51
|
Identification and Evaluation of Novel Protective Antigens for the Development of a Candidate Tuberculosis Subunit Vaccine. Infect Immun 2018; 86:IAI.00014-18. [PMID: 29661928 PMCID: PMC6013653 DOI: 10.1128/iai.00014-18] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/06/2018] [Indexed: 12/03/2022] Open
Abstract
The development of a vaccine against tuberculosis (TB), a disease caused by Mycobacterium tuberculosis, is urgently needed. The only currently available vaccine, M. bovis BCG, has variable efficacy. One approach in the global vaccine development effort is focused on boosting BCG using subunit vaccines. The identification of novel antigens for inclusion in subunit vaccines is a critical step in the TB vaccine development pathway. We selected four novel mycobacterial antigens recognized during the course of human infection. A replication-deficient chimpanzee adenovirus (ChAdOx1) was constructed to express each antigen individually, and these vectors were evaluated for protective efficacy in murine M. tuberculosis challenge experiments. One antigen, PPE15 (Rv1039c), conferred significant and reproducible protection when administered alone and as a boost to BCG vaccination. We identified immunodominant epitopes to define the protective immune responses using tetramers and intravascular staining. Lung parenchymal CD4+ and CD8+ CXCR3+ KLRG1− T cells, previously associated with protection against M. tuberculosis, were enriched in the vaccinated groups compared to the control groups. Further work to evaluate the protective efficacy of PPE15 in more stringent preclinical animal models, together with the identification of further novel protective antigens using this selection strategy, is now merited.
Collapse
|
52
|
Prendergast KA, Daniels NJ, Petersen TR, Hermans IF, Kirman JR. Langerin + CD8α + Dendritic Cells Drive Early CD8 + T Cell Activation and IL-12 Production During Systemic Bacterial Infection. Front Immunol 2018; 9:953. [PMID: 29867941 PMCID: PMC5949331 DOI: 10.3389/fimmu.2018.00953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/17/2018] [Indexed: 12/18/2022] Open
Abstract
Bloodstream infections induce considerable morbidity, high mortality, and represent a significant burden of cost in health care; however, our understanding of the immune response to bacteremia is incomplete. Langerin+ CD8α+ dendritic cells (DCs), residing in the marginal zone of the murine spleen, have the capacity to cross-prime CD8+ T cells and produce IL-12, both of which are important components of antimicrobial immunity. Accordingly, we hypothesized that this DC subset may be a key promoter of adaptive immune responses to blood-borne bacterial infections. Utilizing mice that express the diphtheria toxin receptor under control of the langerin promoter, we investigated the impact of depleting langerin+ CD8α+ DCs in a murine model of intravenous infection with Mycobacterium bovis bacille Calmette–Guerin (BCG). In the absence of langerin+ CD8α+ DCs, the immune response to blood-borne BCG infection was diminished: bacterial numbers in the spleen increased, serum IL-12p40 decreased, and delayed CD8+ T cell activation, proliferation, and IFN-γ production was evident. Our data revealed that langerin+ CD8α+ DCs play a pivotal role in initiating CD8+ T cell responses and IL-12 production in response to bacteremia and may influence the early control of systemic bacterial infections.
Collapse
Affiliation(s)
- Kelly A Prendergast
- Malaghan Institute of Medical Research, Wellington, New Zealand.,School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Naomi J Daniels
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | - Ian F Hermans
- Malaghan Institute of Medical Research, Wellington, New Zealand.,School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Joanna R Kirman
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
53
|
Pahari S, Kaur G, Negi S, Aqdas M, Das DK, Bashir H, Singh S, Nagare M, Khan J, Agrewala JN. Reinforcing the Functionality of Mononuclear Phagocyte System to Control Tuberculosis. Front Immunol 2018; 9:193. [PMID: 29479353 PMCID: PMC5811511 DOI: 10.3389/fimmu.2018.00193] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022] Open
Abstract
The mononuclear phagocyte system (MPS) constitutes dendritic cells, monocytes, and macrophages. This system contributes to various functions that are essential for maintaining homeostasis, activation of innate immunity, and bridging it with the adaptive immunity. Consequently, MPS is highly important in bolstering immunity against the pathogens. However, MPS is the frontline cells in destroying Mycobacterium tuberculosis (Mtb), yet the bacterium prefers to reside in the hostile environment of macrophages. Therefore, it may be very interesting to study the struggle between Mtb and MPS to understand the outcome of the disease. In an event when MPS predominates Mtb, the host remains protected. By contrast, the situation becomes devastating when the pathogen tames and tunes the host MPS, which ultimately culminates into tuberculosis (TB). Hence, it becomes extremely crucial to reinvigorate MPS functionality to overwhelm Mtb and eliminate it. In this article, we discuss the strategies to bolster the function of MPS by exploiting the molecules associated with the innate immunity and highlight the mechanisms involved to overcome the Mtb-induced suppression of host immunity. In future, such approaches may provide an insight to develop immunotherapeutics to treat TB.
Collapse
Affiliation(s)
- Susanta Pahari
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Gurpreet Kaur
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Shikha Negi
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Mohammad Aqdas
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Deepjyoti K Das
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Hilal Bashir
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sanpreet Singh
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Mukta Nagare
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Junaid Khan
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Javed N Agrewala
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
54
|
Platteel ACM, Nieuwenhuizen NE, Domaszewska T, Schürer S, Zedler U, Brinkmann V, Sijts AJAM, Kaufmann SHE. Efficacy Testing of H56 cDNA Tattoo Immunization against Tuberculosis in a Mouse Model. Front Immunol 2017; 8:1744. [PMID: 29312295 PMCID: PMC5732355 DOI: 10.3389/fimmu.2017.01744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/23/2017] [Indexed: 11/29/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a global threat. The only approved vaccine against TB, Mycobacterium bovis bacillus Calmette–Guérin (BCG), provides insufficient protection and, being a live vaccine, can cause disseminated disease in immunocompromised individuals. Previously, we found that intradermal cDNA tattoo immunization with cDNA of tetanus toxoid fragment C domain 1 fused to cDNA of the fusion protein H56, comprising the Mtb antigens Ag85B, ESAT-6, and Rv2660c, induced antigen-specific CD8+ T cell responses in vivo. As cDNA tattoo immunization would be safer than a live vaccine in immunocompromised patients, we tested the protective efficacy of intradermal tattoo immunization against TB with H56 cDNA, as well as with H56_E, a construct optimized for epitope processing in a mouse model. As Mtb antigens can be used in combination with BCG to boost immune responses, we also tested the protective efficacy of heterologous prime-boost, using dermal tattoo immunization with H56_E cDNA to boost BCG immunization in mice. Dermal H56 and H56_E cDNA immunization induced H56-specific CD4+ and CD8+ T cell responses and Ag85B-specific IgG antibodies, but did not reduce bacterial loads, although immunization with H56_E ameliorated lung pathology. Both subcutaneous and intradermal immunization with BCG resulted in broad cellular immune responses, with increased frequencies of CD4+ T effector memory cells, T follicular helper cells, and germinal center B cells, and resulted in reduced bacterial loads and lung pathology. Heterologous vaccination with BCG/H56_E cDNA induced increased H56-specific CD4+ and CD8+ T cell cytokine responses compared to vaccination with BCG alone, and lung pathology was significantly decreased in BCG/H56_E cDNA immunized mice compared to unvaccinated controls. However, bacterial loads were not decreased after heterologous vaccination compared to BCG alone. CD4+ T cells responding to Ag85B- and ESAT-6-derived epitopes were predominantly IFN-γ+TNF-α+ and TNF-α+IL-2+, respectively. In conclusion, despite inducing appreciable immune responses to Ag85B and ESAT-6, intradermal H56 cDNA tattoo immunization did not substantially enhance the protective effect of BCG under the conditions tested.
Collapse
Affiliation(s)
- Anouk C M Platteel
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | - Teresa Domaszewska
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Stefanie Schürer
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Ulrike Zedler
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Volker Brinkmann
- Microscopy Core Facility, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Alice J A M Sijts
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
55
|
Application of a whole blood mycobacterial growth inhibition assay to study immunity against Mycobacterium tuberculosis in a high tuberculosis burden population. PLoS One 2017; 12:e0184563. [PMID: 28886145 PMCID: PMC5590973 DOI: 10.1371/journal.pone.0184563] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/25/2017] [Indexed: 11/19/2022] Open
Abstract
The determinants of immunological protection against Mycobacterium tuberculosis (M.tb) infection in humans are not known. Mycobacterial growth inhibition assays have potential utility as in vitro surrogates of in vivo immunological control of M.tb. We evaluated a whole blood growth inhibition assay in a setting with high burden of TB and aimed to identify immune responses that correlate with control of mycobacterial growth. We hypothesized that individuals with underlying M.tb infection will exhibit greater M.tb growth inhibition than uninfected individuals and that children aged 4 to 12 years, an age during which TB incidence is curiously low, will also exhibit greater M.tb growth inhibition than adolescents or adults. Neither M.tb infection status, age of the study participants, nor M.tb strain was associated with differential control of mycobacterial growth. Abundance and function of innate or T cell responses were also not associated with mycobacterial growth. Our data suggest that this assay does not provide a useful measure of age-associated differential host control of M.tb infection in a high TB burden setting. We propose that universally high levels of mycobacterial sensitization (through environmental non-tuberculous mycobacteria and/or universal BCG vaccination) in persons from high TB burden settings may impart broad inhibition of mycobacterial growth, irrespective of M.tb infection status. This sensitization may mask the augmentative effects of mycobacterial sensitization on M.tb growth inhibition that is typical in low burden settings.
Collapse
|
56
|
Phillips BL, Gautam US, Bucsan AN, Foreman TW, Golden NA, Niu T, Kaushal D, Mehra S. LAG-3 potentiates the survival of Mycobacterium tuberculosis in host phagocytes by modulating mitochondrial signaling in an in-vitro granuloma model. PLoS One 2017; 12:e0180413. [PMID: 28880895 PMCID: PMC5589099 DOI: 10.1371/journal.pone.0180413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/28/2017] [Indexed: 11/23/2022] Open
Abstract
CD4+ T-cell mediated Th1 immune responses are critical for immunity to TB. The immunomodulatory protein, lymphocyte activation gene-3 (LAG-3) decreases Th1-type immune responses in T-cells. LAG-3 expression is significantly induced in the lungs of macaques with active TB and correlates with increased bacterial burden. Overproduction of LAG-3 can greatly diminish responses and could lead to uncontrolled Mtb replication. To assess the effect of LAG-3 on the progression of Mtb infection, we developed a co-culture system wherein blood-derived macrophages are infected with Mtb and supplemented with macaque blood or lung derived CD4+ T-cells. Silencing LAG-3 signaling in macaque lung CD4+ T-cells enhanced killing of Mtb in co-cultures, accompanied by reduced mitochondrial electron transport and increased IFN-γ expression. Thus, LAG-3 may modulate adaptive immunity to Mtb infection by interfering with the mitochondrial apoptosis pathway. Better understanding this pathway could allow us to circumvent immune features that promote disease.
