51
|
Simpson JM, Gil-Mohapel J, Pouladi MA, Ghilan M, Xie Y, Hayden MR, Christie BR. Altered adult hippocampal neurogenesis in the YAC128 transgenic mouse model of Huntington disease. Neurobiol Dis 2011; 41:249-60. [DOI: 10.1016/j.nbd.2010.09.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 09/16/2010] [Accepted: 09/20/2010] [Indexed: 12/31/2022] Open
|
52
|
Abstract
It has been more than 17 years since the causative mutation for Huntington's disease was discovered as the expansion of the triplet repeat in the N-terminal portion of the Huntingtin (HTT) gene. In the intervening time, researchers have discovered a great deal about Huntingtin's involvement in a number of cellular processes. However, the role of Huntingtin in the key pathogenic mechanism leading to neurodegeneration in the disease process has yet to be discovered. Here, we review the body of knowledge that has been uncovered since gene discovery and include discussions of the HTT gene, CAG triplet repeat expansion, HTT expression, protein features, posttranslational modifications, and many of its known protein functions and interactions. We also highlight potential pathogenic mechanisms that have come to light in recent years.
Collapse
Affiliation(s)
- Karen N McFarland
- Department of Neurology, University of Florida, Gainesville, FL 32610-0236, USA.
| | | |
Collapse
|
53
|
Reiner A, Dragatsis I, Dietrich P. Genetics and neuropathology of Huntington's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 98:325-72. [PMID: 21907094 PMCID: PMC4458347 DOI: 10.1016/b978-0-12-381328-2.00014-6] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant progressive neurodegenerative disorder that prominently affects the basal ganglia, leading to affective, cognitive, behavioral and motor decline. The basis of HD is a CAG repeat expansion to >35 CAG in a gene that codes for a ubiquitous protein known as huntingtin, resulting in an expanded N-terminal polyglutamine tract. The size of the expansion is correlated with disease severity, with increasing CAG accelerating the age of onset. A variety of possibilities have been proposed as to the mechanism by which the mutation causes preferential injury to the basal ganglia. The present chapter provides a basic overview of the genetics and pathology of HD.
Collapse
Affiliation(s)
- Anton Reiner
- Department of Anatomy & Neurobiology, The University of Tennessee Health Science Center, 855 Monroe Ave. Memphis, TN 38163, USA
| | | | | |
Collapse
|
54
|
Jones L, Hughes A. Pathogenic mechanisms in Huntington's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 98:373-418. [PMID: 21907095 DOI: 10.1016/b978-0-12-381328-2.00015-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant, progressive neurodegenerative disorder presenting in midlife. Multiple pathogenic mechanisms which hypothesise how the expanded CAG repeat causes manifest disease have been suggested since the mutation was first detected. These mechanisms include events that operate at both the gene and protein levels. It has been proposed that somatic instability of the CAG repeat could underlie the striatal-specific pathology observed in HD, although how this occurs and what consequences this has in the disease state remain unknown. The form in which the Htt protein exists within the cell has been extensively studied in terms of both its role in aggregate formation and its cellular processing. Protein-protein interactions, post-translational modifications and protein cleavage have all been suggested to contribute to HD pathogenesis. The potential downstream effects of the mutant Htt protein are also noted here. In particular, the adverse effect of the mutant Htt protein on cellular protein degradation, subcellular transport and transcription are explored, and its role in energy metabolism and excitotoxicity investigated. Elucidating the mechanisms at work in HD pathogenesis and determining when they occur in relation to disease is an important step in the pathway to therapeutic interventions.
Collapse
Affiliation(s)
- Lesley Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, UK
| | | |
Collapse
|
55
|
Schulte J, Littleton JT. The biological function of the Huntingtin protein and its relevance to Huntington's Disease pathology. CURRENT TRENDS IN NEUROLOGY 2011; 5:65-78. [PMID: 22180703 PMCID: PMC3237673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Huntington's Disease is an adult-onset dominant heritable disorder characterized by progressive psychiatric disruption, cognitive deficits, and loss of motor coordination. It is caused by expansion of a polyglutamine tract within the N-terminal domain of the Huntingtin protein. The mutation confers a toxic gain-of-function phenotype, resulting in neurodegeneration that is most severe in the striatum. Increasing experimental evidence from genetic model systems such as mice, zebrafish, and Drosophila suggest that polyglutamine expansion within the Huntingtin protein also disrupts its normal biological function. Huntingtin is widely expressed during development and has a complex and dynamic distribution within cells. It is predicted to be a protein of pleiotropic function, interacting with a large number of effector proteins to mediate a host of physiological processes. In this review, we highlight the wildtype function of Huntingtin, focusing on its postdevelopmental roles in axonal trafficking, regulation of gene transcription, and cell survival. We then discuss how potential loss-of-function phenotypes resulting in polyglutamine expansion within Huntingtin may have direct relevance to the underlying pathophysiology of Huntington's Disease.
Collapse
Affiliation(s)
- Joost Schulte
- The Picower Institute for Learning and Memory, Departments of Biology and Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St., 46-3251, Cambridge, MA 02139, USA
| | - J. Troy Littleton
- The Picower Institute for Learning and Memory, Departments of Biology and Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St., 46-3251, Cambridge, MA 02139, USA
| |
Collapse
|
56
|
Varma H, Yamamoto A, Sarantos MR, Hughes RE, Stockwell BR. Mutant huntingtin alters cell fate in response to microtubule depolymerization via the GEF-H1-RhoA-ERK pathway. J Biol Chem 2010; 285:37445-57. [PMID: 20858895 PMCID: PMC2988350 DOI: 10.1074/jbc.m110.125542] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular responses to drug treatment show tremendous variations. Elucidating mechanisms underlying these variations is critical for predicting therapeutic responses and developing personalized therapeutics. Using a small molecule screening approach, we discovered how a disease causing allele leads to opposing cell fates upon pharmacological perturbation. Diverse microtubule-depolymerizing agents protected mutant huntingtin-expressing cells from cell death, while being toxic to cells lacking mutant huntingtin or those expressing wild-type huntingtin. Additional neuronal cell lines and primary neurons from Huntington disease mice also showed altered survival upon microtubule depolymerization. Transcription profiling revealed that microtubule depolymerization induced the autocrine growth factor connective tissue growth factor and activated ERK survival signaling. The genotype-selective rescue was dependent upon increased RhoA protein levels in mutant huntingtin-expressing cells, because inhibition of RhoA, its downstream effector, Rho-associated kinase (ROCK), or a microtubule-associated RhoA activator, guanine nucleotide exchange factor-H1 (GEF-H1), all attenuated the rescue. Conversely, RhoA overexpression in cells lacking mutant huntingtin conferred resistance to microtubule-depolymerizer toxicity. This study elucidates a novel pathway linking microtubule stability to cell survival and provides insight into how genetic context can dramatically alter cellular responses to pharmacological interventions.
Collapse
Affiliation(s)
- Hemant Varma
- Department of Biological Sciences, Howard Hughes Medical Institute, New York, New York 10027, USA
| | | | | | | | | |
Collapse
|
57
|
Yamamoto A, Simonsen A. The elimination of accumulated and aggregated proteins: a role for aggrephagy in neurodegeneration. Neurobiol Dis 2010; 43:17-28. [PMID: 20732422 DOI: 10.1016/j.nbd.2010.08.015] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 08/11/2010] [Accepted: 08/16/2010] [Indexed: 12/21/2022] Open
Abstract
The presence of ubiquitinated protein inclusions is a hallmark of most adult onset neurodegenerative disorders. Although the toxicity of these structures remains controversial, their prolonged presence in neurons is indicative of some failure in fundamental cellular processes. It therefore may be possible that driving the elimination of inclusions can help re-establish normal cellular function. There is growing evidence that macroautophagy has two roles; first, as a non-selective degradative response to cellular stress such as starvation, and the other as a highly selective quality control mechanism whose basal levels are important to maintain cellular health. One particular form of macroautophagy, aggrephagy, may have particular relevance in neurodegeneration, as it is responsible for the selective elimination of accumulated and aggregated ubiquitinated proteins. In this review, we will discuss the molecular mechanisms and role of protein aggregation in neurodegeneration, as well as the molecular mechanism of aggrephagy and how it may impact disease. This article is part of a Special Issue entitled "Autophagy and protein degradation in neurological diseases."
