51
|
Kim SM, Sultana F, Korkmaz F, Lizneva D, Yuen T, Zaidi M. Independent Skeletal Actions of Pituitary Hormones. Endocrinol Metab (Seoul) 2022; 37:719-731. [PMID: 36168775 PMCID: PMC9633224 DOI: 10.3803/enm.2022.1573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 12/30/2022] Open
Abstract
Over the past years, pituitary hormones and their receptors have been shown to have non-traditional actions that allow them to bypass the hypothalamus-pituitary-effector glands axis. Bone cells-osteoblasts and osteoclasts-express receptors for growth hormone, follicle stimulating hormone (FSH), thyroid stimulating hormone (TSH), adrenocorticotrophic hormone (ACTH), prolactin, oxytocin, and vasopressin. Independent skeletal actions of pituitary hormones on bone have been studied using genetically modified mice with haploinsufficiency and by activating or inactivating the receptors pharmacologically, without altering systemic effector hormone levels. On another front, the discovery of a TSH variant (TSH-βv) in immune cells in the bone marrow and skeletal action of FSHβ through tumor necrosis factor α provides new insights underscoring the integrated physiology of bone-immune-endocrine axis. Here we discuss the interaction of each pituitary hormone with bone and the potential it holds in understanding bone physiology and as a therapeutic target.
Collapse
Affiliation(s)
- Se-Min Kim
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Farhath Sultana
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Funda Korkmaz
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daria Lizneva
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tony Yuen
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mone Zaidi
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
52
|
Moeller JS, Bever SR, Finn SL, Phumsatitpong C, Browne MF, Kriegsfeld LJ. Circadian Regulation of Hormonal Timing and the Pathophysiology of Circadian Dysregulation. Compr Physiol 2022; 12:4185-4214. [PMID: 36073751 DOI: 10.1002/cphy.c220018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Circadian rhythms are endogenously generated, daily patterns of behavior and physiology that are essential for optimal health and disease prevention. Disruptions to circadian timing are associated with a host of maladies, including metabolic disease and obesity, diabetes, heart disease, cancer, and mental health disturbances. The circadian timing system is hierarchically organized, with a master circadian clock located in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus and subordinate clocks throughout the CNS and periphery. The SCN receives light information via a direct retinal pathway, synchronizing the master clock to environmental time. At the cellular level, circadian rhythms are ubiquitous, with rhythms generated by interlocking, autoregulatory transcription-translation feedback loops. At the level of the SCN, tight cellular coupling maintains rhythms even in the absence of environmental input. The SCN, in turn, communicates timing information via the autonomic nervous system and hormonal signaling. This signaling couples individual cellular oscillators at the tissue level in extra-SCN brain loci and the periphery and synchronizes subordinate clocks to external time. In the modern world, circadian disruption is widespread due to limited exposure to sunlight during the day, exposure to artificial light at night, and widespread use of light-emitting electronic devices, likely contributing to an increase in the prevalence, and the progression, of a host of disease states. The present overview focuses on the circadian control of endocrine secretions, the significance of rhythms within key endocrine axes for typical, homeostatic functioning, and implications for health and disease when dysregulated. © 2022 American Physiological Society. Compr Physiol 12: 1-30, 2022.
Collapse
Affiliation(s)
- Jacob S Moeller
- Graduate Group in Endocrinology, University of California, Berkeley, California, USA
| | - Savannah R Bever
- Department of Psychology, University of California, Berkeley, California, USA
| | - Samantha L Finn
- Department of Psychology, University of California, Berkeley, California, USA
| | | | - Madison F Browne
- Department of Psychology, University of California, Berkeley, California, USA
| | - Lance J Kriegsfeld
- Graduate Group in Endocrinology, University of California, Berkeley, California, USA.,Department of Psychology, University of California, Berkeley, California, USA.,Department of Integrative Biology, University of California, Berkeley, California, USA.,The Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| |
Collapse
|
53
|
Gnanadesikan GE, Hammock EAD, Tecot SR, Lewis RJ, Hart R, Carter CS, MacLean EL. What are oxytocin assays measuring? Epitope mapping, metabolites, and comparisons of wildtype & knockout mouse urine. Psychoneuroendocrinology 2022; 143:105827. [PMID: 35714438 PMCID: PMC9807061 DOI: 10.1016/j.psyneuen.2022.105827] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 01/04/2023]
Abstract
Oxytocin has become a popular analyte in behavioral endocrinology in recent years, due in part to its roles in social behavior, stress physiology, and cognition. Urine samples have the advantage of being non-invasive and minimally disruptive to collect, allowing for oxytocin measurements even in some wild populations. However, methods for urinary oxytocin immunoassay have not been sufficiently optimized and rigorously assessed for their potential limitations. Using samples from oxytocin knockout (KO) and wildtype (WT) mice, we find evidence of considerable interference in unextracted urine samples, with similar distributions of measured oxytocin in both genotypes. Importantly, although this interference can be reduced by a reversed-phase solid-phase extraction (SPE), this common approach is not sufficient for eliminating false-positive signal on three immunoassay kits. To better understand the source of the observed interference, we conducted epitope mapping of the Arbor Assays antibody and assessed its cross-reactivity with known, biologically active fragments of oxytocin. We found considerable cross-reactivity (0.5-52% by-molarity) for three fragments of oxytocin that share the core epitope, with more cross-reactivity for longer fragments. Given the presence of some cross-reactivity for even the tripeptide MIF-1, it is likely that many small protein metabolites might be sufficiently similar to the epitope that at high concentrations they interfere with immunoassays. We present a new mixed-mode cation-exchange SPE method that minimizes interference-with knockout samples measuring below the assay's limit of detection-while effectively retaining oxytocin from the urine of wildtype mice. This method demonstrates good parallelism and spike recovery across multiple species (mice, dogs, sifakas, humans). Our results suggest that immunoassays of urine samples may be particularly susceptible to interference, even when using common extraction protocols, but that this interference can be successfully managed using a novel mixed-mode cation exchange extraction. These findings imply that previous conclusions based on urinary oxytocin measurements-especially those involving unextracted samples-may need to be reassessed.
Collapse
Affiliation(s)
- Gitanjali E Gnanadesikan
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Cognitive Science Program, University of Arizona, Tucson, AZ 85721, USA.
| | - Elizabeth A D Hammock
- Department of Psychology and Program in Neuroscience, The Florida State University, Tallahassee, FL 32306, USA
| | - Stacey R Tecot
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Laboratory for the Evolutionary Endocrinology of Primates, University of Arizona, Tucson, AZ 85721, USA
| | - Rebecca J Lewis
- Department of Anthropology, University of Texas at Austin, Austin, TX 78712, USA
| | - Russ Hart
- Arbor Assays, Ann Arbor, MI 48108, USA; 21 Grams Assays Inc, Chelsea, MI 48118, USA
| | - C Sue Carter
- Kinsey Institute, Indiana University, Bloomington, IN 47405, USA; Department of Psychology, University of Virginia, Charlottesville, VA 22903, USA
| | - Evan L MacLean
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Cognitive Science Program, University of Arizona, Tucson, AZ 85721, USA; Psychology Department, University of Arizona, Tucson, AZ 85721, USA; College of Veterinary Medicine, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
54
|
Clarke L, Zyga O, Pineo-Cavanaugh PL, Jeng M, Fischbein NJ, Partap S, Katznelson L, Parker KJ. Socio-behavioral dysfunction in disorders of hypothalamic-pituitary involvement: The potential role of disease-induced oxytocin and vasopressin signaling deficits. Neurosci Biobehav Rev 2022; 140:104770. [PMID: 35803395 PMCID: PMC10999113 DOI: 10.1016/j.neubiorev.2022.104770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/16/2022] [Accepted: 07/02/2022] [Indexed: 10/17/2022]
Abstract
Disorders involving hypothalamic and pituitary (HPIT) structures-including craniopharyngioma, Langerhans cell histiocytosis, and intracranial germ cell tumors-can disrupt brain and endocrine function. An area of emerging clinical concern in patients with these disorders is the co-occurring socio-behavioral dysfunction that persists after standard hormone replacement therapy. Although the two neuropeptides most implicated in mammalian social functioning (oxytocin and arginine vasopressin) are of hypothalamic origin, little is known about how disease-induced damage to HPIT structures may disrupt neuropeptide signaling and, in turn, impact patients' socio-behavioral functioning. Here we provide a clinical primer on disorders of HPIT involvement and a review of neuropeptide signaling and socio-behavioral functioning in relevant animal models and patient populations. This collective evidence suggests that neuropeptide signaling disruptions contribute to socio-behavioral deficits experienced by patients with disorders of HPIT involvement. A better understanding of the biological underpinnings of patients' socio-behavioral symptoms is now needed to enable the development of the first targeted pharmacological strategies by which to manage patients' socio-behavioral dysfunction.
Collapse
Affiliation(s)
- Lauren Clarke
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Road, MSLS P-104, Stanford, CA 94305, USA
| | - Olena Zyga
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Road, MSLS P-104, Stanford, CA 94305, USA
| | - Psalm L Pineo-Cavanaugh
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Road, MSLS P-104, Stanford, CA 94305, USA
| | - Michael Jeng
- Department of Pediatrics (Hematology/Oncology Division), Stanford University, 1000 Welch Road, Suite 300, Palo Alto, CA 94304, USA
| | - Nancy J Fischbein
- Department of Radiology, Stanford University, 450 Quarry Rd, Suite 5659, Palo Alto, CA 94304, USA
| | - Sonia Partap
- Department of Neurology and Neurological Sciences (Child Neurology Division), Stanford University, 750 Welch Road, Suite 317, Palo Alto, CA 94304, USA
| | - Laurence Katznelson
- Departments of Neurosurgery and Medicine (Endocrinology Division), Stanford University, 875 Blake Wilbur Drive, Stanford, CA 94305, USA
| | - Karen J Parker
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Road, MSLS P-104, Stanford, CA 94305, USA; Department of Comparative Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA.
| |
Collapse
|
55
|
Paletta P, Bass N, Kavaliers M, Choleris E. The role of oxytocin in shaping complex social behaviours: possible interactions with other neuromodulators. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210058. [PMID: 35858107 PMCID: PMC9272141 DOI: 10.1098/rstb.2021.0058] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/08/2021] [Indexed: 08/31/2023] Open
Abstract
This review explores the role of oxytocin in the mediation of select social behaviours, with particular emphasis on female rodents. These behaviours include social recognition, social learning, pathogen detection and avoidance, and maternal care. Specific brain regions where oxytocin has been shown to directly mediate various aspects of these social behaviours, as well as other proposed regions, are discussed. Possible interactions between oxytocin and other regulatory systems, in particular that of oestrogens and dopamine, in the modulation of social behaviour are considered. Similarities and differences between males and females are highlighted. This article is part of the theme issue 'Interplays between oxytocin and other neuromodulators in shaping complex social behaviours'.
