, Rech E, Rees-Garbutt J, Seabrook R, Shaw W, Woods C. Computer-Aided Whole-Cell Design: Taking a Holistic Approach by Integrating Synthetic With Systems Biology. Front Bioeng Biotechnol 2020; 8:942. [PMID: 32850764 PMCID: PMC7426639 DOI: 10.3389/fbioe.2020.00942] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/21/2020] [Indexed: 01/03/2023] Open
Abstract
Computer-aided design (CAD) for synthetic biology promises to accelerate the rational and robust engineering of biological systems. It requires both detailed and quantitative mathematical and experimental models of the processes to (re)design biology, and software and tools for genetic engineering and DNA assembly. Ultimately, the increased precision in the design phase will have a dramatic impact on the production of designer cells and organisms with bespoke functions and increased modularity. CAD strategies require quantitative models of cells that can capture multiscale processes and link genotypes to phenotypes. Here, we present a perspective on how whole-cell, multiscale models could transform design-build-test-learn cycles in synthetic biology. We show how these models could significantly aid in the design and learn phases while reducing experimental testing by presenting case studies spanning from genome minimization to cell-free systems. We also discuss several challenges for the realization of our vision. The possibility to describe and build whole-cells in silico offers an opportunity to develop increasingly automatized, precise and accessible CAD tools and strategies.
Collapse
Affiliation(s)
- Lucia Marucci
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom.,School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom.,Bristol Centre for Synthetic Biology (BrisSynBio), University of Bristol, Bristol, United Kingdom
| | - Matteo Barberis
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford, United Kingdom.,Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Jonathan Karr
- Icahn Institute for Data Science and Genomic Technology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Oliver Ray
- Department of Computer Science, University of Bristol, Bristol, United Kingdom
| | - Paul R Race
- Bristol Centre for Synthetic Biology (BrisSynBio), University of Bristol, Bristol, United Kingdom.,School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Miguel de Souza Andrade
- Brazilian Agricultural Research Corporation/National Institute of Science and Technology - Synthetic Biology, Brasília, Brazil.,Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Claire Grierson
- Bristol Centre for Synthetic Biology (BrisSynBio), University of Bristol, Bristol, United Kingdom.,School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Stefan Andreas Hoffmann
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Sophie Landon
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom.,Bristol Centre for Synthetic Biology (BrisSynBio), University of Bristol, Bristol, United Kingdom
| | - Elibio Rech
- Brazilian Agricultural Research Corporation/National Institute of Science and Technology - Synthetic Biology, Brasília, Brazil
| | - Joshua Rees-Garbutt
- Bristol Centre for Synthetic Biology (BrisSynBio), University of Bristol, Bristol, United Kingdom.,School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Richard Seabrook
- Elizabeth Blackwell Institute for Health Research (EBI), University of Bristol, Bristol, United Kingdom
| | - William Shaw
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Christopher Woods
- Bristol Centre for Synthetic Biology (BrisSynBio), University of Bristol, Bristol, United Kingdom.,School of Chemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
78
|
Kim NM, Sinnott RW, Sandoval NR. Transcription factor-based biosensors and inducible systems in non-model bacteria: current progress and future directions. Curr Opin Biotechnol 2020; 64:39-46. [DOI: 10.1016/j.copbio.2019.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 10/25/2022]
|
79
|
Laohakunakorn N. Cell-Free Systems: A Proving Ground for Rational Biodesign. Front Bioeng Biotechnol 2020; 8:788. [PMID: 32793570 PMCID: PMC7393481 DOI: 10.3389/fbioe.2020.00788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 11/13/2022] Open
Abstract
Cell-free gene expression systems present an alternative approach to synthetic biology, where biological gene expression is harnessed inside non-living, in vitro biochemical reactions. Taking advantage of a plethora of recent experimental innovations, they easily overcome certain challenges for computer-aided biological design. For instance, their open nature renders all their components directly accessible, greatly facilitating model construction and validation. At the same time, these systems present their own unique difficulties, such as limited reaction lifetimes and lack of homeostasis. In this Perspective, I propose that cell-free systems are an ideal proving ground to test rational biodesign strategies, as demonstrated by a small but growing number of examples of model-guided, forward engineered cell-free biosystems. It is likely that advances gained from this approach will contribute to our efforts to more reliably and systematically engineer both cell-free as well as living cellular systems for useful applications.