Collapse
Affiliation(s)
- Ai Yamamoto
- Dept of Neurology, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
58
|
Huntingtin Is Required for Mitotic Spindle Orientation and Mammalian Neurogenesis. Neuron 2010; 67:392-406. [DOI: 10.1016/j.neuron.2010.06.027] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2010] [Indexed: 01/06/2023]
|
59
|
Han I, You Y, Kordower JH, Brady ST, Morfini GA. Differential vulnerability of neurons in Huntington's disease: the role of cell type-specific features. J Neurochem 2010; 113:1073-91. [PMID: 20236390 DOI: 10.1111/j.1471-4159.2010.06672.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abnormal expansion of a polyglutamine tract in huntingtin (Htt) protein results in Huntington's disease (HD), an autosomal dominant neurodegenerative disorder involving progressive loss of motor and cognitive function. Contrasting with the ubiquitous tissue expression of polyglutamine-expanded Htt, HD pathology is characterized by the increased vulnerability of specific neuronal populations within the striatum and the cerebral cortex. Morphological, biochemical, and functional characteristics of neurons affected in HD that might render these cells more vulnerable to the toxic effects of polyglutamine-Htt are covered in this review. The differential vulnerability of neurons observed in HD is discussed in the context of various major pathogenic mechanisms proposed to date, and in line with evidence showing a 'dying-back' pattern of degeneration in affected neuronal populations.
Collapse
Affiliation(s)
- Ina Han
- Department of Anatomy and Cell Biology. University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
60
|
Buckley NJ, Johnson R, Zuccato C, Bithell A, Cattaneo E. The role of REST in transcriptional and epigenetic dysregulation in Huntington's disease. Neurobiol Dis 2010; 39:28-39. [PMID: 20170730 DOI: 10.1016/j.nbd.2010.02.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 12/20/2022] Open
Abstract
Huntington's disease (HD) is a devastating disorder that affects approximately 1 in 10,000 people and is accompanied by neuronal dysfunction and neurodegeneration. HD manifests as a progressive chorea, a decline in mental abilities accompanied by behavioural, emotional and psychiatric problems followed by, dementia, and ultimately, death. The molecular pathology of HD is complex but includes widespread transcriptional dysregulation. Although many transcriptional regulatory molecules have been implicated in the pathogenesis of HD, a growing body of evidence points to the pivotal role of RE1 Silencing Transcription Factor (REST). In HD, REST, translocates from the cytoplasm to the nucleus in neurons resulting in repression of key target genes such as BDNF. Since these original observations, several thousand direct target genes of REST have been identified, including numerous non-coding RNAs including both microRNAs and long non-coding RNAs, several of which are dysregulated in HD. More recently, evidence is emerging that hints at epigenetic abnormalities in HD brain. This in turn, promotes the notion that targeting the epigenetic machinery may be a useful strategy for treatment of some aspects of HD. REST also recruits a host of histone and chromatin modifying activities that can regulate the local epigenetic signature at REST target genes. Collectively, these observations present REST as a hub that coordinates transcriptional, posttranscriptional and epigenetic programmes, many of which are disrupted in HD. We identify several spokes emanating from this REST hub that may represent useful sites to redress REST dysfunction in HD.
Collapse
Affiliation(s)
- Noel J Buckley
- King's College London, Institute of Psychiatry, Centre for the Cellular Basis of Behaviour, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK.
| | | | | | | | | |
Collapse
|
61
|
Pouladi MA, Xie Y, Skotte NH, Ehrnhoefer DE, Graham RK, Kim JE, Bissada N, Yang XW, Paganetti P, Friedlander RM, Leavitt BR, Hayden MR. Full-length huntingtin levels modulate body weight by influencing insulin-like growth factor 1 expression. Hum Mol Genet 2010; 19:1528-38. [PMID: 20097678 DOI: 10.1093/hmg/ddq026] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Levels of full-length huntingtin (FL htt) influence organ and body weight, independent of polyglutamine length. The growth hormone-insulin like growth factor-1 (GH-IGF-1) axis is well established as a regulator of organ growth and body weight. In this study, we investigate the involvement of the IGF-1 pathway in mediating the effect of htt on body weight. IGF-1 expression was examined in transgenic mouse lines expressing different levels of FL wild-type (WT) htt (YAC18 mice), FL mutant htt (YAC128 and BACHD mice) and truncated mutant htt (shortstop mice). We demonstrate that htt influences body weight by modulating the IGF-1 pathway. Plasma IGF-1 levels correlate with body weight and htt levels in the transgenic YAC mice expressing human htt. The effect of htt on IGF-1 expression is independent of CAG size. No effect on body weight is observed in transgenic YAC mice expressing a truncated N-terminal htt fragment (shortstop), indicating that FL htt is required for the modulation of IGF-1 expression. Treatment with 17beta-estradiol (17beta-ED) lowers the levels of circulating IGF-1 in mammals. Treatment of YAC128 with 17beta-ED, but not placebo, reduces plasma IGF-1 levels and decreases the body weight of YAC128 animals to WT levels. Furthermore, given the ubiquitous expression of IGF-1 within the central nervous system, we also examined the impact of FL htt levels on IGF-1 expression in different regions of the brain, including the striatum, cerebellum of YAC18, YAC128 and littermate WT mice. We demonstrate that the levels of FL htt influence IGF-1 expression in striatal tissues. Our data identify a novel function for FL htt in influencing IGF-1 expression.
Collapse
Affiliation(s)
- Mahmoud A Pouladi
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, and Child and Family Research Institute, Vancouver, BC, Canada V5Z 4H4
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
HSP40 ameliorates impairment of insulin secretion by inhibiting huntingtin aggregation in a HD pancreatic beta cell model. Biosci Biotechnol Biochem 2009; 73:1787-92. [PMID: 19661690 DOI: 10.1271/bbb.90147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Diabetes frequently develops in Huntington's disease patients. Here, we found that mutant huntingtin forms aggregates in the cytoplasm and reduces insulin secretion from huntingtin transfected pancreatic beta cell lines, NIT-1 cells. Activity of the pro-survival factor, Akt, is enhanced in these cells, which might improve the maintenance of insulin content. Overexpression of heat shock protein 40 (HSP40) inhibits aggregation, reverses impaired insulin release, and blocks the enhancement of Akt activity. These results suggest that impairment of beta cells is mostly linked with the aggregate formation of mutant huntingtin, and that HSP40 ameliorates the malfunction of pancreatic beta cells by inhibiting aggregation.
Collapse
|
63
|
Smith R, Bacos K, Fedele V, Soulet D, Walz HA, Obermuller S, Lindqvist A, Bjorkqvist M, Klein P, Onnerfjord P, Brundin P, Mulder H, Li JY. Mutant huntingtin interacts with -tubulin and disrupts vesicular transport and insulin secretion. Hum Mol Genet 2009; 18:3942-54. [DOI: 10.1093/hmg/ddp336] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
64
|
|
65
|
Zhang S, Feany MB, Saraswati S, Littleton JT, Perrimon N. Inactivation of Drosophila Huntingtin affects long-term adult functioning and the pathogenesis of a Huntington's disease model. Dis Model Mech 2009; 2:247-66. [PMID: 19380309 PMCID: PMC2675792 DOI: 10.1242/dmm.000653] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 01/14/2009] [Indexed: 11/20/2022] Open
Abstract
A polyglutamine expansion in the huntingtin (HTT) gene causes neurodegeneration in Huntington's disease (HD), but the in vivo function of the native protein (Htt) is largely unknown. Numerous biochemical and in vitro studies have suggested a role for Htt in neuronal development, synaptic function and axonal trafficking. To test these models, we generated a null mutant in the putative Drosophila HTT homolog (htt, hereafter referred to asdhtt) and, surprisingly, found that dhtt mutant animals are viable with no obvious developmental defects. Instead, dhtt is required for maintaining the mobility and long-term survival of adult animals, and for modulating axonal terminal complexity in the adult brain. Furthermore, removing endogenous dhtt significantly accelerates the neurodegenerative phenotype associated with a Drosophila model of polyglutamine Htt toxicity (HD-Q93), providing in vivo evidence that disrupting the normal function of Htt might contribute to HD pathogenesis.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Genetics
- Present address: Research Center for Neurodegenerative Diseases, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler Street, Houston, TX 77030, USA
| | | | - Sudipta Saraswati
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - J. Troy Littleton
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Norbert Perrimon
- Department of Genetics
- Howard Hughes Medical Institute, Brigham and Women’s Hospital, 77 Avenue Louis Pasteur, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
66
|
Caviston JP, Holzbaur ELF. Huntingtin as an essential integrator of intracellular vesicular trafficking. Trends Cell Biol 2009; 19:147-55. [PMID: 19269181 DOI: 10.1016/j.tcb.2009.01.005] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 01/26/2009] [Accepted: 01/27/2009] [Indexed: 01/04/2023]
Abstract
The neurodegenerative disorder Huntington's disease is caused by an expansion in the polyglutamine repeat region of the protein huntingtin. Multiple studies in cellular and animal model systems indicate that this mutation imparts a novel toxic function required for disease pathogenesis. However, the normal function of huntingtin, an essential cellular protein in higher vertebrates, is not yet well understood. Emerging data indicate an important role for wild-type huntingtin in the intracellular transport of vesicles and organelles. Here, we discuss current progress on the role of huntingtin in vesicular trafficking, focusing on the proposal that huntingtin might be a crucial regulator of organelle transport along the cellular cytoskeleton.
