51
|
Rider MH, Crepin KM, De Cloedt M, Bertrand L, Hue L. Site-directed mutagenesis of rat muscle 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: role of Asp-130 in the 2-kinase domain. Biochem J 1994; 300 ( Pt 1):111-5. [PMID: 8198521 PMCID: PMC1138131 DOI: 10.1042/bj3000111] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Asp-130 of the recombinant skeletal-muscle 6-phosphofructo-2-kinase (PFK-2)/fructose-2,6-bisphosphatase was mutated into Ala in order to study its role in catalysis and/or substrate binding. The D130A mutant displayed a 30- to 140-fold decreased 2-kinase Vmax, depending on the pH, and a 30- and 60-fold increase in Km for MgATP and Fru-6-P respectively at pH 8.5 compared with the wild-type. Mutagenesis of Asp-130 to Ala had no effect on the 2-phosphatase activity, and fluorescence measurements indicated that the changes in kinetic properties of PFK-2 in the D130A mutant were not due to instability. The role of Asp-130 in the 2-kinase reaction is discussed and compared with that of Asp-103 of 6-phosphofructo-1-kinase from Escherichia coli, which binds Mg2+.
Collapse
Affiliation(s)
- M H Rider
- Hormone and Metabolic Research Unit, International Institute of Cellular and Molecular Pathology, Brussels, Belgium
| | | | | | | | | |
Collapse
|
52
|
Garel MC, Arous N, Calvin MC, Craescu CT, Rosa J, Rosa R. A recombinant bisphosphoglycerate mutase variant with acid phosphatase homology degrades 2,3-diphosphoglycerate. Proc Natl Acad Sci U S A 1994; 91:3593-7. [PMID: 8170953 PMCID: PMC43626 DOI: 10.1073/pnas.91.9.3593] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To date no definite and undisputed treatment has been found for sickle cell anemia, which is characterized by polymerization of a deoxygenated hemoglobin mutant (HbS) giving rise to deformed erythrocytes and vasoocclusive complications. Since the erythrocyte glycerate 2,3-bisphosphate (2,3-DPG) has been shown to facilitate this polymerization, one therapeutic approach would be to decrease the intraerythrocytic level of 2,3-DPG by increasing the phosphatase activity of the bisphosphoglycerate mutase (BPGM; 3-phospho-D-glycerate 1,2-phosphomutase, EC 5.4.2.4). For this purpose, we have investigated the role of Gly-13, which is located in the active site sequence Arg9-His10-Gly11-Glu12-Gly13 in human BPGM. This sequence is similar to the Arg-His-Gly-Xaa-Arg* sequence of the distantly related acid phosphatases, which catalyze as BPGM similar phosphoryl transfers but to a greater extent. We hypothesized that the conserved Arg* residue in acid phosphatase sequences facilitates the phosphoryl transfer. Consequently, in human BPGM, we replaced by site-directed mutagenesis the corresponding amino acid residue Gly13 with an Arg or a Lys. In another experiment, we replaced Gly13 with Ser, the amino acid present at the corresponding position of the homologous yeast phosphoglycerate mutase (D-phosphoglycerate 2,3-phosphomutase, EC 5.4.2.1). Mutation of Gly13 to Ser did not modify the synthase activity, whereas the mutase and the phosphatase were 2-fold increased or decreased, respectively. However, replacing Gly13 with Arg enhanced phosphatase activity 28.6-fold, whereas synthase and mutase activities were 10-fold decreased. The presence of a Lys in position 13 gave rise to a smaller increase in phosphatase activity (6.5-fold) but an identical decrease in synthase and mutase activities. Taken together these results support the hypothesis that a positively charged amino acid residue in position 13, especially Arg, greatly activates the phosphoryl transfer to water. These results also provide elements for locating the conserved Arg* residue in the active site of acid phosphatases and facilitating the phosphoryl transfer. The implications for genetic therapy of sickle cell disease are discussed.