Collapse
Affiliation(s)
- Nadanai Laohakunakorn
- School of Biological Sciences, Institute of Quantitative Biology, Biochemistry, and Biotechnology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
80
|
Development of a clostridia-based cell-free system for prototyping genetic parts and metabolic pathways. Metab Eng 2020; 62:95-105. [PMID: 32540392 DOI: 10.1016/j.ymben.2020.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/15/2020] [Accepted: 06/07/2020] [Indexed: 02/04/2023]
Abstract
Gas fermentation by autotrophic bacteria, such as clostridia, offers a sustainable path to numerous bioproducts from a range of local, highly abundant, waste and low-cost feedstocks, such as industrial flue gases or syngas generated from biomass or municipal waste. Unfortunately, designing and engineering clostridia remains laborious and slow. The ability to prototype individual genetic part function, gene expression patterns, and biosynthetic pathway performance in vitro before implementing designs in cells could help address these bottlenecks by speeding up design. Unfortunately, a high-yielding cell-free gene expression (CFE) system from clostridia has yet to be developed. Here, we report the development and optimization of a high-yielding (236 ± 24 μg/mL) batch CFE platform from the industrially relevant anaerobe, Clostridium autoethanogenum. A key feature of the platform is that both circular and linear DNA templates can be applied directly to the CFE reaction to program protein synthesis. We demonstrate the ability to prototype gene expression, and quantitatively map aerobic cell-free metabolism in lysates from this system. We anticipate that the C. autoethanogenum CFE platform will not only expand the protein synthesis toolkit for synthetic biology, but also serve as a platform in expediting the screening and prototyping of gene regulatory elements in non-model, industrially relevant microbes.
Collapse
|
81
|
Affiliation(s)
- Damian Wollny
- Max Planck Institute for Evolutionary Anthropology Leipzig Germany
| |
Collapse
|
82
|
Abstract
Cell-free systems are a widely used research tool in systems and synthetic biology and a promising platform for manufacturing of proteins and chemicals. In the past, cell-free biology was primarily used to better understand fundamental biochemical processes. Notably, E. coli cell-free extracts were used in the 1960s to decipher the sequencing of the genetic code. Since then, the transcription and translation capabilities of cell-free systems have been repeatedly optimized to improve energy efficiency and product yield. Today, cell-free systems, in combination with the rise of synthetic biology, have taken on a new role as a promising technology for just-in-time manufacturing of therapeutically important biologics and high-value small molecules. They have also been implemented at an industrial scale for the production of antibodies and cytokines. In this review, we discuss the evolution of cell-free technologies, in particular advancements in extract preparation, cell-free protein synthesis, and cell-free metabolic engineering applications. We then conclude with a discussion of the mathematical modeling of cell-free systems. Mathematical modeling of cell-free processes could be critical to addressing performance bottlenecks and estimating the costs of cell-free manufactured products.
Collapse
|
83
|
Abstract
The cell-free molecular synthesis of biochemical systems is a rapidly growing field of research. Advances in the Human Genome Project, DNA synthesis, and other technologies have allowed the in vitro construction of biochemical systems, termed cell-free biology, to emerge as an exciting domain of bioengineering. Cell-free biology ranges from the molecular to the cell-population scales, using an ever-expanding variety of experimental platforms and toolboxes. In this review, we discuss the ongoing efforts undertaken in the three major classes of cell-free biology methodologies, namely protein-based, nucleic acids–based, and cell-free transcription–translation systems, and provide our perspectives on the current challenges as well as the major goals in each of the subfields.