Collapse
Affiliation(s)
- Bonnie L Phillips
- Tulane National Primate Research Center, Covington, Louisiana, United States of America.,Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Uma S Gautam
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Allison N Bucsan
- Tulane National Primate Research Center, Covington, Louisiana, United States of America.,Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Taylor W Foreman
- Tulane National Primate Research Center, Covington, Louisiana, United States of America.,Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Nadia A Golden
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Tianhua Niu
- Department of Biostatistics and Bioinformatics, Tulane University School of Public Health, New Orleans, Louisiana, United States of America
| | - Deepak Kaushal
- Tulane National Primate Research Center, Covington, Louisiana, United States of America.,Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Smriti Mehra
- Tulane National Primate Research Center, Covington, Louisiana, United States of America.,Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
57
|
Blischak JD, Tailleux L, Myrthil M, Charlois C, Bergot E, Dinh A, Morizot G, Chény O, Platen CV, Herrmann JL, Brosch R, Barreiro LB, Gilad Y. Predicting susceptibility to tuberculosis based on gene expression profiling in dendritic cells. Sci Rep 2017; 7:5702. [PMID: 28720766 PMCID: PMC5516010 DOI: 10.1038/s41598-017-05878-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/05/2017] [Indexed: 01/11/2023] Open
Abstract
Tuberculosis (TB) is a deadly infectious disease, which kills millions of people every year. The causative pathogen, Mycobacterium tuberculosis (MTB), is estimated to have infected up to a third of the world's population; however, only approximately 10% of infected healthy individuals progress to active TB. Despite evidence for heritability, it is not currently possible to predict who may develop TB. To explore approaches to classify susceptibility to TB, we infected with MTB dendritic cells (DCs) from putatively resistant individuals diagnosed with latent TB, and from susceptible individuals that had recovered from active TB. We measured gene expression levels in infected and non-infected cells and found hundreds of differentially expressed genes between susceptible and resistant individuals in the non-infected cells. We further found that genetic polymorphisms nearby the differentially expressed genes between susceptible and resistant individuals are more likely to be associated with TB susceptibility in published GWAS data. Lastly, we trained a classifier based on the gene expression levels in the non-infected cells, and demonstrated reasonable performance on our data and an independent data set. Overall, our promising results from this small study suggest that training a classifier on a larger cohort may enable us to accurately predict TB susceptibility.
Collapse
Affiliation(s)
- John D Blischak
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, Illinois, USA
| | - Ludovic Tailleux
- Integrated Mycobacterial Pathogenomics, Institut Pasteur, Paris, France.
| | - Marsha Myrthil
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
| | - Cécile Charlois
- Centre de Lutte Antituberculeuse de Paris, DASES Mairie de Paris, 75013, Paris, France
| | - Emmanuel Bergot
- Service de pneumologie et oncologie thoracique, CHU Côte de Nacre, 14033, Caen, France
| | - Aurélien Dinh
- Maladies Infectieuses, AP-HP, Hôpital Universitaire Raymond-Poincaré, Garches, 92380, France
| | - Gloria Morizot
- Clinical Investigation & Access Biological Resources (ICAReB), Institut Pasteur, Paris, France
| | - Olivia Chény
- Clinical Core, Centre for Translational Science, Institut Pasteur, Paris, France
| | - Cassandre Von Platen
- Clinical Core, Centre for Translational Science, Institut Pasteur, Paris, France
| | - Jean-Louis Herrmann
- INSERM, U1173, UFR Simone Veil, Université de Versailles Saint Quentin, Saint Quentin en Yvelines, France
- APHP, Groupe Hospitalo-Universitaire Paris Île-de-France Ouest, Garches et Boulogne-Billancourt, France
| | - Roland Brosch
- Integrated Mycobacterial Pathogenomics, Institut Pasteur, Paris, France
| | - Luis B Barreiro
- Department of Genetics, CHU Sainte-Justine Research Center, Montreal, Québec, Canada.
- Department of Pediatrics, University of Montreal, Montreal, Québec, Canada.
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA.
- Department of Medicine, University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
58
|
Abstract
This article describes the nature of the host response to Mycobacterium tuberculosis in the mouse and guinea pig models of infection. It describes the great wealth of information obtained from the mouse model, reflecting the general availability of immunological reagents, as well as genetic manipulations of the mouse strains themselves. This has led to a good understanding of the nature of the T-cell response to the infection, as well as an appreciation of the complexity of the response involving multiple cytokine- and chemokine-mediated systems. As described here and elsewhere, we have a growing understanding of how multiple CD4-positive T-cell subsets are involved, including regulatory T cells, TH17 cells, as well as the subsequent emergence of effector and central memory T-cell subsets. While, in contrast, our understanding of the host response in the guinea pig model is less advanced, considerable strides have been made in the past decade in terms of defining the basis of the immune response, as well as a better understanding of the immunopathologic process. This model has long been the gold standard for vaccine testing, and more recently is being revisited as a model for testing new drug regimens (bedaquiline being the latest example).
Collapse
|
59
|
Abstract
The key question our work has sought to address has been, "What are the necessary and sufficient conditions that engender protection from intracellular pathogens in the human host?" The origins of this work derive from a long-standing interest in the mechanisms of protection against two such paradigmatic intracellular pathogens, Mycobacterium tuberculosis and Mycobacterium leprae, that have brilliantly adapted to the human host. It was obvious that these pathogens, which cause chronic diseases and persist in macrophages, must have acquired subtle strategies to resist host microbicidal mechanisms, yet since the vast majority of individuals infected with M. tuberculosis do not develop disease, there must be some potent human antimicrobial mechanisms. What follows is not a comprehensive review of the vast literature on the role of human macrophages in protection against infectious disease, but a summary of the research in our two laboratories with collaborators that we hope has contributed to some understanding of mechanisms of resistance and pathogenesis. While mouse models revealed some necessary conditions for protection, e.g., innate immunity, Th1 cells and their cytokines, and major histocompatibility complex class I-restricted T cells, here we emphasize multiple antimicrobial mechanisms that exist in human macrophages that differ from those of most experimental animals. Prominent here is the vitamin D-dependent antimicrobial pathway common to human macrophages activated by innate and acquired immune responses, mediated by antimicrobial peptides, e.g., cathelicidin, through an interleukin-15- and interleukin-32-dependent common pathway that is necessary for macrophage killing of M. tuberculosis in vitro.
Collapse
|
60
|
Harriff MJ, Wolfe LM, Swarbrick G, Null M, Cansler ME, Canfield ET, Vogt T, Toren KG, Li W, Jackson M, Lewinsohn DA, Dobos KM, Lewinsohn DM. HLA-E Presents Glycopeptides from the Mycobacterium tuberculosis Protein MPT32 to Human CD8 + T cells. Sci Rep 2017; 7:4622. [PMID: 28676677 PMCID: PMC5496856 DOI: 10.1038/s41598-017-04894-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/22/2017] [Indexed: 12/17/2022] Open
Abstract
Infection with Mycobacterium tuberculosis (Mtb), the bacterium that causes tuberculosis, remains a global health concern. Both classically and non-classically restricted cytotoxic CD8+ T cells are important to the control of Mtb infection. We and others have demonstrated that the non-classical MHC I molecule HLA-E can present pathogen-derived peptides to CD8+ T cells. In this manuscript, we identified the antigen recognized by an HLA-E-restricted CD8+ T cell clone isolated from an Mtb latently infected individual as a peptide from the Mtb protein, MPT32. Recognition by the CD8+ T cell clone required N-terminal O-linked mannosylation of MPT32 by a mannosyltransferase encoded by the Rv1002c gene. This is the first description of a post-translationally modified Mtb-derived protein antigen presented in the context of an HLA-E specific CD8+ T cell immune response. The identification of an immune response that targets a unique mycobacterial modification is novel and may have practical impact in the development of vaccines and diagnostics.
Collapse
Affiliation(s)
- Melanie J Harriff
- Veterans Administration Portland Health Care System, Research & Development, 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA.
- Oregon Health & Sciences University, Department of Pulmonary and Critical Care Medicine, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | - Lisa M Wolfe
- Colorado State University, Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Gwendolyn Swarbrick
- Oregon Health & Sciences University, Department of Pediatrics, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Megan Null
- Oregon Health & Sciences University, Department of Pediatrics, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Meghan E Cansler
- Oregon Health & Sciences University, Department of Pediatrics, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Elizabeth T Canfield
- Oregon Health & Sciences University, Department of Pulmonary and Critical Care Medicine, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Todd Vogt
- Oregon Health & Sciences University, Department of Pulmonary and Critical Care Medicine, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Katelynne Gardner Toren
- Oregon Health & Sciences University, Department of Pulmonary and Critical Care Medicine, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Wei Li
- Colorado State University, Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Mary Jackson
- Colorado State University, Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Deborah A Lewinsohn
- Oregon Health & Sciences University, Department of Pediatrics, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Karen M Dobos
- Colorado State University, Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - David M Lewinsohn
- Veterans Administration Portland Health Care System, Research & Development, 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA.
- Oregon Health & Sciences University, Department of Pulmonary and Critical Care Medicine, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
61
|
Argyropoulos CP, Chen SS, Ng YH, Roumelioti ME, Shaffi K, Singh PP, Tzamaloukas AH. Rediscovering Beta-2 Microglobulin As a Biomarker across the Spectrum of Kidney Diseases. Front Med (Lausanne) 2017; 4:73. [PMID: 28664159 PMCID: PMC5471312 DOI: 10.3389/fmed.2017.00073] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/26/2017] [Indexed: 12/28/2022] Open
Abstract
There is currently an unmet need for better biomarkers across the spectrum of renal diseases. In this paper, we revisit the role of beta-2 microglobulin (β2M) as a biomarker in patients with chronic kidney disease and end-stage renal disease. Prior to reviewing the numerous clinical studies in the area, we describe the basic biology of β2M, focusing in particular on its role in maintaining the serum albumin levels and reclaiming the albumin in tubular fluid through the actions of the neonatal Fc receptor. Disorders of abnormal β2M function arise as a result of altered binding of β2M to its protein cofactors and the clinical manifestations are exemplified by rare human genetic conditions and mice knockouts. We highlight the utility of β2M as a predictor of renal function and clinical outcomes in recent large database studies against predictions made by recently developed whole body population kinetic models. Furthermore, we discuss recent animal data suggesting that contrary to textbook dogma urinary β2M may be a marker for glomerular rather than tubular pathology. We review the existing literature about β2M as a biomarker in patients receiving renal replacement therapy, with particular emphasis on large outcome trials. We note emerging proteomic data suggesting that β2M is a promising marker of chronic allograft nephropathy. Finally, we present data about the role of β2M as a biomarker in a number of non-renal diseases. The goal of this comprehensive review is to direct attention to the multifaceted role of β2M as a biomarker, and its exciting biology in order to propose the next steps required to bring this recently rediscovered biomarker into the twenty-first century.
Collapse
Affiliation(s)
- Christos P Argyropoulos
- Nephrology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Shan Shan Chen
- Nephrology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Yue-Harn Ng
- Nephrology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Maria-Eleni Roumelioti
- Nephrology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Kamran Shaffi
- Nephrology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Pooja P Singh
- Nephrology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Antonios H Tzamaloukas
- Nephrology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States.,Raymond G. Murphy VA Medical Center Albuquerque, Albuquerque, NM, United States
| |
Collapse
|
62
|
Cruz FM, Colbert JD, Merino E, Kriegsman BA, Rock KL. The Biology and Underlying Mechanisms of Cross-Presentation of Exogenous Antigens on MHC-I Molecules. Annu Rev Immunol 2017; 35:149-176. [PMID: 28125356 PMCID: PMC5508990 DOI: 10.1146/annurev-immunol-041015-055254] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To monitor the health of cells, the immune system tasks antigen-presenting cells with gathering antigens from other cells and bringing them to CD8 T cells in the form of peptides bound to MHC-I molecules. Most cells would be unable to perform this function because they use their MHC-I molecules to exclusively present peptides derived from the cell's own proteins. However, the immune system evolved mechanisms for dendritic cells and some other phagocytes to sample and present antigens from the extracellular milieu on MHC-I through a process called cross-presentation. How this important task is accomplished, its role in health and disease, and its potential for exploitation are the subject of this review.