Collapse
Affiliation(s)
- Juliane P Caviston
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, 19104-6085, USA
| | | |
Collapse
|
67
|
Bocharova N, Chave-Cox R, Sokolov S, Knorre D, Severin F. Protein aggregation and neurodegeneration: clues from a yeast model of Huntington's disease. BIOCHEMISTRY. BIOKHIMIIA 2009; 74:231-234. [PMID: 19267681 DOI: 10.1134/s0006297909020163] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A number of neurodegenerative diseases are accompanied by the appearance of intracellular protein aggregates. Huntington's disease (HD) is caused by a mutation in a gene encoding huntingtin. The mutation causes the expansion of the polyglutamine (polyQ) domain and consequently polyQ-containing aggregates accumulate and neurons in the striatum die. The role of the aggregates is still not clear: they may be the cause of cytotoxicity or a manifestation of the cellular attempt to remove the misfolded proteins. There is accumulating evidence that the main cause of HD is the interaction of the mutated huntingtin with other polyQ-containing proteins and molecular chaperones and most studies based on a yeast model of HD support this point of view. Data obtained using yeasts suggest pathological consequences of polyQ-proteasomal interaction: proteasomal overload by polyQs may interfere with functions of the cell cycle-regulating proteins.
Collapse
|
68
|
Zala D, Colin E, Rangone H, Liot G, Humbert S, Saudou F. Phosphorylation of mutant huntingtin at S421 restores anterograde and retrograde transport in neurons. Hum Mol Genet 2008; 17:3837-46. [DOI: 10.1093/hmg/ddn281] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
69
|
Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons. EMBO J 2008; 27:2124-34. [PMID: 18615096 DOI: 10.1038/emboj.2008.133] [Citation(s) in RCA: 259] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 06/17/2008] [Indexed: 12/20/2022] Open
Abstract
The transport of vesicles in neurons is a highly regulated process, with vesicles moving either anterogradely or retrogradely depending on the nature of the molecular motors, kinesins and dynein, respectively, which propel vesicles along microtubules (MTs). However, the mechanisms that determine the directionality of transport remain unclear. Huntingtin, the protein mutated in Huntington's disease, is a positive regulatory factor for vesicular transport. Huntingtin is phosphorylated at serine 421 by the kinase Akt but the role of this modification is unknown. Here, we demonstrate that phosphorylation of wild-type huntingtin at S421 is crucial to control the direction of vesicles in neurons. When phosphorylated, huntingtin recruits kinesin-1 to the dynactin complex on vesicles and MTs. Using brain-derived neurotrophic factor as a marker of vesicular transport, we demonstrate that huntingtin phosphorylation promotes anterograde transport. Conversely, when huntingtin is not phosphorylated, kinesin-1 detaches and vesicles are more likely to undergo retrograde transport. This also applies to other vesicles suggesting an essential role for huntingtin in the control of vesicular directionality in neurons.
Collapse
|
70
|
Mercer KB, Szlam SM, Manning E, Gernert KM, Walthall WW, Benian GM, Gutekunst CA. A C. elegans homolog of huntingtin-associated protein 1 is expressed in chemosensory neurons and in a number of other somatic cell types. J Mol Neurosci 2008; 37:37-49. [PMID: 18592415 DOI: 10.1007/s12031-008-9109-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 05/21/2008] [Indexed: 12/20/2022]
Abstract
Huntingtin-associated protein 1 (HAP1) is a binding partner for huntingtin, the protein responsible for Huntington's disease. In mammals, HAP1 is mostly found in brain where it is expressed in neurons. Although several functions have been proposed for HAP1, its role has not yet been clearly established. In this paper, we report on the identification of a HAP1 Caenorhabditis elegans homolog called T27A3.1. T27A3.1 shows conservation with rat and human HAP1, as well as with Milton, a Drosophila HAP1 homolog. To determine the cellular expression of T27A3.1 (multiple isoforms; a-e), we generated several transgenic worm lines expressing a fluorescent reporter protein [green fluorescent protein (GFP) and DsRed2] under the control of the promoter for T27A3.1. We have found that T27A3.1 is expressed in many cell types including a subset of chemosensory neurons in the head and tail. These include the amphid chemosensory neurons ASKL and R, ASIL and R, ADFL and ASEL, the phasmid neurons PHBL and R, and the CAN neurons that are required for worm survival.
Collapse
Affiliation(s)
- Kristina B Mercer
- Department of Experimental Pathology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
71
|
Ross CA, Becher MW, Colomer V, Engelender S, Wood JD, Sharp AH. Huntington's disease and dentatorubral-pallidoluysian atrophy: proteins, pathogenesis and pathology. Brain Pathol 2008; 7:1003-16. [PMID: 9217980 PMCID: PMC8098431 DOI: 10.1111/j.1750-3639.1997.tb00898.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Each of the glutamine repeat neurodegenerative diseases has a particular pattern of pathology largely restricted to the CNS. However, there is considerable overlap among the regions affected, suggesting that the diseases share pathogenic mechanisms, presumably involving the glutamine repeats. We focus on Huntington's disease (HD) and Dentatorubral-pallidoluysian atrophy (DRPLA) as models for this family of diseases, since they have striking similarities and also notable differences in their clinical features and pathology. We review the pattern of pathology in adult and juvenile onset cases. Despite selective pathology, the disease genes and their protein products (huntingtin and atrophin-1) are widely expressed. This presents a central problem for all the glutamine repeat diseases-how do widely expressed gene products give rise to restricted pathology? The pathogenic effects are believed to occur via a "gain of function" mechanism at the protein level. Mechanisms of cell death may include excitotoxicity, metabolic toxicity, apoptosis, and free radical stress. Emerging data indicate that huntingtin and atrophin-1 may have distinct protein interactions. The specific interaction partners may help explain the selective pathology of these diseases.
Collapse
Affiliation(s)
- C A Ross
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA
| | | | | | | | | | | |
Collapse
|
72
|
Vonsattel JPG. Huntington disease models and human neuropathology: similarities and differences. Acta Neuropathol 2008; 115:55-69. [PMID: 17978822 PMCID: PMC2847401 DOI: 10.1007/s00401-007-0306-6] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2007] [Revised: 09/30/2007] [Accepted: 09/30/2007] [Indexed: 01/22/2023]
Abstract
Huntington disease (HD) occurs only in humans. Thus, its natural pathogenesis takes place exclusively within the human brains expressing the causative, mutated protein huntingtin (mhtt). The techniques applicable to postmortem human HD brains are inadequate for investigating the cellular pathogenesis. The creation of genetically engineered animals represents a critical moment in neuroscience. Monitoring the actions of either normal, or abnormal proteins at subcellular levels, and at different time points is now possible thanks to these models. They are the necessary substitutes to investigate the wild type (whtt), or mhtt. The postmortem neuropathologic phenotype of the human HD is well documented. Its pattern and spectrum are highly predictable. From this point of view, the existent models do not exhibit the phenotypic constellation of changes seen in the human HD brains. On one hand, this deficit reflects the limitations of the methods of evaluation used in a clinical setting. On the other hand, it highlights the limitations of the animals. The validity of the models probably should be measured by their capacity of reproducing the cellular dysfunctions of HD rather than the phenotype of the postmortem human brains. Although not perfect, these models are essential for modeling the human disease in cells, which is not feasible with postmortem human HD brains. Nonetheless, their relevance to the patient population remains to be determined. Ultimately needed are means preventing the disease to occur, the discovery of which probably depends on these models.
