51
|
Zhao L, Zhang C, Abu‐Ershaid JM, Li M, Li Y, Naser Y, Dai X, Abbate MTA, Donnelly RF. Smart Responsive Microarray Patches for Transdermal Drug Delivery and Biological Monitoring. Adv Healthc Mater 2021; 10:e2100996. [PMID: 34449129 DOI: 10.1002/adhm.202100996] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/15/2021] [Indexed: 12/12/2022]
Abstract
Traditional drug delivery routes possess various disadvantages which make them unsuitable for certain population groups, or indeed unsuitable for drugs with certain physicochemical properties. As a result, a variety of alternative drug delivery routes have been explored in recent decades, including transdermal drug delivery. One of the most promising novel transdermal drug delivery technologies is a microarray patch (MAP), which can bypass the outermost skin barrier and deliver drugs directly into the viable epidermis and dermis. Unlike traditional MAPs which release loaded cargo simultaneously upon insertion into the skin, stimuli responsive MAPs based on biological stimuli are able to precisely release the drug in response to the need for additional doses. Thus, smart MAPs that are only responsive to certain external stimuli are highly desirable, as they provide safer and more efficient drug delivery. In addition to drug delivery, they can also be used for biological monitoring, which further expands their applications.
Collapse
Affiliation(s)
- Li Zhao
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL UK
| | - Chunyang Zhang
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL UK
| | | | - Mingshan Li
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL UK
| | - Yaocun Li
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL UK
| | - Yara Naser
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL UK
| | - Xianbing Dai
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL UK
| | - Marco T. A. Abbate
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL UK
| | - Ryan F. Donnelly
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL UK
| |
Collapse
|
52
|
Zhang X, Ong C, Su G, Liu J, Xu D. Characterization and engineering of S100A12-heparan sulfate interactions. Glycobiology 2021; 30:463-473. [PMID: 31942981 DOI: 10.1093/glycob/cwz111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/26/2019] [Accepted: 12/30/2019] [Indexed: 12/27/2022] Open
Abstract
S100A12, an EF-hand calcium-binding protein, can be secreted by a variety of cell types and plays proinflammatory roles in a number of pathological conditions. Although S100A12 has been shown to interact with heparan sulfate (HS), the molecular detail of the interaction remains unclear. Here we investigate the structural basis of S100A12-HS interaction and how the interaction is regulated by the availability of divalent cations and the oligomeric states of S100A12. We discovered that S100A12-HS interaction requires calcium, while zinc can further enhance binding by inducing S100A12 hexamerization. In contrast, the apo form and zinc-induced tetramer form were unable to bind HS. Guided by the crystal structures of S100A12, we have identified the HS-binding site of S100A12 by site-directed mutagenesis. Characterization of the HS-binding site of S100A12 allowed us to convert the non-HS-binding apo and tetramer forms of S100A12 into a high affinity HS-binding variant by engineering a single-point mutation. Using a HS oligosaccharide microarray, we demonstrated that the N43K mutant displayed markedly enhanced selectivity toward longer HS oligosaccharides compared to the WT S100A12, likely due to the expanded dimension of the reengineered HS-binding site in the mutant. This unexpected finding strongly suggests that HS-binding sites of proteins might be amenable for engineering.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Department of Oral Biology, The University at Buffalo, Buffalo, New York, 14214, USA
| | - Chihyean Ong
- Department of Oral Biology, The University at Buffalo, Buffalo, New York, 14214, USA
| | - Guowei Su
- Division of Chemical biology and Natural Product, School of Pharmacy, The University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Jian Liu
- Division of Chemical biology and Natural Product, School of Pharmacy, The University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Ding Xu
- Department of Oral Biology, The University at Buffalo, Buffalo, New York, 14214, USA
| |
Collapse
|
53
|
Nie C, Pouyan P, Lauster D, Trimpert J, Kerkhoff Y, Szekeres GP, Wallert M, Block S, Sahoo AK, Dernedde J, Pagel K, Kaufer BB, Netz RR, Ballauff M, Haag R. Polysulfate hemmen durch elektrostatische Wechselwirkungen die SARS‐CoV‐2‐Infektion**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chuanxiong Nie
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
- Institut für Virologie Freie Universität Berlin Robert-von-Ostertag-Straße 7–13 14163 Berlin Deutschland
| | - Paria Pouyan
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Daniel Lauster
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Jakob Trimpert
- Institut für Virologie Freie Universität Berlin Robert-von-Ostertag-Straße 7–13 14163 Berlin Deutschland
| | - Yannic Kerkhoff
- Department of Chemistry and Biochemistry Emmy-Noether Group “Bionanointerfaces” Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Gergo Peter Szekeres
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
- Department of Molecular Physics Fritz Haber Institute of the Max Planck Society Faradayweg 4–6 14195 Berlin Deutschland
| | - Matthias Wallert
- Department of Chemistry and Biochemistry Emmy-Noether Group “Bionanointerfaces” Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Stephan Block
- Department of Chemistry and Biochemistry Emmy-Noether Group “Bionanointerfaces” Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Anil Kumar Sahoo
- Fachbereich Physik Freie Universität Berlin Arnimallee 14 14195 Berlin Deutschland
- Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Deutschland
| | - Jens Dernedde
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie Charité-Universitätsmedizin Berlin Augustenburgerplatz 1 13353 Berlin Deutschland
| | - Kevin Pagel
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
- Department of Molecular Physics Fritz Haber Institute of the Max Planck Society Faradayweg 4–6 14195 Berlin Deutschland
| | - Benedikt B. Kaufer
- Institut für Virologie Freie Universität Berlin Robert-von-Ostertag-Straße 7–13 14163 Berlin Deutschland
| | - Roland R. Netz
- Fachbereich Physik Freie Universität Berlin Arnimallee 14 14195 Berlin Deutschland
| | - Matthias Ballauff
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Rainer Haag
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| |
Collapse
|
54
|
Nie C, Pouyan P, Lauster D, Trimpert J, Kerkhoff Y, Szekeres GP, Wallert M, Block S, Sahoo AK, Dernedde J, Pagel K, Kaufer BB, Netz RR, Ballauff M, Haag R. Polysulfates Block SARS-CoV-2 Uptake through Electrostatic Interactions*. Angew Chem Int Ed Engl 2021; 60:15870-15878. [PMID: 33860605 PMCID: PMC8250366 DOI: 10.1002/anie.202102717] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/29/2021] [Indexed: 12/20/2022]
Abstract
Here we report that negatively charged polysulfates can bind to the spike protein of SARS-CoV-2 via electrostatic interactions. Using a plaque reduction assay, we compare inhibition of SARS-CoV-2 by heparin, pentosan sulfate, linear polyglycerol sulfate (LPGS) and hyperbranched polyglycerol sulfate (HPGS). Highly sulfated LPGS is the optimal inhibitor, with an IC50 of 67 μg mL-1 (approx. 1.6 μm). This synthetic polysulfate exhibits more than 60-fold higher virus inhibitory activity than heparin (IC50 : 4084 μg mL-1 ), along with much lower anticoagulant activity. Furthermore, in molecular dynamics simulations, we verified that LPGS can bind more strongly to the spike protein than heparin, and that LPGS can interact even more with the spike protein of the new N501Y and E484K variants. Our study demonstrates that the entry of SARS-CoV-2 into host cells can be blocked via electrostatic interactions, therefore LPGS can serve as a blueprint for the design of novel viral inhibitors of SARS-CoV-2.
Collapse
Affiliation(s)
- Chuanxiong Nie
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
- Institut für VirologieFreie Universität BerlinRobert-von-Ostertag-Strasse 7–1314163BerlinGermany
| | - Paria Pouyan
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Daniel Lauster
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Jakob Trimpert
- Institut für VirologieFreie Universität BerlinRobert-von-Ostertag-Strasse 7–1314163BerlinGermany
| | - Yannic Kerkhoff
- Department of Chemistry and BiochemistryEmmy-Noether Group “Bionanointerfaces”Freie Universität BerlinArnimallee 2214195BerlinGermany
| | - Gergo Peter Szekeres
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
- Department of Molecular PhysicsFritz Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| | - Matthias Wallert
- Department of Chemistry and BiochemistryEmmy-Noether Group “Bionanointerfaces”Freie Universität BerlinArnimallee 2214195BerlinGermany
| | - Stephan Block
- Department of Chemistry and BiochemistryEmmy-Noether Group “Bionanointerfaces”Freie Universität BerlinArnimallee 2214195BerlinGermany
| | - Anil Kumar Sahoo
- Fachbereich PhysikFreie Universität BerlinArnimallee 1414195BerlinGermany
- Max Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Jens Dernedde
- Institut für Laboratoriumsmedizin, Klinische Chemie und PathobiochemieCharité-Universitätsmedizin BerlinAugustenburgerplatz 113353BerlinGermany
| | - Kevin Pagel
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
- Department of Molecular PhysicsFritz Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| | - Benedikt B. Kaufer
- Institut für VirologieFreie Universität BerlinRobert-von-Ostertag-Strasse 7–1314163BerlinGermany
| | - Roland R. Netz
- Fachbereich PhysikFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Matthias Ballauff
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Rainer Haag
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
| |
Collapse
|
55
|
Balogh G, Gyöngyösi T, Timári I, Herczeg M, Borbás A, Sadiq SK, Fehér K, Kövér KE. Conformational Analysis of Heparin-Analogue Pentasaccharides by Nuclear Magnetic Resonance Spectroscopy and Molecular Dynamics Simulations. J Chem Inf Model 2021; 61:2926-2936. [PMID: 34029080 DOI: 10.1021/acs.jcim.1c00200] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Elucidation and improvement of the blood coagulant properties of heparin are the focus of intense research. In this study, we performed conformational analysis using nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations on the heparin pentasaccharide analogue idraparinux, its disulfonatomethyl analogue, which features a slightly improved blood coagulation property, and a trisulfonatomethyl analogue, in which the activity has been totally abolished. As the ring conformation of the G subunit has been suggested as a major determinant of the biological properties, we analyzed the sugar ring conformations and dynamics of the interglycosidic linkages. We found that the conformation of the G ring is dominated by the 2SO skewed boat next to the 1C4 chair in all three derivatives. Both the thermodynamics and the kinetics of the conformational states were found to be highly similar in the three derivatives. Molecular kinetic analysis showed that the 2SO skewed boat state of the G ring is equally favorable in the three analogues, resulting in similar 2SO populations. Also, the transition kinetics from the 1C4 chair to the 2SO skewed boat was found to be comparable in the derivatives, which indicates a similar energy barrier between the two states of the G subunit. We also identified a slower conformational transition between the dominant 4C1 chair and the boat conformations on the E subunit. Both G and E ring flips are also accompanied by changes along the interglycosidic linkages, which take place highly synchronously with the ring flips. These findings indicate that conformational plasticity of the G ring and the dominance of the 2SO skewed boat populations do not necessarily warrant the biological activity of the derivatives and hence the impact of other factors also needs to be considered.