Collapse
Affiliation(s)
- Freidrich M Cruz
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655; , , , ,
| | - Jeff D Colbert
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655; , , , ,
| | - Elena Merino
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655; , , , ,
| | - Barry A Kriegsman
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655; , , , ,
| | - Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655; , , , ,
| |
Collapse
|
63
|
Moliva JI, Turner J, Torrelles JB. Immune Responses to Bacillus Calmette-Guérin Vaccination: Why Do They Fail to Protect against Mycobacterium tuberculosis? Front Immunol 2017; 8:407. [PMID: 28424703 PMCID: PMC5380737 DOI: 10.3389/fimmu.2017.00407] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/22/2017] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis (TB), is the current leading cause of death due to a single infectious organism. Although curable, the broad emergence of multi-, extensive-, extreme-, and total-drug resistant strains of M.tb has hindered eradication efforts of this pathogen. Furthermore, computational models predict a quarter of the world’s population is infected with M.tb in a latent state, effectively serving as the largest reservoir for any human pathogen with the ability to cause significant morbidity and mortality. The World Health Organization has prioritized new strategies for improved vaccination programs; however, the lack of understanding of mycobacterial immunity has made it difficult to develop new successful vaccines. Currently, Mycobacterium bovis bacillus Calmette–Guérin (BCG) is the only vaccine approved for use to prevent TB. BCG is highly efficacious at preventing meningeal and miliary TB, but is at best 60% effective against the development of pulmonary TB in adults and wanes as we age. In this review, we provide a detailed summary on the innate immune response of macrophages, dendritic cells, and neutrophils in response to BCG vaccination. Additionally, we discuss adaptive immune responses generated by BCG vaccination, emphasizing their specific contributions to mycobacterial immunity. The success of future vaccines against TB will directly depend on our understanding of mycobacterial immunity.
Collapse
Affiliation(s)
- Juan I Moliva
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Joanne Turner
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA.,Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, USA
| | - Jordi B Torrelles
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA.,Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
64
|
Feruglio SL, Kvale D, Dyrhol-Riise AM. T Cell Responses and Regulation and the Impact of In Vitro IL-10 and TGF-β Modulation During Treatment of Active Tuberculosis. Scand J Immunol 2017; 85:138-146. [PMID: 27862137 DOI: 10.1111/sji.12511] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 11/14/2016] [Indexed: 01/20/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is particularly challenging for the immune system being an intracellular pathogen, and a variety of T cell subpopulations are activated by the host defence mechanism. In this study, we investigated T cell responses and regulation in active TB patients with drug-sensitive Mtb (N = 18) during 24 weeks of efficient anti-TB therapy. T cell activation, differentiation, regulatory T cell (Treg) subsets, Mtb-induced T cell proliferation and in vitro IL-10 and TGF-β modulation were analysed by flow cytometry at baseline and after 8 and 24 weeks of therapy, while soluble cytokines in culture supernatants were analysed by a 9-plex Luminex assay. Successful treatment resulted in significantly reduced co-expression of HLA-DR/CD38 and PD-1/CD38 on both CD4+ and CD8+ T cells, while the fraction of CD4+ CD25high CD127low Tregs (P = 0.017) and CD4+ CD25high CD127low CD147+ Tregs (P = 0.029) showed significant transient increase at week 8. In vitro blockade of IL-10/TGF-β upon Mtb antigen stimulation significantly lowered the fraction of ESAT-6-specific CD4+ CD25high CD127low Tregs at baseline (P = 0.047), while T cell proliferation and cytokine production were unaffected. Phenotypical and Mtb-specific T cell signatures may serve as markers of effective therapy, while the IL-10/TGF-β pathway could be a target for early inhibition to facilitate Mtb clearance. However, larger clinical studies are needed for verification before concluding.
Collapse
Affiliation(s)
- S L Feruglio
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Norwegian Institute of Public Health, Oslo, Norway
| | - D Kvale
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway.,K. G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway
| | - A M Dyrhol-Riise
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway.,K. G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
65
|
Meng L, Tong J, Wang H, Tao C, Wang Q, Niu C, Zhang X, Gao Q. PPE38 Protein of Mycobacterium tuberculosis Inhibits Macrophage MHC Class I Expression and Dampens CD8 + T Cell Responses. Front Cell Infect Microbiol 2017; 7:68. [PMID: 28348981 PMCID: PMC5346565 DOI: 10.3389/fcimb.2017.00068] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/22/2017] [Indexed: 12/23/2022] Open
Abstract
Suppression of CD8+ T cell activation is a critical mechanism used by Mycobacterium tuberculosis (MTB) to escape protective host immune responses. PPE38 belongs to the unique PPE family of MTB and in our previous study, PPE38 protein was speculated to participate in manipulating macrophage MHC class I pathway. To test this hypothesis, the function of mycobacterial PPE38 protein was assessed here using macrophage and mouse infection models. Decreased amount of MHC class I was observed on the surface of macrophages infected with PPE38-expressing mycobacteria. The transcript of genes encoding MHC class I was also inhibited by PPE38. After infection of C57BL/6 mice with Mycobacterium smegmatis expressing PPE38 (Msmeg-PPE38), decreased number of CD8+ T cells was found in spleen, liver, and lungs through immunohistochemical analysis, comparing to the control strain harboring empty vector (Msmeg-V). Consistently, flow cytometry assay showed that fewer effector/memory CD8+ T cells (CD44highCD62Llow) were activated in spleen from Msmeg-PPE38 infected mice. Moreover, Msmeg-PPE38 confers a growth advantage over Msmeg-V in C57BL/6 mice, indicating an effect of PPE38 to favor mycobacterial persistence in vivo. Overall, this study shows a unique biological function of PPE38 protein to facilitate mycobacteria to escape host immunity, and provides hints for TB vaccine development.
Collapse
Affiliation(s)
- Lu Meng
- Key laboratory of Medical Molecular Virology, Institute of Biomedical Sciences and Institute of Medical Microbiology, Shanghai Medical College, Fudan University Shanghai, China
| | - Jingfeng Tong
- Key laboratory of Medical Molecular Virology, Institute of Biomedical Sciences and Institute of Medical Microbiology, Shanghai Medical College, Fudan University Shanghai, China
| | - Hui Wang
- Key laboratory of Medical Molecular Virology, Institute of Biomedical Sciences and Institute of Medical Microbiology, Shanghai Medical College, Fudan UniversityShanghai, China; The State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, School of Medicine, Shenzhen UniversityGuangdong, China
| | - Chengwu Tao
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences Shanghai, China
| | - Qinglan Wang
- Key laboratory of Medical Molecular Virology, Institute of Biomedical Sciences and Institute of Medical Microbiology, Shanghai Medical College, Fudan University Shanghai, China
| | - Chen Niu
- Key laboratory of Medical Molecular Virology, Institute of Biomedical Sciences and Institute of Medical Microbiology, Shanghai Medical College, Fudan University Shanghai, China
| | - Xiaoming Zhang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences Shanghai, China
| | - Qian Gao
- Key laboratory of Medical Molecular Virology, Institute of Biomedical Sciences and Institute of Medical Microbiology, Shanghai Medical College, Fudan University Shanghai, China
| |
Collapse
|
66
|
Mahamed D, Boulle M, Ganga Y, Mc Arthur C, Skroch S, Oom L, Catinas O, Pillay K, Naicker M, Rampersad S, Mathonsi C, Hunter J, Wong EB, Suleman M, Sreejit G, Pym AS, Lustig G, Sigal A. Intracellular growth of Mycobacterium tuberculosis after macrophage cell death leads to serial killing of host cells. eLife 2017; 6. [PMID: 28130921 PMCID: PMC5319838 DOI: 10.7554/elife.22028] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 01/27/2017] [Indexed: 01/09/2023] Open
Abstract
A hallmark of pulmonary tuberculosis is the formation of macrophage-rich granulomas. These may restrict Mycobacterium tuberculosis (Mtb) growth, or progress to central necrosis and cavitation, facilitating pathogen growth. To determine factors leading to Mtb proliferation and host cell death, we used live cell imaging to track Mtb infection outcomes in individual primary human macrophages. Internalization of Mtb aggregates caused macrophage death, and phagocytosis of large aggregates was more cytotoxic than multiple small aggregates containing similar numbers of bacilli. Macrophage death did not result in clearance of Mtb. Rather, it led to accelerated intracellular Mtb growth regardless of prior activation or macrophage type. In contrast, bacillary replication was controlled in live phagocytes. Mtb grew as a clump in dead cells, and macrophages which internalized dead infected cells were very likely to die themselves, leading to a cell death cascade. This demonstrates how pathogen virulence can be achieved through numbers and aggregation states. DOI:http://dx.doi.org/10.7554/eLife.22028.001 Every year, around two million people worldwide die from tuberculosis, a disease caused by the bacterium Mycobacterium tuberculosis (Mtb). The bacteria generally infect the lungs. In response, the immune system forms structures called granulomas that attempt to control and isolate the infecting pathogens. Granulomas consist of immune cells known as macrophages, which engulf the M. tuberculosis bacteria and isolate them in a cellular compartment where the bacteria either cannot grow or are killed. However, if a large number of macrophages in a granuloma die, the granuloma’s core liquefies and the structure is coughed up into the airways, from where M. tuberculosis bacteria are transmitted to other people. But how do the bacteria manage to cause the extensive death of the cells that are supposed to control the infection? By imaging M. tuberculosis in human macrophages using time-lapse microscopy, Mahamed et al. reveal that the bacteria break down macrophage control by serially killing macrophages. M. tuberculosis cells first clump together and ‘gang up’ on a macrophage, which engulfs the clump and dies because the bacteria overwhelm it. This does not kill the bacteria, and they rapidly grow inside the dead macrophage. The dead cell is then cleaned up by another macrophage. However, the increasing number of bacteria inside the dead macrophage means that the new macrophage is even more likely to die than the first one. Hence, the bacteria use dead macrophages as fuel to grow on and as bait to attract the next immune cell. Overall, Mahamed et al. show that once a clump of M. tuberculosis initiates death of a single macrophage, it may lead to serial killing of other macrophages and a loss of control over the infection. An important next step will be to understand how the initial clump of bacteria is allowed to form. DOI:http://dx.doi.org/10.7554/eLife.22028.002
Collapse
Affiliation(s)
- Deeqa Mahamed
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa
| | - Mikael Boulle
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa.,Max Planck Institute for Infection Biology, Berlin, Germany
| | - Yashica Ganga
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa
| | - Chanelle Mc Arthur
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa
| | - Steven Skroch
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa
| | - Lance Oom
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa
| | - Oana Catinas
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa
| | - Kelly Pillay
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa
| | - Myshnee Naicker
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa
| | - Sanisha Rampersad
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa
| | - Colisile Mathonsi
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa
| | - Jessica Hunter
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa
| | - Emily B Wong
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,Division of Infectious Diseases, Massachusetts General Hospital, Boston, United States
| | - Moosa Suleman
- Department of Pulmonology and Critical Care, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,Department of Pulmonology, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | | | - Alexander S Pym
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa
| | - Gila Lustig
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa
| | - Alex Sigal
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa.,Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
67
|
Abstract
Peptide-specific conventional T cells have been major targets for designing most antimycobacterial vaccines. Immune responses mediated by conventional T cells exhibit a delayed onset upon primary infection and are highly variable in different human populations. In contrast, innate-like T cells quickly respond to pathogens and display effector functions without undergoing extensive clonal expansion. Specifically, the activation of innate-like T cells depends on the promiscuous interaction of highly conserved antigen-presenting molecules, non-peptidic antigens, and likely semi-invariant T cell receptors. In antimicrobial immune responses, mucosal-associated invariant T cells are activated by riboflavin precursor metabolites presented by major histocompatibility complex-related protein I, while lipid-specific T cells including natural killer T cells are activated by lipid metabolites presented by CD1 proteins. Multiple innate-like T cell subsets have been shown to be protective or responsive in mycobacterial infections. Through rapid cytokine secretion, innate-like T cells function in early defense and memory response, offering novel advantages over conventional T cells in the design of anti-tuberculosis strategies.