Collapse
Affiliation(s)
- Jean Paul G Vonsattel
- The Department of Pathology in the College of Physicians and Surgeons, The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.
| |
Collapse
|
73
|
Saudou F, Humbert S. The biology of Huntington's disease. HANDBOOK OF CLINICAL NEUROLOGY 2008; 89:619-29. [DOI: 10.1016/s0072-9752(07)01257-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
74
|
Vonsattel JPG, Keller C, Del Pilar Amaya M. Neuropathology of Huntington's disease. HANDBOOK OF CLINICAL NEUROLOGY 2008; 89:599-618. [PMID: 18631782 DOI: 10.1016/s0072-9752(07)01256-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jean Paul G Vonsattel
- The New York Brain Bank/Taub Institute, The Presbyterian Hospital and Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
75
|
Zuchner T, Brundin P. Mutant huntingtin can paradoxically protect neurons from death. Cell Death Differ 2007; 15:435-42. [PMID: 17975550 DOI: 10.1038/sj.cdd.4402261] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a mutation in the gene huntingtin and characterized by motor, cognitive and psychiatric symptoms. Huntingtin contains a CAG repeat in exon 1. An expansion of this CAG repeat above 35 results in misfolding of Huntingtin, giving rise to protein aggregates and neuronal cell death. There are several transgenic HD mouse models that reproduce most of the features of the human disorder, for example protein inclusions, some neurodegeneration as well as motor and cognitive symptoms. At the same time, a subgroup of the HD transgenic mouse models exhibit dramatically reduced susceptibility to excitotoxicity. The mechanism behind this is unknown. Here, we review the literature regarding this phenomenon, attempt to explain what protein domains are crucial for this phenomenon and point toward a putative mechanism. We suggest, that the C-terminal domain of exon 1 Huntingtin, namely the proline rich domain, is responsible for mediating a neuroprotective effect against excitotoxicity. Furthermore, we point out the possible importance of this mechanism for future therapies in neurological disorders that have been suggested to be associated with excitotoxicity, for example Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- T Zuchner
- Neuronal Survival Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, BMC A10, Lund 22184, Sweden.
| | | |
Collapse
|
76
|
Abstract
The discovery that expansion of unstable repeats can cause a variety of neurological disorders has changed the landscape of disease-oriented research for several forms of mental retardation, Huntington disease, inherited ataxias, and muscular dystrophy. The dynamic nature of these mutations provided an explanation for the variable phenotype expressivity within a family. Beyond diagnosis and genetic counseling, the benefits from studying these disorders have been noted in both neurobiology and cell biology. Examples include insight about the role of translational control in synaptic plasticity, the role of RNA processing in the integrity of muscle and neuronal function, the importance of Fe-S-containing enzymes for cellular energy, and the dramatic effects of altering protein conformations on neuronal function and survival. It is exciting that within a span of 15 years, pathogenesis studies of this class of disorders are beginning to reveal pathways that are potential therapeutic targets.
Collapse
Affiliation(s)
- Harry T Orr
- Institute of Human Genetics, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
77
|
Caviston JP, Ross JL, Antony SM, Tokito M, Holzbaur ELF. Huntingtin facilitates dynein/dynactin-mediated vesicle transport. Proc Natl Acad Sci U S A 2007; 104:10045-50. [PMID: 17548833 PMCID: PMC1891230 DOI: 10.1073/pnas.0610628104] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cytoplasmic dynein is a multisubunit microtubule motor complex that, together with its activator, dynactin, drives vesicular cargo toward the minus ends of microtubules. Huntingtin (Htt) is a vesicle-associated protein found in both neuronal and nonneuronal cells that is thought to be involved in vesicular transport. In this study, we demonstrate through yeast two-hybrid and affinity chromatography assays that Htt and dynein intermediate chain interact directly; endogenous Htt and dynein co-immunoprecipitate from mouse brain cytosol. Htt RNAi in HeLa cells results in Golgi disruption, similar to the effects of compromising dynein/dynactin function. In vitro studies reveal that Htt and dynein are both present on vesicles purified from mouse brain. Antibodies to Htt inhibited vesicular transport along microtubules, suggesting that Htt facilitates dynein-mediated vesicle motility. In vivo inhibition of dynein function results in a significant redistribution of Htt to the cell periphery, suggesting that dynein transports Htt-associated vesicles toward the cell center. Together these findings indicate that Htt binds to dynein and acts in a complex along with dynactin and Htt-associated protein-1 to facilitate vesicular transport.
Collapse
Affiliation(s)
- Juliane P. Caviston
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Jennifer L. Ross
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Sheila M. Antony
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Mariko Tokito
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Erika L. F. Holzbaur
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
78
|
Ruan Q, Quintanilla RA, Johnson GVW. Type 2 transglutaminase differentially modulates striatal cell death in the presence of wild type or mutant huntingtin. J Neurochem 2007; 102:25-36. [PMID: 17403029 DOI: 10.1111/j.1471-4159.2007.04491.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Huntington's disease (HD), which is caused by an expanded polyglutamine tract in huntingtin (htt), is characterized by extensive loss of striatal neurons. The dysregulation of type 2 transglutaminase (TG2) has been proposed to contribute to the pathogenesis in HD as TG2 is up-regulated in HD brain and knocking out TG2 in mouse models of HD ameliorates the disease process. To understand the role of TG2 in the pathogenesis of HD, immortalized striatal cells established from mice in which mutant htt with a polyglutamine stretch of 111 Gln had been knocked-in and wild type (WT) littermates, were stably transfected with human TG2 in a tetracycline inducible vector. Overexpression of TG2 in the WT striatal cells resulted in significantly greater cell death under basal conditions as well as in response to thapsigargin treatment, which causes increased intracellular calcium concentrations. Furthermore, in WT striatal cells TG2 overexpression potentiated mitochondrial membrane depolarization, intracellular reactive oxygen species production, and apoptotic cell death in response to thapsigargin. In contrast, in mutant striatal cells, TG2 overexpression did not increase cell death, nor did it potentiate thapsigargin-induced mitochondrial membrane depolarization or intracellular reactive oxygen species production. Instead, TG2 overexpression in mutant striatal cells attenuated the thapsigargin-activated apoptosis. When in situ transglutaminase activity was quantitatively analyzed in these cell lines, we found that in response to thapsigargin treatment TG2 was activated in WT, but not mutant striatal cells. These data suggest that mutant htt alters the activation of TG2 in response to certain stimuli and therefore differentially modulates how TG2 contributes to cell death processes.
Collapse
Affiliation(s)
- Qingmin Ruan
- Department of Psychiatry, University of Alabama at Birmingham, Birmingham, Alabama 35294-0017, USA
| | | | | |
Collapse
|
79
|
Strehlow ANT, Li JZ, Myers RM. Wild-type huntingtin participates in protein trafficking between the Golgi and the extracellular space. Hum Mol Genet 2006; 16:391-409. [PMID: 17189290 DOI: 10.1093/hmg/ddl467] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Huntington disease (HD) is an autosomal dominant neurodegenerative disease caused by an expanded CAG trinucleotide repeat in the first exon of the HD gene, which results in a toxic polyglutamine stretch within huntingtin, the protein it encodes. Understanding the normal function of this essential protein is vital to understanding the root of the disease, yet despite more than a decade of investigation, its role in the cell remains elusive. Identifying the subcellular localization of huntingtin and understanding its effects on global gene expression are critical to this endeavor. While most reports agree that huntingtin is predominantly a cytoplasmic protein, conflicting distribution patterns have been demonstrated at the subcellular level. Here, we examine wild-type huntingtin's localization in cultured cells by expressing the full-length human protein tagged with enhanced green fluorescent protein (EGFP) within its unspliced genomic context. In fibrosarcoma and neuroblastoma cells, huntingtin shows discrete punctate, perinuclear localization overlapping largely with the trans-Golgi and cytoplasmic clathrin-coated vesicles, implicating huntingtin in vesicle trafficking. To determine whether huntingtin is involved in trafficking a specific subset of proteins, we measured changes in global transcription levels in embryonic stem cells and neurons lacking huntingtin. Huntingtin null neurons exhibit a significant reduction in transcripts encoding proteins destined for the extracellular space, many of which are components of the extracellular matrix or involved in cellular adhesion, receptor binding and hormone activity. Together, these findings support a role for huntingtin in the intracellular trafficking of proteins required for the construction of the extracellular matrix.