Collapse
Affiliation(s)
- Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Allen P. Liu
- Departments of Mechanical Engineering, Biomedical Engineering, Biophysics, and the Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
84
|
Kelwick RJR, Webb AJ, Freemont PS. Biological Materials: The Next Frontier for Cell-Free Synthetic Biology. Front Bioeng Biotechnol 2020; 8:399. [PMID: 32478045 PMCID: PMC7235315 DOI: 10.3389/fbioe.2020.00399] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Advancements in cell-free synthetic biology are enabling innovations in sustainable biomanufacturing, that may ultimately shift the global manufacturing paradigm toward localized and ecologically harmonized production processes. Cell-free synthetic biology strategies have been developed for the bioproduction of fine chemicals, biofuels and biological materials. Cell-free workflows typically utilize combinations of purified enzymes, cell extracts for biotransformation or cell-free protein synthesis reactions, to assemble and characterize biosynthetic pathways. Importantly, cell-free reactions can combine the advantages of chemical engineering with metabolic engineering, through the direct addition of co-factors, substrates and chemicals -including those that are cytotoxic. Cell-free synthetic biology is also amenable to automatable design cycles through which an array of biological materials and their underpinning biosynthetic pathways can be tested and optimized in parallel. Whilst challenges still remain, recent convergences between the materials sciences and these advancements in cell-free synthetic biology enable new frontiers for materials research.
Collapse
Affiliation(s)
- Richard J. R. Kelwick
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Alexander J. Webb
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Paul S. Freemont
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
- The London Biofoundry, Imperial College Translation & Innovation Hub, London, United Kingdom
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London, London, United Kingdom
| |
Collapse
|
85
|
Borkowski O, Koch M, Zettor A, Pandi A, Batista AC, Soudier P, Faulon JL. Large scale active-learning-guided exploration for in vitro protein production optimization. Nat Commun 2020; 11:1872. [PMID: 32312991 PMCID: PMC7170859 DOI: 10.1038/s41467-020-15798-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/24/2020] [Indexed: 12/21/2022] Open
Abstract
Lysate-based cell-free systems have become a major platform to study gene expression but batch-to-batch variation makes protein production difficult to predict. Here we describe an active learning approach to explore a combinatorial space of ~4,000,000 cell-free buffer compositions, maximizing protein production and identifying critical parameters involved in cell-free productivity. We also provide a one-step-method to achieve high quality predictions for protein production using minimal experimental effort regardless of the lysate quality.
Collapse
Affiliation(s)
- Olivier Borkowski
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Mathilde Koch
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Agnès Zettor
- Chemogenomic and Biological Screening Core Facility, Institut Pasteur, Department of Structural Biology and Chemistry, Center for Technological Resources and Research (C2RT), 25/28 rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Amir Pandi
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Paul Soudier
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jean-Loup Faulon
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France. .,Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France. .,SYNBIOCHEM Center, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, UK.
| |
Collapse
|
86
|
Lin X, Zhou C, Zhu S, Deng H, Zhang J, Lu Y. O 2-Tuned Protein Synthesis Machinery in Escherichia coli-Based Cell-Free System. Front Bioeng Biotechnol 2020; 8:312. [PMID: 32328487 PMCID: PMC7160232 DOI: 10.3389/fbioe.2020.00312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022] Open
Abstract
Involved in most aerobic biochemical processes, oxygen affects cellular functions, and organism behaviors. Protein synthesis, as the underlying biological process, is unavoidably affected by the regulation of oxygen delivery and utilization. Bypassing the cell wall, cell-free protein synthesis (CFPS) systems are well adopted for the precise oxygen regulation analysis of bioprocesses. Here a reliable flow platform was developed for measuring and analyzing the oxygen regulation on the protein synthesis processes by combining Escherichia coli-based CFPS systems and a tube-in-tube reactor. This platform allows protein synthesis reactions conducted in precisely controlled oxygen concentrations. For analysis of the intrinsic role of oxygen in protein synthesis, O2-tuned CFPS systems were explored with transcription-translation related parameters (transcripts, energy, reactive oxygen species, and proteomic pathway analysis). It was found that 2% of oxygen was the minimum requirement for protein synthesis. There was translation-related protein degradation in the high oxygen condition leading to a reduction. By combining the precise gas level controlling and open biosystems, this platform is also potential for fundamental understanding and clinical applications by diverse gas regulation in biological processes.