Collapse
Affiliation(s)
- Pietro Paletta
- Department of Psychology and Neuroscience Program, University of Guelph, MacKinnon Building Room 4020, 50 Stone Road E., Guelph, ON, Canada N1G 2W1
| | - Noah Bass
- Department of Psychology and Neuroscience Program, University of Guelph, MacKinnon Building Room 4020, 50 Stone Road E., Guelph, ON, Canada N1G 2W1
| | - Martin Kavaliers
- Department of Psychology and Neuroscience Program, University of Guelph, MacKinnon Building Room 4020, 50 Stone Road E., Guelph, ON, Canada N1G 2W1
- Department of Psychology, Western University, London, Ontario, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, MacKinnon Building Room 4020, 50 Stone Road E., Guelph, ON, Canada N1G 2W1
| |
Collapse
|
56
|
Wei D, Tsheringla S, McPartland JC, Allsop AZASA. Combinatorial approaches for treating neuropsychiatric social impairment. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210051. [PMID: 35858103 PMCID: PMC9274330 DOI: 10.1098/rstb.2021.0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 05/13/2022] [Indexed: 01/30/2023] Open
Abstract
Social behaviour is an essential component of human life and deficits in social function are seen across multiple psychiatric conditions with high morbidity. However, there are currently no FDA-approved treatments for social dysfunction. Since social cognition and behaviour rely on multiple signalling processes acting in concert across various neural networks, treatments aimed at social function may inherently require a combinatorial approach. Here, we describe the social neurobiology of the oxytocin and endocannabinoid signalling systems as well as translational evidence for their use in treating symptoms in the social domain. We leverage this systems neurobiology to propose a network-based framework that involves pharmacology, psychotherapy, non-invasive brain stimulation and social skills training to combinatorially target trans-diagnostic social impairment. Lastly, we discuss the combined use of oxytocin and endocannabinoids within our proposed framework as an illustrative strategy to treat specific aspects of social function. Using this framework provides a roadmap for actionable treatment strategies for neuropsychiatric social impairment. This article is part of the theme issue 'Interplays between oxytocin and other neuromodulators in shaping complex social behaviours'.
Collapse
Affiliation(s)
- Don Wei
- Department of Psychiatry, UCLA, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
57
|
Central Kisspeptin Does Not Affect ERK1/2 or p38 Phosphorylation in Oxytocin Neurons of Late-Pregnant Rats. Int J Mol Sci 2022; 23:ijms23147729. [PMID: 35887077 PMCID: PMC9319833 DOI: 10.3390/ijms23147729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Oxytocin is secreted by hypothalamic supraoptic nucleus (SON) and paraventricular nucleus (PVN) oxytocin neurons to induce uterine contractions during parturition. Increased activation of oxytocin neurons at parturition involves a network of afferent inputs that increase oxytocin neuron excitability. Kisspeptin fibre density increases around oxytocin neurons during pregnancy, and central kisspeptin administration excites oxytocin neurons only in late pregnancy. Kisspeptin signals via extracellular regulated kinase 1/2 (ERK1/2) and p38. Therefore, to determine whether kisspeptin excites oxytocin neurons via ERK1/2-p38 signalling in late-pregnant rats, we performed immunohistochemistry for phosphorylated ERK1/2 (pERK1/2) and phosphorylated p38 (p-p38) in oxytocin neurons of non-pregnant and late-pregnant rats. Intracerebroventricular (ICV) kisspeptin administration (2 µg) did not affect pERK1/2 or p-p38 expression in SON and PVN oxytocin neurons of non-pregnant or late-pregnant rats. Furthermore, ICV kisspeptin did not affect pERK1/2 or p-p38 expression in brain areas with major projections to the SON and PVN: the nucleus tractus solitarius, rostral ventrolateral medulla, locus coeruleus, dorsal raphe nucleus, organum vasculosum of the lamina terminalis, median preoptic nucleus, subfornical organ, anteroventral periventricular nucleus, periventricular nucleus and arcuate nucleus. Hence, kisspeptin-induced excitation of oxytocin neurons in late pregnancy does not appear to involve ERK1/2 or p38 activation in oxytocin neurons or their afferent inputs.
Collapse
|
58
|
Lao M, Zhang X, Yang H, Bai X, Liang T. RCAN1-mediated calcineurin inhibition as a target for cancer therapy. Mol Med 2022; 28:69. [PMID: 35717152 PMCID: PMC9206313 DOI: 10.1186/s10020-022-00492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
Cancer is the leading cause of mortality worldwide. Regulator of calcineurin 1 (RCAN1), as a patent endogenous inhibitor of calcineurin, plays crucial roles in the pathogenesis of cancers. Except for hypopharyngeal and laryngopharynx cancer, high expression of RCAN1 inhibits tumor progression. Molecular antitumor functions of RCAN1 are largely dependent on calcineurin. In this review, we highlight current research on RCAN1 characteristics, and the interaction between RCAN1 and calcineurin. Moreover, the dysregulation of RCAN1 in various cancers is reviewed, and the potential of targeting RCAN1 as a new therapeutic approach is discussed.
Collapse
Affiliation(s)
- Mengyi Lao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China
| | - Hanshen Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
59
|
Hering A, Jieu B, Jones A, Muttenthaler M. Approaches to Improve the Quantitation of Oxytocin in Human Serum by Mass Spectrometry. Front Chem 2022; 10:889154. [PMID: 35755255 PMCID: PMC9218718 DOI: 10.3389/fchem.2022.889154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/03/2022] [Indexed: 11/26/2022] Open
Abstract
The neuropeptide oxytocin (OT) regulates several peripheral and central functions and is a molecule of interest in psychiatric diseases such as autism spectrum disorder, schizophrenia, anxiety and depression. The study of OT in human serum samples is however hampered by inconsistent sample preparation and analysis as well as low endogenous blood concentration (1-10 pM). This results in varying reports on OT's blood levels and interpretation of OT's role in different (patho)physiological states. Quantitative mass spectrometry (MS) is a highly promising technology to address this problem but still requires large sample volumes to achieve adequate sensitivity and reliability for the quantitation of compounds at low concentrations. We therefore systematically evaluated sample preparation methods for MS to achieve a reliable sample preparation protocol with good peptide recovery, minimal matrix effects and good overall method efficiency in line with FDA guidelines for bioanalytic method development and validation. Additionally, we investigated a strategy to improve the ionization efficiency of OT by adding charged and/or hydrophobic moieties to OT to improve the lower limit of quantitation. Optimized sample preparation in combination with OT modification with a quaternary pyridinium ion improved the sensitivity of OT by ∼40-fold on a tandem triple quadrupole mass spectrometer (API4000 QTRAP), resulting in a lower limit of quantitation of 5 pM in water (linear range 5 pM - 1 mM) and 2 nM in human serum (linear range 2 nM - 1 mM) compared to 200 pM in water and 86 nM in serum with unmodified OT. This approach and protocol provide a solid foundation towards method development for OT quantitation using MS, which should be of high value for fundamental research as well as clinical monitoring of OT upon drug treatments.
Collapse
Affiliation(s)
- Anke Hering
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Beverly Jieu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Alun Jones
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Markus Muttenthaler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
60
|
Yomogita H, Miyasaka N, Kanai-Azuma M. A Review of Delayed Delivery Models and the Analysis Method in Mice. J Dev Biol 2022; 10:jdb10020020. [PMID: 35645296 PMCID: PMC9149829 DOI: 10.3390/jdb10020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
In humans, the incidence of post-term delivery is 1–10%. Post-term delivery significantly increases the risk of cesarean section or neonatal intensive care unit (NICU) admission. Despite these serious challenges, the cause of prolonged delivery remains unclear. Several common factors of delayed parturition between mice and humans will help elucidate the mechanisms of pregnancy and labor. At present, gene modification techniques are rapidly developing; however, there are limited reviews available describing the mouse phenotype analysis as a human model for post-term delivery. We classified the delayed-labor mice into nine types according to their causes. In mice, progesterone (P₄) maintains pregnancy, and the most common cause of delayed labor is luteolysis failure. Other contributing factors include humoral molecules in the fetus/placenta, uterine contractile dysfunction, poor cervical ripening, and delayed implantation. The etiology of delayed parturition is overexpression of the pregnancy maintenance mechanism or suppression of the labor induction mechanism. Here, we describe how to investigated their causes using mouse genetic analysis. In addition, we generated a list to identify the causes. Our review will help understand the findings obtained using the mouse model, providing a foundation for conducting more systematic research on delayed delivery.
Collapse
Affiliation(s)
- Hiroshi Yomogita
- Department of Perinatal and Women’s Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (H.Y.); (N.M.)
- Center for Experimental Animals, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Naoyuki Miyasaka
- Department of Perinatal and Women’s Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (H.Y.); (N.M.)
| | - Masami Kanai-Azuma
- Center for Experimental Animals, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
- Correspondence: ; Tel.: +813-3813-6111
| |
Collapse
|
61
|
Inada K, Hagihara M, Tsujimoto K, Abe T, Konno A, Hirai H, Kiyonari H, Miyamichi K. Plasticity of neural connections underlying oxytocin-mediated parental behaviors of male mice. Neuron 2022; 110:2009-2023.e5. [PMID: 35443152 DOI: 10.1016/j.neuron.2022.03.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/04/2022] [Accepted: 03/28/2022] [Indexed: 11/15/2022]
Abstract
The adult brain can flexibly adapt behaviors to specific life-stage demands. For example, while sexually naive male mice are aggressive to the conspecific young, they start to provide caregiving to infants around the time when their own young are expected. How such behavioral plasticity is implemented at the level of neural connections remains poorly understood. Here, using viral-genetic approaches, we establish hypothalamic oxytocin neurons as the key regulators of the parental caregiving behaviors of male mice. We then use rabies-virus-mediated unbiased screening to identify excitatory neural connections originating from the lateral hypothalamus to the oxytocin neurons to be drastically strengthened when male mice become fathers. These connections are functionally relevant, as their activation suppresses pup-directed aggression in virgin males. These results demonstrate the life-stage associated, long-distance, and cell-type-specific plasticity of neural connections in the hypothalamus, the brain region that is classically assumed to be hard-wired.
Collapse
Affiliation(s)
- Kengo Inada
- Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.
| | - Mitsue Hagihara
- Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Kazuko Tsujimoto
- Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Ayumu Konno
- Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan; Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma 371-8511, Japan
| | - Hirokazu Hirai
- Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan; Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma 371-8511, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Kazunari Miyamichi
- Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
62
|
Sanson A, Bosch OJ. Dysfunctions of brain oxytocin signaling: Implications for poor mothering. Neuropharmacology 2022; 211:109049. [PMID: 35390436 DOI: 10.1016/j.neuropharm.2022.109049] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/03/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
Good mothering has profound impact on both the mother's and the young's well-being. Consequently, experiencing inadequate maternal care - or even neglect - in the first stages of life is a major risk factor for the development of psychiatric disorders, and even for poor parenting towards the future offspring. Thus, understanding the neurobiological basis of maternal neglect becomes crucial. Along with other neurotransmitters and neuropeptides, oxytocin (OXT) has long been known as one of the main modulators of maternal behavior. In rodents, disruptions of central OXT transmission have been associated with poor maternal responses, like impaired onset of nursing behaviors, and reduced care and defense of the pups. Importantly, such behavioral and molecular deficits can be transmitted through generations, creating a vicious circle of low-quality maternal behavior. Similarly, evidence from human studies shows that OXT signaling is defective in conditions of inadequate mothering and child neglect. On those premises, this review aims at providing a comprehensive overview of animal and human studies linking perturbed OXT transmission to poor maternal behavior. Considering the important fallouts of inadequate maternal responses, we believe that unraveling the alterations in OXT transmission might provide useful insights for a better understanding of maternal neglect and, ultimately, for future intervention approaches.