Collapse
Affiliation(s)
- Anne N T Strehlow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120, USA
| | | | | |
Collapse
|
80
|
Li S, Li XJ. Multiple pathways contribute to the pathogenesis of Huntington disease. Mol Neurodegener 2006; 1:19. [PMID: 17173700 PMCID: PMC1764744 DOI: 10.1186/1750-1326-1-19] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 12/16/2006] [Indexed: 01/24/2023] Open
Abstract
Huntington disease (HD) is caused by expansion of a polyglutamine (polyQ) domain in the protein known as huntingtin (htt), and the disease is characterized by selective neurodegeneration. Expansion of the polyQ domain is not exclusive to HD, but occurs in eight other inherited neurodegenerative disorders that show distinct neuropathology. Yet in spite of the clear genetic defects and associated neurodegeneration seen with all the polyQ diseases, their pathogenesis remains elusive. The present review focuses on HD, outlining the effects of mutant htt in the nucleus and neuronal processes as well as the role of cell-cell interactions in HD pathology. The widespread expression and localization of mutant htt and its interactions with a variety of proteins suggest that mutant htt engages multiple pathogenic pathways. Understanding these pathways will help us to elucidate the pathogenesis of HD and to target therapies effectively.
Collapse
Affiliation(s)
- Shihua Li
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Xiao-Jiang Li
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| |
Collapse
|
81
|
Abstract
The endoplasmic reticulum (ER) of higher eukaryotic cells is a dynamic network of interconnected membrane tubules that pervades almost the entire cytoplasm. On the basis of the morphological changes induced by the disruption of the cytoskeleton or molecular motor proteins, the commonly accepted model has emerged that microtubules and conventional kinesin (kinesin-1) are essential determinants in establishing and maintaining the structure of the ER by active membrane expansion. Surprisingly, very similar ER phenotypes have now been observed when the cytoskeleton-linking ER membrane protein of 63 kDa (CLIMP-63) is mutated, revealing stable attachment of ER membranes to the microtubular cytoskeleton as a novel requirement for ER maintenance. Additional recent findings suggest that ER maintenance also requires ongoing homotypic membrane fusion, possibly controlled by the p97/p47/VICP135 protein complex. Work on other proteins proposed to regulate ER structure, including huntingtin, the EF-hand Ca(2+)-binding protein p22, the vesicle-associated membrane protein-associated protein B and kinectin isoforms further contribute to the new emerging concept that ER shape is not only determined by motor driven processes but by a variety of different mechanisms.
Collapse
Affiliation(s)
- Cécile Vedrenne
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | |
Collapse
|
82
|
Sayer JA, Manczak M, Akileswaran L, Reddy PH, Coghlan VM. Interaction of the nuclear matrix protein NAKAP with HypA and huntingtin: implications for nuclear toxicity in Huntington's disease pathogenesis. Neuromolecular Med 2006; 7:297-310. [PMID: 16391387 DOI: 10.1385/nmm:7:4:297] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 07/05/2005] [Accepted: 07/08/2005] [Indexed: 11/11/2022]
Abstract
Although expansion of a polyglutamine tract in the huntingtin protein is known to cause Huntington's disease (HD), there is considerable debate as to how this mutation leads to the selective neuronal loss that characterizes the disease. The observation that mutant huntingtin accumulates in neuronal nuclei has led to the hypothesis that the molecular mechanism may involve the disruption of specific nuclear activities. Recently, several nuclear interaction partners for huntingtin have been identified, including HypA, a splicing factor-like protein of unknown function. Using a yeast two-hybrid screen, we have identified the interaction of HypA with the nuclear scaffold protein NAKAP. Interaction of NAKAP with HypA is specific and occurs both in yeast and in vitro. Deletion-mapping studies indicate that binding occurs via a proline-rich domain in NAKAP with a WW domain of HypA. In cultured cells, NAKAP and HypA localize within the nucleus and copurify with the nuclear matrix. Furthermore, NAKAP associates with HypA from human brain and copurifies with huntingtin protein in brain tissue obtained from HD patients. In HD neurons, NAKAP and mutant huntingtin were colocalized to the nuclear matrix and were found to be components of nuclear aggregates. Hence, the NAKAP-HypA scaffold is a potential nuclear docking site for huntingtin protein and may contribute to the nuclear accumulation of huntingtin observed in HD.
Collapse
Affiliation(s)
- Jonathan A Sayer
- Neurological Sciences Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | | | | | | | | |
Collapse
|
83
|
Dahlgren PR, Karymov MA, Bankston J, Holden T, Thumfort P, Ingram VM, Lyubchenko YL. Atomic force microscopy analysis of the Huntington protein nanofibril formation. Dis Mon 2005; 51:374-85. [PMID: 16242522 DOI: 10.1016/j.disamonth.2005.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
84
|
Maglione V, Cannella M, Gradini R, Cislaghi G, Squitieri F. Huntingtin fragmentation and increased caspase 3, 8 and 9 activities in lymphoblasts with heterozygous and homozygous Huntington's disease mutation. Mech Ageing Dev 2005; 127:213-6. [PMID: 16289252 DOI: 10.1016/j.mad.2005.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Revised: 03/04/2005] [Accepted: 09/15/2005] [Indexed: 10/25/2022]
Abstract
Huntington's disease (HD) is caused by mutated huntingtin (htt), a toxic protein ubiquitously expressed in nervous and non-nervous system tissues. Fragmentation of htt by caspases and further accumulation in cells of protein aggregates contribute to cell dysfunction and death. In the attempt to elucidate whether this mechanism depends on patients' genotype, we analysed the pattern of htt fragmentation, the caspase 3, 8 and 9 activities and their variation in lymphoblasts with heterozygous and homozygous CAG mutation and in controls. Cells homozygous for expanded mutation showed greater amount of mutated fragments than heterozygotes and controls, caspase 3, 8 and 9 activities greater in mutated than control cell lines, after cyanide treatment, the caspase 3 and 8 particularly increased in homozygotes. This data offers a biological explanation to the clinical in-patients evidence of mutation homozygosity associated with more severe phenotype.
Collapse
Affiliation(s)
- Vittorio Maglione
- Neurogenetics Unit, IRCCS INM Neuromed, Località Camerelle 86077, Pozzilli, IS, Italy
| | | | | | | | | |
Collapse
|
85
|
Rebec GV, Conroy SK, Barton SJ. Hyperactive striatal neurons in symptomatic Huntington R6/2 mice: variations with behavioral state and repeated ascorbate treatment. Neuroscience 2005; 137:327-36. [PMID: 16257492 DOI: 10.1016/j.neuroscience.2005.08.062] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 08/03/2005] [Accepted: 08/30/2005] [Indexed: 10/25/2022]
Abstract
Membrane and morphological abnormalities occur in the striatum of R6/2 transgenics, a widely used mouse model of Huntington's disease. To assess changes in behavior-related neuronal activity, we implanted micro-wire bundles in the striatum of symptomatic R6/2 mice and wild-type controls. Unit activity was recorded in an open-field arena once weekly for the next several weeks. For each recording session, firing rate was monitored before, during, and after a period of light anesthesia to assess the influence of behavioral arousal. Because low ascorbate in striatal extracellular fluid may contribute to Huntington's disease symptoms, all animals received an injection of either 300 mg/kg sodium ascorbate or vehicle for three consecutive days prior to each recording session. In R6/2 mice, regardless of treatment, striatal unit activity was significantly faster than in wild-type controls. The difference in mean (+/-S.E.M.) firing was most apparent during wakefulness (6.4+/-0.8 vs. 3.5+/-0.3 spikes/s) but also persisted during anesthesia (2.0+/-0.3 vs. 0.7+/-0.1 spikes/s). Assessment of treatment duration indicated that R6/2 mean waking discharge rate was significantly slower after three weeks than after one week of ascorbate treatment (3.1+/-0.6 vs. 10.2+/-2.7 spikes/s). Vehicle-treated R6/2s showed no such decline in striatal activity ruling out an age- or injection-related effect. Slow-scan voltammetry in separate animals confirmed that ascorbate-injections returned the level of striatal extracellular ascorbate in R6/2 mice to that of wild-type controls. Our results indicate that although striatal neurons modulate firing in relation to behavioral state, impulse activity is consistently elevated in transgenic relative to wild-type mice. Restoring extracellular ascorbate to the wild-type level reverses this effect suggesting a role for ascorbate in normalizing neuronal function in Huntington's disease striatum.