Collapse
Affiliation(s)
- Gábor Balogh
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Tamás Gyöngyösi
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.,MTA-DE Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - István Timári
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Mihály Herczeg
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.,Research Group for Oligosaccharide Chemistry of Hungarian Academy of Sciences, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - S Kashif Sadiq
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany.,European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Krisztina Fehér
- MTA-DE Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Katalin E Kövér
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.,MTA-DE Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| |
Collapse
|
56
|
Lisztes E, Mező E, Demeter F, Horváth L, Bősze S, István Tóth B, Borbás A, Herczeg M. Synthesis and Cell Growth Inhibitory Activity of Six Non-glycosaminoglycan-Type Heparin-Analogue Trisaccharides. ChemMedChem 2021; 16:1467-1476. [PMID: 33433040 PMCID: PMC8247843 DOI: 10.1002/cmdc.202000917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/11/2021] [Indexed: 12/27/2022]
Abstract
The design and synthesis of heparin mimetics with high anticancer activity but no anticoagulant activity is an important task in medicinal chemistry. Herein, we present the efficient synthesis of five Glc-GlcA-Glc-sequenced and one Glc-IdoA-Glc-sequenced non-glycosaminoglycan, heparin-related trisaccharides with various sulfation/sulfonylation and methylation patterns. The cell growth inhibitory effects of the compounds were tested against four cancerous human cell lines and two non-cancerous cell lines. Two d-glucuronate-containing tetra-O-sulfated, partially methylated trisaccharides displayed remarkable and selective inhibitory effects on the growth of ovary carcinoma (A2780) and melanoma (WM35) cells. Methyl substituents on the glucuronide unit proved to be detrimental, whereas acetyl substituents were beneficial to the cytostatic activity of the sulfated derivatives.
Collapse
Affiliation(s)
- Erika Lisztes
- Department of PhysiologyUniversity of Debrecen PO Box 224012DebrecenHungary
| | - Erika Mező
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Fruzsina Demeter
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
- Doctoral School of ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
- MTA-DE Molecular Recognition and Interaction Research Group, ELKHUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Lilla Horváth
- MTA-ELTE Research Group of Peptide ChemistryEötvös Loránd UniversityPázmány Péter sétány 1/a1117BudapestHungary
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide ChemistryEötvös Loránd UniversityPázmány Péter sétány 1/a1117BudapestHungary
| | - Balázs István Tóth
- Department of PhysiologyUniversity of Debrecen PO Box 224012DebrecenHungary
| | - Anikó Borbás
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Mihály Herczeg
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
- MTA-DE Research Group for Oligosaccharide Chemistry, ELKHEgyetem tér 14032DebrecenHungary
| |
Collapse
|
57
|
Izaguirre G, Swanson R, Roth R, Gettins PGW, Olson ST. Paramount Importance of Core Conformational Changes for Heparin Allosteric Activation of Antithrombin. Biochemistry 2021; 60:1201-1213. [PMID: 33822598 PMCID: PMC10921935 DOI: 10.1021/acs.biochem.1c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antithrombin is unique among serpin family protein protease inhibitors with respect to the major reactive center loop (RCL) and core conformational changes that mediate allosteric activation of its anticoagulant function by heparin. A critical role for expulsion of the RCL hinge from a native stabilizing interaction with the hydrophobic core in the activation mechanism has been proposed from reports that antithrombin variants that block this change through engineered disulfide bonds block activation. However, the sufficiency of core conformational changes for activation without expulsion of the RCL from the core is suggested by variants that are activated without the need for heparin and retain the native RCL-core interaction. To resolve these apparently conflicting findings, we engineered variants in which disulfides designed to block the RCL conformational change were combined with constitutively activating mutations. Our findings demonstrate that while a reversible constitutive activation can be engineered in variants that retain the native RCL-core interaction, engineered disulfides that lock the RCL native conformation can also block heparin allosteric activation. Such findings support a three-state allosteric activation model in which constitutive activating mutations stabilize an intermediate-activated state wherein core conformational changes and a major activation have occurred without the release of the RCL from the core but with a necessary repositioning of the RCL to allow productive engagement with an exosite. Rigid disulfide bonds that lock the RCL native conformation block heparin activation by preventing both RCL repositioning in the intermediate-activated state and the release of the RCL from the core in the fully activated state.
Collapse
|
58
|
Qiu XL, Fan ZR, Liu YY, Wang DF, Wang SX, Li CX. Preparation and Evaluation of a Self-Nanoemulsifying Drug Delivery System Loaded with Heparin Phospholipid Complex. Int J Mol Sci 2021; 22:ijms22084077. [PMID: 33920853 PMCID: PMC8071307 DOI: 10.3390/ijms22084077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022] Open
Abstract
A self-nanoemulsifying drug delivery system (SNEDDS) was developed to enhance the absorption of heparin after oral administration, in which heparin was compounded with phospholipids to achieve better fat solubility in the form of heparin-phospholipid (HEP-Pc) complex. HEP-Pc complex was prepared using the solvent evaporation method, which increased the solubility of heparin in n-octanol. The successful preparation of HEP-Pc complex was confirmed by differential scanning calorimetry (DSC), Fourier-transform infrared (FT-IR) spectroscopy, NMR, and SEM. A heparin lipid microemulsion (HEP-LM) was prepared by high-pressure homogenization and characterized. HEP-LM can enhance the absorption of heparin after oral administration, significantly prolong activated partial thromboplastin time (APTT) and thrombin time (TT) in mice, and reduce fibrinogen (FIB) content. All these outcomes indicate that HEP-LM has great potential as an oral heparin formulation.
Collapse
Affiliation(s)
- Xiao-Lei Qiu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.-L.Q.); (Z.-R.F.); (Y.-Y.L.); (D.-F.W.); (S.-X.W.)
| | - Zi-Rui Fan
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.-L.Q.); (Z.-R.F.); (Y.-Y.L.); (D.-F.W.); (S.-X.W.)
| | - Yang-Yang Liu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.-L.Q.); (Z.-R.F.); (Y.-Y.L.); (D.-F.W.); (S.-X.W.)
| | - Ding-Fu Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.-L.Q.); (Z.-R.F.); (Y.-Y.L.); (D.-F.W.); (S.-X.W.)
| | - Shi-Xin Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.-L.Q.); (Z.-R.F.); (Y.-Y.L.); (D.-F.W.); (S.-X.W.)
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Chun-Xia Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.-L.Q.); (Z.-R.F.); (Y.-Y.L.); (D.-F.W.); (S.-X.W.)
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- Correspondence: ; Tel.: +86-532-8203-1631; Fax: +86-532-8203-3054
| |
Collapse
|
59
|
Serpins in cartilage and osteoarthritis: what do we know? Biochem Soc Trans 2021; 49:1013-1026. [PMID: 33843993 PMCID: PMC8106492 DOI: 10.1042/bst20201231] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/17/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022]
Abstract
Serpins (serine proteinase inhibitors) are an ancient superfamily of structurally similar proteins, the majority of which use an elegant suicide inhibition mechanism to target serine proteinases. Despite likely evolving from a single common ancestor, the 36 human serpins have established roles regulating diverse biological processes, such as blood coagulation, embryonic development and extracellular matrix (ECM) turnover. Genetic mutations in serpin genes underpin a host of monogenic disorders — collectively termed the ‘serpinopathies’ — but serpin dysregulation has also been shown to drive pathological mechanisms in many common diseases. Osteoarthritis is a degenerative joint disorder, characterised by the progressive destruction of articular cartilage. This breakdown of the cartilage is driven by the metalloproteinases, and it has long been established that an imbalance of metalloproteinases to their inhibitors is of critical importance. More recently, a role for serine proteinases in cartilage destruction is emerging; including the activation of latent matrix metalloproteinases and cell-surface receptors, or direct proteolysis of the ECM. Serpins likely regulate these processes, as well as having roles beyond serine proteinase inhibition. Indeed, serpins are routinely observed to be highly modulated in osteoarthritic tissues and fluids by ‘omic analysis, but despite this, they are largely ignored. Confusing nomenclature and an underappreciation for the role of serine proteinases in osteoarthritis (OA) being the likely causes. In this narrative review, serpin structure, biochemistry and nomenclature are introduced, and for the first time, their putative importance in maintaining joint tissues — as well as their dysregulation in OA — are explored.