Collapse
Affiliation(s)
- Xiaomei Lin
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Caijin Zhou
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Songbiao Zhu
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haiteng Deng
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jisong Zhang
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
87
|
Laohakunakorn N, Grasemann L, Lavickova B, Michielin G, Shahein A, Swank Z, Maerkl SJ. Bottom-Up Construction of Complex Biomolecular Systems With Cell-Free Synthetic Biology. Front Bioeng Biotechnol 2020; 8:213. [PMID: 32266240 PMCID: PMC7105575 DOI: 10.3389/fbioe.2020.00213] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022] Open
Abstract
Cell-free systems offer a promising approach to engineer biology since their open nature allows for well-controlled and characterized reaction conditions. In this review, we discuss the history and recent developments in engineering recombinant and crude extract systems, as well as breakthroughs in enabling technologies, that have facilitated increased throughput, compartmentalization, and spatial control of cell-free protein synthesis reactions. Combined with a deeper understanding of the cell-free systems themselves, these advances improve our ability to address a range of scientific questions. By mastering control of the cell-free platform, we will be in a position to construct increasingly complex biomolecular systems, and approach natural biological complexity in a bottom-up manner.
Collapse
Affiliation(s)
- Nadanai Laohakunakorn
- School of Biological Sciences, Institute of Quantitative Biology, Biochemistry, and Biotechnology, University of Edinburgh, Edinburgh, United Kingdom
| | - Laura Grasemann
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Barbora Lavickova
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Grégoire Michielin
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Amir Shahein
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Zoe Swank
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sebastian J. Maerkl
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
88
|
Hammerling MJ, Krüger A, Jewett MC. Strategies for in vitro engineering of the translation machinery. Nucleic Acids Res 2020; 48:1068-1083. [PMID: 31777928 PMCID: PMC7026604 DOI: 10.1093/nar/gkz1011] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/07/2019] [Accepted: 10/17/2019] [Indexed: 01/06/2023] Open
Abstract
Engineering the process of molecular translation, or protein biosynthesis, has emerged as a major opportunity in synthetic and chemical biology to generate novel biological insights and enable new applications (e.g. designer protein therapeutics). Here, we review methods for engineering the process of translation in vitro. We discuss the advantages and drawbacks of the two major strategies-purified and extract-based systems-and how they may be used to manipulate and study translation. Techniques to engineer each component of the translation machinery are covered in turn, including transfer RNAs, translation factors, and the ribosome. Finally, future directions and enabling technological advances for the field are discussed.
Collapse
Affiliation(s)
- Michael J Hammerling
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Antje Krüger
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
89
|
Spice AJ, Aw R, Bracewell DG, Polizzi KM. Synthesis and Assembly of Hepatitis B Virus-Like Particles in a Pichia pastoris Cell-Free System. Front Bioeng Biotechnol 2020; 8:72. [PMID: 32117947 PMCID: PMC7033515 DOI: 10.3389/fbioe.2020.00072] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022] Open
Abstract
Virus-like particles (VLPs) are supramolecular protein assemblies with the potential for unique and exciting applications in synthetic biology and medicine. Despite the attention VLPs have gained thus far, considerable limitations still persist in their production. Poorly scalable manufacturing technologies and inconsistent product architectures continue to restrict the full potential of VLPs. Cell-free protein synthesis (CFPS) offers an alternative approach to VLP production and has already proven to be successful, albeit using extracts from a limited number of organisms. Using a recently developed Pichia pastoris-based CFPS system, we have demonstrated the production of the model Hepatitis B core antigen VLP as a proof-of-concept. The VLPs produced in the CFPS system were found to have comparable characteristics to those previously produced in vivo and in vitro. Additionally, we have developed a facile and rapid synthesis, assembly and purification methodology that could be applied as a rapid prototyping platform for vaccine development or synthetic biology applications. Overall the CFPS methodology allows far greater throughput, which will expedite the screening of optimal assembly conditions for more robust and stable VLPs. This approach could therefore support the characterization of larger sample sets to improve vaccine development efficiency.