Collapse
Affiliation(s)
- G V Rebec
- Program in Neuroscience, Department of Psychology and Brain Sciences, Indiana University, 1101 East 10th Street, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
86
|
Omi K, Hachiya NS, Tokunaga K, Kaneko K. siRNA-mediated inhibition of endogenous Huntington disease gene expression induces an aberrant configuration of the ER network in vitro. Biochem Biophys Res Commun 2005; 338:1229-35. [PMID: 16256944 DOI: 10.1016/j.bbrc.2005.10.061] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 10/06/2005] [Indexed: 11/18/2022]
Abstract
Huntingtin is a ubiquitously expressed cytoplasmic protein encoded by the Huntington disease (HD) gene, in which a CAG expansion induces an autosomal dominant progressive neurodegenerative disorder; however, its biological function has not been completely elucidated. Here, we report for the first time that short interfering RNA (siRNA)-mediated inhibition of endogenous Hdh (a mouse homologue of huntingtin) gene expression induced an aberrant configuration of the endoplasmic reticulum (ER) network in vitro. Studies using immunofluorescence microscopy with several ER markers revealed that the ER network appeared to be congregated in various types of cell lines transfected with siRNA directed against Hdh, but not with other siRNAs so far tested. Other subcellular organelles and structures, including the nucleus, Golgi apparatus, mitochondria, lysosomes, microtubules, actin cytoskeletons, cytoplasm, lipid rafts, and plasma membrane, exhibited normal configurations. Western blot analysis of cellular prion protein (PrP(C)) revealed normal glycosylation, which is a simple marker of post-translational modification in the ER and Golgi compartments, and immunofluorescence microscopy detected no altered subcellular distribution of PrP(C) in the post-ER compartments. Further investigation is required to determine whether the distorted ER network, i.e., loss of the huntingtin function, participates in the development of HD.
Collapse
Affiliation(s)
- Kazuya Omi
- Second Department of Physiology, Tokyo Medical University, Tokyo 160-8402, Japan
| | | | | | | |
Collapse
|
87
|
Abstract
The Huntington disease gene was mapped to human chromosome 4p in 1983 and 10 years later the pathogenic mutation was identified as a CAG-repeat expansion. Our current understanding of the molecular pathogenesis of Huntington disease could never have been achieved without the recent progress in the field of molecular genetics. We are now equipped with powerful genetic models that continue to uncover new aspects of the pathogenesis of Huntington disease and will be instrumental for the development of therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Gillian P Bates
- Department of Medical and Molecular Genetics, GKT School of Medicine, King's College London, 8th Floor Guy's Tower, Guy's Hospital, London SE1 9RT, United Kingdom.
| |
Collapse
|
88
|
DiProspero NA, Chen EY, Charles V, Plomann M, Kordower JH, Tagle DA. Early changes in Huntington's disease patient brains involve alterations in cytoskeletal and synaptic elements. ACTA ACUST UNITED AC 2005; 33:517-33. [PMID: 15906159 DOI: 10.1007/s11068-004-0514-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 11/08/2004] [Accepted: 11/15/2004] [Indexed: 10/25/2022]
Abstract
Huntington's disease (HD) is caused by a polyglutamine repeat expansion in the N-terminus of the huntingtin protein. Huntingtin is normally present in the cytoplasm where it may interact with structural and synaptic elements. The mechanism of HD pathogenesis remains unknown but studies indicate a toxic gain-of-function possibly through aberrant protein interactions. To investigate whether early degenerative changes in HD involve alterations of cytoskeletal and vesicular components, we examined early cellular changes in the frontal cortex of HD presymptomatic (PS), early pathological grade (grade 1) and late-stage (grade 3 and 4) patients as compared to age-matched controls. Morphologic analysis using silver impregnation revealed a progressive decrease in neuronal fiber density and organization in pyramidal cell layers beginning in presymptomatic HD cases. Immunocytochemical analyses for the cytoskeletal markers alpha -tubulin, microtubule-associated protein 2, and phosphorylated neurofilament demonstrated a concomitant loss of staining in early grade cases. Immunoblotting for synaptic proteins revealed a reduction in complexin 2, which was marked in some grade 1 HD cases and significantly reduced in all late stage cases. Interestingly, we demonstrate that two synaptic proteins, dynamin and PACSIN 1, which were unchanged by immunoblotting, showed a striking loss by immunocytochemistry beginning in early stage HD tissue suggesting abnormal distribution of these proteins. We propose that mutant huntingtin affects proteins involved in synaptic function and cytoskeletal integrity before symptoms develop which may influence early disease onset and/or progression.
Collapse
Affiliation(s)
- Nicholas A DiProspero
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
89
|
Luo S, Vacher C, Davies JE, Rubinsztein DC. Cdk5 phosphorylation of huntingtin reduces its cleavage by caspases: implications for mutant huntingtin toxicity. ACTA ACUST UNITED AC 2005; 169:647-56. [PMID: 15911879 PMCID: PMC2171695 DOI: 10.1083/jcb.200412071] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by an expanded polyglutamine (polyQ) tract in the huntingtin (htt) protein. Mutant htt toxicity is exposed after htt cleavage by caspases and other proteases release NH(2)-terminal fragments containing the polyQ expansion. Here, we show htt interacts and colocalizes with cdk5 in cellular membrane fractions. Cdk5 phosphorylates htt at Ser434, and this phosphorylation reduces caspase-mediated htt cleavage at residue 513. Reduced mutant htt cleavage resulting from cdk5 phosphorylation attenuated aggregate formation and toxicity in cells expressing the NH(2)-terminal 588 amino acids (htt588) of mutant htt. Cdk5 activity is reduced in the brains of HD transgenic mice compared with controls. This result can be accounted for by the polyQ-expanded htt fragments reducing the interaction between cdk5 and its activator p35. These data predict that the ability of cdk5 phosphorylation to protect against htt cleavage, aggregation, and toxicity is compromised in cells expressing toxic fragments of htt.
Collapse
Affiliation(s)
- Shouqing Luo
- Department of Medical Genetics, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, CB2 2XY, England, UK
| | | | | | | |
Collapse
|
90
|
Charrin BC, Saudou F, Humbert S. Axonal transport failure in neurodegenerative disorders: the case of Huntington’s disease. ACTA ACUST UNITED AC 2005; 53:189-92. [PMID: 15850950 DOI: 10.1016/j.patbio.2004.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Accepted: 12/09/2004] [Indexed: 11/19/2022]
|
91
|
Castagnetti S, Behrens R, Nurse P. End4/Sla2 is involved in establishment of a new growth zone inSchizosaccharomyces pombe. J Cell Sci 2005; 118:1843-50. [PMID: 15827087 DOI: 10.1242/jcs.02311] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rod-shaped Schizosaccharomyces pombe cell grows in a polarized fashion from opposing ends. Correct positioning of the growth zones is directed by the polarity marker Tea1 located at the cell ends where actin patches accumulate and cell growth takes place. We show that the S. pombe homologue of Saccharomyces cerevisiae SLA2, a protein involved in cortical actin organization and endocytosis, provides a link between the polarity marker and the growth machinery. In wild-type fission yeast cells, this homologue End4/Sla2 is enriched at cell ends during interphase and localizes to a medial ring at cell division, mirroring the actin localization pattern throughout the cell cycle. Proper localization relies on membrane trafficking and is independent of both the actin and microtubule cytoskeletons. End4/Sla2 is required for the establishment of new polarised growth zones, and deletion of its C-terminal talin-like domain prevents the establishment of a new growth zone after cell fission. We propose that End4/Sla2 acts downstream of the polarity marker Tea1 and is implicated in the recruitment of the actin cytoskeleton to bring about polarised cell growth.