Collapse
Affiliation(s)
- Alice Sanson
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| | - Oliver J Bosch
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
63
|
Kitano K, Yamagishi A, Horie K, Nishimori K, Sato N. Helping behavior in prairie voles: A model of empathy and the importance of oxytocin. iScience 2022; 25:103991. [PMID: 35310938 PMCID: PMC8931361 DOI: 10.1016/j.isci.2022.103991] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/15/2022] [Accepted: 02/23/2022] [Indexed: 11/29/2022] Open
Abstract
Several studies suggest that rodents show empathic responses and helping behavior toward others. We examined whether prairie voles would help conspecifics who were soaked in water by opening a door to a safe area. Door-opening latency decreased as task sessions progressed. Female and male voles stayed close to the soaked voles' side at equal rates and opened the door with similar latencies. When the conspecific was not soaked in water, the door-opening latency did not decrease. This suggests that the distress of the conspecific is necessary for learning to open the door and that the door-opening performed by prairie voles corresponds to helping behavior. Additionally, we examined the helping behavior in prairie voles in which oxytocin receptors were genetically knocked out. Oxytocin receptor knockout voles demonstrated less learning of the door-opening behavior and less interest in soaked conspecifics. This suggests that oxytocin is important for the emergence of helping behavior. Prairie voles demonstrated helping behavior toward a cagemate in distress There was no difference in helping behavior depending on the helper’s sex Learning of the helping behavior was prevented when cagemates were not in distress Oxytocin receptor knockout prairie voles demonstrated less helping behavior
Collapse
Affiliation(s)
- Kota Kitano
- Department of Psychological Sciences, Kwansei Gakuin University, 1-1-155, Uegahara, Nishinomiya, Hyogo 662-8501, Japan
| | - Atsuhito Yamagishi
- Department of Psychological Sciences, Kwansei Gakuin University, 1-1-155, Uegahara, Nishinomiya, Hyogo 662-8501, Japan
| | - Kengo Horie
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA
| | - Katsuhiko Nishimori
- Department of Obesity and Inflammation Research, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Nobuya Sato
- Department of Psychological Sciences, Kwansei Gakuin University, 1-1-155, Uegahara, Nishinomiya, Hyogo 662-8501, Japan
- Corresponding author
| |
Collapse
|
64
|
Species differences in the effect of oxytocin on maternal behavior: A model incorporating the potential for allomaternal contributions. Front Neuroendocrinol 2022; 65:100996. [PMID: 35429546 DOI: 10.1016/j.yfrne.2022.100996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022]
Abstract
Oxytocin has historically been linked to processes involved with maternal behavior. However, the relative importance of oxytocin for maternal behavior widely varies among mammalian species, from indispensable to apparently nonessential. This review proposes a new model in which the relative importance of oxytocin for mothering across species is explained by an evolutionary pressure which we term "allomaternal potential", or the degree to which other conspecifics are capable and likely to assist with caregiving. It is notable that in animals where allomaternal potential is high (i.e., many quality helpers are available), oxytocin is decoupled from mothering. However, in animals where allomaternal potential is low (i.e., conspecifics refuse to, or do not provide, quality help), oxytocin is crucial for mothering. We posit that this relationship is a form of kin selection, whereby oxytocin is a signal that leads mothers to preferentially dispense resources to their own young when quality helpers are unlikely.
Collapse
|
65
|
Matsuo K, Shinoda Y, Abolhassani N, Nakabeppu Y, Fukunaga K. Transcriptome Analysis in Hippocampus of Rats Prenatally Exposed to Valproic Acid and Effects of Intranasal Treatment of Oxytocin. Front Psychiatry 2022; 13:859198. [PMID: 35432011 PMCID: PMC9005872 DOI: 10.3389/fpsyt.2022.859198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/04/2022] [Indexed: 11/19/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous disorder characterized by repetitive behaviors and social impairments, often accompanied by learning disabilities. It has been documented that the neuropeptide oxytocin (OXT) ameliorates core symptoms in patients with ASD. We recently reported that chronic administration of intranasal OXT reversed social and learning impairments in prenatally valproic acid (VPA)-exposed rats. However, the underlying molecular mechanisms remain unclear. Here, we explored molecular alterations in the hippocampus of rats and the effects of chronic administration of intranasal OXT (12 μg/kg/d). Microarray analyses revealed that prenatal VPA exposure altered gene expression, a part of which is suggested as a candidate in ASD and is involved in key features including memory, developmental processes, and epilepsy. OXT partly improved the expression of these genes, which were predicted to interact with those involved in social behaviors and hippocampal-dependent memory. Collectively, the present study documented molecular profiling in the hippocampus related to ASD and improvement by chronic treatment with OXT.
Collapse
Affiliation(s)
- Kazuya Matsuo
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasuharu Shinoda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Nona Abolhassani
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
66
|
Pennington Kathleen A, Oestreich Arin K, Kylie H, Fogliatti Candace M, Celeste L, Lydon John P, Schulz Laura C. Conditional knockout of leptin receptor in the female reproductive tract reduces fertility due to parturition defects in mice. Biol Reprod 2022; 107:546-556. [PMID: 35349646 DOI: 10.1093/biolre/ioac062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/23/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Leptin is required for fertility, including initiation of estrous cycles. It is therefore challenging to assess the role of leptin signaling during pregnancy. While neuron-specific transgene approaches suggest that leptin signaling in the central nervous system is most important, experiments with pharmacologic inhibition of leptin in the uterus or global replacement of leptin during pregnancy suggest leptin signaling in the reproductive tract may be required. Here, conditional leptin receptor knockout (Lepr cKO) with a progesterone receptor-driven Cre recombinase was used to examine the importance of leptin signaling in pregnancy. Lepr cKO mice have almost no leptin receptor in uterus or cervix, and slightly reduced leptin receptor levels in corpus luteum. Estrous cycles and progesterone concentrations were not affected by Lepr cKO. Numbers of viable embryos did not differ between primiparous control and Lepr cKO dams on days 6.5 and 17.5 of pregnancy, despite a slight reduction in the ratio of embryos to corpora lutea, showing that uterine leptin receptor signaling is not required for embryo implantation. Placentas of Lepr cKO dams had normal weight and structure. However, over four parities, Lepr cKO mice produced 22% fewer live pups than controls, and took more time from pairing to delivery by their fourth parity. Abnormal birth outcomes of either dystocia or dead pups occurred in 33% of Lepr cKO deliveries but zero control deliveries, and the average time to deliver each pup after crouching was significantly increased. Thus, leptin receptor signaling in the reproductive tract is required for normal labor and delivery. Summary sentence. Mice lacking leptin receptor in the reproductive tract produce fewer live pups and have more adverse labor outcomes than controls, but normal numbers of embryos near term, showing that leptin receptor signaling is required for normal parturition.
Collapse
Affiliation(s)
- A Pennington Kathleen
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO United States.,Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX United States
| | - K Oestreich Arin
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO United States
| | - Hohensee Kylie
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO United States
| | - M Fogliatti Candace
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO United States
| | - Lightner Celeste
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO United States
| | - P Lydon John
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX United States
| | - C Schulz Laura
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO United States
| |
Collapse
|
67
|
Carter CS. Oxytocin and love: Myths, metaphors and mysteries. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2022; 9:100107. [PMID: 35755926 PMCID: PMC9216351 DOI: 10.1016/j.cpnec.2021.100107] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
Oxytocin is a peptide molecule with a multitude of physiological and behavioral functions. Based on its association with reproduction - including social bonding, sexual behavior, birth and maternal behavior - oxytocin also has been called "the love hormone." This essay specifically examines association and parallels between oxytocin and love. However, many myths and gaps in knowledge remain concerning both. A few of these are described here and we hypothesize that the potential benefits of both love and oxytocin may be better understood in light of interactions with more ancient systems, including specifically vasopressin and the immune system. Oxytocin is anti-inflammatory and is associated with recently evolved, social solutions to a variety of challenges necessary for mammalian survival and reproduction. The shared functions of oxytocin and love have profound implications for health and longevity, including the prevention and treatment of excess inflammation and related disorders, especially those occurring in early life and during periods of chronic threat or disease.
Collapse
Affiliation(s)
- C. Sue Carter
- Kinsey Institute, Indiana University, Bloomington, USA
- Department of Psychology, University of Virginia, Charlottesville, USA
| |
Collapse
|
68
|
Abstract
Oxytocin and oxytocin receptors are synthesized in the periphery where paracrine/autocrine actions have been described alongside endocrine actions effected by central release of oxytocin from the posterior pituitary. In the female reproductive system, classical actions of uterine contraction and milk ejection from mammary glands are accompanied by actions in the ovaries where roles in steroidogenesis, follicle recruitment and ovulation have been described. Steroidogenesis, contractile activity, and gamete health are similarly affected by oxytocin in the male reproductive tract. In the cardiovascular system, a local oxytocinergic system appears to play an important cardio-protective role. This role is likely associated with emerging evidence that peripheral oxytocin is an important hormone in the endocrinology of glucose homeostasis due to its actions in adipose, the pancreas, and the largely ignored oxytocinergic systems of the adrenal glands and liver. Gene polymorphisms are shown to be associated with a number of reported traits, not least factors associated with metabolic syndrome.
