51
|
Xu D, Tian Y, Xia Q, Ke B. The cGAS-STING Pathway: Novel Perspectives in Liver Diseases. Front Immunol 2021; 12:682736. [PMID: 33995425 PMCID: PMC8117096 DOI: 10.3389/fimmu.2021.682736] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022] Open
Abstract
Liver diseases represent a major global health burden accounting for approximately 2 million deaths per year worldwide. The liver functions as a primary immune organ that is largely enriched with various innate immune cells, including macrophages, dendritic cells, neutrophils, NK cells, and NKT cells. Activation of these cells orchestrates the innate immune response and initiates liver inflammation in response to the danger signal from pathogens or injured cells and tissues. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is a crucial signaling cascade of the innate immune system activated by cytosol DNA. Recognizing DNA as an immune-stimulatory molecule is an evolutionarily preserved mechanism in initiating rapid innate immune responses against microbial pathogens. The cGAS is a cytosolic DNA sensor eliciting robust immunity via the production of cyclic GMP-AMPs that bind and activate STING. Although the cGAS-STING pathway has been previously considered to have essential roles in innate immunity and host defense, recent advances have extended the role of the cGAS-STING pathway to liver diseases. Emerging evidence indicates that overactivation of cGAS-STING may contribute to the development of liver disorders, implying that the cGAS-STING pathway is a promising therapeutic target. Here, we review and discuss the role of the cGAS-STING DNA-sensing signaling pathway in a variety of liver diseases, including viral hepatitis, nonalcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), primary hepatocellular cancer (HCC), and hepatic ischemia-reperfusion injury (IRI), with highlights on currently available therapeutic options.
Collapse
Affiliation(s)
- Dongwei Xu
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yizhu Tian
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bibo Ke
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
52
|
Verrier ER, Langevin C. Cyclic Guanosine Monophosphate-Adenosine Monophosphate Synthase (cGAS), a Multifaceted Platform of Intracellular DNA Sensing. Front Immunol 2021; 12:637399. [PMID: 33708225 PMCID: PMC7940176 DOI: 10.3389/fimmu.2021.637399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
Innate immune pathways are the first line of cellular defense against pathogen infections ranging from bacteria to Metazoa. These pathways are activated following the recognition of pathogen associated molecular patterns (PAMPs) by membrane and cytosolic pattern recognition receptors. In addition, some of these cellular sensors can also recognize endogenous danger-associated molecular patterns (DAMPs) arising from damaged or dying cells and triggering innate immune responses. Among the cytosolic nucleic acid sensors, the cyclic guanosine monophosphate–adenosine monophosphate (cGAMP) synthase (cGAS) plays an essential role in the activation of the type I interferon (IFNs) response and the production of pro-inflammatory cytokines. Indeed, upon nucleic acid binding, cGAS synthesizes cGAMP, a second messenger mediating the activation of the STING signaling pathway. The functional conservation of the cGAS-STING pathway during evolution highlights its importance in host cellular surveillance against pathogen infections. Apart from their functions in immunity, cGAS and STING also play major roles in nuclear functions and tumor development. Therefore, cGAS-STING is now considered as an attractive target to identify novel biomarkers and design therapeutics for auto-inflammatory and autoimmune disorders as well as infectious diseases and cancer. Here, we review the current knowledge about the structure of cGAS and the evolution from bacteria to Metazoa and present its main functions in defense against pathogens and cancer, in connection with STING. The advantages and limitations of in vivo models relevant for studying the cGAS-STING pathway will be discussed for the notion of species specificity and in the context of their integration into therapeutic screening assays targeting cGAG and/or STING.