Collapse
Affiliation(s)
- Alex J. Spice
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
- The Imperial College Centre for Synthetic Biology Imperial College London, London, United Kingdom
| | - Rochelle Aw
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
- The Imperial College Centre for Synthetic Biology Imperial College London, London, United Kingdom
| | - Daniel G. Bracewell
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Karen M. Polizzi
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
- The Imperial College Centre for Synthetic Biology Imperial College London, London, United Kingdom
| |
Collapse
|
90
|
Kopniczky MB, Canavan C, McClymont DW, Crone MA, Suckling L, Goetzmann B, Siciliano V, MacDonald JT, Jensen K, Freemont PS. Cell-Free Protein Synthesis as a Prototyping Platform for Mammalian Synthetic Biology. ACS Synth Biol 2020; 9:144-156. [PMID: 31899623 DOI: 10.1021/acssynbio.9b00437] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The field of mammalian synthetic biology is expanding quickly, and technologies for engineering large synthetic gene circuits are increasingly accessible. However, for mammalian cell engineering, traditional tissue culture methods are slow and cumbersome, and are not suited for high-throughput characterization measurements. Here we have utilized mammalian cell-free protein synthesis (CFPS) assays using HeLa cell extracts and liquid handling automation as an alternative to tissue culture and flow cytometry-based measurements. Our CFPS assays take a few hours, and we have established optimized protocols for small-volume reactions using automated acoustic liquid handling technology. As a proof-of-concept, we characterized diverse types of genetic regulation in CFPS, including T7 constitutive promoter variants, internal ribosomal entry sites (IRES) constitutive translation-initiation sequence variants, CRISPR/dCas9-mediated transcription repression, and L7Ae-mediated translation repression. Our data shows simple regulatory elements for use in mammalian cells can be quickly prototyped in a CFPS model system.
Collapse
Affiliation(s)
- Margarita B. Kopniczky
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, U.K
| | - Caoimhe Canavan
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, U.K
| | - David W. McClymont
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, U.K
- London Biofoundry, Imperial College Translation & Innovation Hub, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Michael A. Crone
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, U.K
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, U.K
| | - Lorna Suckling
- London Biofoundry, Imperial College Translation & Innovation Hub, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Bruno Goetzmann
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, U.K
| | - Velia Siciliano
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, U.K
| | - James T. MacDonald
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, U.K
| | - Kirsten Jensen
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, U.K
- London Biofoundry, Imperial College Translation & Innovation Hub, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, U.K
| | - Paul S. Freemont
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, U.K
- London Biofoundry, Imperial College Translation & Innovation Hub, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, U.K
| |
Collapse
|
91
|
Thavarajah W, Silverman AD, Verosloff MS, Kelley-Loughnane N, Jewett MC, Lucks JB. Point-of-Use Detection of Environmental Fluoride via a Cell-Free Riboswitch-Based Biosensor. ACS Synth Biol 2020; 9:10-18. [PMID: 31829623 PMCID: PMC7412506 DOI: 10.1021/acssynbio.9b00347] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Advances in biosensor engineering have enabled the design of programmable molecular systems to detect a range of pathogens, nucleic acids, and chemicals. Here, we engineer and field-test a biosensor for fluoride, a major groundwater contaminant of global concern. The sensor consists of a cell-free system containing a DNA template that encodes a fluoride-responsive riboswitch regulating genes that produce a fluorescent or colorimetric output. Individual reactions can be lyophilized for long-term storage and detect fluoride at levels above 2 ppm, the Environmental Protection Agency's most stringent regulatory standard, in both laboratory and field conditions. Through onsite detection of fluoride in a real-world water source, this work provides a critical proof-of-principle for the future engineering of riboswitches and other biosensors to address challenges for global health and the environment.