Collapse
|
60
|
Sang Y, Roest M, de Laat B, de Groot PG, Huskens D. Interplay between platelets and coagulation. Blood Rev 2021; 46:100733. [PMID: 32682574 PMCID: PMC7354275 DOI: 10.1016/j.blre.2020.100733] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/12/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022]
Abstract
Haemostasis stops bleeding at the site of vascular injury and maintains the integrity of blood vessels through clot formation. This regulated physiological process consists of complex interactions between endothelial cells, platelets, von Willebrand factor and coagulation factors. Haemostasis is initiated by a damaged vessel wall, followed with a rapid adhesion, activation and aggregation of platelets to the exposed subendothelial extracellular matrix. At the same time, coagulation factors aggregate on the procoagulant surface of activated platelets to consolidate the platelet plug by forming a mesh of cross-linked fibrin. Platelets and coagulation mutually influence each other and there are strong indications that, thanks to the interplay between platelets and coagulation, haemostasis is far more effective than the two processes separately. Clinically this is relevant because impaired interaction between platelets and coagulation may result in bleeding complications, while excessive platelet-coagulation interaction induces a high thrombotic risk. In this review, platelets, coagulation factors and the complex interaction between them will be discussed in detail.
Collapse
Affiliation(s)
- Yaqiu Sang
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Synapse Research Institute, Maastricht, the Netherlands
| | - Mark Roest
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Synapse Research Institute, Maastricht, the Netherlands
| | - Bas de Laat
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Synapse Research Institute, Maastricht, the Netherlands
| | | | - Dana Huskens
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Synapse Research Institute, Maastricht, the Netherlands.
| |
Collapse
|
61
|
Terauchi M, Tamura A, Arisaka Y, Masuda H, Yoda T, Yui N. Cyclodextrin-Based Supramolecular Complexes of Osteoinductive Agents for Dental Tissue Regeneration. Pharmaceutics 2021; 13:136. [PMID: 33494320 PMCID: PMC7911178 DOI: 10.3390/pharmaceutics13020136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Oral tissue regeneration has received growing attention for improving the quality of life of patients. Regeneration of oral tissues such as alveolar bone and widely defected bone has been extensively investigated, including regenerative treatment of oral tissues using therapeutic cells and growth factors. Additionally, small-molecule drugs that promote bone formation have been identified and tested as new regenerative treatment. However, treatments need to progress to realize successful regeneration of oral functions. In this review, we describe recent progress in development of regenerative treatment of oral tissues. In particular, we focus on cyclodextrin (CD)-based pharmaceutics and polyelectrolyte complexation of growth factors to enhance their solubility, stability, and bioactivity. CDs can encapsulate hydrophobic small-molecule drugs into their cavities, resulting in inclusion complexes. The inclusion complexation of osteoinductive small-molecule drugs improves solubility of the drugs in aqueous solutions and increases in vitro osteogenic differentiation efficiency. Additionally, various anionic polymers such as heparin and its mimetic polymers have been developed to improve stability and bioactivity of growth factors. These polymers protect growth factors from deactivation and degradation by complex formation through electrostatic interaction, leading to potentiation of bone formation ability. These approaches using an inclusion complex and polyelectrolyte complexes have great potential in the regeneration of oral tissues.
Collapse
Affiliation(s)
- Masahiko Terauchi
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan; (M.T.); (H.M.); (T.Y.)
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; (Y.A.); (N.Y.)
| | - Yoshinori Arisaka
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; (Y.A.); (N.Y.)
| | - Hiroki Masuda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan; (M.T.); (H.M.); (T.Y.)
| | - Tetsuya Yoda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan; (M.T.); (H.M.); (T.Y.)
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; (Y.A.); (N.Y.)
| |
Collapse
|
62
|
Rezaie AR, Giri H. Anticoagulant and signaling functions of antithrombin. J Thromb Haemost 2020; 18:3142-3153. [PMID: 32780936 PMCID: PMC7855051 DOI: 10.1111/jth.15052] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/25/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022]
Abstract
Antithrombin (AT) is a major plasma glycoprotein of the serpin superfamily that regulates the proteolytic activity of the procoagulant proteases of both intrinsic and extrinsic pathways. Two important structural features that participate in the regulatory function of AT include a mobile reactive center loop that binds to active site of coagulation proteases, trapping them in the form of inactive covalent complexes, and a basic D-helix that binds to therapeutic heparins and heparan sulfate proteoglycans (HSPGs) on vascular endothelial cells. The binding of D-helix of AT by therapeutic heparins promotes the reactivity of the serpin with coagulation proteases by several orders of magnitude by both a conformational activation of the serpin and a template (bridging) mechanism. In addition to its essential anticoagulant function, AT elicits a potent anti-inflammatory signaling response when it binds to distinct vascular endothelial cell HSPGs, thereby inducing prostacyclin synthesis. Syndecans-4 has been found as a specific membrane-bound HSPG receptor on endothelial cells that relays the signaling effect of AT to the relevant second messenger molecules in the signal transduction pathways inside the cell. However, following cleavage by coagulation proteases and/or by spontaneous conversion to a latent form, AT loses both its anti-inflammatory activity and high-affinity interaction with heparin and HSPGs. Interestingly, these low-affinity heparin conformers of AT elicit potent proapoptotic and antiangiogenic activities by also binding to specific HSPGs by unknown mechanisms. This review article will summarize current knowledge about mechanisms through which different conformers of AT exert their serine protease inhibitory and intracellular signaling functions in these biological pathways.
Collapse
Affiliation(s)
- Alireza R. Rezaie
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Hemant Giri
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| |
Collapse
|
63
|
Mycroft-West CJ, Su D, Pagani I, Rudd TR, Elli S, Gandhi NS, Guimond SE, Miller GJ, Meneghetti MCZ, Nader HB, Li Y, Nunes QM, Procter P, Mancini N, Clementi M, Bisio A, Forsyth NR, Ferro V, Turnbull JE, Guerrini M, Fernig DG, Vicenzi E, Yates EA, Lima MA, Skidmore MA. Heparin Inhibits Cellular Invasion by SARS-CoV-2: Structural Dependence of the Interaction of the Spike S1 Receptor-Binding Domain with Heparin. Thromb Haemost 2020; 120:1700-1715. [PMID: 33368089 DOI: 10.1101/2020.04.28.066761] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The dependence of development and homeostasis in animals on the interaction of hundreds of extracellular regulatory proteins with the peri- and extracellular glycosaminoglycan heparan sulfate (HS) is exploited by many microbial pathogens as a means of adherence and invasion. Heparin, a widely used anticoagulant drug, is structurally similar to HS and is a common experimental proxy. Exogenous heparin prevents infection by a range of viruses, including S-associated coronavirus isolate HSR1. Here, we show that heparin inhibits severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) invasion of Vero cells by up to 80% at doses achievable through prophylaxis and, particularly relevant, within the range deliverable by nebulisation. Surface plasmon resonance and circular dichroism spectroscopy demonstrate that heparin and enoxaparin, a low-molecular-weight heparin which is a clinical anticoagulant, bind and induce a conformational change in the spike (S1) protein receptor-binding domain (S1 RBD) of SARS-CoV-2. A library of heparin derivatives and size-defined fragments were used to probe the structural basis of this interaction. Binding to the RBD is more strongly dependent on the presence of 2-O or 6-O sulfate groups than on N-sulfation and a hexasaccharide is the minimum size required for secondary structural changes to be induced in the RBD. It is likely that inhibition of viral infection arises from an overlap between the binding sites of heparin/HS on S1 RBD and that of the angiotensin-converting enzyme 2. The results suggest a route for the rapid development of a first-line therapeutic by repurposing heparin and its derivatives as antiviral agents against SARS-CoV-2 and other members of the Coronaviridae.
Collapse
Affiliation(s)
- Courtney J Mycroft-West
- Molecular and Structural Biosciences, School of Life Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
| | - Dunhao Su
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Isabel Pagani
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Timothy R Rudd
- Analytical and Biological Sciences Division, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom
| | - Stefano Elli
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Milan, Italy
| | - Neha S Gandhi
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Scott E Guimond
- School of Medicine, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
| | - Gavin J Miller
- School of Chemical and Physical Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
| | - Maria C Z Meneghetti
- Biochemistry Department, Federal University of São Paulo (UNIFESP), São Paulo, SP Brazil
| | - Helena B Nader
- Biochemistry Department, Federal University of São Paulo (UNIFESP), São Paulo, SP Brazil
| | - Yong Li
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Quentin M Nunes
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Patricia Procter
- Molecular and Structural Biosciences, School of Life Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
| | | | | | - Antonella Bisio
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Milan, Italy
| | - Nicholas R Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Hartshill, Stoke-on-Trent, Staffordshire, United Kingdom
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - Jeremy E Turnbull
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Milan, Italy
| | - David G Fernig
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Elisa Vicenzi
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edwin A Yates
- Molecular and Structural Biosciences, School of Life Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Marcelo A Lima
- Molecular and Structural Biosciences, School of Life Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
| | - Mark A Skidmore
- Molecular and Structural Biosciences, School of Life Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
64
|
Kellici TF, Pilka ES, Bodkin MJ. Small-molecule modulators of serine protease inhibitor proteins (serpins). Drug Discov Today 2020; 26:442-454. [PMID: 33259801 DOI: 10.1016/j.drudis.2020.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/11/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Serine protease inhibitors (serpins) are a large family of proteins that regulate and control crucial physiological processes, such as inflammation, coagulation, thrombosis and thrombolysis, and immune responses. The extraordinary impact that these proteins have on numerous crucial pathways makes them an attractive target for drug discovery. In this review, we discuss recent advances in research on small-molecule modulators of serpins, examine their mode of action, analyse the structural data from crystallised protein-ligand complexes, and highlight the potential obstacles and possible therapeutic perspectives. The application of in silico methods for rational drug discovery is also summarised. In addition, we stress the need for continued research in this field.