Collapse
Affiliation(s)
- M C Garel
- Institut National de la Santé et de la Recherche Médicale, U.91, Hôpital Henri Mondor, Créteil, France
| | | | | | | | | | | |
Collapse
|
53
|
Mechanism of modulation of rat liver fructose-2,6-bisphosphatase by nucleoside triphosphates. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)78083-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
54
|
Lindqvist Y, Schneider G, Vihko P. Crystal structures of rat acid phosphatase complexed with the transition-state analogs vanadate and molybdate. Implications for the reaction mechanism. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 221:139-42. [PMID: 8168503 DOI: 10.1111/j.1432-1033.1994.tb18722.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The three-dimensional structures of complexes of recombinant rat prostatic acid phosphatase with the transition-state analogs vanadate and molybdate were determined to 0.3-nm resolution using protein crystallographic methods. The overall structure of the enzyme remains unchanged upon binding of the metal oxyanions; only local conformational differences in the positions of some side chains at the active site were found. The metal oxyanions bind in an identical fashion at the active site with trigonal bipyramidal coordination geometry. The metal ion is within coordination distance of the His12 side chain which is located at one of the axial positions. The three equatorial oxygen atoms interact with the conserved residues Arg11, Arg15, Arg79 and His257. Within hydrogen-bonding distance of the axial oxygen atom is the side chain of the conserved residue Asp258. The implications of these results for the catalytic mechanism of acid phosphatase are discussed.
Collapse
Affiliation(s)
- Y Lindqvist
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala
| | | | | |
Collapse
|
55
|
Heterologous expression of human prostatic acid phosphatase and site-directed mutagenesis of the enzyme active site. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37063-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
56
|
Abstract
A unique sequence pattern, designated the GD/GNH signature, was shown to be conserved in a wide variety of phosphoesterases. The enzymes containing this signature cleave phosphoester bonds in such different substrates as (1) phosphoserine and phosphothreonine in polypeptides; (2) bis(5'-nucleosidyl)-tetraphosphates; (3) nucleoside 5' phosphates; (4) 2',3'-cyclic nucleotide phosphates; (5) polynucleotides; (6) 2'-5' phosphodiesters in RNA (intron) lariats; (7) sphingomyelin; and (7) various phosphomonoesters. Two conserved acidic amino acid residues and a conserved histidine residue may be directly involved in phosphoester bond cleavage.
Collapse
Affiliation(s)
- E V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| |
Collapse
|
57
|
Kretschmer M, Langer C, Prinz W. Mutation of monofunctional 6-phosphofructo-2-kinase in yeast to bifunctional 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase. Biochemistry 1993; 32:11143-8. [PMID: 8218176 DOI: 10.1021/bi00092a025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have shown previously that 6-phosphofructo-2-kinase in yeast has negligible fructose-2,6-bisphosphatase activity even though resembling in part of its C-terminal sequence the phosphatase domain of the bifunctional liver enzyme. Here we show that exchanging Ser-404 to His-404 in the yeast peptide creates a bifunctional enzyme with a fructose-2,6-bisphosphatase activity involving a phosphoprotein intermediate. Like mammalian bifunctional enzymes, the His-404 mutant protein is readily phosphorylated by fructose 2,6-P2 with a half-saturation of 0.4 microM, the same Km value as for its fructose-2,6-bisphosphatase activity. Protein phosphorylation by the C-subunit of cAMP-dependent protein kinase, presumably at a C-terminal consensus site, increases the Km value to 1.5 microM. The newly created fructose-2,6-bisphosphatase is inhibited competitively by its product fructose 6-P with a K(i) of 0.6 mM. No effect of the His-404 mutation was found on 6-phosphofructo-2-kinase activity, in line with the mutant yeast enzyme having independent kinase and phosphatase domains, like its mammalian wild-type counterparts. The results would fit with the evolution of the PFK26 gene having involved fusion between kinase and phosphatase genes--as proposed for the mammalian enzyme--but with accompanying or later silencing of the fructose-2,6-bisphosphatase activity.