Collapse
Affiliation(s)
- Eloi R Verrier
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | | |
Collapse
|
53
|
Kumar V. The Trinity of cGAS, TLR9, and ALRs Guardians of the Cellular Galaxy Against Host-Derived Self-DNA. Front Immunol 2021; 11:624597. [PMID: 33643304 PMCID: PMC7905024 DOI: 10.3389/fimmu.2020.624597] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
The immune system has evolved to protect the host from the pathogens and allergens surrounding their environment. The immune system develops in such a way to recognize self and non-self and develops self-tolerance against self-proteins, nucleic acids, and other larger molecules. However, the broken immunological self-tolerance leads to the development of autoimmune or autoinflammatory diseases. Pattern-recognition receptors (PRRs) are expressed by immunological cells on their cell membrane and in the cytosol. Different Toll-like receptors (TLRs), Nod-like receptors (NLRs) and absent in melanoma-2 (AIM-2)-like receptors (ALRs) forming inflammasomes in the cytosol, RIG (retinoic acid-inducible gene)-1-like receptors (RLRs), and C-type lectin receptors (CLRs) are some of the PRRs. The DNA-sensing receptor cyclic GMP–AMP synthase (cGAS) is another PRR present in the cytosol and the nucleus. The present review describes the role of ALRs (AIM2), TLR9, and cGAS in recognizing the host cell DNA as a potent damage/danger-associated molecular pattern (DAMP), which moves out to the cytosol from its housing organelles (nucleus and mitochondria). The introduction opens with the concept that the immune system has evolved to recognize pathogens, the idea of horror autotoxicus, and its failure due to the emergence of autoimmune diseases (ADs), and the discovery of PRRs revolutionizing immunology. The second section describes the cGAS-STING signaling pathway mediated cytosolic self-DNA recognition, its evolution, characteristics of self-DNAs activating it, and its role in different inflammatory conditions. The third section describes the role of TLR9 in recognizing self-DNA in the endolysosomes during infections depending on the self-DNA characteristics and various inflammatory diseases. The fourth section discusses about AIM2 (an ALR), which also binds cytosolic self-DNA (with 80–300 base pairs or bp) that inhibits cGAS-STING-dependent type 1 IFN generation but induces inflammation and pyroptosis during different inflammatory conditions. Hence, this trinity of PRRs has evolved to recognize self-DNA as a potential DAMP and comes into action to guard the cellular galaxy. However, their dysregulation proves dangerous to the host and leads to several inflammatory conditions, including sterile-inflammatory conditions autoinflammatory and ADs.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, St. Lucia, Brisbane, QLD, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, Brisbane, QLD, Australia
| |
Collapse
|
54
|
Abstract
The cGAS-STING signalling pathway has emerged as a key mediator of inflammation in the settings of infection, cellular stress and tissue damage. Underlying this broad involvement of the cGAS-STING pathway is its capacity to sense and regulate the cellular response towards microbial and host-derived DNAs, which serve as ubiquitous danger-associated molecules. Insights into the structural and molecular biology of the cGAS-STING pathway have enabled the development of selective small-molecule inhibitors with the potential to target the cGAS-STING axis in a number of inflammatory diseases in humans. Here, we outline the principal elements of the cGAS-STING signalling cascade and discuss the general mechanisms underlying the association of cGAS-STING activity with various autoinflammatory, autoimmune and degenerative diseases. Finally, we outline the chemical nature of recently developed cGAS and STING antagonists and summarize their potential clinical applications.
Collapse
|
55
|
Balka KR, De Nardo D. Molecular and spatial mechanisms governing STING signalling. FEBS J 2020; 288:5504-5529. [PMID: 33237620 DOI: 10.1111/febs.15640] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022]
Abstract
Detection of microbial nucleic acids via innate immune receptors is critical for establishing host defence against pathogens. The DNA-sensing cGAS-STING pathway has gained increasing attention in the last decade as a key pathway for combating viral and bacterial infections. cGAS-STING activation primarily promotes the secretion of antiviral type I IFNs via the key transcription factor, IRF3. In addition, cGAS-STING signalling also elicits proinflammatory cytokines through NF-κB activity. Activation of IRF3 and NF-κB is mediated by the chief signalling receptor protein STING. Interestingly, STING undergoes significant trafficking events across multiple subcellular locations, which regulates both the activation of downstream signalling pathways, as well as appropriate termination of the responses. Studies to date have provided a comprehensive view of the regulation and role of the IRF3-IFN pathway downstream of STING. However, many aspects of STING signalling remain relatively poorly defined. This review will explore the current understanding of the mechanisms through which STING elicits inflammatory and antimicrobial responses, focusing on the precise signalling and intracellular trafficking events that occur. We will also discuss exciting and emerging concepts in the field, including the importance of IFN-independent STING responses for host defence and during STING-related disease.
Collapse
Affiliation(s)
- Katherine R Balka
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| | - Dominic De Nardo
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| |
Collapse
|
56
|
Hertzog J, Rehwinkel J. Regulation and inhibition of the DNA sensor cGAS. EMBO Rep 2020; 21:e51345. [PMID: 33155371 PMCID: PMC7726805 DOI: 10.15252/embr.202051345] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
Cell-autonomous sensing of nucleic acids is essential for host defence against invading pathogens by inducing antiviral and inflammatory cytokines. cGAS has emerged in recent years as a non-redundant DNA sensor important for detection of many viruses and bacteria. Upon binding to DNA, cGAS synthesises the cyclic dinucleotide 2'3'-cGAMP that binds to the adaptor protein STING and thereby triggers IRF3- and NFκB-dependent transcription. In addition to infection, the pathophysiology of an ever-increasing number of sterile inflammatory conditions in humans involves the recognition of DNA through cGAS. Consequently, the cGAS/STING signalling axis has emerged as an attractive target for pharmacological modulation. However, the development of cGAS and STING inhibitors has just begun and a need for specific and effective compounds persists. In this review, we focus on cGAS and explore how its activation by immunostimulatory DNA is regulated by cellular mechanisms, viral immune modulators and small molecules. We further use our knowledge of cGAS modulation by cells and viruses to conceptualise potential new ways of pharmacological cGAS targeting.