Collapse
|
65
|
Denardo A, Elli S, Federici S, Asperti M, Gryzik M, Ruzzenenti P, Carmona F, Bergese P, Naggi A, Arosio P, Poli M. BMP6 binding to heparin and heparan sulfate is mediated by N-terminal and C-terminal clustered basic residues. Biochim Biophys Acta Gen Subj 2020; 1865:129799. [PMID: 33232799 DOI: 10.1016/j.bbagen.2020.129799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND The bone morphogenetic protein 6 (BMP6) is a crucial inducer of hepcidin, the peptide hormone that regulates the iron availability in our body. Hepcidin expression is influenced by hepatic heparan sulfate (HS) and by heparin administration, suggesting BMP6 interaction with heparin/HS. The BMP2/4 subfamily has been deeply characterized to have a N-terminal heparin/HS binding domain (HBD), whose basic residues contact the sulfate groups on heparin and HS. Such detailed characterization is still required for other, structurally different BMPs, including BMP6. METHODS BMP6 peptides encompassing potential HBDs were analysed on heparin-functionalized plates and microcantilevers, and on membrane HS expressing CHO-K1 cells. Monomeric wild-type BMP6 and mutants were produced, substituting the basic residues with non-charged ones, and their affinity to the heparin-column was measured. The BMP6-heparin interaction was also predicted at atomic level by in silico molecular dynamics. RESULTS N-terminal and C-terminal BMP6 peptides showed high heparin affinity in solid-phase assays. The mutation of the two sites (R5L, R6S, R7L and K126N, K127N, R129S) abolished the heparin-binding activity of the recombinant monomeric BMP6. Monomeric BMP6 and peptides specifically bound to membrane HS of CHO-K1 cells through the same domains. Molecular dynamic studies supported the role of the two HBDs, suggesting a cooperative behaviour. CONCLUSIONS In BMP6, N-terminal (R5, R6, R7) and C-terminal (K126, K127, R129) domains mediate the interaction with heparin and HS. GENERAL SIGNIFICANCE This study provides the molecular mechanism supporting the use of heparin to sequester BMP6 and inhibit hepcidin expression, a novel clinical approach for high-hepcidin iron disorders.
Collapse
Affiliation(s)
- Andrea Denardo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Stefano Elli
- G. Ronzoni Institute for Chemical and Biochemical Research, Via Giuseppe Colombo 81, 20133 Milan, Italy
| | - Stefania Federici
- Department of Mechanical and Industrial Engineering and INSTM, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - Michela Asperti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Magdalena Gryzik
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Paola Ruzzenenti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Fernando Carmona
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Paolo Bergese
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Annamaria Naggi
- G. Ronzoni Institute for Chemical and Biochemical Research, Via Giuseppe Colombo 81, 20133 Milan, Italy
| | - Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Maura Poli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| |
Collapse
|
66
|
Alabbas A, Desai UR. Enzyme immobilization offers a robust tool to scale up the production of longer, diverse, natural glycosaminoglycan oligosaccharides. Glycobiology 2020; 30:768-773. [PMID: 32193533 DOI: 10.1093/glycob/cwaa027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/15/2020] [Accepted: 03/18/2020] [Indexed: 11/14/2022] Open
Abstract
Although structurally diverse, longer glycosaminoglycan (GAG) oligosaccharides are critical to understand human biology, few are available. The major bottleneck has been the predominant production of oligosaccharides, primarily disaccharides, upon enzymatic depolymerization of GAGs. In this work, we employ enzyme immobilization to prepare hexasaccharide and longer sequences of chondroitin sulfate in good yields with reasonable homogeneity. Immobilized chondroitinase ABC displayed good efficiency, robust operational pH range, broad thermal stability, high recycle ability and excellent distribution of products in comparison to the free enzyme. Diverse sequences could be chromatographically resolved into well-defined peaks and characterized using LC-MS. Enzyme immobilization technology could enable easier access to diverse longer GAG sequences.
Collapse
Affiliation(s)
- Alhumaidi Alabbas
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA.,Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA.,Department of Pharmaceutical Chemistry, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Umesh R Desai
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA.,Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
67
|
Jairajpuri M, Ansari S. Using serpins cysteine protease cross-specificity to possibly trap SARS-CoV-2 Mpro with reactive center loop chimera. Clin Sci (Lond) 2020; 134:2235-2241. [PMID: 32869854 PMCID: PMC7463295 DOI: 10.1042/cs20200767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 01/20/2023]
Abstract
Human serine protease inhibitors (serpins) are the main inhibitors of serine proteases, but some of them also have the capability to effectively inhibit cysteine proteases. Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) main protease (Mpro) is a chymotrypsin-type cysteine protease that is needed to produce functional proteins essential for virus replication and transcription. Serpin traps its target proteases by presenting a reactive center loop (RCL) as protease-specific cleavage site, resulting in protease inactivation. Mpro target sites with its active site serine and other flanking residues can possibly interact with serpins. Alternatively, RCL cleavage site of serpins with known evidence of inhibition of cysteine proteases can be replaced by Mpro target site to make chimeric proteins. Purified chimeric serpin can possibly inhibit Mpro that can be assessed indirectly by observing the decrease in ability of Mpro to cleave its chromogenic substrate. Chimeric serpins with best interaction and active site binding and with ability to form 1:1 serpin-Mpro complex in human plasma can be assessed by using SDS/PAGE and Western blot analysis with serpin antibody. Trapping SARS-CoV-2 Mpro cysteine protease using cross-class serpin cysteine protease inhibition activity is a novel idea with significant therapeutic potential.
Collapse
Affiliation(s)
| | - Shoyab Ansari
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
68
|
Mannuß S. Influence of different methods and anticoagulants on platelet parameter measurement. J LAB MED 2020. [DOI: 10.1515/labmed-2020-0037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Abstract
Platelets are the smallest and perhaps the most versatile components of human blood. Besides their role in coagulation and the maintenance of vascular integrity, they are involved in many physiological processes, ranging from immune response and leukocyte recruitment to the production of antimicrobial peptides and immune-suppressive factors like TGF-β. These versatile abilities make platelets interesting for researchers from different disciplines. However, beside profound investigation into platelets’ physiological role, there is a need for correct, standardized and thus reproducible quantification of platelet parameters. Mean platelet volume (MPV) is a widespread prognostic marker for several conditions, such as, acute coronary syndrome, chronic kidney disease and liver cirrhosis. Platelet activation is regarded as a marker for inflammatory processes, for example in autoimmune diseases such as type-1 diabetes, systemic lupus erythematosus and rheumatoid arthritis. The monitoring of platelet function is relevant for patients receiving antiplatelet medication. Platelet parameter measurement is affected by the choice of in vitro anticoagulant, the measurement technology and the time delay after sampling. This review focuses on the pre-analytical variability that arises as a result of the use of different in vitro anticoagulants and analyzer technologies when determining platelet parameters, since, even approximately 180 years after the discovery of platelets, there is still no standardized procedure.
Collapse
Affiliation(s)
- Steffen Mannuß
- Klinikum der Stadt Ludwigshafen , Institut für Labordiagnostik, Hygiene und Transfusionsmedizin , Ludwigshafen , Germany
| |
Collapse
|
69
|
Baytas SN, Linhardt RJ. Advances in the preparation and synthesis of heparin and related products. Drug Discov Today 2020; 25:2095-2109. [PMID: 32947045 DOI: 10.1016/j.drudis.2020.09.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/04/2020] [Accepted: 09/10/2020] [Indexed: 01/01/2023]
Abstract
Heparin is a naturally occurring glycosaminoglycan from livestock, principally porcine intestine, and is clinically used as an anticoagulant drug. A limitation to heparin production is that it depends on a single animal species and potential problems have been associated with animal-derived heparin. The contamination crisis in 2008 led to a search for new animal sources and the investigation of non-animal sources of heparin. Over the past 5 years, new animal sources, chemical, and chemoenzymatic methods have been introduced to prepare heparin-based drugs. In this review, we describe advances in the preparation and synthesis of heparin and related products.
Collapse
Affiliation(s)
- Sultan N Baytas
- Department of Chemistry & Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Robert J Linhardt
- Department of Chemistry & Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
70
|
Derbalah A, Duffull S, Newall F, Moynihan K, Al-Sallami H. Revisiting the Pharmacology of Unfractionated Heparin. Clin Pharmacokinet 2020; 58:1015-1028. [PMID: 30850987 DOI: 10.1007/s40262-019-00751-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Unfractionated heparin (UFH) is a commonly used anticoagulant therapy for the acute treatment and prevention of thrombosis. Its short duration of action, reversibility of effect by protamine sulfate, and extensive clinical experience are some of the advantages that support its use. However, the choice of dose and dosing regimen of UFH remains challenging for several reasons. First, UFH has a narrow therapeutic window and wide variability in the dose-response relationship. Second, its pharmacodynamic (PD) properties are difficult to characterise owing to the complex multidimensional mechanisms of interaction with the haemostatic system. Third, the complex heterogeneous chemical composition of UFH precludes precise characterisation of its pharmacokinetic (PK) properties. This review provides a comprehensive mechanistic approach to the interaction of UFH with the haemostatic system. The effect of chemical structure on its PK and PD properties is quantitatively described, and a framework for characterisation of the dose-response relationship of UFH for the purpose of dose optimisation is proposed.