Collapse
Affiliation(s)
- M Kretschmer
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
58
|
Ostanin K, Van Etten R. Asp304 of Escherichia coli acid phosphatase is involved in leaving group protonation. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36851-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
59
|
Crepin K, Vertommen D, Dom G, Hue L, Rider M. Rat muscle 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Study of the kinase domain by site-directed mutagenesis. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)82466-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
60
|
el-Maghrabi M, Gidh-Jain M, Austin L, Pilkis S. Isolation of a human liver fructose-1,6-bisphosphatase cDNA and expression of the protein in Escherichia coli. Role of ASP-118 and ASP-121 in catalysis. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)98373-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
61
|
Rousseau GG, Hue L. Mammalian 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: a bifunctional enzyme that controls glycolysis. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1993; 45:99-127. [PMID: 8393580 DOI: 10.1016/s0079-6603(08)60868-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- G G Rousseau
- Department of Biochemistry and Cell Biology, University of Louvain Medical School, Brussels, Belgium
| | | |
Collapse
|
62
|
Ullah AH, Dischinger HC. Identification of residues involved in active-site formation in Aspergillus ficuum phytase. Ann N Y Acad Sci 1992; 672:45-51. [PMID: 1335713 DOI: 10.1111/j.1749-6632.1992.tb35601.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- A H Ullah
- Southern Regional Research Center, United States Department of Agriculture, New Orleans, Louisiana 70124
| | | |
Collapse
|
63
|
Ostanin K, Harms E, Stevis P, Kuciel R, Zhou M, Van Etten R. Overexpression, site-directed mutagenesis, and mechanism of Escherichia coli acid phosphatase. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)50022-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
64
|
Li L, Lin K, Pilkis J, Correia J, Pilkis S. Hepatic 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. The role of surface loop basic residues in substrate binding to the fructose-2,6-bisphosphatase domain. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)36651-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
65
|
Arg-257 and Arg-307 of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase bind the C-2 phospho group of fructose-2,6-bisphosphate in the fructose-2,6-bisphosphatase domain. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41756-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
66
|
Lysine 356 is a critical residue for binding the C-6 phospho group of fructose 2,6-bisphosphate to the fructose-2,6-bisphosphatase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42054-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
67
|
Rider MH, Hue L. Inactivation of liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase by phenylglyoxal. Evidence for essential arginine residues. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 207:967-72. [PMID: 1323462 DOI: 10.1111/j.1432-1033.1992.tb17131.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Treatment of liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase with the arginine-specific reagent, phenylglyoxal, irreversibly inactivated both 6-phosphofructo-2-kinase and fructose-6-bisphosphatase in a time-dependent and dose-dependent manner. Fructose 6-phosphate protected against 2,6-phosphofructo-2-kinase inactivation, whereas MgGTP protected against fructose-2,6-bisphosphatase inactivation. Semi-logarithmic plots of the time course of inactivation by different phenylglyoxal concentrations were non-linear, suggesting that more than one arginine residue was modified. The stoichiometry of phenylglyoxal incorporation indicated that at least 2 mol/mol enzyme subunit were incorporated. Enzyme which had been phosphorylated by cyclic-AMP-dependent protein kinase was inactivated to a lesser degree by phenylglyoxal, suggesting that the serine residue (Ser32) phosphorylated by cyclic-AMP-dependent protein kinase interacts with a modified arginine residue. Chymotryptic cleavage of the modified protein and microsequencing showed that Arg225, in the 6-phosphofructo-2-kinase domain, was one of the residues modified by phenylglyoxal. The protection by fructose 6-phosphate against the labelling of chymotryptic fragments containing Arg225, suggests that this residue is involved in fructose 6-phosphate binding in the 6-phosphofructo-2-kinase domain of the bifunctional enzyme.