Collapse
Affiliation(s)
- Shouxiong Huang
- Department of Environmental Health, University of Cincinnati College of Medicine , Cincinnati, OH , USA
| |
Collapse
|
68
|
Tsukamoto Y, Maeda Y, Tamura T, Mukai T, Mitarai S, Yamamoto S, Makino M. Enhanced protective efficacy against tuberculosis provided by a recombinant urease deficient BCG expressing heat shock protein 70-major membrane protein-II having PEST sequence. Vaccine 2016; 34:6301-6308. [PMID: 27847173 DOI: 10.1016/j.vaccine.2016.10.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 09/14/2016] [Accepted: 10/22/2016] [Indexed: 11/26/2022]
Abstract
Enhancement of the T cell-stimulating ability of Mycobacterium bovis BCG (BCG) is necessary to develop an effective tuberculosis vaccine. For this purpose, we introduced the PEST-HSP70-major membrane protein-II (MMPII)-PEST fusion gene into ureC-gene depleted recombinant (r) BCG to produce BCG-PEST. The PEST sequence is involved in the proteasomal processing of antigens. BCG-PEST secreted the PEST-HSP70-MMPII-PEST fusion protein and more efficiently activated human monocyte-derived dendritic cells (DCs) in terms of phenotypic changes and cytokine productions than an empty-vector-introduced BCG or HSP70-MMPII gene-introduced ureC gene-depleted BCG (BCG-DHTM). Autologous human naïve CD8+ T cells and naïve CD4+ T cells were effectively activated by BCG-PEST and produced IFN-γ in an antigen-specific manner through DCs. These T cell activations were closely associated with phagosomal maturation and intraproteasomal protein degradation in antigen-presenting cells. Furthermore, BCG-PEST produced long-lasting memory-type T cells in C57BL/6 mice more efficiently than control rBCGs. Moreover, a single subcutaneous injection of BCG-PEST more effectively reduced the multiplication of subsequent aerosol-challenged Mycobacterium tuberculosis of the standard H37Rv strain and clinically isolated Beijing strain in the lungs than control rBCGs. The vaccination effect of BCG-PEST lasted for at least 6months. These results indicate that BCG-PEST may be able to efficiently control the spread of tuberculosis in human.
Collapse
Affiliation(s)
- Yumiko Tsukamoto
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aobacho, Higashimurayama, Tokyo, Japan.
| | - Yumi Maeda
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aobacho, Higashimurayama, Tokyo, Japan
| | - Toshiki Tamura
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aobacho, Higashimurayama, Tokyo, Japan
| | - Tetsu Mukai
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aobacho, Higashimurayama, Tokyo, Japan
| | - Satoshi Mitarai
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose, Tokyo, Japan
| | | | - Masahiko Makino
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aobacho, Higashimurayama, Tokyo, Japan
| |
Collapse
|
69
|
Adenovirally-Induced Polyfunctional T Cells Do Not Necessarily Recognize the Infected Target: Lessons from a Phase I Trial of the AERAS-402 Vaccine. Sci Rep 2016; 6:36355. [PMID: 27805026 PMCID: PMC5141283 DOI: 10.1038/srep36355] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 10/13/2016] [Indexed: 11/08/2022] Open
Abstract
The development of a vaccine for Mycobacterium tuberculosis (Mtb) has been impeded by the absence of correlates of protective immunity. One correlate would be the ability of cells induced by vaccination to recognize the Mtb-infected cell. AERAS-402 is a replication-deficient serotype 35 adenovirus containing DNA expressing a fusion protein of Mtb antigens 85A, 85B and TB10.4. We undertook a phase I double-blind, randomized placebo controlled trial of vaccination with AERAS-402 following BCG. Analysis of the vaccine-induced immune response revealed strong antigen-specific polyfunctional CD4+ and CD8+ T cell responses. However, analysis of the vaccine-induced CD8+ T cells revealed that in many instances these cells did not recognize the Mtb-infected cell. Our findings highlight the measurement of vaccine-induced, polyfunctional T cells may not reflect the extent or degree to which these cells are capable of identifying the Mtb-infected cell and correspondingly, the value of detailed experimental medicine studies early in vaccine development.
Collapse
|
70
|
Bhavanam S, Rayat GR, Keelan M, Kunimoto D, Drews SJ. Understanding the pathophysiology of the human TB lung granuloma using in vitro granuloma models. Future Microbiol 2016; 11:1073-89. [PMID: 27501829 DOI: 10.2217/fmb-2016-0005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tuberculosis remains a major human health threat that infects one in three individuals worldwide. Infection with Mycobacterium tuberculosis is a standoff between host and bacteria in the formation of a granuloma. This review will introduce a variety of bacterial and host factors that impact individual granuloma fates. The authors describe advances in the development of in vitro granuloma models, current evidence surrounding infection and granuloma development, and the applicability of existing in vitro models in the study of human disease. In vitro models of infection help improve our understanding of pathophysiology and allow for the discovery of other potential models of study.
Collapse
Affiliation(s)
- Sudha Bhavanam
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, Surgical-Medical Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Provincial Laboratory for Public Health, Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Gina R Rayat
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, Surgical-Medical Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Provincial Laboratory for Public Health, Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Monika Keelan
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, Surgical-Medical Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Provincial Laboratory for Public Health, Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Dennis Kunimoto
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, Surgical-Medical Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Provincial Laboratory for Public Health, Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Steven J Drews
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, Surgical-Medical Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Provincial Laboratory for Public Health, Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
71
|
A novel dendritic cell-targeted lentiviral vector, encoding Ag85A-ESAT6 fusion gene of Mycobacterium tuberculosis, could elicit potent cell-mediated immune responses in mice. Mol Immunol 2016; 75:101-11. [DOI: 10.1016/j.molimm.2016.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/08/2016] [Accepted: 04/28/2016] [Indexed: 01/13/2023]
|
72
|
Gioia C, Agrati C, Goletti D, Vincenti D, Carrara S, Amicosante M, Casarini M, Giosue S, Puglisi G, Rossi A, Colizzi V, Pucillo LP, Poccia F. Different Cytokine Production and Effector/Memory Dynamics of αβ+ or γδ+ T-Cell Subsets in the Peripheral Blood of Patients with Active Pulmonary Tuberculosis. Int J Immunopathol Pharmacol 2016; 16:247-52. [PMID: 14611728 DOI: 10.1177/039463200301600310] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Immunity to M.tuberculosis (MTB) infection consists of interactions between various T-cell subsets that control the infection and prevent further reactivation. We analysed the effector/memory T-cell dynamics and cytokines production in the peripheral blood of patients with pulmonary tuberculosis (TB). We observed that the frequency of CD4+ T-cell effectors was significantly increased during active TB, confirming a major role of this T-cell subset in TB immunity. Pre-terminally differentiated CD8+ T-lymphocytes were increased in the peripheral blood as well. In contrast, we observed a reduced number of effector mycobacteria-reactive γδ+ T-lymphocytes with a specific defects in reacting to mycobacterial nonpeptidic antigens, suggesting that this innate response is rapidly lost during TB infection. Nevertheless, the frequency of γδ+ T-cells effectors in TB patients was higher than the αβ+ T-cell response to peptide from MTB-ESAT-6 protein and quantitatively similar to PPD reactivity. Thus, αβ+and γδ+ T-cell differentiation and function are differently triggered by active TB infection.
Collapse
Affiliation(s)
- C Gioia
- Lab. Clinical Pathology, I.N.M.I., IRCCS, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Yamashiro LH, Eto C, Soncini M, Horewicz V, Garcia M, Schlindwein AD, Grisard EC, Rovaris DB, Báfica A. Isoniazid-induced control of Mycobacterium tuberculosis by primary human cells requires interleukin-1 receptor and tumor necrosis factor. Eur J Immunol 2016; 46:1936-47. [PMID: 27230303 DOI: 10.1002/eji.201646349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/20/2016] [Accepted: 05/24/2016] [Indexed: 11/08/2022]
Abstract
Proinflammatory cytokines are critical mediators that control Mycobacterium tuberculosis (Mtb) growth during active tuberculosis (ATB). To further inhibit bacterial proliferation in diseased individuals, drug inhibitors of cell wall synthesis such as isoniazid (INH) are employed. However, whether INH presents an indirect effect on bacterial growth by regulating host cytokines during ATB is not well known. To examine this hypothesis, we used an in vitro human granuloma system generated with primary leukocytes from healthy donors adapted to model ATB. Intense Mtb proliferation in cell cultures was associated with monocyte/macrophage activation and secretion of IL-1β and TNF. Treatment with INH significantly reduced Mtb survival, but altered neither T-cell-mediated Mtb killing, nor production of IL-1β and TNF. However, blockade of both IL-1R1 and TNF signaling rescued INH-induced killing, suggesting synergistic roles of these cytokines in mediating control of Mtb proliferation. Additionally, mycobacterial killing by INH was highly dependent upon drug activation by the pathogen catalase-peroxidase KatG and involved a host PI3K-dependent pathway. Finally, experiments using coinfected (KatG-mutated and H37Rv strains) cells suggested that active INH does not directly enhance host-mediated killing of Mtb. Our results thus indicate that Mtb-stimulated host IL-1 and TNF have potential roles in TB chemotherapy.
Collapse
Affiliation(s)
- Lívia H Yamashiro
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Carolina Eto
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Marina Soncini
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Verônica Horewicz
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Magno Garcia
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Aline D Schlindwein
- Laboratory of Protozoology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil.,Central Public Health Laboratory/LACEN, Florianópolis, Brazil
| | - Edmundo C Grisard
- Laboratory of Protozoology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - André Báfica
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
74
|
Thu KS, Sato N, Ikeda S, Naka-Mieno M, Arai T, Mori S, Sawabe M, Muramatsu M, Tanaka M. Association of polymorphisms of the transporter associated with antigen processing (TAP2) gene with pulmonary tuberculosis in an elderly Japanese population. APMIS 2016; 124:675-80. [PMID: 27325005 DOI: 10.1111/apm.12562] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/30/2016] [Indexed: 12/31/2022]
Abstract
The transporter associated with antigen processing 2 (TAP2) gene is involved in the immunological response to tuberculosis (TB) infection. Variations in the TAP2 gene have been associated with TB infection in small population studies in India, Columbia, and Korea. We investigated the association of TAP2 polymorphisms with TB susceptibility in an elderly Japanese population. We analyzed samples from consecutive autopsy cases (n = 1850) registered in the Japanese Geriatric SNP Research database. TB was diagnosed pathologically by TB granuloma on autopsy samples. There were 289 cases and 1529 controls. Twenty-four single nucleotide variations (SNVs), including four missense variations in the TAP2 region, were genotyped using the Illumina Infinium Human Exome BeadChip array. Of the 24 SNVs in the TAP2 gene, rs4148871, rs4148876 (R651C), and rs2857103 showed statistically significant associations with TB susceptibility, and rs4148871 and rs2857103 also showed significant genotypic associations in a dominant allele model adjusted for age, sex, and smoking. Haplotype analysis showed that TAP2 allele *0103 conferred an increased TB risk (OR = 1.48, p = 0.0008), while the TAP2 *0201 allele was protective against TB (OR = 0.73, p = 0.0007). Our results suggest that TAP2 polymorphisms influence TB susceptibility in a Japanese population.