Collapse
Affiliation(s)
| | - Stephen Duffull
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Fiona Newall
- Department of Nursing, The University of Melbourne, Parkville, VIC, Australia.,Department of Paediatrics, The Royal Children's Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Katie Moynihan
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.,Department of Paediatrics, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
71
|
Elli S, Stancanelli E, Wang Z, Petitou M, Liu J, Guerrini M. Degeneracy of the Antithrombin Binding Sequence in Heparin: 2-O-Sulfated Iduronic Acid Can Replace the Critical Glucuronic Acid. Chemistry 2020; 26:11814-11818. [PMID: 32515841 DOI: 10.1002/chem.202001346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Indexed: 11/07/2022]
Abstract
Heparin binds to and activates antithrombin (AT) through a specific pentasaccharide sequence, in which a trisaccharide subsite, containing glucuronic acid (GlcA), has been considered as the initiator in the recognition of the polysaccharide by the protein. Recently it was suggested that sulfated iduronic acid (IdoA2S) could replace this "canonical" GlcA. Indeed, a heparin octasaccharidic sequence obtained by chemoenzymatic synthesis, in which GlcA is replaced with IdoA2S, has been found to similarly bind to and activate antithrombin. By using saturation-transfer-difference (STD) NMR, NOEs, transferred NOEs (tr-NOEs) NMR and molecular dynamics, we show that, upon binding to AT, this IdoA2S unit develops comparable interactions with AT as GlcA. Interestingly, two IdoA2S units, both present in a 1 C4 -2 S0 equilibrium in the unbound saccharide, shift to full 2 S0 and full 1 C4 upon binding to antithrombin, providing the best illustration of the critical role of iduronic acid conformational flexibility in biological systems.
Collapse
Affiliation(s)
- Stefano Elli
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", via G. Colombo 81, 20133, Milan, Italy
| | - Eduardo Stancanelli
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", via G. Colombo 81, 20133, Milan, Italy
| | - Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Maurice Petitou
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", via G. Colombo 81, 20133, Milan, Italy
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", via G. Colombo 81, 20133, Milan, Italy
| |
Collapse
|
72
|
Horton M, Su G, Yi L, Wang Z, Xu Y, Pagadala V, Zhang F, Zaharoff DA, Pearce K, Linhardt RJ, Liu J. Construction of heparan sulfate microarray for investigating the binding of specific saccharide sequences to proteins. Glycobiology 2020; 31:188-199. [PMID: 32681173 DOI: 10.1093/glycob/cwaa068] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/17/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023] Open
Abstract
Heparan sulfate (HS) is a heterogeneous, extracellular glycan that interacts with proteins and other molecules affecting many biological processes. The specific binding motifs of HS interactions are of interest, but have not been extensively characterized. Glycan microarrays are valuable tools that can be used to probe the interactions between glycans and their ligands while relying on relatively small amounts of samples. Recently, chemoenzymatic synthesis of HS has been employed to produce specific HS structures that can otherwise be difficult to produce. In this study, a microarray of diverse chemoenzymatically synthesized HS structures was developed and HS interactions were characterized. Fluorescently labeled antithrombin III (AT) and fibroblast growth factor-2 (FGF2) were screened against 95 different HS structures under three different printing concentrations to confirm the utility of this microarray. Specific sulfation patterns were found to be important for binding to these proteins and results are consistent with previous specificity studies. Furthermore, the binding affinities (KD,surf) of AT and FGF2 to multiple HS structures were determined using a microarray technique and is consistent with previous reports. Lastly, the 95-compound HS microarray was used to determine the distinct binding profiles for interleukin 12 and platelet factor 4. This technique is ideal for rapid expansion and will be pivotal to the high-throughput characterization of biologically important structure/function relationships.
Collapse
Affiliation(s)
- Maurice Horton
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Guowei Su
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Lin Yi
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | | | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - David A Zaharoff
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill & North Carolina State University, Raleigh, NC, USA
| | - Ken Pearce
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
73
|
Nagarajan B, Sankaranarayanan NV, Desai UR. Rigorous analysis of free solution glycosaminoglycan dynamics using simple, new tools. Glycobiology 2020; 30:516-527. [PMID: 32080710 PMCID: PMC8179626 DOI: 10.1093/glycob/cwaa015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 11/15/2022] Open
Abstract
Heparin/heparan sulfates (H/HS) are ubiquitous biopolymers that interact with many proteins to induce a range of biological functions. Unfortunately, how these biopolymers recognize their preferred protein targets remain poorly understood. It is suggested that computational simulations offer attractive avenues but a number of challenges, e.g., difficulty of selecting a comprehensive force field, few simple tools to interpret data, among others, remain. This work addresses several such challenges so as to help ease the implementation and analysis of computational experiments. First, this work presents a rigorous comparison of two different recent force fields, CHARMM36 and GLYCAM06, for H/HS studies. Second, it introduces two new straightforward parameters, i.e., end-to-end distance and minimum volume enclosing ellipsoid, to understand the myriad conformational forms of oligosaccharides that evolve over time in water. Third, it presents an application to elucidate the number and nature of inter and intramolecular, nondirect bridging water molecules, which help stabilize unique forms of H/HS. The results show that nonspecialists can use either CHARMM36 or GLYCAM06 force fields because both gave comparable results, albeit with small differences. The comparative study shows that the HS hexasaccharide samples a range of conformations with nearly equivalent energies, which could be the reason for its recognition by different proteins. Finally, analysis of the nondirect water bridges across the dynamics trajectory shows their importance in stabilization of certain conformational forms, which may become important for protein recognition. Overall, the work aids nonspecialists employ computational studies for understanding the solution behavior of H/HS.
Collapse
Affiliation(s)
- Balaji Nagarajan
- Institute for Structural Biology, Drug Discovery and Development, 800 E. Leigh Street, Suite 212, Richmond, VA 23219, USA
- Department of Medicinal Chemistry, 800 E. Leigh Street, Suite 205, Richmond, VA 23298, USA
| | - Nehru Viji Sankaranarayanan
- Institute for Structural Biology, Drug Discovery and Development, 800 E. Leigh Street, Suite 212, Richmond, VA 23219, USA
- Department of Medicinal Chemistry, 800 E. Leigh Street, Suite 205, Richmond, VA 23298, USA
| | - Umesh R Desai
- Institute for Structural Biology, Drug Discovery and Development, 800 E. Leigh Street, Suite 212, Richmond, VA 23219, USA
- Department of Medicinal Chemistry, 800 E. Leigh Street, Suite 205, Richmond, VA 23298, USA
| |
Collapse
|
74
|
Ma L, Wu J, Zheng Y, Shu Z, Wei Z, Sun Y, Carrell RW, Zhou A. Heparin Blocks the Inhibition of Tissue Kallikrein 1 by Kallistatin through Electrostatic Repulsion. Biomolecules 2020; 10:E828. [PMID: 32481593 PMCID: PMC7356578 DOI: 10.3390/biom10060828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 11/16/2022] Open
Abstract
Kallistatin, also known as SERPINA4, has been implicated in the regulation of blood pressure and angiogenesis, due to its specific inhibition of tissue kallikrein 1 (KLK1) and/or by its heparin binding ability. The binding of heparin on kallistatin has been shown to block the inhibition of KLK1 by kallistatin but the detailed molecular mechanism underlying this blockade is unclear. Here we solved the crystal structures of human kallistatin and its complex with heparin at 1.9 and 1.8 Å resolution, respectively. The structures show that kallistatin has a conserved serpin fold and undergoes typical stressed-to-relaxed conformational changes upon reactive loop cleavage. Structural analysis and mutagenesis studies show that the heparin binding site of kallistatin is located on a surface with positive electrostatic potential near a unique protruded 310 helix between helix H and strand 2 of β-sheet C. Heparin binding on this site would prevent KLK1 from docking onto kallistatin due to the electrostatic repulsion between heparin and the negatively charged surface of KLK1, thus blocking the inhibition of KLK1 by kallistatin. Replacement of the acidic exosite 1 residues of KLK1 with basic amino acids as in thrombin resulted in accelerated inhibition. Taken together, these data indicate that heparin controls the specificity of kallistatin, such that kinin generation by KLK1 within the microcirculation will be locally protected by the binding of kallistatin to the heparin-like glycosaminoglycans of the endothelium.
Collapse
Affiliation(s)
- Lina Ma
- Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.M.); (J.W.); (Z.S.); (Z.W.)
| | - Jiawei Wu
- Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.M.); (J.W.); (Z.S.); (Z.W.)
| | - Ying Zheng
- Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.M.); (J.W.); (Z.S.); (Z.W.)
| | - Zimei Shu
- Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.M.); (J.W.); (Z.S.); (Z.W.)
| | - Zhenquan Wei
- Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.M.); (J.W.); (Z.S.); (Z.W.)
| | - Yinbiao Sun
- Randall Division of Cell & Molecular Biophysics, Faculty of Life Sciences & Medicine, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK;
| | - Robin W. Carrell
- Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK;
| | - Aiwu Zhou
- Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.M.); (J.W.); (Z.S.); (Z.W.)
| |
Collapse
|
75
|
Vignovich WP, Pomin VH. Saturation Transfer Difference in Characterization of Glycosaminoglycan-Protein Interactions. SLAS Technol 2020; 25:307-319. [PMID: 32452261 DOI: 10.1177/2472630320921130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Novel methods in nuclear magnetic resonance (NMR) spectroscopy have recently been developed to investigate the binding properties of intermolecular complexes endowed with biomedical functions. Among these methods is the saturation transfer difference (STD), which enables the mapping of specific binding motifs of functional ligands. STD can efficiently uncover the specific and preferential binding sites of these ligands in their intermolecular complexes. This is particularly useful in the case of glycosaminoglycans (GAGs), a group of sulfated polysaccharides that play pivotal roles in various biological and pathological processes. The activity of GAGs is ultimately mediated through molecular interactions with key functional proteins, namely, GAG-binding proteins (GBPs). The quality of the GAG-GBP interactions depends on sulfation patterns, oligosaccharide length, and the composing monosaccharides of GAGs. Through STD NMR, information about the atoms of the GAG ligands involved in the complexes is provided. Here we highlight the latest achievements of the literature using STD NMR on GAG oligosaccharide-GBP complexes. Interestingly, most of the GBPs studied so far by STD NMR belong to one of the three major classes: coagulation factors, growth factors, or chemokine/cytokines. Unveiling the structural requirements of GAG ligands in bindings with their protein partners is a crucial step to understand the biochemical and medical actions of GAGs. This process is also a requirement in GAG-based drug discovery and development.