Collapse
Affiliation(s)
- Stefania Castagnetti
- Cell Cycle Lab Cancer Research UK, 44 Lincoln's Inn Field, London, WC2A 3PX, UK.
| | | | | |
Collapse
|
92
|
Kotliarova S, Jana NR, Sakamoto N, Kurosawa M, Miyazaki H, Nekooki M, Doi H, Machida Y, Wong HK, Suzuki T, Uchikawa C, Kotliarov Y, Uchida K, Nagao Y, Nagaoka U, Tamaoka A, Oyanagi K, Oyama F, Nukina N. Decreased expression of hypothalamic neuropeptides in Huntington disease transgenic mice with expanded polyglutamine‐EGFP fluorescent aggregates. J Neurochem 2005; 93:641-53. [PMID: 15836623 DOI: 10.1111/j.1471-4159.2005.03035.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Huntington disease is caused by polyglutamine (polyQ) expansion in huntingtin. Selective and progressive neuronal loss is observed in the striatum and cerebral cortex in Huntington disease. We have addressed whether expanded polyQ aggregates appear in regions of the brain apart from the striatum and cortex and whether there is a correlation between expanded polyQ aggregate formation and dysregulated transcription. We generated transgenic mouse lines expressing mutant truncated N-terminal huntingtin (expanded polyQ) fused with enhanced green fluorescent protein (EGFP) and carried out a high-density oligonucleotide array analysis using mRNA extracted from the cerebrum, followed by TaqMan RT-PCR and in situ hybridization. The transgenic mice formed expanded polyQ-EGFP fluorescent aggregates and this system allowed us to directly visualize expanded polyQ aggregates in various regions of the brain without performing immunohistochemical studies. We show here that polyQ-EGFP aggregates were intense in the hypothalamus, where the expression of six hypothalamic neuropeptide mRNAs, such as oxytocin, vasopressin and cocaine-amphetamine-regulated transcript, was down-regulated in the transgenic mouse brain without observing a significant loss of hypothalamic neurons. These results indicate that the hypothalamus is susceptible to aggregate formation in these mice and this may result in the down-regulation of specific genes in this region of the brain.
Collapse
Affiliation(s)
- Svetlana Kotliarova
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Dahlgren PR, Karymov MA, Bankston J, Holden T, Thumfort P, Ingram VM, Lyubchenko YL. Atomic force microscopy analysis of the Huntington protein nanofibril formation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2005; 1:52-7. [PMID: 17292058 DOI: 10.1016/j.nano.2004.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Accepted: 11/30/2004] [Indexed: 10/25/2022]
Abstract
BACKGROUND Huntington's disease is an autosomal dominant progressive neurodegenerative disease associated with dramatic expansion of a polyglutamine sequence in exon 1 of the huntingtin protein htt that leads to cytoplasmic, and even nuclear aggregation of fibrils. METHODS We have studied the in vitro fibril formation of mutant exon 1, and the shorter wild-type exon 1, with use of atomic force microscopy (AFM). RESULTS Large aggregates are formed spontaneously after cleavage of the glutathione-S-transferase fusion protein of the mutant exon 1 protein. The AFM data showed that, unlike fibrils assembled by such proteins as amyloid beta-peptide and alpha-synuclein, htt forms fibrils with extensive branched morphologic features. Branching can be observed even at earlier stages of the htt self-assembly, but the effect is much more pronounced at late stages of aggregation. We also found that fusing of htt with green fluorescent protein does not change the branched-type morphologic features of the aggregates. CONCLUSIONS On the basis of the results obtained, we propose a model for htt fibrillization that explains branched morphologic features of the aggregates.
Collapse
Affiliation(s)
- Paul R Dahlgren
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | | | | | | | | | | | | |
Collapse
|
94
|
Cornett J, Cao F, Wang CE, Ross CA, Bates GP, Li SH, Li XJ. Polyglutamine expansion of huntingtin impairs its nuclear export. Nat Genet 2005; 37:198-204. [PMID: 15654337 DOI: 10.1038/ng1503] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Accepted: 12/13/2004] [Indexed: 11/09/2022]
Abstract
Proteins with polyglutamine (polyQ) expansions accumulate in the nucleus and affect gene expression. The mechanism by which mutant huntingtin (htt) accumulates intranuclearly is not known; wild-type htt, a 350-kDa protein of unknown function, is normally found in the cytoplasm. N-terminal fragments of mutant htt, which contain a polyQ expansion (>37 glutamines), have no conserved nuclear localization sequences or nuclear export sequences but can accumulate in the nucleus and cause neurological problems in transgenic mice. Here we report that N-terminal htt shuttles between the cytoplasm and nucleus in a Ran GTPase-independent manner. Small N-terminal htt fragments interact with the nuclear pore protein translocated promoter region (Tpr), which is involved in nuclear export. PolyQ expansion and aggregation decrease this interaction and increase the nuclear accumulation of htt. Reducing the expression of Tpr by RNA interference or deletion of ten amino acids of N-terminal htt, which are essential for the interaction of htt with Tpr, increased the nuclear accumulation of htt. These results suggest that Tpr has a role in the nuclear export of N-terminal htt and that polyQ expansion reduces this nuclear export to cause the nuclear accumulation of htt.
Collapse
Affiliation(s)
- Jonathan Cornett
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
95
|
Björkqvist M, Fex M, Renström E, Wierup N, Petersén A, Gil J, Bacos K, Popovic N, Li JY, Sundler F, Brundin P, Mulder H. The R6/2 transgenic mouse model of Huntington's disease develops diabetes due to deficient beta-cell mass and exocytosis. Hum Mol Genet 2005; 14:565-74. [PMID: 15649949 DOI: 10.1093/hmg/ddi053] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diabetes frequently develops in Huntington's disease (HD) patients and in transgenic mouse models of HD such as the R6/2 mouse. The underlying mechanisms have not been clarified. Elucidating the pathogenesis of diabetes in HD would improve our understanding of the molecular mechanisms involved in HD neuropathology. With this aim, we examined our colony of R6/2 mice with respect to glucose homeostasis and islet function. At week 12, corresponding to end-stage HD, R6/2 mice were hyperglycemic and hypoinsulinemic and failed to release insulin in an intravenous glucose tolerance test. In vitro, basal and glucose-stimulated insulin secretion was markedly reduced. Islet nuclear huntingtin inclusions increased dramatically over time, predominantly in beta-cells. beta-cell mass failed to increase normally with age in R6/2 mice. Hence, at week 12, beta-cell mass and pancreatic insulin content in R6/2 mice were 35+/-5 and 16+/-3% of that in wild-type mice, respectively. The normally occurring replicating cells were largely absent in R6/2 islets, while no abnormal cell death could be detected. Single cell patch-clamp experiments revealed unaltered electrical activity in R6/2 beta-cells. However, exocytosis was virtually abolished in beta- but not in alpha-cells. The blunting of exocytosis could be attributed to a 96% reduction in the number of insulin-containing secretory vesicles. Thus, diabetes in R6/2 mice is caused by a combination of deficient beta-cell mass and disrupted exocytosis.