Collapse
Affiliation(s)
- Kaung Si Thu
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Noriko Sato
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinobu Ikeda
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Makiko Naka-Mieno
- Department of Medical Informatics, Center of Information, Jichii Medical University, Tochigi, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan.,Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Seijiro Mori
- Center for Promotion of Clinical Investigation, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Motoji Sawabe
- Department of Moleculo-genetic Sciences, Division of Biomedical Laboratory Sciences, Molecular Pathophysiology, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaaki Muramatsu
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masashi Tanaka
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
75
|
Nonclassical MHC Ib-restricted CD8+ T Cells Recognize Mycobacterium tuberculosis-Derived Protein Antigens and Contribute to Protection Against Infection. PLoS Pathog 2016; 12:e1005688. [PMID: 27272249 PMCID: PMC4896622 DOI: 10.1371/journal.ppat.1005688] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/18/2016] [Indexed: 12/26/2022] Open
Abstract
MHC Ib-restricted CD8+ T cells have been implicated in host defense against Mycobacterium tuberculosis (Mtb) infection. However, the relative contribution of various MHC Ib-restricted T cell populations to anti-mycobacterial immunity remains elusive. In this study, we used mice that lack MHC Ia (Kb-/-Db-/-), MHC Ia/H2-M3 (Kb-/-Db-/-M3-/-), or β2m (β2m-/-) to study the role of M3-restricted and other MHC Ib-restricted T cells in immunity against Mtb. Unlike their dominant role in Listeria infection, we found that M3-restricted CD8+ T cells only represented a small proportion of the CD8+ T cells responding to Mtb infection. Non-M3, MHC Ib-restricted CD8+ T cells expanded preferentially in the lungs of Mtb-infected Kb-/-Db-/-M3-/- mice, exhibited polyfunctional capacities and conferred protection against Mtb. These MHC Ib-restricted CD8+ T cells recognized several Mtb-derived protein antigens at a higher frequency than MHC Ia-restricted CD8+ T cells. The presentation of Mtb antigens to MHC Ib-restricted CD8+ T cells was mostly β2m-dependent but TAP-independent. Interestingly, a large proportion of Mtb-specific MHC Ib-restricted CD8+ T cells in Kb-/-Db-/-M3-/- mice were Qa-2-restricted while no considerable numbers of MR1 or CD1-restricted Mtb-specific CD8+ T cells were detected. Our findings indicate that nonclassical CD8+ T cells other than the known M3, CD1, and MR1-restricted CD8+ T cells contribute to host immune responses against Mtb infection. Targeting these MHC Ib-restricted CD8+ T cells would facilitate the design of better Mtb vaccines with broader coverage across MHC haplotypes due to the limited polymorphism of MHC class Ib molecules.
Collapse
|
76
|
Graves AJ, Hokey DA. Tuberculosis vaccine development: Shifting focus amid increasing development challenges. Hum Vaccin Immunother 2016; 11:1910-6. [PMID: 26125249 PMCID: PMC4635864 DOI: 10.1080/21645515.2015.1040955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A new tuberculosis vaccine is needed to replace or enhance BCG, which induces variable protection against Mycobacterium tuberculosis pulmonary infections in adults. Development of new TB vaccine candidates is severely hampered by the lack of a correlate of immunity, unproven animal models, and limited funding opportunities. One candidate, MVA85A, recently failed to meet its efficacy endpoint goals despite promising early-phase trial data. As a result, some in the field believe we should now shift our focus away from product development and toward a research-oriented approach. Here, we outline our suggestions for this research-oriented strategy including diversification of the candidate pipeline, expanding measurements of immunity, improving pre-clinical animal models, and investing in combination pre-clinical/experimental medicine studies. As with any evolution, this change in strategy comes at a cost but may also represent an opportunity for advancing the field.
Collapse
|
77
|
Liu SD, Su J, Zhang SM, Dong HP, Wang H, Luo W, Wen Q, He JC, Yang XF, Ma L. Identification of HLA-A*11:01-restricted Mycobacterium tuberculosis CD8(+) T cell epitopes. J Cell Mol Med 2016; 20:1718-28. [PMID: 27072810 PMCID: PMC4988290 DOI: 10.1111/jcmm.12867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/07/2016] [Indexed: 01/06/2023] Open
Abstract
New vaccines are needed to combat Mycobacterium tuberculosis (MTB) infections. The currently employed Bacillus Calmette‐Guérin vaccine is becoming ineffective, due in part to the emergence of multidrug‐resistant tuberculosis (MDR‐TB) strains and the reduced immune capacity in cases of HIV coinfection. CD8+ T cells play an important role in the protective immunity against MTB infections, and the identification of immunogenic CD8+ T cell epitopes specific for MTB is essential for the design of peptide‐based vaccines. To identify CD8+ T cell epitopes of MTB proteins, we screened a set of 94 MTB antigens for HLA class I A*11:01‐binding motifs. HLA‐A*11:01 is one of the most prevalent HLA molecules in Southeast Asians, and definition of T cell epitopes it can restrict would provide significant coverage for the Asian population. Peptides that bound with high affinity to purified HLA molecules were subsequently evaluated in functional assays to detect interferon‐γ release and CD8+ T cell proliferation in active pulmonary TB patients. We identified six novel epitopes, each derived from a unique MTB antigen, which were recognized by CD8+ T cells from active pulmonary TB patients. In addition, a significant level of epitope‐specific T cells could be detected ex vivo in peripheral blood mononuclear cells from active TB patients by an HLA‐A*11:01 dextramer carrying the peptide Rv3130c194‐204 (from the MTB triacylglycerol synthase Tgs1), which was the most frequently recognized epitope in our peptide library. In conclusion, this study identified six dominant CD8+ T cell epitopes that may be considered potential targets for subunit vaccines or diagnostic strategies against TB.
Collapse
Affiliation(s)
- Su-Dong Liu
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, China
| | - Jin Su
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shi-Meng Zhang
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, China
| | - Hai-Ping Dong
- Department of Severe Tuberculosis Medicine, Guangzhou Chest Hospital, Guangzhou, China
| | - Hui Wang
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, China
| | - Wei Luo
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, China
| | - Qian Wen
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, China
| | - Jian-Chun He
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, China
| | - Xiao-Fan Yang
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, China
| | - Li Ma
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, China
| |
Collapse
|
78
|
Soleimanpour S, Hassannia T, Motiee M, Amini AA, Rezaee SAR. Fcγ1 fragment of IgG1 as a powerful affinity tag in recombinant Fc-fusion proteins: immunological, biochemical and therapeutic properties. Crit Rev Biotechnol 2016; 37:371-392. [PMID: 27049690 DOI: 10.3109/07388551.2016.1163323] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Affinity tags are vital tools for the production of high-throughput recombinant proteins. Several affinity tags, such as the hexahistidine tag, maltose-binding protein, streptavidin-binding peptide tag, calmodulin-binding peptide, c-Myc tag, glutathione S-transferase and FLAG tag, have been introduced for recombinant protein production. The fragment crystallizable (Fc) domain of the IgG1 antibody is one of the useful affinity tags that can facilitate detection, purification and localization of proteins and can improve the immunogenicity, modulatory effects, physicochemical and pharmaceutical properties of proteins. Fcγ recombinant forms a group of recombinant proteins called Fc-fusion proteins (FFPs). FFPs are widely used in drug discovery, drug delivery, vaccine design and experimental research on receptor-ligand interactions. These fusion proteins have become successful alternatives to monoclonal antibodies for drug developments. In this review, the physicochemical, biochemical, immunological, pharmaceutical and therapeutic properties of recombinant FFPs were discussed as a new generation of bioengineering strategies.
Collapse
Affiliation(s)
- Saman Soleimanpour
- a Microbiology & Virology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences , Mashhad, Iran
| | - Tahereh Hassannia
- b Internal medicine Department, Arash Hospital, the College of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Mahdieh Motiee
- c Inflammation and Inflammatory Diseases Research Center, Medical School, Mashhad University of Medical Sciences , Mashhad, Iran
| | - Abbas Ali Amini
- d Department of Immunology, faculty of medicine, Kurdistan University of Medical Sciences , Sanandaj, Iran
| | - S A R Rezaee
- c Inflammation and Inflammatory Diseases Research Center, Medical School, Mashhad University of Medical Sciences , Mashhad, Iran
| |
Collapse
|
79
|
Singh VK, Srivastava R, Srivastava BS. Manipulation of BCG vaccine: a double-edged sword. Eur J Clin Microbiol Infect Dis 2016; 35:535-43. [PMID: 26810060 DOI: 10.1007/s10096-016-2579-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/07/2016] [Indexed: 12/27/2022]
Abstract
Mycobacterium bovis Bacillus Calmette-Guérin (BCG), an attenuated vaccine derived from M. bovis, is the only licensed vaccine against tuberculosis (TB). Despite its protection against TB in children, the protective efficacy in pulmonary TB is variable in adolescents and adults. In spite of the current knowledge of molecular biology, immunology and cell biology, infectious diseases such as TB and HIV/AIDS are still challenges for the scientific community. Genetic manipulation facilitates the construction of recombinant BCG (rBCG) vaccine that can be used as a highly immunogenic vaccine against TB with an improved safety profile, but, still, the manipulation of BCG vaccine to improve efficacy should be carefully considered, as it can bring in both favourable and unfavourable effects. The purpose of this review is not to comprehensively review the interaction between microorganisms and host cells in order to use rBCG expressing M. tuberculosis (Mtb) immunodominant antigens that are available in the public domain, but, rather, to also discuss the limitations of rBCG vaccine, expressing heterologous antigens, during manipulation that pave the way for a promising new vaccine approach.
Collapse
Affiliation(s)
- V K Singh
- Section for Immunology, Department of Experimental Medical Science, Lund University, BMC D14, 22184, Lund, Sweden.
| | - R Srivastava
- Division of Microbiology, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, India
| | - B S Srivastava
- Division of Microbiology, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, India
| |
Collapse
|
80
|
Teng X, Tian M, Li J, Tan S, Yuan X, Yu Q, Jing Y, Zhang Z, Yue T, Zhou L, Fan X. Immunogenicity and protective efficacy of DMT liposome-adjuvanted tuberculosis subunit CTT3H vaccine. Hum Vaccin Immunother 2016; 11:1456-64. [PMID: 25905680 DOI: 10.1080/21645515.2015.1037057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Different strategies have been proposed for the development of protein subunit vaccine candidates for tuberculosis (TB), which shows better safety than other types of candidates and the currently used Bacillus Calmette-Guérin (BCG) vaccine. In order to develop more effective protein subunits depending on the mechanism of cell-mediated immunity against TB, a polyprotein CTT3H, based on 5 immunodominant antigens (CFP10, TB10.4, TB8.4, Rv3615c, and HBHA) with CD8(+) epitopes of Mycobacterium tuberculosis, was constructed in this study. We vaccinated C57BL/6 mice with a TB subunit CTT3H protein in an adjuvant of dimethyldioctadecylammonium/monophosphoryl lipid A/trehalose 6,6'-dibehenate (DDA/MPL/TDB, DMT) liposome to investigate the immunogenicity and protective efficacy of this novel vaccine. Our results demonstrated that DMT liposome-adjuvanted CTT3H vaccine not only induced an antigen-specific CD4(+) Th1 response, but also raised the number of PPD- and CTT3H-specific IFN-γ(+) CD8(+) T cells and elicited strong CTL responses against TB10.4, which provided more effective protection against a 60 CFU M. tuberculosis aerosol challenge than PBS control and DMT adjuvant alone. Our findings indicate that DMT-liposome is an effective adjuvant to stimulate CD8(+) T cell responses and the DMT-adjuvanted subunit CTT3H vaccine is a promising candidate for the next generation of TB vaccine.
Collapse
Affiliation(s)
- Xindong Teng
- a Department of Pathogen Biology; School of Basic Medicine; Huazhong University of Science & Technology ; Wuhan , PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Jawale CV, Lee JH. Evaluation of immunogenicity and protective efficacy of adjuvantedSalmonellaTyphimurium ghost vaccine against salmonellosis in chickens. Vet Q 2016; 36:130-6. [DOI: 10.1080/01652176.2016.1138248] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
82
|
Li H, Fierens K, Zhang Z, Vanparijs N, Schuijs MJ, Van Steendam K, Feiner Gracia N, De Rycke R, De Beer T, De Beuckelaer A, De Koker S, Deforce D, Albertazzi L, Grooten J, Lambrecht BN, De Geest BG. Spontaneous Protein Adsorption on Graphene Oxide Nanosheets Allowing Efficient Intracellular Vaccine Protein Delivery. ACS APPLIED MATERIALS & INTERFACES 2016; 8:1147-55. [PMID: 26694764 DOI: 10.1021/acsami.5b08963] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanomaterials hold potential of altering the interaction between therapeutic molecules and target cells or tissues. High aspect ratio nanomaterials in particular have been reported to possess unprecedented properties and are intensively investigated for their interaction with biological systems. Graphene oxide (GOx) is a water-soluble graphene derivative that combines high aspect ratio dimension with functional groups that can be exploited for bioconjugation. Here, we demonstrate that GOx nanosheets can spontaneously adsorb proteins by a combination of interactions. This property is then explored for intracellular protein vaccine delivery, in view of the potential of GOx nanosheets to destabilize lipid membranes such as those of intracellular vesicles. Using a series of in vitro experiments, we show that GOx nanosheet adsorbed proteins are efficiently internalized by dendritic cells (DCs: the most potent class of antigen presenting cells of the immune system) and promote antigen cross-presentation to CD8 T cells. The latter is a hallmark in the induction of potent cellular antigen-specific immune responses against intracellular pathogens and cancer.