Collapse
Affiliation(s)
- Walter Thavarajah
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- Center for Water Research, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Adam D. Silverman
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- Center for Water Research, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Matthew S. Verosloff
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, 2204 Tech Drive, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- Center for Water Research, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Nancy Kelley-Loughnane
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Julius B. Lucks
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- Center for Water Research, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| |
Collapse
|
92
|
Silverman AD, Karim AS, Jewett MC. Cell-free gene expression: an expanded repertoire of applications. Nat Rev Genet 2019; 21:151-170. [DOI: 10.1038/s41576-019-0186-3] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2019] [Indexed: 12/24/2022]
|
93
|
Kent R, Dixon N. Contemporary Tools for Regulating Gene Expression in Bacteria. Trends Biotechnol 2019; 38:316-333. [PMID: 31679824 DOI: 10.1016/j.tibtech.2019.09.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
Abstract
Insights from novel mechanistic paradigms in gene expression control have led to the development of new gene expression systems for bioproduction, control, and sensing applications. Coupled with a greater understanding of synthetic burden and modern creative biodesign approaches, contemporary bacterial gene expression tools and systems are emerging that permit fine-tuning of expression, enabling greater predictability and maximisation of specific productivity, while minimising deleterious effects upon cell viability. These advances have been achieved by using a plethora of regulatory tools, operating at all levels of the so-called 'central dogma' of molecular biology. In this review, we discuss these gene regulation tools in the context of their design, prototyping, integration into expression systems, and biotechnological application.
Collapse
Affiliation(s)
- Ross Kent
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester, UK
| | - Neil Dixon
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester, UK.
| |
Collapse
|
94
|
Lehr FX, Hanst M, Vogel M, Kremer J, Göringer HU, Suess B, Koeppl H. Cell-Free Prototyping of AND-Logic Gates Based on Heterogeneous RNA Activators. ACS Synth Biol 2019; 8:2163-2173. [PMID: 31393707 DOI: 10.1021/acssynbio.9b00238] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
RNA-based devices controlling gene expression bear great promise for synthetic biology, as they offer many advantages such as short response times and light metabolic burden compared to protein-circuits. However, little work has been done regarding their integration to multilevel regulated circuits. In this work, we combined a variety of small transcriptional activator RNAs (STARs) and toehold switches to build highly effective AND-gates. To characterize the components and their dynamic range, we used an Escherichia coli (E. coli) cell-free transcription-translation (TX-TL) system dispensed via nanoliter droplets. We analyzed a prototype gate in vitro as well as in silico, employing parametrized ordinary differential equations (ODEs), for which parameters were inferred via parallel tempering, a Markov chain Monte Carlo (MCMC) method. On the basis of this analysis, we created nine additional AND-gates and tested them in vitro. The functionality of the gates was found to be highly dependent on the concentration of the activating RNA for either the STAR or the toehold switch. All gates were successfully implemented in vivo, offering a dynamic range comparable to the level of protein circuits. This study shows the potential of a rapid prototyping approach for RNA circuit design, using cell-free systems in combination with a model prediction.
Collapse
Affiliation(s)
- François-Xavier Lehr
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Maleen Hanst
- Department of Electrical Engineering, Technische Universität Darmstadt, 64283 Darmstadt, Germany
| | - Marc Vogel
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Jennifer Kremer
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - H. Ulrich Göringer
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Beatrix Suess
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Heinz Koeppl
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
- Department of Electrical Engineering, Technische Universität Darmstadt, 64283 Darmstadt, Germany
| |
Collapse
|
95
|
Pandi A, Koch M, Voyvodic PL, Soudier P, Bonnet J, Kushwaha M, Faulon JL. Metabolic perceptrons for neural computing in biological systems. Nat Commun 2019; 10:3880. [PMID: 31462649 PMCID: PMC6713752 DOI: 10.1038/s41467-019-11889-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/08/2019] [Indexed: 12/30/2022] Open
Abstract
Synthetic biological circuits are promising tools for developing sophisticated systems for medical, industrial, and environmental applications. So far, circuit implementations commonly rely on gene expression regulation for information processing using digital logic. Here, we present a different approach for biological computation through metabolic circuits designed by computer-aided tools, implemented in both whole-cell and cell-free systems. We first combine metabolic transducers to build an analog adder, a device that sums up the concentrations of multiple input metabolites. Next, we build a weighted adder where the contributions of the different metabolites to the sum can be adjusted. Using a computational model fitted on experimental data, we finally implement two four-input perceptrons for desired binary classification of metabolite combinations by applying model-predicted weights to the metabolic perceptron. The perceptron-mediated neural computing introduced here lays the groundwork for more advanced metabolic circuits for rapid and scalable multiplex sensing.