Collapse
Affiliation(s)
- M H Rider
- Hormone and Metabolic Research Unit, International Institute of Cellular and Molecular Pathology, Brussels, Belgium
| | | |
Collapse
|
68
|
White MF, Fothergill-Gilmore LA. Development of a mutagenesis, expression and purification system for yeast phosphoglycerate mutase. Investigation of the role of active-site His181. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 207:709-14. [PMID: 1386023 DOI: 10.1111/j.1432-1033.1992.tb17099.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A system has been developed to allow the convenient production, expression and purification of site-directed mutants of the enzyme phosphoglycerate mutase from Saccharomyces cerevisiae. This enzyme is well characterised; both the amino acid sequence and crystal structure have been determined and a reaction mechanism has been proposed. However, the molecular basis for catalysis remains poorly understood, with only circumstantial evidence for the roles of most of the active site residues other than His8, which is phosphorylated during the reaction cycle. A vector/host expression system has been designed which allows recombinant forms of phosphoglycerate mutase to be efficiently expressed in yeast with no background wild-type activity. A simple one-column purification protocol typically yields 30 mg pure enzyme/1 l of culture. The active-site residue, His181, which is thought to be involved in proton transfer during the catalytic cycle, has been mutated to an alanine. The resultant mutant has been purified and characterised. Kinetic analysis shows a large decrease (1.6 x 10(4)) in the catalytic efficiency, and an 11-fold increase in the Km for the cofactor 2,3-bisphosphoglycerate. These observations are consistent with an integral role for His181 in the reaction mechanism of phosphoglycerate mutase, probably as a general acid or base.
Collapse
Affiliation(s)
- M F White
- Department of Biochemistry, University of Edinburgh, Scotland
| | | |
Collapse
|
69
|
Graña X, de Lecea L, el-Maghrabi M, Ureña J, Caellas C, Carreras J, Puigdomenech P, Pilkis S, Climent F. Cloning and sequencing of a cDNA encoding 2,3-bisphosphoglycerate-independent phosphoglycerate mutase from maize. Possible relationship to the alkaline phosphatase family. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42346-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
70
|
Lin K, Li L, Correia J, Pilkis S. Glu327 is part of a catalytic triad in rat liver fructose-2,6-bisphosphatase. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50463-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
71
|
Kurland I, el-Maghrabi M, Correia J, Pilkis S. Rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Properties of phospho- and dephospho- forms and of two mutants in which Ser32 has been changed by site-directed mutagenesis. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42851-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
72
|
Site-directed mutagenesis in rat liver 6-phosphofructo-2-kinase. Mutation at the fructose 6-phosphate binding site affects phosphate activation. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42847-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
73
|
Abstract
We have reported yeast 6-phosphofructo-2-kinase (EC 2.7.1.105) as having a ca. 96-kDa subunit size, as well as isolation of its structural gene, PFK26. Sequencing now shows an open reading frame of 827 amino acids and 93.5 kDa. The deduced amino acid sequence has 42% identity with the 55-kDa subunit of the bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from rat liver with extra material at both ends. Although the yeast sequence is especially similar to the liver one in its bisphosphatase domain, the essential His-258 of the liver enzyme is, in yeast, a serine, which may explain the apparent lack of bisphosphatase activity. Also, the yeast enzyme known to be activated via protein kinase A, has a putative phosphorylation site near its C-terminus and lacks the N-terminal phosphorylation sequence involved in inhibition of the liver enzyme. In a chromosomal null mutant strain, pfk26::LEU2, activity was marginal and the protein was not detectable as antigen. The mutant strain grew well on glucose and contained a near-normal level of fructose 2,6-P2. But in its growth on pyruvate, by contrast with the wild-type strain, no fructose 2,6-P2 was detectable, and it did not form after glucose addition in the presence of cycloheximide either. Such resting cells, however, metabolized glucose at the normal high rate. Glucose addition to the pfk26 mutant strain in the absence of cycloheximide, on the other hand, caused a ca. 10% normal rate of fructose 2,6-P2 accumulation, presumably employing a glucose-inducible second enzyme. Using strains also lacking 6-phosphofructo-1-kinase, affinity chromatography revealed the second enzyme as a minor peak amounting to 6% of 6-phosphofructo-2-kinase activity in a PFK26 strain and as the sole peak, in similar amount, in a pfk26 mutant strain.
Collapse
Affiliation(s)
- M Kretschmer
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
74
|
Evidence for a phosphoryl-enzyme intermediate in phosphate ester hydrolysis by purple acid phosphatase from bovine spleen. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55186-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
75
|
Cloning, sequencing, and expression of pyrophosphate-dependent phosphofructokinase from Propionibacterium freudenreichii. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55336-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
76
|
Darville MI, Chikri M, Lebeau E, Hue L, Rousseau GG. A rat gene encoding heart 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. FEBS Lett 1991; 288:91-4. [PMID: 1652483 DOI: 10.1016/0014-5793(91)81009-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
There are at least 3 isozymes of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, a bifunctional enzyme which catalyzes the synthesis and degradation of fructose 2,6-bisphosphate. A 22-kb rat gene that encodes the heart isozyme has been identified and compared with the 55-kb rat gene encoding the liver and muscle isozymes which had been described earlier. Although these 2 genes include 12 successive similar exons, they contain dissimilar exons at both ends, consistent with the occurrence of different regulatory domains at the N- and C-termini in the 3 isozymes.