Collapse
Affiliation(s)
- Hui Li
- Department of Pharmaceutics, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Kaat Fierens
- VIB Inflammation Research Center, Ghent University , Technologiepark 927, 9052 Zwijnaarde, Belgium
- Department of Respiratory Medicine, University Hospital Ghent , De Pintelaan 185, 9000 Ghent, Belgium
| | - Zhiyue Zhang
- Department of Pharmaceutics, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Nane Vanparijs
- Department of Pharmaceutics, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Martijn J Schuijs
- VIB Inflammation Research Center, Ghent University , Technologiepark 927, 9052 Zwijnaarde, Belgium
- Department of Respiratory Medicine, University Hospital Ghent , De Pintelaan 185, 9000 Ghent, Belgium
| | - Katleen Van Steendam
- Department of Pharmaceutics, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Natàlia Feiner Gracia
- Institute for Bioengineering of Catalonia , Carrer de Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Riet De Rycke
- Department of Respiratory Medicine, University Hospital Ghent , De Pintelaan 185, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University , Technologiepark 927, 9052 Zwijnaarde, Belgium
| | - Thomas De Beer
- Department of Pharmaceutical Analysis, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Ans De Beuckelaer
- Department of Biomedical Molecular Biology, Ghent University , Technologiepark 927, 9052 Zwijnaarde, Belgium
| | - Stefaan De Koker
- Department of Biomedical Molecular Biology, Ghent University , Technologiepark 927, 9052 Zwijnaarde, Belgium
| | - Dieter Deforce
- Department of Pharmaceutics, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Lorenzo Albertazzi
- Institute for Bioengineering of Catalonia , Carrer de Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Johan Grooten
- Department of Biomedical Molecular Biology, Ghent University , Technologiepark 927, 9052 Zwijnaarde, Belgium
| | - Bart N Lambrecht
- VIB Inflammation Research Center, Ghent University , Technologiepark 927, 9052 Zwijnaarde, Belgium
- Department of Respiratory Medicine, University Hospital Ghent , De Pintelaan 185, 9000 Ghent, Belgium
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| |
Collapse
|
83
|
Booty MG, Nunes-Alves C, Carpenter SM, Jayaraman P, Behar SM. Multiple Inflammatory Cytokines Converge To Regulate CD8+ T Cell Expansion and Function during Tuberculosis. THE JOURNAL OF IMMUNOLOGY 2016; 196:1822-31. [PMID: 26755819 DOI: 10.4049/jimmunol.1502206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/10/2015] [Indexed: 11/19/2022]
Abstract
The differentiation of effector CD8(+) T cells is a dynamically regulated process that varies during different infections and is influenced by the inflammatory milieu of the host. In this study, we define three signals regulating CD8(+) T cell responses during tuberculosis by focusing on cytokines known to affect disease outcome: IL-12, type I IFN, and IL-27. Using mixed bone marrow chimeras, we compared wild-type and cytokine receptor knockout CD8(+) T cells within the same mouse following aerosol infection with Mycobacterium tuberculosis. Four weeks postinfection, IL-12, type 1 IFN, and IL-27 were all required for efficient CD8(+) T cell expansion in the lungs. We next determined if these cytokines directly promote CD8(+) T cell priming or are required only for expansion in the lungs. Using retrogenic CD8(+) T cells specific for the M. tuberculosis Ag TB10.4 (EsxH), we observed that IL-12 is the dominant cytokine driving both CD8(+) T cell priming in the lymph node and expansion in the lungs; however, type I IFN and IL-27 have nonredundant roles supporting pulmonary CD8(+) T cell expansion. Thus, IL-12 is a major signal promoting priming in the lymph node, but a multitude of inflammatory signals converge in the lung to promote continued expansion. Furthermore, these cytokines regulate the differentiation and function of CD8(+) T cells during tuberculosis. These data demonstrate distinct and overlapping roles for each of the cytokines examined and underscore the complexity of CD8(+) T cell regulation during tuberculosis.
Collapse
Affiliation(s)
- Matthew G Booty
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655; and Program in Immunology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115
| | - Cláudio Nunes-Alves
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Stephen M Carpenter
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Pushpa Jayaraman
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Samuel M Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655; and
| |
Collapse
|
84
|
Carpenter SM, Nunes-Alves C, Booty MG, Way SS, Behar SM. A Higher Activation Threshold of Memory CD8+ T Cells Has a Fitness Cost That Is Modified by TCR Affinity during Tuberculosis. PLoS Pathog 2016; 12:e1005380. [PMID: 26745507 PMCID: PMC4706326 DOI: 10.1371/journal.ppat.1005380] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/11/2015] [Indexed: 12/17/2022] Open
Abstract
T cell vaccines against Mycobacterium tuberculosis (Mtb) and other pathogens are based on the principle that memory T cells rapidly generate effector responses upon challenge, leading to pathogen clearance. Despite eliciting a robust memory CD8+ T cell response to the immunodominant Mtb antigen TB10.4 (EsxH), we find the increased frequency of TB10.4-specific CD8+ T cells conferred by vaccination to be short-lived after Mtb challenge. To compare memory and naïve CD8+ T cell function during their response to Mtb, we track their expansions using TB10.4-specific retrogenic CD8+ T cells. We find that the primary (naïve) response outnumbers the secondary (memory) response during Mtb challenge, an effect moderated by increased TCR affinity. To determine whether the expansion of polyclonal memory T cells is restrained following Mtb challenge, we used TCRβ deep sequencing to track TB10.4-specific CD8+ T cells after vaccination and subsequent challenge in intact mice. Successful memory T cells, defined by their clonal expansion after Mtb challenge, express similar CDR3β sequences suggesting TCR selection by antigen. Thus, both TCR-dependent and -independent factors affect the fitness of memory CD8+ responses. The impaired expansion of the majority of memory T cell clonotypes may explain why some TB vaccines have not provided better protection. CD8+ T cells are important for enforcing latency of tuberculosis, and for Mtb control in patients with HIV and low CD4 counts. While vaccines that primarily elicit CD4+ T cell responses have had difficulty preventing active pulmonary TB, a TB vaccine that elicits a potent memory CD8+ T cells is a logical alternative strategy. Memory T cells are thought to respond more rapidly than the primary (naïve) response. However, by directly comparing naïve and memory TCR retrogenic CD8+ T cells specific for the TB10.4 antigen during infection, we observe memory-derived T cells to be less fit than naïve-derived T cells. We relate the reduced fitness of memory CD8+ T cells to their lower sensitivity to antigen and show that fitness can be improved by increasing TCR affinity. Using a novel method for tracking CD8+ T cells elicited by vaccination during the response to Mtb aerosol challenge in intact mice, we observe the robust expansion of a new primary response as well as clonal selection of the secondary response, likely driven by TCR affinity. We propose that generating memory T cells with high affinities should be a goal of vaccination against TB.
Collapse
Affiliation(s)
- Stephen M. Carpenter
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (SMC); (SMB)
| | - Cláudio Nunes-Alves
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Matthew G. Booty
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Immunology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sing Sing Way
- Division of Infectious Diseases, Cincinnati Children’s Hospital, Cincinnati, Ohio, United States of America
| | - Samuel M. Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (SMC); (SMB)
| |
Collapse
|
85
|
Transcription factor Batf3 is important for development of CD8+ T-cell response against a phagosomal bacterium regardless of the location of antigen. Immunol Cell Biol 2015; 94:378-87. [PMID: 26567886 DOI: 10.1038/icb.2015.98] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 12/13/2022]
Abstract
Salmonella enterica serovar Typhimurium (ST) is a virulent intracellular bacterium that conceals itself in the phagosomes of infected cells. Although CD8(+) T cells promote protection against various intracellular pathogens, the role of CD8(+) T cells against virulent ST has been unclear due to early fatality of susceptible (B6) mice. Herein, we generated MHC I-deficient mice on the resistant (129SvJ) and susceptible (Nramp1 transgenic B6) background to evaluate the role of CD8(+) T cells against virulent ST. Our results indicate that CD8(+) T cells have a critical protective role in host survival during infection with virulent ST. As antigen presentation and CD8(+) T-cell activation against phagosomal antigens are considered to operate through the cross-presentation pathway, we have evaluated CD8(+) T-cell response against ST in Batf3-deficient mice that lack CD8α dendritic cells (DCs). Using a recombinant of ST that expresses antigen (ST-OVA) mainly in the phagosomes of infected cells, we show that CD8(+) T-cell response is compromised throughout the duration of infection in Batf3-deficient mice. In contrast, when ST delivers antigen to the cytosol of infected cells (ST-OVA-C), CD8(+) T-cell response against the cytosolic antigen was compromised only in the short term in the absence of CD8α DCs, with wild-type and Batf3-deficient mice generating similar CD8(+) T-cell response in the long term. Thus, Batf3 has an important role in CD8(+) T-cell priming regardless of antigenic location; however, its role is redundant at later time intervals against cytosolic antigen.
Collapse
|
86
|
Kamble NM, Nandre RM, Lee JH. Inhibition of Salmonella-induced apoptosis as a marker of the protective efficacy of virulence gene-deleted live attenuated vaccine. Vet Immunol Immunopathol 2015; 169:96-101. [PMID: 26651227 DOI: 10.1016/j.vetimm.2015.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/04/2015] [Accepted: 11/09/2015] [Indexed: 01/26/2023]
Abstract
Vaccination is one of the best protection strategies against Salmonella infection in humans and chickens. Salmonella bacteria must induce apoptosis prior to initiating infection, pathogenesis and evasion of host immune responses. In this study, we evaluated the efficacy of vaccinating chickens against Salmonella Enteritidis (SE) using a vaccine candidate strain (JOL919), constructed by deleting the lon and cpxR genes from a wild-type SE using an allelic exchange method. In present study day old chickens were inoculated with 1×10(7)cfu (colony forming unit) of JOL919 per os. We measured cell-mediated immunity, protective efficacy and extent of apoptosis induction in splenocytes. Seven days post-immunization, the number of CD3+CD4+ and CD3+ CD8+ T cells was significantly higher in the immunized group compared to the control group, indicating a significant augmentation of systemic immune response. The internal organs of chickens immunized with JOL919 had a significantly lower challenge-strain recovery, indicating effective protection and clearance of the challenge strain. Post-challenge, the number of apoptotic cells in the immunized group was significantly lower than in the control group. Additionally, AV/PI (Annexin V/propidium iodide) staining was performed to differentiate between apoptotic cells and necrotic cells, which corroborated TUNEL-assay (terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling) results. The proportions of AV+/PI- and AV+/PI+ cells, which represent the proportions of early apoptotic and late apoptotic/early necrotic cells present, respectively, were significantly lower in the immunized group. Our findings suggest that the apoptotic splenocytes in immunized chickens significantly decreased in number, which occurred concomitantly with a significant rise in systemic immune response and bacterial clearance. This suggests that inhibition of apoptosis may be a marker of protection efficacy in immunized chickens.