Collapse
|
96
|
van Roon-Mom WMC, Reid SJ, Faull RLM, Snell RG. TATA-binding protein in neurodegenerative disease. Neuroscience 2005; 133:863-72. [PMID: 15916858 DOI: 10.1016/j.neuroscience.2005.03.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 03/17/2005] [Accepted: 03/19/2005] [Indexed: 11/29/2022]
Abstract
TATA binding protein (TBP) is a general transcription factor that plays an important role in initiation of transcription. In recent years evidence has emerged implicating TPB in the molecular mechanism of a number of neurodegenerative diseases. Wild type TBP in humans contains a long polyglutamine stretch ranging in size from 29 to 42. It has been found associated with aggregated proteins in several of the polyglutamine disorders. Expansion in the CAA/CAG composite repeat beyond 42 has been shown to cause a cerebellar ataxia, SCA17. The involvement of such an important housekeeping protein in the disease mechanism suggests a major impact on the functioning of cells. The question remains, does TBP contribute to these diseases through a loss of normal function, likely to be catastrophic to a cell, or the gain of an aberrant function? This review deals with the function of TBP in transcription and cell function. The distribution of the polyglutamine coding allele lengths in TBP of the normal population and in SCA17 is reviewed and an outline is given on the reported cases of SCA17. The role of TBP in other polyglutamine disorders will be addressed as well as its possible role in other neurodegenerative diseases.
Collapse
Affiliation(s)
- W M C van Roon-Mom
- Division of Anatomy with Radiology, Faculty of Medicine and Health Sciences, University of Auckland, 85 Park Road, 1003 Auckland, New Zealand
| | | | | | | |
Collapse
|
97
|
Hermel E, Gafni J, Propp SS, Leavitt BR, Wellington CL, Young JE, Hackam AS, Logvinova AV, Peel AL, Chen SF, Hook V, Singaraja R, Krajewski S, Goldsmith PC, Ellerby HM, Hayden MR, Bredesen DE, Ellerby LM. Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington's disease. Cell Death Differ 2004; 11:424-38. [PMID: 14713958 DOI: 10.1038/sj.cdd.4401358] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant progressive neurodegenerative disorder resulting in selective neuronal loss and dysfunction in the striatum and cortex. The molecular pathways leading to the selectivity of neuronal cell death in HD are poorly understood. Proteolytic processing of full-length mutant huntingtin (Htt) and subsequent events may play an important role in the selective neuronal cell death found in this disease. Despite the identification of Htt as a substrate for caspases, it is not known which caspase(s) cleaves Htt in vivo or whether regional expression of caspases contribute to selective neuronal cells loss. Here, we evaluate whether specific caspases are involved in cell death induced by mutant Htt and if this correlates with our recent finding that Htt is cleaved in vivo at the caspase consensus site 552. We find that caspase-2 cleaves Htt selectively at amino acid 552. Further, Htt recruits caspase-2 into an apoptosome-like complex. Binding of caspase-2 to Htt is polyglutamine repeat-length dependent, and therefore may serve as a critical initiation step in HD cell death. This hypothesis is supported by the requirement of caspase-2 for the death of mouse primary striatal cells derived from HD transgenic mice expressing full-length Htt (YAC72). Expression of catalytically inactive (dominant-negative) forms of caspase-2, caspase-7, and to some extent caspase-6, reduced the cell death of YAC72 primary striatal cells, while the catalytically inactive forms of caspase-3, -8, and -9 did not. Histological analysis of post-mortem human brain tissue and YAC72 mice revealed activation of caspases and enhanced caspase-2 immunoreactivity in medium spiny neurons of the striatum and the cortical projection neurons when compared to controls. Further, upregulation of caspase-2 correlates directly with decreased levels of brain-derived neurotrophic factor in the cortex and striatum of 3-month YAC72 transgenic mice and therefore suggests that these changes are early events in HD pathogenesis. These data support the involvement of caspase-2 in the selective neuronal cell death associated with HD in the striatum and cortex.
Collapse
Affiliation(s)
- E Hermel
- The Buck Institute for Age Research, Novato, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Mazzola JL, Sirover MA. Subcellular analysis of aberrant protein structure in age-related neurodegenerative disorders. J Neurosci Methods 2004; 137:241-6. [PMID: 15262067 DOI: 10.1016/j.jneumeth.2004.02.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Revised: 02/25/2004] [Accepted: 02/25/2004] [Indexed: 11/17/2022]
Abstract
Subcellular interactions of neurodegenerative disease proteins may provide a basic molecular mechanism underlying neuronal disorders. Each protein may also exhibit activities related to normal cell structure and function. It may be necessary to develop methodologies to distinguish between normal and abnormal intracellular interactions of such proteins in human cells. The latter would result in distinct perturbations in cell function depending both on the specific protein or nucleic acid interactions as well as its subcellular localization. Individual neurodegenerative disorders may be characterized by distinct alterations in subcellular neuronal protein structure and function. We developed as a basic experimental paradigm a novel human cell system to identify and examine such abnormal neuronal protein structures. The basic rationale is that neurodegenerative protein interactions would result in the formation of intracellular high molecular weight (HMW) complexes in cells from afflicted individuals. Following cell fractionation these unique structures could be detected by gradient sedimentation coupled with immunoblot analysis. They would not be observed in age matched control normal human cells. We now report that this procedure has been successfully used to determine a unique subcellular alteration of beta-amyloid precursor protein (beta-APP) structure in Alzheimer's disease (AD) cells. The latter was not observed in normal cells. Similar structural alterations were observed for glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a protein known to bind to beta-APP in vitro. The utility of this model system to interrelate aberrant protein interactions of neurodegenerative disease proteins and their subcellular localization is considered.
Collapse
Affiliation(s)
- Jennifer L Mazzola
- Scientific Connexions, 105 Terry Drive, Suite 118, Newtown, PA 18940, USA
| | | |
Collapse
|
99
|
Rangone H, Humbert S, Saudou F. Huntington’s disease: how does huntingtin, an anti-apoptotic protein, become toxic? ACTA ACUST UNITED AC 2004; 52:338-42. [PMID: 15261377 DOI: 10.1016/j.patbio.2003.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2003] [Accepted: 06/27/2003] [Indexed: 11/25/2022]
Abstract
Huntington's disease belongs to a class of inherited neurological disorders that are caused by the presence of a polyglutamine expansion in apparently unrelated proteins. In Huntington's disease, expansion occurs in the huntingtin protein. Together with the characteristic formation of aggregates in the diseased state, several post-translational modifications affect huntingtin during the pathological process and lead to the dysfunction and eventual death of selective neurons in the brain of patients. These mechanisms are not completely described but could involve the gain of a new toxic function as well as the loss of the beneficial properties of huntingtin.
Collapse
Affiliation(s)
- H Rangone
- UMR 146 CNRS, Institut Curie, Bldg. 110, Centre Universitaire, 91405 Orsay, France
| | | | | |
Collapse
|
100
|
Schilling G, Savonenko AV, Klevytska A, Morton JL, Tucker SM, Poirier M, Gale A, Chan N, Gonzales V, Slunt HH, Coonfield ML, Jenkins NA, Copeland NG, Ross CA, Borchelt DR. Nuclear-targeting of mutant huntingtin fragments produces Huntington's disease-like phenotypes in transgenic mice. Hum Mol Genet 2004; 13:1599-610. [PMID: 15190011 DOI: 10.1093/hmg/ddh175] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Huntington's disease (HD) results from the expansion of a glutamine repeat near the N-terminus of huntingtin (htt). At post-mortem, neurons in the central nervous system of patients have been found to accumulate N-terminal fragments of mutant htt in nuclear and cytoplasmic inclusions. This pathology has been reproduced in transgenic mice expressing the first 171 amino acids of htt with 82 glutamines along with losses of motoric function, hypoactivity and abbreviated life-span. The relative contributions of nuclear versus cytoplasmic mutant htt to the pathogenesis of disease have not been clarified. To examine whether pathogenic processes in the nucleus disproportionately contribute to disease features in vivo, we fused a nuclear localization signal (NLS) derived from atrophin-1 to the N-terminus of an N171-82Q construct. Two lines of mice (lines 8A and 61) that were identified expressed NLS-N171-82Q at comparable levels and developed phenotypes identical to our previously described HD-N171-82Q mice. Western blot and immunohistochemical analyses revealed that NLS-N171-82Q fragments accumulate in nuclear, but not cytoplasmic, compartments. These data suggest that disruption of nuclear processes may account for many of the disease phenotypes displayed in the mouse models generated by expressing mutant N-terminal fragments of htt.
Collapse
Affiliation(s)
- Gabriele Schilling
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|