Collapse
Affiliation(s)
- William P Vignovich
- BioMolecular Sciences Department, School of Pharmacy, the University of Mississippi, Oxford, MS, USA
| | - Vitor H Pomin
- BioMolecular Sciences Department, School of Pharmacy, the University of Mississippi, Oxford, MS, USA.,Research Institute of Pharmaceutical Sciences, School of Pharmacy, the University of Mississippi, Oxford, MS, USA
| |
Collapse
|
76
|
Lu Y, Villoutreix BO, Biswas I, Ding Q, Wang X, Rezaie AR. Thr90Ser Mutation in Antithrombin is Associated with Recurrent Thrombosis in a Heterozygous Carrier. Thromb Haemost 2020; 120:1045-1055. [PMID: 32422680 DOI: 10.1055/s-0040-1710590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Antithrombin (AT) is a serine protease inhibitor that regulates the activity of coagulation proteases of both intrinsic and extrinsic pathways. We identified an AT-deficient patient with a heterozygous Thr90Ser (T90S) mutation who experiences recurrent venous thrombosis. To understand the molecular basis of the clotting defect, we expressed AT-T90S in mammalian cells, purified it to homogeneity, and characterized its properties in established kinetics, binding, and coagulation assays. The possible effect of mutation on the AT structure was also evaluated by molecular modeling. Results demonstrate the inhibitory activity of AT-T90S toward thrombin and factor Xa has been impaired three- to fivefold in both the absence and presence of heparin. The affinity of heparin for AT-T90S has been decreased by four- to fivefold. Kinetic analysis revealed the stoichiometry of AT-T90S inhibition of both thrombin and factor Xa has been elevated by three- to fourfold in both the absence and presence of heparin, suggesting that the reactivity of coagulation proteases with AT-T90S has been elevated in the substrate pathway. The anticoagulant activity of AT-T90S has been significantly impaired as analyzed in the AT-deficient plasma supplemented with AT-T90S. The anti-inflammatory effect of AT-T90S was also decreased. Structural analysis predicts the shorter side-chain of Ser in AT-T90S has a destabilizing effect on the structure of AT and/or the AT-protease complex, possibly increasing the size of an internal cavity and altering a hydrogen-bonding network that modulates conformations of the allosterically linked heparin-binding site and reactive center loop of the serpin. This mutational effect increases the reactivity of AT-T90S with coagulation proteases in the substrate pathway.
Collapse
Affiliation(s)
- Yeling Lu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Bruno O Villoutreix
- Drugs and Molecules for Living Systems, Inserm, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Indranil Biswas
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Qiulan Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Alireza R Rezaie
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
77
|
Niu C, Zhao Y, Bobst CE, Savinov SN, Kaltashov IA. Identification of Protein Recognition Elements within Heparin Chains Using Enzymatic Foot-Printing in Solution and Online SEC/MS. Anal Chem 2020; 92:7565-7573. [PMID: 32347711 DOI: 10.1021/acs.analchem.0c00115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding molecular mechanisms governing interactions of glycosaminoglycans (such as heparin) with proteins remains challenging due to their enormous structural heterogeneity. Commonly accepted approaches seek to reduce the structural complexity by searching for "binding epitopes" within the limited subsets of short heparin oligomers produced either enzymatically or synthetically. A top-down approach presented in this work seeks to preserve the chemical diversity displayed by heparin by allowing the longer and structurally diverse chains to interact with the client protein. Enzymatic lysis of the protein-bound heparin chains followed by the product analysis using size exclusion chromatography with online mass spectrometry detection (SEC/MS) reveals the oligomers that are protected from lysis due to their tight association with the protein, and enables their characterization (both the oligomer length, and the number of incorporated sulfate and acetyl groups). When applied to a paradigmatic heparin/antithrombin system, the new method generates a series of oligomers with surprisingly distinct sulfation levels. The extent of sulfation of the minimal-length binder (hexamer) is relatively modest yet persistent, consistent with the notion of six sulfate groups being both essential and sufficient for antithrombin binding. However, the masses of longer surviving chains indicate complete sulfation of disaccharides beyond the hexasaccharide core. Molecular dynamics simulations confirm the existence of favorable electrostatic interactions between the high charge-density saccharide residues flanking the "canonical" antithrombin-binding hexasaccharide and the positive patch on the surface of the overall negatively charged protein. Furthermore, electrostatics may rescue the heparin/protein interaction in the absence of the canonical binding element.
Collapse
Affiliation(s)
- Chendi Niu
- Chemistry Department, University of Massachusetts-Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Yunlong Zhao
- Chemistry Department, University of Massachusetts-Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Cedric E Bobst
- Chemistry Department, University of Massachusetts-Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Sergey N Savinov
- Biochemistry and Molecular Biology Department, University of Massachusetts-Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Igor A Kaltashov
- Chemistry Department, University of Massachusetts-Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| |
Collapse
|
78
|
Antithrombin gamma attenuates macrophage/microglial activation and brain damage after transient focal cerebral ischemia in mice. Life Sci 2020; 252:117665. [PMID: 32305521 DOI: 10.1016/j.lfs.2020.117665] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/27/2020] [Accepted: 04/09/2020] [Indexed: 01/09/2023]
Abstract
AIMS Thrombin formation is increased in patients with acute cerebral ischemic stroke, and augments coagulation and inflammation in the brain. Administration of antithrombin (AT) was previously reported to be protective against renal and myocardial ischemic injury. Thus, we hypothesized that treatment with AT would be neuroprotective against cerebral ischemic injury. This study evaluated the effects of AT treatment on ischemic inflammation and brain damage in mice subjected to middle cerebral artery occlusion (MCAO). MAIN METHODS A mouse model of 4-hour MCAO was used to induce ischemic brain injury. Recombinant AT gamma was administered intravenously immediately after reperfusion at 4 h after MCAO. Infarct volume, neurological deficit, and regional cerebral blood flow (rCBF) were measured at 24 h after MCAO. To evaluate the effect of AT gamma on ischemic inflammation, we measured the number of Iba1-positive cells (marker of macrophage/microglial activation) and levels of proinflammatory cytokines. Further, we investigated the direct anti-inflammatory effects of rAT in the J774.1 cell line. KEY FINDINGS Treatment with AT gamma (480 U/kg) reduced infarct volume and neurological deficit, and improved rCBF, in MCAO mice. Moreover, AT gamma treatment decreased the number of Iba1-positive cells and levels of proinflammatory cytokines. In vitro, treatment with thrombin significantly increased proinflammatory cytokine levels, which was significantly reduced by pretreatment with AT gamma. SIGNIFICANCE Treatment with AT showed neuroprotective effects via anticoagulation actions, as well as direct anti-inflammatory effects on macrophage/microglial activation. These data suggest that AT may be a useful new therapeutic option for cerebral ischemia.
Collapse
|
79
|
Zhao Y, Kaltashov IA. Evaluation of top-down mass spectrometry and ion-mobility spectroscopy as a means of mapping protein-binding motifs within heparin chains. Analyst 2020; 145:3090-3099. [PMID: 32150181 PMCID: PMC7160044 DOI: 10.1039/d0an00097c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Identifying structural elements within heparin (as well as other glycosaminoglycan) chains that enable their interaction with a specific client protein remains a challenging task due to the high degree of both intra- and inter-chain heterogeneity exhibited by this polysaccharide. The new experimental approach explored in this work is based on the assumption that the heparin chain segments bound to the protein surface will be less prone to collision-induced dissociation (CID) in the gas phase compared to the chain regions that are not involved in binding. Facile removal of the unbound chain segments from the protein/heparin complex should allow the length and the number of sulfate groups within the protein-binding segment of the heparin chain to be determined by measuring the mass of the truncated heparin chain that remains bound to the protein. Conformational integrity of the heparin-binding interface on the protein surface in the course of CID is ensured by monitoring the evolution of collisional cross-section (CCS) of the protein/heparin complexes as a function of collisional energy. A dramatic increase in CCS signals the occurrence of large-scale conformational changes within the protein and identifies the energy threshold, beyond which relevant information on the protein-binding segments of heparin chains is unlikely to be obtained. Testing this approach using a 1 : 1 complex formed by a recombinant form of an acidic fibroblast growth factor (FGF-1) and a synthetic pentasaccharide GlcNS,6S-GlcA-GlcNS,3S,6S-IdoA2S-GlcNS,6S-Me as a model system indicated that a tri-saccharide fragment is the minimal-length FGF-binding segment. Extension of this approach to a decameric heparin chain (dp10) allowed meaningful binding data to be obtained for a 1 : 1 protein/dp10 complex, while the ions representing the higher stoichiometry complex (2 : 1) underwent dissociation via asymmetric charge partitioning without generating truncated heparin chains that remain bound to the protein.