Collapse
Affiliation(s)
- Stephen J Assinder
- Discipline of Physiology, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
69
|
Oxytocin Facilitates Allomaternal Behavior under Stress in Laboratory Mice. eNeuro 2022; 9:ENEURO.0405-21.2022. [PMID: 35017259 PMCID: PMC8868028 DOI: 10.1523/eneuro.0405-21.2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/06/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Oxytocin (Oxt) controls reproductive physiology and various kinds of social behaviors, but the exact contribution of Oxt to different components of parental care still needs to be determined. Here, we illustrate the neuroanatomical relations of the parental nurturing-induced neuronal activation with magnocellular Oxt neurons and fibers in the medial preoptic area (MPOA), the brain region critical for parental and alloparental behaviors. We used genetically-targeted mouse lines for Oxt, Oxt receptor (Oxtr), vasopressin receptor 1a (Avpr1a), vasopressin receptor 1b (Avpr1b), and thyrotropin-releasing hormone (Trh) to systematically examine the role of Oxt-related signaling in pup-directed behaviors. The Oxtr-Avpr1a-Avpr1b triple knock-out (TKO), and Oxt-Trh-Avpr1a-Avpr1b quadruple KO (QKO) mice were grossly healthy and fertile, except for their complete deficiency in milk ejection and modest deficiency in parturition secondary to maternal loss of the Oxt or Oxtr gene. In our minimal stress conditions, pup-directed behaviors in TKO and QKO mothers and fathers, virgin females and males were essentially indistinguishable from those of their littermates with other genotypes. However, Oxtr KO virgin females did show decreased pup retrieval in the pup-exposure assay performed right after restraint stress. This stress vulnerability in the Oxtr KO was abolished by the additional Avpr1b KO. The general stress sensitivity, as measured by plasma cortisol elevation after restraint stress or by the behavioral performance in the open field (OF) and elevated plus maze (EPM), were not altered in the Oxtr KO but were reduced in the Avpr1b KO females, indicating that the balance of neurohypophysial hormones affects the outcome of pup-directed behaviors.
Collapse
|
70
|
Leng G, Leng RI. Oxytocin: A citation network analysis of 10 000 papers. J Neuroendocrinol 2021; 33:e13014. [PMID: 34328668 DOI: 10.1111/jne.13014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/25/2021] [Accepted: 07/10/2021] [Indexed: 11/29/2022]
Abstract
Our understanding of the oxytocin system has been built over the last 70 years by the work of hundreds of scientists, reported in thousands of papers. Here, we construct a map to that literature, using citation network analysis in conjunction with bibliometrics. The map identifies ten major 'clusters' of papers on oxytocin that differ in their particular research focus and that densely cite papers from the same cluster. We identify highly cited papers within each cluster and in each decade, not because citations are a good indicator of quality, but as a guide to recognising what questions were of wide interest at particular times. The clusters differ in their temporal profiles and bibliometric features; here, we attempt to understand the origins of these differences.
Collapse
Affiliation(s)
- Gareth Leng
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Rhodri I Leng
- Department of Science, Technology and Innovation Studies, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
71
|
Perkinson MR, Kim JS, Iremonger KJ, Brown CH. Visualising oxytocin neurone activity in vivo: The key to unlocking central regulation of parturition and lactation. J Neuroendocrinol 2021; 33:e13012. [PMID: 34289195 DOI: 10.1111/jne.13012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 11/26/2022]
Abstract
During parturition and lactation, oxytocin neurones in the supraoptic and paraventricular nuclei fire high-frequency bursts of action potentials that are coordinated across the entire population. Each burst generates a large pulse of oxytocin release into the circulation to induce uterine contraction for parturition and mammary duct contraction for milk ejection. Bursts are stimulated by cervical stretch during parturition and by suckling during lactation. However, the mechanisms by which these stimuli are translated into episodic bursts are poorly understood, as are the mechanisms that coordinate bursts across the oxytocin neurone population. An elegant series of experiments conducted in the 1980s and 1990s used serial paired recordings to show that oxytocin neurones do not act as a syncytium during bursts; rather, they start each burst within a few hundred milliseconds of each other but with no distinct "leaders" or "followers". In addition to afferent noradrenergic inputs that relay the systemic stimuli to oxytocin neurones, bursts depend on somato-dendritic oxytocin release within the hypothalamus. Hence, bursts are considered to be an emergent property of oxytocin neurones that is bootstrapped by appropriate afferent stimulation. Although much progress was made using traditional electrophysiological recordings in head-fixed anaesthetised animals, research has effectively stalled in the last few decades. However, the emergence of new technologies to monitor neuronal activity in freely-behaving animals has reinvigorated efforts to understand the biology underpinning burst firing in oxytocin neurones. Here, we report the use of fibre photometry to monitor the dynamics of milk ejection bursts in the oxytocin neurone population of freely-behaving mice. This approach will shed light on the neural mechanisms that control the oxytocin bursts underpinning parturition and lactation.
Collapse
Affiliation(s)
- Michael R Perkinson
- Department of Physiology, Brain Health Research Centre, Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| | - Joon S Kim
- Department of Physiology, Brain Health Research Centre, Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| | - Karl J Iremonger
- Department of Physiology, Brain Health Research Centre, Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| | - Colin H Brown
- Department of Physiology, Brain Health Research Centre, Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
72
|
Gárriz A, Aubry S, Wattiaux Q, Bair J, Mariano M, Hatzipetrou G, Bowman M, Morokuma J, Ortiz G, Hamrah P, Dartt DA, Zoukhri D. Role of the Phospholipase C Pathway and Calcium Mobilization in Oxytocin-Induced Contraction of Lacrimal Gland Myoepithelial Cells. Invest Ophthalmol Vis Sci 2021; 62:25. [PMID: 34812841 PMCID: PMC8626846 DOI: 10.1167/iovs.62.14.25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose We reported that oxytocin (OXT), added to freshly prepared lacrimal gland lobules, induced myoepithelial cell (MEC) contraction. In other systems, OXT activates phospholipase C (PLC) generating Inositol 1,4,5-trisphosphate (IP3) which increases intracellular calcium concentration ([Ca2+]i) causing contraction. The aim of the current study was to investigate the role of this pathway in OXT-induced contraction of MEC. Methods Tear volume was measured using the cotton thread method. Lacrimal gland MEC were isolated and propagated from α-smooth muscle actin (SMA)-green fluorescent protein (GFP) mice, in which MEC express GFP making them easily identifiable. RNA and protein samples were prepared for RT-PCR and Western blotting for G protein expression. Changes in [Ca2+]i were measured in Fura-2 loaded MEC using a ratio imaging system. MEC contraction was monitored in real time and changes in cell size were quantified using ImageJ software. Results OXT applied either topically to surgically exposed lacrimal glands or delivered subcutaneously resulted in increased tear volume. OXT stimulated lacrimal gland MEC contraction in a dose-dependent manner, with a maximum response at 10-7 M. MEC express the PLC coupling G proteins, Gαq and Gα11, and their activation by OXT resulted in a concentration-dependent increase in [Ca2+]i with a maximum response at 10-6 M. Furthermore, the activation of the IP3 receptor to increase [Ca2+]i is crucial for OXT-induced MEC contraction since blocking the IP3 receptor with 2-APB completely abrogated this response. Conclusions We conclude that OXT uses the PLC/Ca2+ pathway to stimulate MEC contraction and increase lacrimal gland secretion.
Collapse
Affiliation(s)
- Angela Gárriz
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, Massachusetts, United States
| | - Salome Aubry
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, Massachusetts, United States
| | - Quentin Wattiaux
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, Massachusetts, United States
| | - Jeffrey Bair
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Michael Mariano
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, Massachusetts, United States
| | - Georgios Hatzipetrou
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, Massachusetts, United States
| | - Maytal Bowman
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, Massachusetts, United States
| | - Junji Morokuma
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, Massachusetts, United States
| | - Gustavo Ortiz
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.,Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Pedram Hamrah
- Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Darlene A Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Driss Zoukhri
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, Massachusetts, United States.,Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, United States
| |
Collapse
|
73
|
Worth AA, Luckman SM. Do oxytocin neurones affect feeding? J Neuroendocrinol 2021; 33:e13035. [PMID: 34495565 PMCID: PMC11475321 DOI: 10.1111/jne.13035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/30/2021] [Accepted: 08/19/2021] [Indexed: 12/24/2022]
Abstract
There has been a long history of research on the effects of oxytocin on feeding behaviour. The classic-held view is that the neurohormone is anorexigenic at least in rodents, although the data for humans are not so clear cut. Likewise, a physiological role for oxytocin is disputed. Thus, although pharmacological, anatomical and physiological data suggest oxytocin may have a function in satiety signalling, this view is not supported by the latest research using the genetic recording and manipulation of oxytocin neurones. Here, we avoid a discussion of the pharmacological effects of oxytocin and examine evidence, from both sides of the argument, concerning whether the endogenous oxytocin system has a role in the regulation of normal feeding.
Collapse
Affiliation(s)
- Amy A. Worth
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Simon M. Luckman
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
74
|
Gieniec KA, Davis FM. Mammary basal cells: Stars of the show. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119159. [PMID: 34653580 DOI: 10.1016/j.bbamcr.2021.119159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 10/20/2022]
Abstract
Nearly all mammals rely on lactation to support their young and to ensure the continued survival of their species. Despite its importance, relatively little is known about how milk is produced and how it is ejected from the lumen of mammary alveoli and ducts. This review focuses on the latter. We discuss how a relatively small number of basal cells, wrapping around each alveolar unit, contract to forcibly expel milk from the alveolar lumen. We consider how individual basal cells coordinate their activity, the fate of these cells at the end of lactation and avenues for future deliberation and exploration.
Collapse
Affiliation(s)
- Krystyna A Gieniec
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Felicity M Davis
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia; School of Pharmacy, University of Queensland, Brisbane, Australia; Department of Biomedicine, Aarhus University, Aarhus, Denmark; Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
75
|
Effects of oxytocin on responses to nociceptive and non-nociceptive stimulation in the upper central nervous system. Biochem Biophys Res Commun 2021; 574:8-13. [PMID: 34419875 DOI: 10.1016/j.bbrc.2021.08.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022]
Abstract
Oxytocin is known as a social bonding hormone, but it also functions as an anxiolytic or analgesic neurotransmitter. When oxytocin regulates pain or anxiousness centrally as a neurotransmitter, it is secreted by neurons and directly projected to targeted regions. Although the function of oxytocin at the spinal level is well studied, its effects at the supraspinal level are poorly understood. We aimed to investigate the effect of oxytocin at the supraspinal level in vivo using C57BL/6J (wild-type [WT]), oxytocin-deficient (Oxt-/-), oxytocin receptor-deficient (Oxtr-/-), and oxytocin receptor-Venus (OxtrVenus/+) mice lines. Response thresholds in Oxtr-/- mice in Hargreaves and von-Frey tests were significantly lower than those in WT mice, whereas open field and light/dark tests showed no significant differences. Moreover, response thresholds in Oxt-/- mice were raised to those in WT mice after oxytocin administration. Following the Hargreaves test, we observed the co-localisation of c-fos with Venus or the oxytocin receptor in the periaqueductal gray (PAG), medial amygdala (MeA), and nucleus accumbens (NAc) regions in OxtrVenus/+ mice. Furthermore, in the PAG, MeA, and NAc regions, the co-localisation of oxytocin with c-fos and gamma-aminobutyric acid was much stronger in Oxtr-/- mice than in WT mice. However, following von-Frey test, the same findings were observed only in the MeA and NAc regions. Our results suggest that oxytocin exerts its analgesic effect on painful stimulation via the PAG region and a self-protective effect on unpleasant stimulation via the MeA and NAc regions.