Collapse
Affiliation(s)
- Amir Pandi
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Mathilde Koch
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Peter L Voyvodic
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, University of Montpellier, Montpellier, France
| | - Paul Soudier
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- iSSB Laboratory, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Jerome Bonnet
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, University of Montpellier, Montpellier, France
| | - Manish Kushwaha
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.
| | - Jean-Loup Faulon
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.
- iSSB Laboratory, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France.
- SYNBIOCHEM Center, School of Chemistry, University of Manchester, Manchester, UK.
| |
Collapse
|
96
|
Marshall R, Noireaux V. Quantitative modeling of transcription and translation of an all-E. coli cell-free system. Sci Rep 2019; 9:11980. [PMID: 31427623 PMCID: PMC6700315 DOI: 10.1038/s41598-019-48468-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/06/2019] [Indexed: 11/09/2022] Open
Abstract
Cell-free transcription-translation (TXTL) is expanding as a polyvalent experimental platform to engineer biological systems outside living organisms. As the number of TXTL applications and users is rapidly growing, some aspects of this technology could be better characterized to provide a broader description of its basic working mechanisms. In particular, developing simple quantitative biophysical models that grasp the different regimes of in vitro gene expression, using relevant kinetic constants and concentrations of molecular components, remains insufficiently examined. In this work, we present an ODE (Ordinary Differential Equation)-based model of the expression of a reporter gene in an all E. coli TXTL that we apply to a set of regulatory elements spanning several orders of magnitude in strengths, far beyond the T7 standard system used in most of the TXTL platforms. Several key biochemical constants are experimentally determined through fluorescence assays. The robustness of the model is tested against the experimental parameters, and limitations of TXTL resources are described. We establish quantitative references between the performance of E. coli and synthetic promoters and ribosome binding sites. The model and the data should be useful for the TXTL community interested either in gene network engineering or in biomanufacturing beyond the conventional platforms relying on phage transcription.
Collapse
Affiliation(s)
- Ryan Marshall
- School of Physics and Astronomy, University of Minnesota, 115 Union Street SE, Minneapolis, MN, 55455, USA.
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, 115 Union Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
97
|
Pandi A, Grigoras I, Borkowski O, Faulon JL. Optimizing Cell-Free Biosensors to Monitor Enzymatic Production. ACS Synth Biol 2019; 8:1952-1957. [PMID: 31335131 DOI: 10.1021/acssynbio.9b00160] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell-free systems are promising platforms for rapid and high-throughput prototyping of biological parts in metabolic engineering and synthetic biology. One main limitation of cell-free system applications is the low fold repression of transcriptional repressors. Hence, prokaryotic biosensor development, which mostly relies on repressors, is limited. In this study, we demonstrate how to improve these biosensors in cell-free systems by applying a transcription factor (TF)-doped extract, a preincubation strategy with the TF plasmid, or reinitiation of the cell-free reaction (two-step cell-free reaction). We use the optimized biosensor to sense the enzymatic production of a rare sugar, D-psicose. This work provides a methodology to optimize repressor-based systems in cell-free to further increase the potential of cell-free systems for bioproduction.
Collapse
Affiliation(s)
- Amir Pandi
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas 78352, France
| | - Ioana Grigoras
- iSSB Laboratory, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057 Evry, France
| | - Olivier Borkowski
- iSSB Laboratory, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057 Evry, France
| | - Jean-Loup Faulon
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas 78352, France
- iSSB Laboratory, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057 Evry, France
- SYNBIOCHEM Center, School of Chemistry, University of Manchester, Manchester M13 9PL, U.K
| |
Collapse
|
98
|
Abstract
Cell-free systems (CFS) have recently evolved into key platforms for synthetic biology applications. Many synthetic biology tools have traditionally relied on cell-based systems, and while their adoption has shown great progress, the constraints inherent to the use of cellular hosts have limited their reach and scope. Cell-free systems, which can be thought of as programmable liquids, have removed many of these complexities and have brought about exciting opportunities for rational design and manipulation of biological systems. Here we review how these simple and accessible enzymatic systems are poised to accelerate the rate of advancement in synthetic biology and, more broadly, biotechnology.