Collapse
Affiliation(s)
- Yunlong Zhao
- Chemistry Department, University of Massachusetts-Amherst, 240 Thatcher Way, Amherst, MA 01003, USA.
| | - Igor A Kaltashov
- Chemistry Department, University of Massachusetts-Amherst, 240 Thatcher Way, Amherst, MA 01003, USA.
| |
Collapse
|
80
|
Sankaranarayanan NV, Bi Y, Kuberan B, Desai UR. Combinatorial virtual library screening analysis of antithrombin binding oligosaccharide motif generation by heparan sulfate 3- O-Sulfotransferase 1. Comput Struct Biotechnol J 2020; 18:933-941. [PMID: 32346466 PMCID: PMC7183009 DOI: 10.1016/j.csbj.2020.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 12/31/2022] Open
Abstract
Pharmaceutical heparin's activity arises from a key high affinity and high selectivity antithrombin binding motif, which forms the basis for its use as an anticoagulant. The current problems with the supply of pig heparin raises the emphasis of understanding heparin biosynthesis so as to control and advance recombinantly expressed agent that could bypass the need for animals. Unfortunately, much remains to be understood about the generation of the antithrombin-binding motif by the key enzyme involved in its biosynthesis, 3-O-sulfotransferase-1 (3OST-1). In this work, we present a novel computational approach to understand recognition of oligosaccharide sequences by 3OST-1. Application of combinatorial virtual library screening (CVLS) algorithm on hundreds of tetrasaccharide and hexasaccharide sequences shows that 3OST-1 belongs to the growing number of proteins that recognize glycosaminoglycans with very high selectivity. It prefers very well defined pentasaccharide sequences carrying distinct groups in each of the five residues to generate the antithrombin binding motif. CVLS also identifies key residues including His271, Arg72, Arg197 and Lys173, which interact with 6-sulfate, 5-COO¯, 2-/6-sulfates and 2-sulfate at the -2, -1, +2, and +1 positions of the precursor pentasaccharide, respectively. Additionally, uncharged residues, especially Gln163 and Asn167, were also identified as playing important roles in recognition. Overall, the success of CVLS in predicting 3OST-1 recognition characteristics that help engineer selectivity lead to the expectation that recombinant enzymes could be designed to help resolve the current problems in the supply of anticoagulant heparin.
Collapse
Affiliation(s)
- Nehru Viji Sankaranarayanan
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States
| | - Yiling Bi
- Departments of Biology, Bioengineering & Medicinal Chemistry and Interdepartmental Program in Neurosciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Balagurunathan Kuberan
- Departments of Biology, Bioengineering & Medicinal Chemistry and Interdepartmental Program in Neurosciences, University of Utah, Salt Lake City, UT 84112, USA
- Interdepartmental Program in Neurosciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Umesh R. Desai
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
81
|
Zhu T, Zhou M, Gao W, Fang D, Liu Z, Wu G, Wan M, Mao C, Shen J. Coronary Stents Decorated by Heparin/NONOate Nanoparticles for Anticoagulant and Endothelialized Effects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2901-2910. [PMID: 32114762 DOI: 10.1021/acs.langmuir.0c00112] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the treatment of coronary artery disease (CAD), the use of stent implantation often leads to clinical complications such as restenosis, delayed endothelial healing, and thrombosis. Here, we develop a double drug sustained-release coating for the stent surface by grafting heparin/NONOate nanoparticles (Hep/NONOates). The Hep/NONOates and surface modification of the stent were characterized by X-ray photoelectron spectroscopy, attenuated total reflection Fourier-transform infrared spectroscopy, static water contact angle, and scanning electron microscopy (SEM), and the release behaviors of the anticoagulant, heparin (Hep) and the bioactive molecule, nitric oxide (NO) were studied. Furthermore, the blood compatibility and cytotoxicity of the modified stent were evaluated by whole blood adhesion and platelet adhesion tests, hemolysis assay, morphological changes of red blood cells, plasma recalcification time assay, in vitro coagulation time tests, and MTT assay. Finally, the results of a rabbit carotid artery stent implantation experiment showed that the double drug sustained-release coating for the stent can accelerate regeneration of endothelial cells and keep good anticoagulant activity. This study can provide new design ideas based on nanotechnology for improving the safety and effectiveness of drug-eluting stents.
Collapse
Affiliation(s)
- Tianyu Zhu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Wentao Gao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Dan Fang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhiyong Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Guangyan Wu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
82
|
Randomized Comparison Study of Novel Recombinant Human Antithrombin Gamma and Plasma-Derived Antithrombin in Healthy Volunteers. Clin Drug Investig 2020; 39:1185-1194. [PMID: 31493216 PMCID: PMC6842348 DOI: 10.1007/s40261-019-00847-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Background and Objective This paper describes two studies, which aimed to compare the safety and plasma antithrombin activity of recombinant human antithrombin gamma (rhAT-gamma) with plasma-derived antithrombin (pAT) 60 IU/kg, and to establish bioequivalence by adjusting the rhAT-gamma dose to that at which plasma antithrombin activity equaled that for pAT 60 IU/kg, based on results of the first study. Methods Healthy adult men aged 20–45 years received once-daily doses of rhAT-gamma or pAT intravenously for 3 days (first study: 60 IU/kg of each; second study: 72 IU/kg of rhAT-gamma and 60 IU/kg of pAT). Maximum plasma antithrombin activity after three doses (Cmax,day3) and area under the plasma antithrombin activity-time curve after the third dose (AUC48–t) were analyzed. Safety was also assessed. Results In the first study, we compared AUCs to 121 h (when the lower limit of quantification was first observed). Mean Cmax,day3 was 1.67 IU/mL in the rhAT-gamma group and 1.77 IU/mL in the pAT group; mean AUC48–121 was 58.44 and 71.94 IU·h/mL, respectively. Thus, we set the dose of rhAT-gamma in the second study to 72 IU/kg. As a result, ratios of Cmax,day3 and AUC48–t in the rhAT-gamma vs. the pAT group were 105.7% (90% confidence interval 100.3, 111.3) and 100.5% (90% confidence interval 91.5, 110.4), respectively. Adverse events were more frequent in the rhAT-gamma group. Conclusions As 90% confidence intervals for Cmax,day3 and AUC48–t ratios for rhAT-gamma:pAT were within the acceptability range for bioequivalence, rhAT-gamma (72 IU/kg) and pAT (60 IU/kg) are considered bioequivalent. Electronic supplementary material The online version of this article (10.1007/s40261-019-00847-9) contains supplementary material, which is available to authorized users.
Collapse
|
83
|
Stopschinski BE, Thomas TL, Nadji S, Darvish E, Fan L, Holmes BB, Modi AR, Finnell JG, Kashmer OM, Estill-Terpack S, Mirbaha H, Luu HS, Diamond MI. A synthetic heparinoid blocks Tau aggregate cell uptake and amplification. J Biol Chem 2020; 295:2974-2983. [PMID: 31974166 DOI: 10.1074/jbc.ra119.010353] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 01/21/2020] [Indexed: 01/30/2023] Open
Abstract
Tau aggregation underlies neurodegeneration in Alzheimer's disease and related tauopathies. We and others have proposed that transcellular propagation of pathology is mediated by Tau prions, which are ordered protein assemblies that faithfully replicate in vivo and cause specific biological effects. The prion model predicts the release of aggregates from a first-order cell and subsequent uptake into a second-order cell. The assemblies then serve as templates for their own replication, a process termed "seeding." We have previously observed that heparan sulfate proteoglycans on the cell surface mediate the cellular uptake of Tau aggregates. This interaction is blocked by heparin, a sulfated glycosaminoglycan. Indeed, heparin-like molecules, or heparinoids, have previously been proposed as a treatment for PrP prion disorders. However, heparin is not ideal for managing chronic neurodegeneration, because it is difficult to synthesize in defined sizes, may have poor brain penetration because of its negative charge, and is a powerful anticoagulant. Therefore, we sought to generate an oligosaccharide that would bind Tau and block its cellular uptake and seeding, without exhibiting anticoagulation activity. We created a compound, SN7-13, from pentasaccharide units and tested it in a range of assays that measured direct binding of Tau to glycosaminoglycans and inhibition of Tau uptake and seeding in cells. SN7-13 does not inhibit coagulation, binds Tau with low nanomolar affinity, and inhibits cellular Tau aggregate propagation similarly to standard porcine heparin. This synthetic heparinoid could facilitate the development of agents to treat tauopathy.
Collapse
Affiliation(s)
- Barbara E Stopschinski
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Neurology, RWTH University Aachen, 52074 Aachen, Germany
| | - Talitha L Thomas
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Sourena Nadji
- PharmaRen Discovery LLC, Berkeley, Missouri 63134-3115
| | - Eric Darvish
- PharmaRen Discovery LLC, Berkeley, Missouri 63134-3115
| | - Linfeng Fan
- Shanghai Acana Pharmtech Co. Ltd., Berkeley, Missouri 63134-3115
| | - Brandon B Holmes
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Neurology, University of California, San Francisco, California 94143
| | - Anuja R Modi
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Jordan G Finnell
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Omar M Kashmer
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Sandi Estill-Terpack
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Hilda Mirbaha
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Hung S Luu
- Department of Pathology, Children's Health, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390.
| |
Collapse
|
84
|
Song X, Xu T, Yang L, Li Y, Yang Y, Jin L, Zhang J, Zhong R, Sun S, Zhao W, Zhao C. Self-Anticoagulant Nanocomposite Spheres for the Removal of Bilirubin from Whole Blood: A Step toward a Wearable Artificial Liver. Biomacromolecules 2020; 21:1762-1775. [DOI: 10.1021/acs.biomac.9b01686] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xin Song
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Tao Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Li Yang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Yupei Li
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610225, People’s Republic of China
| | - Ye Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Lunqiang Jin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Jue Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Rui Zhong
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu 610052, People’s Republic of China
| | - Shudong Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, People’s Republic of China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| |
Collapse
|
85
|
Afosah DK, Al-Horani RA. Sulfated Non-Saccharide Glycosaminoglycan Mimetics as Novel Drug Discovery Platform for Various Pathologies. Curr Med Chem 2020; 27:3412-3447. [PMID: 30457046 PMCID: PMC6551317 DOI: 10.2174/0929867325666181120101147] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/06/2018] [Accepted: 11/13/2018] [Indexed: 01/14/2023]
Abstract
Glycosaminoglycans (GAGs) are very complex, natural anionic polysaccharides. They are polymers of repeating disaccharide units of uronic acid and hexosamine residues. Owing to their template-free, spatiotemporally-controlled, and enzyme-mediated biosyntheses, GAGs possess enormous polydispersity, heterogeneity, and structural diversity which often translate into multiple biological roles. It is well documented that GAGs contribute to physiological and pathological processes by binding to proteins including serine proteases, serpins, chemokines, growth factors, and microbial proteins. Despite advances in the GAG field, the GAG-protein interface remains largely unexploited by drug discovery programs. Thus, Non-Saccharide Glycosaminoglycan Mimetics (NSGMs) have been rationally developed as a novel class of sulfated molecules that modulate GAG-protein interface to promote various biological outcomes of substantial benefit to human health. In this review, we describe the chemical, biochemical, and pharmacological aspects of recently reported NSGMs and highlight their therapeutic potentials as structurally and mechanistically novel anti-coagulants, anti-cancer agents, anti-emphysema agents, and anti-viral agents. We also describe the challenges that complicate their advancement and describe ongoing efforts to overcome these challenges with the aim of advancing the novel platform of NSGMs to clinical use.