Collapse
|
76
|
Gnanadesikan GE, Hammock EAD, Tecot SR, Carter CS, MacLean EL. Specificity of plasma oxytocin immunoassays: A comparison of commercial assays and sample preparation techniques using oxytocin knockout and wildtype mice. Psychoneuroendocrinology 2021; 132:105368. [PMID: 34364024 PMCID: PMC8487999 DOI: 10.1016/j.psyneuen.2021.105368] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/06/2021] [Accepted: 07/22/2021] [Indexed: 12/17/2022]
Abstract
Oxytocin has garnered much interest due to its role in affective states, social behaviors, and diverse physiological functions. However, approaches for measuring endogenous oxytocin concentrations have generated considerable controversy and debate. Common procedures for measuring oxytocin often produce uncorrelated results, and the detected concentrations frequently vary across two orders of magnitude. These findings have led some researchers to argue that immunoassays of plasma oxytocin may be unreliable and nonspecific, particularly when samples are not first processed using an extraction procedure. Here, we assess the specificity of oxytocin immunoassays using plasma samples from wildtype (WT) and oxytocin knockout (KO) mice. Plasma samples from both genotypes were measured using immunoassay and were measured with or without a solid-phase extraction. Using a commercially available kit from Arbor Assays, we demonstrate that both techniques generate a clear contrast between genotypes, with wildtype samples containing high concentrations of oxytocin (unextracted mean = 468 pg/ml; extracted mean = 381 pg/ml), while knockout samples measured below the lower limit of detection. Analytical validations demonstrated good parallelism and spike recovery for both methods. Furthermore, the same wildtype samples measured with both procedures were highly correlated (r = 0.95), although unextracted samples measured at significantly higher concentrations (p = 2.0 ×10-7, Cohen's d = 2.65). To test the generalizability of these results across immunoassay kits, we performed additional assays with kits from Cayman Chemical and Enzo Life Sciences. The Cayman Chemical kit produced results similar to Arbor Assays with a clean signal differentiating WT and KO plasma, both with and without an extraction step. The Enzo kit also differentiated the genotypes, with correlation between extracted and unextracted samples, but was considerably more susceptible to interference without the extraction, as evidenced by false positive signal in KO plasma samples. The extent to which these results generalize to other species remains unknown and challenging to assess.
Collapse
Affiliation(s)
- Gitanjali E Gnanadesikan
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Cognitive Science Program, University of Arizona, Tucson, AZ 85721, USA.
| | - Elizabeth A D Hammock
- Department of Psychology and Program in Neuroscience, The Florida State University, Tallahassee, FL 32306, USA
| | - Stacey R Tecot
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Laboratory for the Evolutionary Endocrinology of Primates, University of Arizona, Tucson, AZ 85721, USA
| | - C Sue Carter
- Kinsey Institute, Indiana University, Bloomington, IN 47405, USA
| | - Evan L MacLean
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Cognitive Science Program, University of Arizona, Tucson, AZ 85721, USA; Psychology Department, University of Arizona, Tucson, AZ 85721, USA; College of Veterinary Medicine, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
77
|
Oxytocin, Erectile Function and Sexual Behavior: Last Discoveries and Possible Advances. Int J Mol Sci 2021; 22:ijms221910376. [PMID: 34638719 PMCID: PMC8509000 DOI: 10.3390/ijms221910376] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/30/2022] Open
Abstract
A continuously increasing amount of research shows that oxytocin is involved in numerous central functions. Among the functions in which oxytocin is thought to be involved are those that play a role in social and sexual behaviors, and the involvement of central oxytocin in erectile function and sexual behavior was indeed one of the first to be discovered in laboratory animals in the 1980s. The first part of this review summarizes the results of studies done in laboratory animals that support a facilitatory role of oxytocin in male and female sexual behavior and reveal mechanisms through which this ancient neuropeptide participates in concert with other neurotransmitters and neuropeptides in this complex function, which is fundamental for the species reproduction. The second part summarizes the results of studies done mainly with intranasal oxytocin in men and women with the aim to translate the results found in laboratory animals to humans. Unexpectedly, the results of these studies do not appear to confirm the facilitatory role of oxytocin found in male and female sexual behavior in animals, both in men and women. Possible explanations for the failure of oxytocin to improve sexual behavior in men and women and strategies to attempt to overcome this impasse are considered.
Collapse
|
78
|
Akahoshi N, Kamichatani W, Ishii I. Homocysteine Hypothesis on the Impaired Peripheral but Not Central Nervous System Oxytocin Responses in Cystathionine γ-Lyase-Deficient Dam Mice. Biol Pharm Bull 2021; 43:1810-1813. [PMID: 33132327 DOI: 10.1248/bpb.b20-00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An elevated plasma homocysteine level is an independent risk factor for cardiovascular diseases, neurological disorders, and pregnancy complications. We recently demonstrated partial lactation failure in cystathionine γ-lyase-deficient (Cth-/-) dam mice and their defective oxytocin responses in peripheral tissues: uterine (ex vivo) and mammary gland (in vivo). We reasoned that elevated levels of circulatory homocysteine in Cth-/- dam mice counteract with oxytocin-dependent milk ejection from the mammary gland. Based on our observation that those mice displayed normal maternal behaviors against their pups and adult Cth-/- male mice exhibited normal social behaviors against adult wild-type female mice, both of which are regulated by oxytocin in the central nervous system (CNS), we conducted the present study to investigate the amino acid profiles, including total homocysteine, in both blood and cerebrospinal fluid (CSF) of wild-type and Cth-/- female mice before pregnancy and at day 1 of lactation (L1). Serum levels of total homocysteine in wild-type and Cth-/- L1 dam mice were 9.44 and 188 µmol/L, respectively, whereas their CSF levels were below 0.21 (limit of quantification) and 3.62 µmol/L, respectively. Their CSF/serum level ratio was the lowest (1/51.9) among all 20 proteinogenic amino acids, sulfur-containing amino acids, and citrulline/ornithine in Cth-/- mice. Therefore, we hypothesize that the blood-brain barrier protects the CNS from high levels of circulatory homocysteine in Cth-/- dam mice, thereby conferring normal oxytocin-dependent maternal behaviors.
Collapse
Affiliation(s)
| | | | - Isao Ishii
- Laboratory of Health Chemistry, Showa Pharmaceutical University
| |
Collapse
|
79
|
Li T, Jia SW, Hou D, Liu X, Li D, Liu Y, Cui D, Wang X, Hou C, Brown CH, Wang YF. Intranasal Oxytocin Restores Maternal Behavior and Oxytocin Neuronal Activity in the Supraoptic Nucleus in Rat Dams with Cesarean Delivery. Neuroscience 2021; 468:235-246. [PMID: 34166764 DOI: 10.1016/j.neuroscience.2021.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/25/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Oxytocin (OT) is a key factor for maternal behavior. However, neurochemical regulation of OT neurons, the major source of OT, remains incompletely understood. Here we report the effect of intranasally-applied OT (IAO) on OT neuronal activity in the supraoptic nucleus (SON) and on maternal behavior in a rat model of cesarean delivery (CD) at day 4-5 (stage I) and day 8-9 (stage II) following delivery. We found that at stage I, CD dams exhibited significantly longer latency of pup retrieval, lower number of anogenital licks and smaller acinar area of the mammary glands. In the SON, the number of OT neurons expressing phosphorylated extracellular signal-regulated protein kinase 1/2 (pERK 1/2) decreased significantly. IAO reversed the depressive-like maternal behavior and involution-like change in the mammary glands, and restored the number of pERK1/2-positive OT neurons in CD dams. At stage II, CD did not significantly influence the latency of retrieval and pERK1/2 expression in the SON. However, CD still reduced the number of anogenital licks during suckling, which was reversed by IAO. Notably, IAO but not hypodermic OT application in CD dams significantly increased litter's body weight gains. In brain slices, CD but not CD plus IAO significantly depolarized membrane potential and increased spike duration in OT neurons. In vasopressin neurons, CD, but not CD plus IAO, significantly depolarized membrane potential and increased the firing rate. Thus, decreased OT neuronal activity and increased vasopressin neuronal activity impair maternal behavior in CD dams, which can be prevented by IAO .
Collapse
Affiliation(s)
- Tong Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shu-Wei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Dan Hou
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoyu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Dongyang Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yang Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Dan Cui
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Chunmei Hou
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Colin H Brown
- Department of Physiology and Center for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China.
| |
Collapse
|
80
|
Madrigal MP, Jurado S. Specification of oxytocinergic and vasopressinergic circuits in the developing mouse brain. Commun Biol 2021; 4:586. [PMID: 33990685 PMCID: PMC8121848 DOI: 10.1038/s42003-021-02110-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Oxytocin (OXT) and arginine vasopressin (AVP) support a broad range of behaviors and homeostatic functions including sex-specific and context-appropriate social behaviors. Although the alterations of these systems have been linked with social-related disorders such as autism spectrum disorder, their formation and developmental dynamics remain largely unknown. Using novel brain clearing techniques and 3D imaging, we have reconstructed the specification of oxytocinergic and vasopressinergic circuits in the developing mouse brain with unprecedented cellular resolution. A systematic quantification indicates that OXT and AVP neurons in the hypothalamus display distinctive developmental dynamics and high cellular plasticity from embryonic to early postnatal stages. Our findings reveal new insights into the specification and consolidation of neuropeptidergic systems in the developing CNS.
Collapse
Affiliation(s)
- María Pilar Madrigal
- grid.466805.90000 0004 1759 6875Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Alicante, Spain
| | - Sandra Jurado
- grid.466805.90000 0004 1759 6875Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Alicante, Spain
| |
Collapse
|
81
|
Kawada T, Shiraishi A, Matsubara S, Hozumi A, Horie T, Sasakura Y, Satake H. Vasopressin Promoter Transgenic and Vasopressin Gene-Edited Ascidian, Ciona intestinalis Type A ( Ciona robusta): Innervation, Gene Expression Profiles, and Phenotypes. Front Endocrinol (Lausanne) 2021; 12:668564. [PMID: 34025581 PMCID: PMC8135067 DOI: 10.3389/fendo.2021.668564] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/25/2021] [Indexed: 01/03/2023] Open
Abstract
Oxytocin (OT) and vasopressin (VP) superfamily neuropeptides are distributed in not only vertebrates but also diverse invertebrates. However, no VPergic innervation of invertebrates has ever been documented. In the ascidian, Ciona intestinalis Type A (Ciona robusta), an OT/VP superfamily peptide was identified, and the Ciona vasopressin (CiVP) induces oocyte maturation and ovulation. In the present study, we characterize the innervation and phenotypes of genetically modified Ciona: CiVP promoter-Venus transgenic and CiVP mutants. CiVP promoter-Venus transgenic Ciona demonstrated that CiVP gene was highly expressed in the cerebral ganglion and several nerves. Fluorescence was also detected in the ovary of young CiVP promoter-Venus transgenic ascidians, suggesting that the CiVP gene is also expressed temporarily in the ovary of young ascidians. Furthermore, a marked decrease of post-vitellogenic (stage III) follicles was observed in the ovary of CiVP mutants, whereas pre-vitellogenic (stage I) and vitellogenic (stage II) follicles were increased in the mutant ovary, compared with that of wildtype Ciona. Gene expression profiles showed that the expression of various genes, including genes related to ovarian follicle growth, was altered in the ovary of CiVP mutants. Altogether, these results indicated that CiVP, mainly as a neuropeptide, plays pivotal roles in diverse biological functions, including growth of early-stage ovarian follicles via regulation of the expression of a wide variety of genes. This is the first report describing a VP gene promoter-transgenic and VP gene-edited invertebrate and also on its gene expression profiles and phenotypes.