Collapse
Affiliation(s)
- Nitin M Kamble
- College of Veterinary Medicine, Chonbuk National University, Jeonbuk 570-752, South Korea
| | - Rahul M Nandre
- College of Veterinary Medicine, Chonbuk National University, Jeonbuk 570-752, South Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Jeonbuk 570-752, South Korea.
| |
Collapse
|
87
|
Zhai MX, Chen F, Zhao YY, Wu YH, Li GD, Gao YF, Qi YM. Novel epitopes identified from efflux pumps of Mycobacterium tuberculosis could induce cytotoxic T lymphocyte response. PeerJ 2015; 3:e1229. [PMID: 26417538 PMCID: PMC4582945 DOI: 10.7717/peerj.1229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/14/2015] [Indexed: 12/05/2022] Open
Abstract
Overcoming drug-resistance is one of the major challenges to control tuberculosis (TB). The up-regulation of efflux pumps is one common mechanism that leads to drug-resistance. Therefore, immunotherapy targeting these efflux pump antigens could be promising strategy to be combined with current chemotherapy. Considering that CD8+ cytotoxic T lymphocytes (CTLs) induced by antigenic peptides (epitopes) could elicit HLA-restricted anti-TB immune response, efflux pumps from classical ABC family (Mycobacterium tuberculosis, Mtb) were chosen as target antigens to identify CTL epitopes. HLA-A2 restricted candidate peptides from Rv2937, Rv2686c and Rv2687c of Mycobacterium tuberculosis were predicted, synthesized and tested. Five peptides could induce IFN-γ release and cytotoxic activity in PBMCs from HLA-A2+ PPD+ donors. Results from HLA-A2/Kb transgenic mice immunization assay suggested that four peptides Rv2937-p168, Rv2937-p266, Rv2686c-p151, and Rv2686c-p181 could induce significant CTL response in vivo. These results suggested that these novel epitopes could be used as immunotherapy candidates to TB drug-resistance.
Collapse
Affiliation(s)
- Ming-Xia Zhai
- School of Life Sciences, Zhengzhou University , Zhengzhou , China
| | - Fei Chen
- School of Life Sciences, Zhengzhou University , Zhengzhou , China
| | - Yuan-Yuan Zhao
- School of Life Sciences, Zhengzhou University , Zhengzhou , China
| | - Ya-Hong Wu
- School of Life Sciences, Zhengzhou University , Zhengzhou , China
| | - Guo-Dong Li
- School of Life Sciences, Zhengzhou University , Zhengzhou , China
| | - Yan-Feng Gao
- School of Life Sciences, Zhengzhou University , Zhengzhou , China
| | - Yuan-Ming Qi
- School of Life Sciences, Zhengzhou University , Zhengzhou , China
| |
Collapse
|
88
|
Mycobacterium tuberculosis PE25/PPE41 protein complex induces activation and maturation of dendritic cells and drives Th2-biased immune responses. Med Microbiol Immunol 2015; 205:119-31. [PMID: 26318856 DOI: 10.1007/s00430-015-0434-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/24/2015] [Indexed: 02/05/2023]
Abstract
Mycobacterium tuberculosis evades innate host immune responses by parasitizing macrophages and causes significant morbidity and mortality around the world. A mycobacterial antigen that can activate dendritic cells (DCs) and elicit effective host innate immune responses will be vital to the development of an effective TB vaccine. The M. tuberculosis genes PE25/PPE41 encode proteins which have been associated with evasion of the host immune response. We constructed a PE25/PPE41 complex gene via splicing by overlapping extension and expressed it successfully in E. coli. We investigated whether this protein complex could interact with DCs to induce effective host immune responses. The PE25/PPE41 protein complex induced maturation of isolated mouse DCs in vitro, increasing expression of cell surface markers (CD80, CD86 and MHC-II), thereby promoting Th2 polarization via secretion of pro-inflammatory cytokines IL-4 and IL-10. In addition, PE25/PPE41 protein complex-activated DCs induced proliferation of mouse CD4(+) and CD8(+) T cells, and a strong humoral response in immunized mice. The sera of five TB patients were also highly reactive to this antigen. These findings suggest that interaction of the PE25/PPE41 protein complex with DCs may be of great immunological significance.
Collapse
|
89
|
Dalmia N, Klimstra WB, Mason C, Ramsay AJ. DNA-Launched Alphavirus Replicons Encoding a Fusion of Mycobacterial Antigens Acr and Ag85B Are Immunogenic and Protective in a Murine Model of TB Infection. PLoS One 2015; 10:e0136635. [PMID: 26317509 PMCID: PMC4552820 DOI: 10.1371/journal.pone.0136635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/06/2015] [Indexed: 11/18/2022] Open
Abstract
There is an urgent need for effective prophylactic measures against Mycobacterium tuberculosis (Mtb) infection, particularly given the highly variable efficacy of Bacille Calmette-Guerin (BCG), the only licensed vaccine against tuberculosis (TB). Most studies indicate that cell-mediated immune responses involving both CD4+ and CD8+ T cells are necessary for effective immunity against Mtb. Genetic vaccination induces humoral and cellular immune responses, including CD4+ and CD8+ T-cell responses, against a variety of bacterial, viral, parasitic and tumor antigens, and this strategy may therefore hold promise for the development of more effective TB vaccines. Novel formulations and delivery strategies to improve the immunogenicity of DNA-based vaccines have recently been evaluated, and have shown varying degrees of success. In the present study, we evaluated DNA-launched Venezuelan equine encephalitis replicons (Vrep) encoding a novel fusion of the mycobacterial antigens α-crystallin (Acr) and antigen 85B (Ag85B), termed Vrep-Acr/Ag85B, for their immunogenicity and protective efficacy in a murine model of pulmonary TB. Vrep-Acr/Ag85B generated antigen-specific CD4+ and CD8+ T cell responses that persisted for at least 10 wk post-immunization. Interestingly, parenterally administered Vrep-Acr/Ag85B also induced T cell responses in the lung tissues, the primary site of infection, and inhibited bacterial growth in both the lungs and spleens following aerosol challenge with Mtb. DNA-launched Vrep may, therefore, represent an effective approach to the development of gene-based vaccines against TB, particularly as components of heterologous prime-boost strategies or as BCG boosters.
Collapse
MESH Headings
- Acyltransferases/genetics
- Acyltransferases/immunology
- Animals
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Disease Models, Animal
- Encephalitis Virus, Venezuelan Equine/genetics
- Encephalitis Virus, Venezuelan Equine/immunology
- Immunity, Cellular
- Immunity, Humoral
- Mice
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/immunology
- Replicon/immunology
- Tuberculosis Vaccines/genetics
- Tuberculosis Vaccines/immunology
- Tuberculosis, Pulmonary/genetics
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/pathology
- Tuberculosis, Pulmonary/prevention & control
- Vaccination
- alpha-Crystallins/genetics
- alpha-Crystallins/immunology
Collapse
Affiliation(s)
- Neha Dalmia
- Department of Microbiology, Immunology and Parasitology, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
| | - William B. Klimstra
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Carol Mason
- Department of Microbiology, Immunology and Parasitology, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Alistair J. Ramsay
- Department of Microbiology, Immunology and Parasitology, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
- Department of Microbiology, Immunology and Parasitology, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
90
|
Villarreal DO, Walters J, Laddy DJ, Yan J, Weiner DB. Multivalent TB vaccines targeting the esx gene family generate potent and broad cell-mediated immune responses superior to BCG. Hum Vaccin Immunother 2015; 10:2188-98. [PMID: 25424922 DOI: 10.4161/hv.29574] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Development of a broad-spectrum synthetic vaccine against TB would represent an important advance to the limited vaccine armamentarium against TB. It is believed that the esx family of TB antigens may represent important vaccine candidates. However, only 4 esx antigens have been studied as potential vaccine antigens. The challenge remains to develop a vaccine that simultaneously targets all 23 members of the esx family to induce enhanced broad-spectrum cell-mediated immunity. We sought to investigate if broader cellular immune responses could be induced using a multivalent DNA vaccine representing the esx family protein members delivered via electroporation. In this study, 15 designed esx antigens were created to cross target all members of the esx family. They were distributed into groups of 3 self-processing antigens each, resulting in 5 trivalent highly optimized DNA plasmids. Vaccination with all 5 constructs elicited robust antigen-specific IFN-γ responses to all encoded esx antigens and induced multifunctional CD4 Th1 and CD8 T cell responses. Importantly, we show that when all constructs are combined into a cocktail, the RSQ-15 vaccine, elicited substantial broad Ag-specific T cell responses to all esx antigens as compared with vaccination with BCG. Moreover, these vaccine-induced responses were highly cross-reactive with BCG encoded esx family members and were highly immune effective in a BCG DNA prime-boost format. Furthermore, we demonstrate the vaccine potential and immunopotent profile of several novel esx antigens never previously studied. These data highlight the likely importance of these novel immunogens for study as preventative or therapeutic synthetic TB vaccines in combination or as stand alone antigens.
Collapse
Affiliation(s)
- Daniel O Villarreal
- a Department of Pathology and Laboratory Medicine; University of Pennsylvania School of Medicine; Philadelphia, PA USA
| | | | | | | | | |
Collapse
|
91
|
Penn-Nicholson A, Geldenhuys H, Burny W, van der Most R, Day CL, Jongert E, Moris P, Hatherill M, Ofori-Anyinam O, Hanekom W, Bollaerts A, Demoitie MA, Kany Luabeya AK, De Ruymaeker E, Tameris M, Lapierre D, Scriba TJ. Safety and immunogenicity of candidate vaccine M72/AS01E in adolescents in a TB endemic setting. Vaccine 2015; 33:4025-34. [PMID: 26072017 PMCID: PMC5845829 DOI: 10.1016/j.vaccine.2015.05.088] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND Vaccination that prevents tuberculosis (TB) disease, particularly in adolescents, would have the greatest impact on the global TB epidemic. Safety, reactogenicity and immunogenicity of the vaccine candidate M72/AS01E was evaluated in healthy, HIV-negative adolescents in a TB endemic region, regardless of Mycobacterium tuberculosis (M.tb) infection status. METHODS In a phase II, double-blind randomized, controlled study (NCT00950612), two doses of M72/AS01E or placebo were administered intramuscularly, one month apart. Participants were followed-up post-vaccination, for 6 months. M72-specific immunogenicity was evaluated by intracellular cytokine staining analysis of T cells and NK cells by flow cytometry. RESULTS No serious adverse events were recorded. M72/AS01E induced robust T cell and antibody responses, including antigen-dependent NK cell IFN-γ production. CD4 and CD8 T cell responses were sustained at 6 months post vaccination. Irrespective of M.tb infection status, vaccination induced a high frequency of M72-specific CD4 T cells expressing multiple combinations of Th1 cytokines, and low level IL-17. We observed rapid boosting of immune responses in M.tb-infected participants, suggesting natural infection acts as a prime to vaccination. CONCLUSIONS The clinically acceptable safety and immunogenicity profile of M72/AS01E in adolescents living in an area with high TB burden support the move to efficacy trials.
Collapse
Affiliation(s)
- Adam Penn-Nicholson
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine & Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa.
| | - Hennie Geldenhuys
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine & Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | | | | | - Cheryl L Day
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine & Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa; Department of Global Health, Rollins School of Public Health, Atlanta, GA, USA; Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | | | | | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine & Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | | | - Willem Hanekom
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine & Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | | | | | - Angelique Kany Kany Luabeya
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | | | - Michele Tameris
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | | | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
92
|
Immunoendocrine interactions during HIV-TB coinfection: implications for the design of new adjuvant therapies. BIOMED RESEARCH INTERNATIONAL 2015; 2015:461093. [PMID: 26075241 PMCID: PMC4446458 DOI: 10.1155/2015/461093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/30/2015] [Accepted: 05/01/2015] [Indexed: 11/17/2022]
Abstract
Worldwide, around 14 million individuals are coinfected with both tuberculosis (TB) and human immunodeficiency virus (HIV). In coinfected individuals, both pathogens weaken immunological system synergistically through mechanisms that are not fully understood. During both HIV and TB infections, there is a chronic state of inflammation associated to dramatic changes in immune cytokine and endocrine hormone levels. Despite this, the relevance of immunoendocrine interaction on both the orchestration of an effective immune response against both pathogens and the control of the chronic inflammation induced during HIV, TB, or both infections is still controversial. The present study reviews immunoendocrine interactions occurring during HIV and TB infections. We also expose our own findings on immunoendocrine cross talk in HIV-TB coinfection. Finally, we evaluate the use of adrenal hormones and their derivatives in immune-therapy and discuss the use of some of these compounds like the adjuvant for the prevention and treatment of TB in HIV patients.