Collapse
Affiliation(s)
- M I Darville
- Hormone and Metabolic Research Unit, International Institute of Cellular and Molecular Pathology, Brussels, Belgium
| | | | | | | | | |
Collapse
|
77
|
Van Etten RL, Davidson R, Stevis PE, MacArthur H, Moore DL. Covalent structure, disulfide bonding, and identification of reactive surface and active site residues of human prostatic acid phosphatase. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)52245-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
78
|
Cifuentes ME, Espinet C, Lange AJ, Pilkis SJ, Hod Y. Hormonal control of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene expression in rat hepatoma cells. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)52330-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
79
|
Pyrophosphate-dependent phosphofructokinase. Conservation of protein sequence between the alpha- and beta-subunits and with the ATP-dependent phosphofructokinase. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)44761-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
80
|
Hepatic 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Use of site-directed mutagenesis to evaluate the roles of His-258 and His-392 in catalysis. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)55442-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
81
|
Dassa J, Marck C, Boquet PL. The complete nucleotide sequence of the Escherichia coli gene appA reveals significant homology between pH 2.5 acid phosphatase and glucose-1-phosphatase. J Bacteriol 1990; 172:5497-500. [PMID: 2168385 PMCID: PMC213220 DOI: 10.1128/jb.172.9.5497-5500.1990] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The whole nucleotide sequence of Escherichia coli gene appA, which encodes periplasmic phosphoanhydride phosphohydrolase (optimum pH, 2.5), and its flanking regions was determined. The AppA protein is significantly homologous to the product of the nearby gene agp, acid glucose-1-phosphatase. Because identical amino acids are distributed over the whole lengths of the proteins, it is likely that appA and agp originate from the same ancestor gene.
Collapse
Affiliation(s)
- J Dassa
- Service de Biochimie, Département de Biologie, Gif-sur-Yvette, France
| | | | | |
Collapse
|
82
|
Sakata J, Uyeda K. Bovine heart fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase: complete amino acid sequence and localization of phosphorylation sites. Proc Natl Acad Sci U S A 1990; 87:4951-5. [PMID: 2164212 PMCID: PMC54239 DOI: 10.1073/pnas.87.13.4951] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have shown previously that bovine heart fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase (EC 2.7.1.105/3.1.3.46) is phosphorylated by cAMP-dependent protein kinase and protein kinase C; phosphorylation results in activation of kinase. This activation of heart enzyme is in contrast to results with the liver isozyme, in which phosphorylation by cAMP-dependent protein kinase inhibits the kinase activity. As an initial step toward understanding this difference between the isozymes we have determined the DNA sequence of the heart enzyme and analyzed the amino acid sequence with special emphasis on the location of the phosphorylation site. We isolated and sequenced two overlapping cDNA fragments, which together could encode the complete amino acid sequence of bovine heart fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase, a protein of 530 amino acids, with a calculated molecular weight of 60,679. Since the deduced protein contained amino acid sequences identical to the sequences of four known tryptic peptides from this enzyme we concluded that the deduced protein sequence did represent bovine heart enzyme. In addition, a cDNA fragment hybridized to a 4-kilobase mRNA from bovine heart. The phosphorylation sites of the heart enzyme were located near the C terminus, whereas the phosphorylation site of the liver isozyme is known to be located near the N terminus. These opposite locations of the phosphorylation sites may explain the contrasting effect of the covalent modification on the enzymes' activities.
Collapse
Affiliation(s)
- J Sakata
- Pre-Clinical Science Unit, Department of Veterans Affairs Medical Center, Dallas, TX 75216
| | | |
Collapse
|
83
|
|