Collapse
Affiliation(s)
- Tsuyoshi Kawada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Shin Matsubara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Akiko Hozumi
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan
| | - Takeo Horie
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| |
Collapse
|
82
|
Nagano M, Saitow F, Higo S, Uzuki M, Mikahara Y, Akimoto T, Ozawa H, Nishimori K, Suzuki H. Cesarean section delivery is a risk factor of autism-related behaviors in mice. Sci Rep 2021; 11:8883. [PMID: 33903690 PMCID: PMC8076189 DOI: 10.1038/s41598-021-88437-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 04/12/2021] [Indexed: 12/19/2022] Open
Abstract
Cesarean section (C/S) is one way of delivering babies, and is chosen when mothers or babies are facing problems or life-threatening conditions during pregnancy. Many meta-analyses have suggested an etiological relationship between C/S delivery and autism spectrum disorders (ASDs). However, as a risk factor for ASDs, C/S delivery has not yet been well studied. Because C/S deliveries have been increasing, it is very important to investigate the causal association between C/S and ASDs. Here, using three approaches, we showed experimentally that C/S delivery induced ASD-like traits in offspring mice, and that some of these changes were ameliorated by one-time oxytocin (OXT) treatment. Treatment with OXT receptor antagonists before natural delivery also induced ASD-related behaviors. Moreover, wild-type mice born to OXT-KO dams showed similar changes. Thus, insufficient OXT exposure from dams to offspring during delivery may be a trigger for ASD-related behaviors.
Collapse
Affiliation(s)
- Masatoshi Nagano
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, Japan.
| | - Fumihito Saitow
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, Japan
| | - Shinpei Higo
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Makoto Uzuki
- Division of Laboratory Animal Science, Nippon Medical School, Tokyo, Japan
| | - Yasunori Mikahara
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, Japan
| | - Toshio Akimoto
- Division of Laboratory Animal Science, Nippon Medical School, Tokyo, Japan
| | - Hitoshi Ozawa
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Katsuhiko Nishimori
- Department of Obesity and Internal Inflammation, Fukushima Medical University, Hikarigaoka 1, Fukushima, Fukushima, Japan
| | - Hidenori Suzuki
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
83
|
Malik M, Roh M, England SK. Uterine contractions in rodent models and humans. Acta Physiol (Oxf) 2021; 231:e13607. [PMID: 33337577 PMCID: PMC8047897 DOI: 10.1111/apha.13607] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/18/2022]
Abstract
Aberrant uterine contractions can lead to preterm birth and other labour complications and are a significant cause of maternal morbidity and mortality. To investigate the mechanisms underlying dysfunctional uterine contractions, researchers have used experimentally tractable small animal models. However, biological differences between humans and rodents change how researchers select their animal model and interpret their results. Here, we provide a general review of studies of uterine excitation and contractions in mice, rats, guinea pigs, and humans, in an effort to introduce new researchers to the field and help in the design and interpretation of experiments in rodent models.
Collapse
Affiliation(s)
- Manasi Malik
- Center for Reproductive Health SciencesDepartment of Obstetrics and GynecologyWashington University School of MedicineSt. LouisMOUSA
| | - Michelle Roh
- Center for Reproductive Health SciencesDepartment of Obstetrics and GynecologyWashington University School of MedicineSt. LouisMOUSA
| | - Sarah K. England
- Center for Reproductive Health SciencesDepartment of Obstetrics and GynecologyWashington University School of MedicineSt. LouisMOUSA
| |
Collapse
|
84
|
Inoue N, Nishizumi H, Ooyama R, Mogi K, Nishimori K, Kikusui T, Sakano H. The olfactory critical period is determined by activity-dependent Sema7A/PlxnC1 signaling within glomeruli. eLife 2021; 10:65078. [PMID: 33780330 PMCID: PMC8007213 DOI: 10.7554/elife.65078] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/18/2021] [Indexed: 12/26/2022] Open
Abstract
In mice, early exposure to environmental odors affects social behaviors later in life. A signaling molecule, Semaphorin 7A (Sema7A), is induced in the odor-responding olfactory sensory neurons. Plexin C1 (PlxnC1), a receptor for Sema7A, is expressed in mitral/tufted cells, whose dendrite-localization is restricted to the first week after birth. Sema7A/PlxnC1 signaling promotes post-synaptic events and dendrite selection in mitral/tufted cells, resulting in glomerular enlargement that causes an increase in sensitivity to the experienced odor. Neonatal odor experience also induces positive responses to the imprinted odor. Knockout and rescue experiments indicate that oxytocin in neonates is responsible for imposing positive quality on imprinted memory. In the oxytocin knockout mice, the sensitivity to the imprinted odor increases, but positive responses cannot be promoted, indicating that Sema7A/PlxnC1 signaling and oxytocin separately function. These results give new insights into our understanding of olfactory imprinting during the neonatal critical period.
Collapse
Affiliation(s)
- Nobuko Inoue
- Department of Brain Function, School of Medical Sciences, University of Fukui, Matsuoka, Japan
| | - Hirofumi Nishizumi
- Department of Brain Function, School of Medical Sciences, University of Fukui, Matsuoka, Japan
| | - Rumi Ooyama
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Kazutaka Mogi
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Katsuhiko Nishimori
- Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Takefumi Kikusui
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Hitoshi Sakano
- Department of Brain Function, School of Medical Sciences, University of Fukui, Matsuoka, Japan
| |
Collapse
|
85
|
Muzerelle A, Soiza-Reilly M, Hainer C, Ruet PL, Lesch KP, Bader M, Alenina N, Scotto-Lomassese S, Gaspar P. Dorsal raphe serotonin neurotransmission is required for the expression of nursing behavior and for pup survival. Sci Rep 2021; 11:6004. [PMID: 33727585 PMCID: PMC7966367 DOI: 10.1038/s41598-021-84368-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/09/2021] [Indexed: 12/30/2022] Open
Abstract
Proper maternal care is an essential factor of reproductive success in mammals, involving a repertoire of behaviors oriented toward the feeding and care of the offspring. Among the neurotransmitters involved in the initiation of these behaviors, serotonin (5-HT) seems to play an important role. Here we compared pup-oriented maternal behaviors in mice with constitutive 5-HT depletion, the tryptophan hydroxylase 2-knock-out (Tph2-KO) and the Pet1-KO mice. We report that the only common pup-oriented defect in these 2 hyposerotoninergic models is a defective nursing in parturient mice and altered nursing-like (crouching) behavior in virgin mice, while pup retrieval defects are only present in Tph2-KO. Despite a normal mammary gland development and milk production, the defect in appropriate nursing is responsible for severe growth retardation and early lethality of pups born to hyposerotonergic dams. This nursing defect is due to acute rather constitutive 5-HT depletion, as it is reproduced by adult knockdown of Tph2 in the dorsal raphe nucleus in mothers with a prior normal maternal experience. We conclude that 5-HT innervation from the dorsal raphe is required for both the initiation and maintenance of a normal nursing behavior. Our findings may be related to observations of reduced maternal/infant interactions in human depression.
Collapse
Affiliation(s)
- Aude Muzerelle
- INSERM, Institut du Fer À Moulin, Sorbonne Université UMR-S 1270, Paris, France
| | - Mariano Soiza-Reilly
- INSERM, Institut du Fer À Moulin, Sorbonne Université UMR-S 1270, Paris, France.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cornelia Hainer
- Max-Delbrück Center for Molecular Medecine (MDC), Berlin-Buch, Germany
| | - Pierre-Louis Ruet
- INSERM, Institut du Fer À Moulin, Sorbonne Université UMR-S 1270, Paris, France
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, Department of Psychiatry, University of Würzburg, Würzburg, Germany.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Michael Bader
- Max-Delbrück Center for Molecular Medecine (MDC), Berlin-Buch, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site, Berlin, Germany.,Charite-University Medicine, Berlin, Germany.,Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Natalia Alenina
- Max-Delbrück Center for Molecular Medecine (MDC), Berlin-Buch, Germany. .,German Center for Cardiovascular Research (DZHK), Partner Site, Berlin, Germany. .,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia. .,Institute of Cytology, Russian Academy of Science, St. Petersburg, Russia.
| | | | - Patricia Gaspar
- INSERM, Institut du Fer À Moulin, Sorbonne Université UMR-S 1270, Paris, France. .,INSERM U1127, Paris Brain Institute, 75013, Paris, France.
| |
Collapse
|
86
|
Kato Y, Katsumata H, Inutsuka A, Yamanaka A, Onaka T, Minami S, Orikasa C. Involvement of MCH-oxytocin neural relay within the hypothalamus in murine nursing behavior. Sci Rep 2021; 11:3348. [PMID: 33558633 PMCID: PMC7870840 DOI: 10.1038/s41598-021-82773-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/21/2021] [Indexed: 12/22/2022] Open
Abstract
Multiple sequential actions, performed during parental behaviors, are essential elements of reproduction in mammalian species. We showed that neurons expressing melanin concentrating hormone (MCH) in the lateral hypothalamic area (LHA) are more active in rodents of both sexes when exhibiting parental nursing behavior. Genetic ablation of the LHA-MCH neurons impaired maternal nursing. The post-birth survival rate was lower in pups born to female mice with congenitally ablated MCH neurons under control of tet-off system, exhibiting reduced crouching behavior. Virgin female and male mice with ablated MCH neurons were less interested in pups and maternal care. Chemogenetic and optogenetic stimulation of LHA-MCH neurons induced parental nursing in virgin female and male mice. LHA-MCH GABAergic neurons project fibres to the paraventricular hypothalamic nucleus (PVN) neurons. Optogenetic stimulation of PVN induces nursing crouching behavior along with increasing plasma oxytocin levels. The hypothalamic MCH neural relays play important functional roles in parental nursing behavior in female and male mice.