Collapse
|
93
|
Lin PL, Flynn JL. CD8 T cells and Mycobacterium tuberculosis infection. Semin Immunopathol 2015; 37:239-49. [PMID: 25917388 PMCID: PMC4439333 DOI: 10.1007/s00281-015-0490-8] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/06/2015] [Indexed: 12/25/2022]
Abstract
Tuberculosis is primarily a respiratory disease that is caused by Mycobacterium tuberculosis. M. tuberculosis can persist and replicate in macrophages in vivo, usually in organized cellular structures called granulomas. There is substantial evidence for the importance of CD4 T cells in control of tuberculosis, but the evidence for a requirement for CD8 T cells in this infection has not been proven in humans. However, animal model data support a non-redundant role for CD8 T cells in control of M. tuberculosis infection. In humans, infection with this pathogen leads to generation of specific CD8 T cell responses. These responses include classical (MHC Class I restricted) and non-classical CD8 T cells. Here, we discuss the potential roles of CD8 T cells in defense against tuberculosis, and our current understanding of the wide range of CD8 T cell types seen in M. tuberculosis infection.
Collapse
Affiliation(s)
- Philana Ling Lin
- Department of Pediatrics, Division of Infectious Disease, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, PA, 15224, USA
| | | |
Collapse
|
94
|
Hur J, Kim CS, Eo SK, Park SY, Lee JH. Salmonella ghosts expressing enterotoxigenic Escherichia coli k88ab, k88ac, k99, and fasa fimbrial antigens induce robust immune responses in a mouse model. Vet Q 2015; 35:125-32. [PMID: 25853619 DOI: 10.1080/01652176.2015.1029598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Bacterial ghosts can be developed as safe and effective vaccines against bacterial infectious disease such as enterotoxigenic Escherichia coli (ETEC)-induced diarrhea in neonatal piglets. OBJECTIVE Immune responses against a Salmonella ghost expressing ETEC K88ab, K88ac, K99, and FasA antigens with various adjuvants and inoculation routes were evaluated in mice. ANIMALS AND METHODS A ghost cell expressing K88ab, K88ac, K99, and FasA fimbrial antigens of ETEC on the envelope of △asd Salmonella typhimurium was constructed as a candidate vaccine against ETEC infection. To optimize the immunization strategy, 6-week-old female BALB/c mice were inoculated with the ghost and various adjuvants, and the immune responses against the individual fimbrial antigens were measured. Blood samples from caudal vein to evaluate serum IgG concentrations and fecal samples to evaluate mucosal IgA concentrations were collected up to 14 weeks post-prime immunization. RESULTS All groups with single, double, and triple inoculations of the ghost showed higher humoral and mucosal immune responses than the control group. In particular, the groups with intramuscular double and triple inoculations showed significantly higher immune responses. In addition, oral inoculation with a combination of the ghost and MONTANIDE IMS 1113 (MI1113) resulted in high and prolonged induction of intestinal IgA levels. CONCLUSION These results indicated that both systemic and mucosal immunity against ETEC fimbrial antigens expressed by the ghost are induced by intramuscular booster inoculation with the ghost, and that addition of M1113 to the ghost was found to result in prominent induction of mucosal immunity through oral inoculation.
Collapse
Affiliation(s)
- Jin Hur
- a Department of Bioactive Material Sciences and Department of Veterinary Public Health, College of Veterinary Medicine , Chonbuk National University , South Korea
| | | | | | | | | |
Collapse
|
95
|
Latent tuberculosis infection: myths, models, and molecular mechanisms. Microbiol Mol Biol Rev 2015; 78:343-71. [PMID: 25184558 DOI: 10.1128/mmbr.00010-14] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this review is to present the current state of knowledge on human latent tuberculosis infection (LTBI) based on clinical studies and observations, as well as experimental in vitro and animal models. Several key terms are defined, including "latency," "persistence," "dormancy," and "antibiotic tolerance." Dogmas prevalent in the field are critically examined based on available clinical and experimental data, including the long-held beliefs that infection is either latent or active, that LTBI represents a small population of nonreplicating, "dormant" bacilli, and that caseous granulomas are the haven for LTBI. The role of host factors, such as CD4(+) and CD8(+) T cells, T regulatory cells, tumor necrosis factor alpha (TNF-α), and gamma interferon (IFN-γ), in controlling TB infection is discussed. We also highlight microbial regulatory and metabolic pathways implicated in bacillary growth restriction and antibiotic tolerance under various physiologically relevant conditions. Finally, we pose several clinically important questions, which remain unanswered and will serve to stimulate future research on LTBI.
Collapse
|
96
|
Roh EY, Yoon JH, Shin S, Song EY, Park MH. Association of TAP1 and TAP2 genes with susceptibility to pulmonary tuberculosis in Koreans. APMIS 2015; 123:457-64. [DOI: 10.1111/apm.12373] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/06/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Eun Youn Roh
- Department of Laboratory Medicine; Seoul National University College of Medicine; Seoul Korea
- Department of Laboratory Medicine; Seoul National University Boramae Medical Center; Seoul Korea
| | - Jong Hyun Yoon
- Department of Laboratory Medicine; Seoul National University College of Medicine; Seoul Korea
- Department of Laboratory Medicine; Seoul National University Boramae Medical Center; Seoul Korea
| | - Sue Shin
- Department of Laboratory Medicine; Seoul National University College of Medicine; Seoul Korea
- Department of Laboratory Medicine; Seoul National University Boramae Medical Center; Seoul Korea
| | - Eun Young Song
- Department of Laboratory Medicine; Seoul National University College of Medicine; Seoul Korea
| | - Myoung Hee Park
- Department of Laboratory Medicine; Seoul National University College of Medicine; Seoul Korea
- Korea Organ Donation Agency Laboratory; Seoul Korea
| |
Collapse
|
97
|
Caccamo N, Pietra G, Sullivan LC, Brooks AG, Prezzemolo T, La Manna MP, Di Liberto D, Joosten SA, van Meijgaarden KE, Di Carlo P, Titone L, Moretta L, Mingari MC, Ottenhoff THM, Dieli F. Human CD8 T lymphocytes recognize Mycobacterium tuberculosis antigens presented by HLA-E during active tuberculosis and express type 2 cytokines. Eur J Immunol 2015; 45:1069-81. [PMID: 25631937 DOI: 10.1002/eji.201445193] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/01/2014] [Accepted: 01/13/2015] [Indexed: 11/12/2022]
Abstract
CD8 T cells contribute to protective immunity against Mycobacterium tuberculosis. In humans, M. tuberculosis reactive CD8 T cells typically recognize peptides associated to classical MHC class Ia molecules, but little information is available on CD8 T cells recognizing M. tuberculosis Ags presented by nonclassical MHC class Ib molecules. We show here that CD8 T cells from tuberculosis (TB) patients recognize HLA-E-binding M. tuberculosis peptides in a CD3/TCR αβ mediated and CD8-dependent manner, and represent an additional type of effector cells playing a role in immune response to M. tuberculosis during active infection. HLA-E-restricted recognition of M. tuberculosis peptides is detectable by a significant enhanced ex vivo frequency of tetramer-specific circulating CD8 T cells during active TB. These CD8 T cells produce type 2 cytokines upon antigenic in vitro stimulation, help B cells for Ab production, and mediate limited TRAIL-dependent cytolytic and microbicidal activity toward M. tuberculosis infected target cells. Our results, together with the finding that HLA-E/M. tuberculosis peptide specific CD8 T cells are detected in TB patients with or without HIV coinfection, suggest that this is a new human T-cell population that participates in immune response in TB.
Collapse
Affiliation(s)
- Nadia Caccamo
- Central Laboratory for Advanced Diagnostic and Biomedical Research (CLADIBIOR), Università di Palermo, Palermo, Italy; Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Palermo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Mattila JT, Maiello P, Sun T, Via LE, Flynn JL. Granzyme B-expressing neutrophils correlate with bacterial load in granulomas from Mycobacterium tuberculosis-infected cynomolgus macaques. Cell Microbiol 2015; 17:1085-97. [PMID: 25653138 DOI: 10.1111/cmi.12428] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/04/2015] [Accepted: 02/02/2015] [Indexed: 01/21/2023]
Abstract
The role of neutrophils in tuberculosis (TB), and whether neutrophils express granzyme B (grzB), a pro-apoptotic enzyme associated with cytotoxic T cells, is controversial. We examined neutrophils in peripheral blood (PB) and lung granulomas of Mycobacterium tuberculosis-infected cynomolgus macaques and humans to determine whether mycobacterial products or pro-inflammatory factors induce neutrophil grzB expression. We found large numbers of grzB-expressing neutrophils in macaque and human granulomas and these cells contained more grzB+ granules than T cells. Higher neutrophil, but not T cell, grzB expression correlated with increased bacterial load. Although unstimulated PB neutrophils lacked grzB expression, grzB expression increased upon exposure to M.tuberculosis bacilli, M.tuberculosis culture filtrate protein or lipopolysaccharide from Escherichia coli. Perforin is required for granzyme-mediated cytotoxicity by T cells, but was not observed in PB or granuloma neutrophils. Nonetheless, stimulated PB neutrophils secreted grzB as determined by enzyme-linked immunospot assays. Purified grzB was not bactericidal or bacteriostatic, suggesting secreted neutrophil grzB acts on extracellular targets, potentially enhancing neutrophil migration through extracellular matrix and regulating apoptosis or activation in other cell types. These data indicate mycobacterial products and the pro-inflammatory environment of granulomas up-regulates neutrophil grzB expression and suggests a previously unappreciated aspect of neutrophil biology in TB.
Collapse
Affiliation(s)
- Joshua T Mattila
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tao Sun
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Laura E Via
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, MD, USA
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
99
|
Rieber N, Hartl D. Eat and suppress: The two-faced role of myeloid-derived suppressor cells in tuberculosis. Am J Respir Crit Care Med 2014; 190:975-7. [PMID: 25360727 DOI: 10.1164/rccm.201410-1764ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Nikolaus Rieber
- 1 Department of Pediatrics I University of Tübingen Tübingen, Germany
| | | |
Collapse
|
100
|
Tzelepis F, Verway M, Daoud J, Gillard J, Hassani-Ardakani K, Dunn J, Downey J, Gentile ME, Jaworska J, Sanchez AMJ, Nédélec Y, Vali H, Tabrizian M, Kristof AS, King IL, Barreiro LB, Divangahi M. Annexin1 regulates DC efferocytosis and cross-presentation during Mycobacterium tuberculosis infection. J Clin Invest 2014; 125:752-68. [PMID: 25562320 DOI: 10.1172/jci77014] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 11/13/2014] [Indexed: 01/26/2023] Open
Abstract
The phagocytosis of apoptotic cells and associated vesicles (efferocytosis) by DCs is an important mechanism for both self tolerance and host defense. Although some of the engulfment ligands involved in efferocytosis have been identified and studied in vitro, the contributions of these ligands in vivo remain ill defined. Here, we determined that during Mycobacterium tuberculosis (Mtb) infection, the engulfment ligand annexin1 is an important mediator in DC cross-presentation that increases efferocytosis in DCs and intrinsically enhances the capacity of the DC antigen-presenting machinery. Annexin1-deficient mice were highly susceptible to Mtb infection and showed an impaired Mtb antigen-specific CD8+ T cell response. Importantly, annexin1 expression was greatly downregulated in Mtb-infected human blood monocyte-derived DCs, indicating that reduction of annexin1 is a critical mechanism for immune evasion by Mtb. Collectively, these data indicate that annexin1 is essential in immunity to Mtb infection and mediates the power of DC efferocytosis and cross-presentation.
Collapse
|