Collapse
Affiliation(s)
- Jonny Hertzog
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Jan Rehwinkel
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
57
|
Fan X, Liu Z, Poulsen KL, Wu X, Miyata T, Dasarathy S, Rotroff DM, Nagy LE. Alcohol Consumption is Associated with Poor Prognosis in Obese Patients with COVID-19: a Mendelian Randomization Study using UK Biobank. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.11.25.20238915. [PMID: 33269370 PMCID: PMC7709191 DOI: 10.1101/2020.11.25.20238915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Background Acute and chronic alcohol abuse have adverse impacts on both the innate and adaptive immune response, which may result in reduced resistance to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and promote the progression of coronavirus disease 2019 (COVID-19). However, there are no large population-based data evaluating potential causal associations between alcohol consumption and COVID-19. Method We conducted a Mendelian randomization study using data from UK Biobank to explore the association between alcohol consumption and risk of SARS-CoV-2 infection and serious clinical outcomes in patients with COVID-19. A total of 12,937 participants aged 50-83 who tested for SARS-CoV-2 between 16 March to 27 July 2020 (12.1% tested positive) were included in the analysis. The exposure factor was alcohol consumption. Main outcomes were SARS-CoV-2 positivity and death in COVID-19 patients. We generated weighted and unweighted allele scores using three genetic variants (rs1229984, rs1260326, and rs13107325) and applied the allele scores as the instrumental variables to assess the effect of alcohol consumption on outcomes. Analyses were conducted separately for white participates with and without obesity. Results Of the 12,937 participants, 4,496 were never or infrequent drinkers and 8,441 were frequent drinkers. (including 1,156 light drinkers, 3,795 moderate drinkers, and 3,490 heavy drinkers). Both logistic regression and Mendelian randomization analyses found no evidence that alcohol consumption was associated with risk of SARS-CoV-2 infection in participants either with (OR=0.963, 95%CI 0.800-1.159; q =1.000) or without obesity (OR=0.891, 95%CI 0.755-1.053; q =.319). However, frequent drinking (HR=1.565, 95%CI 1.012-2.419; q =.079), especially heavy drinking (HR=2.071, 95%CI 1.235-3.472; q =.054), was associated with higher risk of death in patients with obesity and COVID-19, but not in patients without obesity. Notably, the risk of death in frequent drinkers with obesity increased slightly with the average amount of alcohol consumed weekly (HR=1.480, 95%CI 1.059-2.069; q =.099). Conclusions Our findings suggested alcohol consumption may had adverse effects on the progression of COVID-19 in white participants with obesity, but was not associate with susceptibility to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xiude Fan
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Zhengwen Liu
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Kyle L Poulsen
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Xiaoqin Wu
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Tatsunori Miyata
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Srinivasan Dasarathy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH
| | - Daniel M. Rotroff
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH
| | - Laura E. Nagy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
58
|
Howard TR, Cristea IM. Interrogating Host Antiviral Environments Driven by Nuclear DNA Sensing: A Multiomic Perspective. Biomolecules 2020; 10:biom10121591. [PMID: 33255247 PMCID: PMC7761228 DOI: 10.3390/biom10121591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Nuclear DNA sensors are critical components of the mammalian innate immune system, recognizing the presence of pathogens and initiating immune signaling. These proteins act in the nuclei of infected cells by binding to foreign DNA, such as the viral genomes of nuclear-replicating DNA viruses herpes simplex virus type 1 (HSV-1) and human cytomegalovirus (HCMV). Upon binding to pathogenic DNA, the nuclear DNA sensors were shown to initiate antiviral cytokines, as well as to suppress viral gene expression. These host defense responses involve complex signaling processes that, through protein–protein interactions (PPIs) and post-translational modifications (PTMs), drive extensive remodeling of the cellular transcriptome, proteome, and secretome to generate an antiviral environment. As such, a holistic understanding of these changes is required to understand the mechanisms through which nuclear DNA sensors act. The advent of omics techniques has revolutionized the speed and scale at which biological research is conducted and has been used to make great strides in uncovering the molecular underpinnings of DNA sensing. Here, we review the contribution of proteomics approaches to characterizing nuclear DNA sensors via the discovery of functional PPIs and PTMs, as well as proteome and secretome changes that define a host antiviral environment. We also highlight the value of and future need for integrative multiomic efforts to gain a systems-level understanding of DNA sensors and their influence on epigenetic and transcriptomic alterations during infection.
Collapse
|