Collapse
Affiliation(s)
- Yoko Kato
- Department of Bioregulation, Institute for Advanced Medical Science, Nippon Medical School, Kawasaki, 211-8533, Japan
| | - Harumi Katsumata
- Department of Bioregulation, Institute for Advanced Medical Science, Nippon Medical School, Kawasaki, 211-8533, Japan
| | - Ayumu Inutsuka
- Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan
| | - Tatsushi Onaka
- Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan
| | - Shiro Minami
- Department of Bioregulation, Institute for Advanced Medical Science, Nippon Medical School, Kawasaki, 211-8533, Japan
| | - Chitose Orikasa
- Department of Bioregulation, Institute for Advanced Medical Science, Nippon Medical School, Kawasaki, 211-8533, Japan.
| |
Collapse
|
87
|
Althammer F, Eliava M, Grinevich V. Central and peripheral release of oxytocin: Relevance of neuroendocrine and neurotransmitter actions for physiology and behavior. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:25-44. [PMID: 34225933 DOI: 10.1016/b978-0-12-820107-7.00003-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The hypothalamic neuropeptide oxytocin (OT) is critically involved in the modulation of socio-emotional behavior, sexual competence, and pain perception and anticipation. While intracellular signaling of OT and its receptor (OTR), as well as the functional connectivity of hypothalamic and extra-hypothalamic OT projections, have been recently explored, it remains elusive how one single molecule has pleotropic effects from cell proliferation all the way to modulation of complex cognitive processes. Moreover, there are astonishing species-dependent differences in the way OT regulates various sensory modalities such as touch, olfaction, and vision, which can be explained by differences in OTR expression in brain regions processing sensory information. Recent research highlights a small subpopulation of OT-synthesizing cells, namely, parvocellular cells, which merely constitute 1% of the total number of OT cells but act as "master cells' that regulate the activity of the entire OT system. In this chapter, we summarize the latest advances in the field of OT research with a particular focus on differences between rodents, monkeys and humans and highlight the main differences between OT and its "sister" peptide arginine-vasopressin, which often exerts opposite effects on physiology and behavior.
Collapse
Affiliation(s)
- Ferdinand Althammer
- Neuroscience Department, Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, United States
| | - Marina Eliava
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
88
|
Abstract
Maternal care, including by non-biological parents, is important for offspring survival1-8. Oxytocin1,2,9-15, which is released by the hypothalamic paraventricular nucleus (PVN), is a critical maternal hormone. In mice, oxytocin enables neuroplasticity in the auditory cortex for maternal recognition of pup distress15. However, it is unclear how initial parental experience promotes hypothalamic signalling and cortical plasticity for reliable maternal care. Here we continuously monitored the behaviour of female virgin mice co-housed with an experienced mother and litter. This documentary approach was synchronized with neural recordings from the virgin PVN, including oxytocin neurons. These cells were activated as virgins were enlisted in maternal care by experienced mothers, who shepherded virgins into the nest and demonstrated pup retrieval. Virgins visually observed maternal retrieval, which activated PVN oxytocin neurons and promoted alloparenting. Thus rodents can acquire maternal behaviour by social transmission, providing a mechanism for adapting the brains of adult caregivers to infant needs via endogenous oxytocin.
Collapse
|
89
|
Walter MH, Abele H, Plappert CF. The Role of Oxytocin and the Effect of Stress During Childbirth: Neurobiological Basics and Implications for Mother and Child. Front Endocrinol (Lausanne) 2021; 12:742236. [PMID: 34777247 PMCID: PMC8578887 DOI: 10.3389/fendo.2021.742236] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
The neuropeptide oxytocin acts as a hormone and a neuromodulator, influencing a multitude of human social behaviors, including reproduction. During childbirth and the postpartum period, it plays a key role in regulating and controlling processes that ensure a safe birth and the health of mother and child. Especially the onset of labor, the progress of labor and initial breastfeeding are mediated by oxytocin. In the maternal brain it controls the initiation of the mother-infant bond and the mother's emotional responses towards her child. In this review we summarize the current state of knowledge about the role of oxytocin during the different aspects and mechanisms of human childbirth, combining research from human and animal studies. Physiological and psychological stress during childbirth and lactation can have negative effects on the progress of labor, breastfeeding and bonding. We discuss how maternity caregivers can support the positive effects of oxytocin and minimize the effects of stress. Furthermore, we highlight aspects of the basic neurobiological principles and connections where further research is needed to improve our understanding of the regulation and the effects of oxytocin to support maternal and infant health.
Collapse
Affiliation(s)
- Michael H. Walter
- Department of Midwifery Science, Institute for Health Sciences, University Hospital Tübingen, Tübingen, Germany
- Department for Animal Physiology, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
- *Correspondence: Michael H. Walter,
| | - Harald Abele
- Department of Midwifery Science, Institute for Health Sciences, University Hospital Tübingen, Tübingen, Germany
- Department for Women’s Health, University Hospital Tübingen, Tübingen, Germany
| | - Claudia F. Plappert
- Department of Midwifery Science, Institute for Health Sciences, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
90
|
Arakawa H. Dynamic regulation of oxytocin neuronal circuits in the sequential processes of prosocial behavior in rodent models. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2:100011. [PMID: 36246512 PMCID: PMC9559098 DOI: 10.1016/j.crneur.2021.100011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/08/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
|
91
|
Abstract
Neuroendocrine manifestations are common in Erdheim-Chester disease (ECD) patients. ECD is a rare non-Langerhans form of histiocytosis with multisystemic infiltration. The involvement of the hypothalamo-pituitary axis is common and central diabetes insipidus (CDI) is one of the most common endocrine manifestations in ECD patients. CDI is the first manifestation of ECD in 25%-48% of the cases. Suprasellar region extension, due to the infiltration of ECD lesions, can cause neurologic manifestations by mass effects, such as headache, visual disturbance, and cranial nerve palsies. Recent studies have revealed that disorders affecting anterior pituitary hormones are common in ECD patients. Secondary adrenal insufficiency, secondary hypothyroidism, (adult) growth hormone deficiency, hypogonadotropic hypogonadism, hyperprolactinemia, and hypoprolactinemia can develop as the neuroendocrine manifestations of ECD. Since the symptoms of anterior pituitary hormone deficiencies tend to be nonspecific, the diagnosis of anterior pituitary hormone dysfunctions can be delayed. Some anterior pituitary dysfunctions such as adrenocorticotropic hormone and/or thyroid-stimulating hormone deficiencies can be life-threatening without adequate hormone supplementation therapies. An endocrinological evaluation of the function of the pituitary gland should be performed at the initial diagnosis of ECD. It is important to recognize that endocrine dysfunctions can develop later during the follow-up of ECD.
Collapse
|
92
|
Du Y, Sun D, Li Y. Mex3c mutation affects lactation through impairing milk ejection in female mice. Biosci Rep 2020; 40:BSR20201285. [PMID: 33180120 PMCID: PMC7729293 DOI: 10.1042/bsr20201285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/14/2020] [Accepted: 11/11/2020] [Indexed: 11/24/2022] Open
Abstract
Mouse Mex3c encodes RNA-binding proteins of variant length through alternative splicing. Its mutation results in multiple defects including growth retardation, perturbed energy balance, and defective antiviral innate immunity. Here we report that Mex3c mutation affects mammary gland development and lactation in female mice. Pups of Mex3c mutant dams die of starvation soon after birth. Milk contents are present in the alveoli but deficient in the ducts of the mammary glands in mutant mice. Mutant mice do not show prolactin or oxytocin deficiency. They also develop myoepithelial cells in the mammary glands. Mex3c is expressed in the mammary gland epithelium. Our data suggest that functional defects in mammary gland epithelium or myoepithelial cells could cause lactation defects.
Collapse
Affiliation(s)
- Yong Du
- Department of Surgical Research, General Hospital, Ningxia Medical University, Ningxia 750004, China
| | - Dongjun Sun
- Graduate School, Ningxia Medical University, Ningxia 750004, China
- Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, U.S.A
| | - Yan Li
- Department of Obstetrics and Gynecology, General Hospital, Ningxia Medical University, Ningxia 750004, China
| |
Collapse
|
93
|
Abstract
In mammals, odor information detected by olfactory sensory neurons is converted to a topographic map of activated glomeruli in the olfactory bulb. Mitral cells and tufted cells transmit signals sequentially to the olfactory cortex for behavioral outputs. To elicit innate behavioral responses, odor signals are directly transmitted by distinct subsets of mitral cells from particular functional domains in the olfactory bulb to specific amygdala nuclei. As for the learned decisions, input signals are conveyed by tufted cells as well as by mitral cells to the olfactory cortex. Behavioral scene cells link the odor information to the valence cells in the amygdala to elicit memory-based behavioral responses. Olfactory decision and perception take place in relation to the respiratory cycle. How is the sensory quality imposed on the olfactory inputs for behavioral outputs? How are the two types of odor signals, innate and learned, processed during respiration? Here, we review recent progress on the study of neural circuits involved in decision making in the mouse olfactory system.
Collapse
Affiliation(s)
- Kensaku Mori
- RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan;
| | - Hitoshi Sakano
- Department of Brain Function, School of Medical Sciences, University of Fukui, Matsuoka, Fukui 910-1197, Japan;
| |
Collapse
|
94
|
Stadler B, Whittaker MR, Exintaris B, Middendorff R. Oxytocin in the Male Reproductive Tract; The Therapeutic Potential of Oxytocin-Agonists and-Antagonists. Front Endocrinol (Lausanne) 2020; 11:565731. [PMID: 33193084 PMCID: PMC7642622 DOI: 10.3389/fendo.2020.565731] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
In this review, the role of oxytocin and oxytocin-like agents (acting via the oxytocin receptor and belonging to the oxytocin-family) in the male reproductive tract is considered. Previous research (dating back over 60 years) is revised and connected with recently found aspects of the role oxytocin plays in male reproductive health. The local expression of oxytocin and its receptor in the male reproductive tract of different species is summarized. Colocalization and possible crosstalk to other agents and receptors and their resulting effects are discussed. The role of the newly reported oxytocin focused signaling pathways in the male reproductive tract, other than mediating contractility, is critically examined. The structure and effect of the most promising oxytocin-agonists and -antagonists are reviewed for their potential in treating male disorders with origins in the male reproductive tract such as prostate diseases and ejaculatory disorders.
Collapse
Affiliation(s)
- Beatrix Stadler
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Michael R. Whittaker
- Drug Discovery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Melbourne, VIC, Australia
| | - Betty Exintaris
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, VIC, Australia
| | - Ralf Middendorff
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
95
|
Multiscale imaging of basal cell dynamics in the functionally mature mammary gland. Proc Natl Acad Sci U S A 2020; 117:26822-26832. [PMID: 33033227 DOI: 10.1073/pnas.2016905117] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The mammary epithelium is indispensable for the continued survival of more than 5,000 mammalian species. For some, the volume of milk ejected in a single day exceeds their entire blood volume. Here, we unveil the spatiotemporal properties of physiological signals that orchestrate the ejection of milk from alveolar units and its passage along the mammary ductal network. Using quantitative, multidimensional imaging of mammary cell ensembles from GCaMP6 transgenic mice, we reveal how stimulus evoked Ca2+ oscillations couple to contractions in basal epithelial cells. Moreover, we show that Ca2+-dependent contractions generate the requisite force to physically deform the innermost layer of luminal cells, compelling them to discharge the fluid that they produced and housed. Through the collective action of thousands of these biological positive-displacement pumps, each linked to a contractile ductal network, milk begins its passage toward the dependent neonate, seconds after the command.