Collapse
Affiliation(s)
- Aidan Tinafar
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON, M5S 3M2, Canada
| | - Katariina Jaenes
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON, M5S 3M2, Canada
| | - Keith Pardee
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
99
|
Yim SS, Johns NI, Park J, Gomes ALC, McBee RM, Richardson M, Ronda C, Chen SP, Garenne D, Noireaux V, Wang HH. Multiplex transcriptional characterizations across diverse bacterial species using cell-free systems. Mol Syst Biol 2019; 15:e8875. [PMID: 31464371 PMCID: PMC6692573 DOI: 10.15252/msb.20198875] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022] Open
Abstract
Cell-free expression systems enable rapid prototyping of genetic programs in vitro. However, current throughput of cell-free measurements is limited by the use of channel-limited fluorescent readouts. Here, we describe DNA Regulatory element Analysis by cell-Free Transcription and Sequencing (DRAFTS), a rapid and robust in vitro approach for multiplexed measurement of transcriptional activities from thousands of regulatory sequences in a single reaction. We employ this method in active cell lysates developed from ten diverse bacterial species. Interspecies analysis of transcriptional profiles from > 1,000 diverse regulatory sequences reveals functional differences in promoter activity that can be quantitatively modeled, providing a rich resource for tuning gene expression in diverse bacterial species. Finally, we examine the transcriptional capacities of dual-species hybrid lysates that can simultaneously harness gene expression properties of multiple organisms. We expect that this cell-free multiplex transcriptional measurement approach will improve genetic part prototyping in new bacterial chassis for synthetic biology.
Collapse
Affiliation(s)
- Sung Sun Yim
- Department of Systems BiologyColumbia UniversityNew YorkNYUSA
| | - Nathan I Johns
- Department of Systems BiologyColumbia UniversityNew YorkNYUSA
- Integrated Program in Cellular, Molecular, and Biomedical StudiesColumbia UniversityNew YorkNYUSA
- Present address:
Department of BioengineeringStanford UniversityStanfordCAUSA
| | - Jimin Park
- Department of Systems BiologyColumbia UniversityNew YorkNYUSA
- Integrated Program in Cellular, Molecular, and Biomedical StudiesColumbia UniversityNew YorkNYUSA
| | - Antonio LC Gomes
- Department of ImmunologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Ross M McBee
- Department of Systems BiologyColumbia UniversityNew YorkNYUSA
- Department of Biological SciencesColumbia UniversityNew YorkNYUSA
| | - Miles Richardson
- Department of Systems BiologyColumbia UniversityNew YorkNYUSA
- Integrated Program in Cellular, Molecular, and Biomedical StudiesColumbia UniversityNew YorkNYUSA
| | - Carlotta Ronda
- Department of Systems BiologyColumbia UniversityNew YorkNYUSA
| | - Sway P Chen
- Department of Systems BiologyColumbia UniversityNew YorkNYUSA
- Integrated Program in Cellular, Molecular, and Biomedical StudiesColumbia UniversityNew YorkNYUSA
| | - David Garenne
- School of Physics and AstronomyUniversity of MinnesotaMinneapolisMNUSA
| | - Vincent Noireaux
- School of Physics and AstronomyUniversity of MinnesotaMinneapolisMNUSA
| | - Harris H Wang
- Department of Systems BiologyColumbia UniversityNew YorkNYUSA
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNYUSA
| |
Collapse
|
100
|
Garenne D, Noireaux V. Cell-free transcription–translation: engineering biology from the nanometer to the millimeter scale. Curr Opin Biotechnol 2019; 58:19-27. [DOI: 10.1016/j.copbio.2018.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/14/2018] [Indexed: 01/01/2023]
|