Collapse
|
96
|
Kuroda KO, Shiraishi Y, Shinozuka K. Evolutionary-adaptive and nonadaptive causes of infant attack/desertion in mammals: Toward a systematic classification of child maltreatment. Psychiatry Clin Neurosci 2020; 74:516-526. [PMID: 32592505 DOI: 10.1111/pcn.13096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 06/08/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
Behaviors comparable to human child maltreatment are observed widely among mammals, in which parental care is mandatory for offspring survival. This article first reviews the recent findings on the neurobiological mechanisms for nurturing (infant caregiving) behaviors in mammals. Then the major causes of attack/desertion toward infants (conspecific young) in nonhuman mammals are classified into five categories. Three of the categories are 'adaptive' in terms of reproductive fitness: (i) attack/desertion toward non-offspring; (ii) attack/desertion toward biological offspring with low reproductive value; and (iii) attack/desertion toward biological offspring under unfavorable environments. The other two are nonadaptive failures of nurturing motivation, induced by: (iv) caregivers' inexperience; or (v) dysfunction in caregivers' brain mechanisms required for nurturing behavior. The proposed framework covering both adaptive and nonadaptive factors comprehensively classifies the varieties of mammalian infant maltreatment cases and will support the future development of tailored preventive measures for each human case. Also included are remarks that are relevant to interpretation of available animal data to humans: (1) any kind of child abuse/neglect is not justified in modern human societies, even if it is widely observed and regarded as adaptive in nonhuman animals from the viewpoint of evolutionary biology; (2) group-level characteristics cannot be generalized to individuals; and (3) risk factors are neither deterministic nor irreversible.
Collapse
Affiliation(s)
- Kumi O Kuroda
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan
| | - Yuko Shiraishi
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan
| | - Kazutaka Shinozuka
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
97
|
Liu H, Gruber CW, Alewood PF, Möller A, Muttenthaler M. The oxytocin receptor signalling system and breast cancer: a critical review. Oncogene 2020; 39:5917-5932. [PMID: 32782397 PMCID: PMC7483001 DOI: 10.1038/s41388-020-01415-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022]
Abstract
Breast cancer is making up one-quarter of all new female cancer cases diagnosed worldwide. Breast cancer surgeries, radiation therapies, cytotoxic chemotherapies and targeted therapies have made significant progress and play a dominant role in breast cancer patient management. However, many challenges remain, including resistance to systemic therapies, tumour recurrence and metastasis. The cyclic neuropeptide oxytocin (OT) elicits a plethora of biological responses via the oxytocin receptor (OTR) in both the central and peripheral nervous system, including social bonding, stress, maternal behaviour, sexual activity, uterus contraction, milk ejection and cancer. As a typical member of the G protein-coupled receptor family, OTR represents also an intriguing target for cancer therapy. There is emerging evidence that OTR plays a role in breast cancer development and progression, and several breast cancer cell lines express OTR. However, despite supporting evidence that OT lowers breast cancer risks, its mechanistic role in breast cancer development and the related signalling pathways are not fully understood. Here, we review the current knowledge of the OT/OTR signalling system in healthy breast tissue as well as in breast cancer, and discuss OTR as a potential therapeutic target for breast cancer management.
Collapse
Affiliation(s)
- Huiping Liu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Paul F Alewood
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Andreas Möller
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Markus Muttenthaler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia. .,Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
98
|
Habashi JP, MacFarlane EG, Bagirzadeh R, Bowen C, Huso N, Chen Y, Bedja D, Creamer TJ, Rykiel G, Manning M, Huso D, Dietz HC. Oxytocin antagonism prevents pregnancy-associated aortic dissection in a mouse model of Marfan syndrome. Sci Transl Med 2020; 11:11/490/eaat4822. [PMID: 31043570 DOI: 10.1126/scitranslmed.aat4822] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/14/2018] [Accepted: 03/25/2019] [Indexed: 01/18/2023]
Abstract
Women with Marfan syndrome (MFS) are at high risk for pregnancy-associated aortic dissection. Pathogenic models that singularly invoke hemodynamic stress are difficult to reconcile with predominant postnatal occurrence of aortic tear, often occurring weeks to months after delivery. In consideration of events that peak at term, are sustained after delivery, and might synergize with previously defined signaling pathways implicated in aneurysm progression, we examined the hormone oxytocin, which initiates uterine contraction and milk letdown for the duration of lactation through phosphorylation of extracellular signal-regulated kinase (ERK). In a mouse model of MFS that shows highly penetrant postnatal aortic dissection, risk was strongly attenuated by preventing lactation or use of an oxytocin receptor antagonist. Survival correlated inversely with the extent of ERK activation in the aortic wall, and strong protection was observed upon attenuation of ERK phosphorylation using an inhibitor of ERK kinase (MEK) or the U.S. Food and Drug Administration-approved medication hydralazine, offering potential therapeutic strategies for pregnancy-associated vascular catastrophe in the setting of MFS.
Collapse
Affiliation(s)
| | | | - Rustam Bagirzadeh
- Center for Medical Genetics, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Caitlin Bowen
- Center for Medical Genetics, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Nicholas Huso
- Center for Medical Genetics, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Yichun Chen
- Center for Medical Genetics, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Djahida Bedja
- Division of Comparative Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Tyler J Creamer
- Department of Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Graham Rykiel
- Center for Medical Genetics, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Maurice Manning
- Department of Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - David Huso
- Division of Comparative Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Harry C Dietz
- Center for Medical Genetics, Johns Hopkins University, Baltimore, MD 21287, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
99
|
Dobolyi A, Oláh S, Keller D, Kumari R, Fazekas EA, Csikós V, Renner É, Cservenák M. Secretion and Function of Pituitary Prolactin in Evolutionary Perspective. Front Neurosci 2020; 14:621. [PMID: 32612510 PMCID: PMC7308720 DOI: 10.3389/fnins.2020.00621] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
The hypothalamo-pituitary system developed in early vertebrates. Prolactin is an ancient vertebrate hormone released from the pituitary that exerts particularly diverse functions. The purpose of the review is to take a comparative approach in the description of prolactin, its secretion from pituitary lactotrophs, and hormonal functions. Since the reproductive and osmoregulatory roles of prolactin are best established in a variety of species, these functions are the primary subjects of discussion. Different types of prolactin and prolactin receptors developed during vertebrate evolution, which will be described in this review. The signal transduction of prolactin receptors is well conserved among vertebrates enabling us to describe the whole subphylum. Then, the review focuses on the regulation of prolactin release in mammals as we have the most knowledge on this class of vertebrates. Prolactin secretion in response to different reproductive stimuli, such as estrogen-induced release, mating, pregnancy and suckling is detailed. Reproduction in birds is different from that in mammals in several aspects. Prolactin is released during incubation in avian species whose regulation and functional significance are discussed. Little information is available on prolactin in reptiles and amphibians; therefore, they are mentioned only in specific cases to explain certain evolutionary aspects. In turn, the osmoregulatory function of prolactin is well established in fish. The different types of pituitary prolactin in fish play particularly important roles in the adaptation of eutherian species to fresh water environments. To achieve this function, prolactin is released from lactotrophs in hyposmolarity, as they are directly osmosensitive in fish. In turn, the released prolactin acts on branchial epithelia, especially ionocytes of the gill to retain salt and excrete water. This review will highlight the points where comparative data give new ideas or suggest new approaches for investigation in other taxa.
Collapse
Affiliation(s)
- Arpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Szilvia Oláh
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Dávid Keller
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Rashmi Kumari
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Emese A. Fazekas
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Vivien Csikós
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Éva Renner
- Human Brain Tissue Bank and Microdissection Laboratory, Semmelweis University, Budapest, Hungary
| | - Melinda Cservenák
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
100
|
Akdemir N, Cinemre FB, Cinemre H, Sevinc L, Aydemir B, Coban B, Cevrioglu AS, Ozden S. Polymorphism of the Oxytocin Receptor (OXTR) Gene Affects the Circulating Oxytocin Receptor Levels in Late-Term Pregnancy in a Turkish Population. Gynecol Obstet Invest 2020; 85:343-351. [PMID: 32535602 DOI: 10.1159/000508074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 04/20/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Postterm and late-term pregnancies still remain a serious health problem, and underlying exact mechanisms are not fully elucidated. These mechanisms are influenced by many factors. OBJECTIVE The aim of this study was to investigate the relationship between plasma oxytocin and oxytocin receptor levels and oxytocin receptor polymorphisms in term and late-term pregnant women. METHODS Sixty-eight singleton pregnant women with late-term pregnancy and 83 singleton pregnant women with term parturition were included in this study. A comparison was performed between pregnancies and neonates born at term (37 0/7 and 41 6/7 weeks' gestation). Plasma oxytocin, oxytocin receptor, estradiol, and progesterone levels were measured by using enzyme-linked immunosorbent assay kits. TaqMan® SNP Genotyping Assays and qPCR ProbesMaster were used to investigate the polymorphisms of rs237911, rs2228485, rs53576, and rs2254298. RESULTS There was not any difference in gene distributions of 4 common single-nucleotide polymorphisms of oxytocin receptor of rs237911, rs2228485, rs53576, and rs2254298 between subjects in late-term and term pregnancy groups. With rs53576 of the GG genotype, serum oxytocin levels were 21.50 ± 10.69 (ng/L) in the late-term group and 62.71 ± 18.01 (ng/L) in the term group (p = 0.049). Oxytocin receptor levels in the late-term and term pregnancy groups of the GG genotype were 17.92 ± 8.15 (pg/mL) and 45.77 ± 11.66 (pg/mL), respectively (p = 0.046). CONCLUSION Our findings suggest that the rs53576 oxytocin receptor single-nucleotide polymorphism is associated with late-term pregnancy through acting by direct modulation of oxytocin and oxytocin receptor levels.
Collapse
Affiliation(s)
- Nermin Akdemir
- Department of Obstetrics and Gynecology, Sakarya University, Faculty of Medicine, Sakarya, Turkey,
| | - Fatma Behice Cinemre
- Department of Biochemistry, Sakarya University, Faculty of Medicine, Sakarya, Turkey
| | - Hakan Cinemre
- Department of Internal Medicine, Sakarya University, Faculty of Medicine, Sakarya, Turkey
| | - Leyla Sevinc
- Department of Biochemistry, Sakarya University, Faculty of Medicine, Sakarya, Turkey
| | - Birsen Aydemir
- Department of Biophysics, Sakarya University, Faculty of Medicine, Sakarya, Turkey
| | - Betul Coban
- Department of Obstetrics and Gynecology, Sakarya University, Faculty of Medicine, Sakarya, Turkey
| | - Arif Serhan Cevrioglu
- Department of Obstetrics and Gynecology, Sakarya University, Faculty of Medicine, Sakarya, Turkey
| | - Selcuk Ozden
- Department of Obstetrics and Gynecology, Sakarya University, Faculty of Medicine, Sakarya, Turkey
| |
Collapse
|