Collapse
Affiliation(s)
- Daniel K. Afosah
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219
| | - Rami A. Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125
| |
Collapse
|
86
|
Bialkower M, McLiesh H, Manderson CA, Tabor RF, Garnier G. Rapid, hand-held paper diagnostic for measuring Fibrinogen Concentration in blood. Anal Chim Acta 2019; 1102:72-83. [PMID: 32043998 DOI: 10.1016/j.aca.2019.12.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/22/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022]
Abstract
Critical bleeding causes over 2 million deaths a year. Early hypofibrinogenemia is a strong predictor of mortality in critically bleeding patients. The early replenishment of fibrinogen can significantly improve outcomes. However, over replenishment can also be dangerous. Furthermore, there is no rapid, cheap, hand-held diagnostic that can aid critically bleeding patients in fibrinogen replacement therapy. In this study, we have developed a hand-held paper diagnostic that measures plasma fibrinogen concentrations. The diagnostic has the potential to be used as a point of care device both inside and outside of hospital settings. It can vastly reduce the time to treatment for fibrinogen replacement therapy. The diagnostic is a two-step process. First, thrombin and plasma are added onto horizontially-orientated paper strips where the fibrinogen is converted into fibrin, drastically increasing the plasma's hydrophobicity. Second, an aqueous blue dye is pipetted onto the strips and allowed to wick through the fibrin. The distance the blue dye wicks through the strip correlates precisely to the fibrinogen concentration. The diagnostic can provide results within a minute. It can distinguish low fibrinogen concentrations (ie. <2 g/L) from normal fibrinogen concentrations. It shows remarkable reproducibility between healthy individuals. It is unaffected by common blood conditions such as acidosis, blood alcohol, severe hypertriglyceridemia, severe haemolysis and warfarin administration. Finally, it is unaffected by humidity and can withstand cold temperatures.
Collapse
Affiliation(s)
- Marek Bialkower
- BioPRIA and Department of Chemical Engineering, Monash University, Australia
| | - Heather McLiesh
- BioPRIA and Department of Chemical Engineering, Monash University, Australia
| | - Clare A Manderson
- BioPRIA and Department of Chemical Engineering, Monash University, Australia
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton, Vic, 3800, Australia
| | - Gil Garnier
- BioPRIA and Department of Chemical Engineering, Monash University, Australia.
| |
Collapse
|
87
|
Stickney M, Sanderson P, Leach FE, Zhang F, Linhardt RJ, Amster IJ. Online Capillary Zone Electrophoresis Negative Electron Transfer Dissociation Tandem Mass Spectrometry of Glycosaminoglycan Mixtures. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2019; 445:116209. [PMID: 32641905 PMCID: PMC7343235 DOI: 10.1016/j.ijms.2019.116209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Glycosaminoglycans (GAGs) are important biological molecules that are highly anionic and occur in nature as complex mixtures. A platform that combines capillary zone electrophoresis (CZE) separations with mass spectrometry (MS) and gas-phase sequencing by using negative electron transfer dissociation (NETD) is shown to be efficacious for the structural analysis of GAG mixtures. CZE is a separation method well suited to the highly negatively charged nature of GAGs. NETD is an electron-based ion activation method that enables the generation of informative fragments with retention of the labile sulfate half-ester modification that determine specific GAG function. Here we combine for the first time NETD and CZE for assigning the structures of GAG oligomers present in mixtures. The speed of ion activation by NETD is found to couple well with the narrow peaks resulting from CZE migration. The platform was optimized with mixtures of GAG tetrasaccharide standards. The potential of the platform is demonstrated by the analysis of enoxaparin, a complex mixture of low molecular weight heparins, which was separated by CZE within 30 minutes and characterized by NETD MS/MS in one online experiment. 37 unique molecular compositions have been identified in enoxaparin using CZE-MS and 9 structures have been assigned with CZE-NETD-MS/MS.
Collapse
Affiliation(s)
- Morgan Stickney
- Department of Chemistry, University of Georgia, Athens, GA 30602
| | | | - Franklin E. Leach
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602
| | - Fuming Zhang
- Center for Biotechnology & Interdisciplinary Studies, Departments of Chemistry and Chemical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Robert J. Linhardt
- Center for Biotechnology & Interdisciplinary Studies, Departments of Chemistry and Chemical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| | | |
Collapse
|
88
|
Balogh G, Gyöngyösi T, Timári I, Herczeg M, Borbás A, Fehér K, Kövér KE. Comparison of Carbohydrate Force Fields Using Gaussian Accelerated Molecular Dynamics Simulations and Development of Force Field Parameters for Heparin-Analogue Pentasaccharides. J Chem Inf Model 2019; 59:4855-4867. [DOI: 10.1021/acs.jcim.9b00666] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
89
|
Mao JY, Lin FY, Chu HW, Harroun SG, Lai JY, Lin HJ, Huang CC. In situ synthesis of core-shell carbon nanowires as a potent targeted anticoagulant. J Colloid Interface Sci 2019; 552:583-596. [PMID: 31163388 DOI: 10.1016/j.jcis.2019.05.086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/07/2019] [Accepted: 05/25/2019] [Indexed: 11/30/2022]
Abstract
We have developed a one-pot synthesis of bio-carbon nanowires from the natural product sodium alginate at low temperature, without using any catalyst, for anticoagulation applications. Sodium alginate is carbonized and sulfated/sulfonated in situ by solid state heating of a mixture of sodium alginate and ammonium sulfite. By regulating the heating temperature and the ratio of ammonium sulfite to sodium alginate, we modulated the degree of sulfation/sulfonation and carbonization, as well as the morphology of the carbon nanomaterials. The core-shell sulfated/sulfonated bio-carbon nanowires (CNWsAlg@SOx) made by the reaction of a mixture of ammonium sulfite and sodium alginate with a mass ratio of 5 (ammonium sulfite to sodium alginate) at 165 °C for 3 h, exhibit strong inhibition of thrombin activity due to their ultrahigh binding affinity towards it (dissociation constant (Kd) = 8.7 × 10-11 M). The possible formation mechanism of the carbon nanowires has been proposed. The thrombin-clotting time delay caused by CNWsAlg@SOx is ∼ 170 times longer than that caused by sodium alginate. Hemolysis and cytotoxicity assays demonstrated the high biocompatibility of CNWsAlg@SOx. Furthermore, the thromboelastography of whole-blood coagulation and rat-tail bleeding assays further reveal that CNWsAlg@SOx have a much stronger anticoagulation activity than sodium alginate and naturally sulfated polysaccharides (e.g., fucoidan). Our results suggest that the low-temperature prepared, cost-effective, and highly biocompatible CNWsAlg@SOx show great potential as an efficient anticoagulant for the prevention and treatment of diseases associated with thrombosis.
Collapse
Affiliation(s)
- Ju-Yi Mao
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan; Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan; Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 11529, Taiwan
| | - Fu-Yin Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Han-Wei Chu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Scott G Harroun
- Department of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Jui-Yang Lai
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
90
|
Zhang D, Sun B, Zhang X, Li H, Lin Y, Qin L, Chen L, Zhang L, Ru K, Yang R. A novel SERPINC1 frameshift mutation in two antithrombin deficiency families. Int J Lab Hematol 2019; 42:e48-e51. [PMID: 31441586 DOI: 10.1111/ijlh.13097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Donglei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Tianjin Sino-US Diagnostics Co., Ltd, Tianjin, China
| | - Boyang Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xian Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,The hematology department of Zhongnan hospital of Wuhan University, Wuhan, China
| | - Huiyuan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yani Lin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Tianjin Sino-US Diagnostics Co., Ltd, Tianjin, China
| | - Li Qin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Tianjin Sino-US Diagnostics Co., Ltd, Tianjin, China
| | - Long Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Tianjin Sino-US Diagnostics Co., Ltd, Tianjin, China
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Tianjin Laboratory of Blood Disease Gene Therapy, Tianjin, China
| | - Kun Ru
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Tianjin Sino-US Diagnostics Co., Ltd, Tianjin, China
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
91
|
Terauchi M, Tamura A, Tonegawa A, Yamaguchi S, Yoda T, Yui N. Polyelectrolyte Complexes between Polycarboxylates and BMP-2 for Enhancing Osteogenic Differentiation: Effect of Chemical Structure of Polycarboxylates. Polymers (Basel) 2019; 11:polym11081327. [PMID: 31405005 PMCID: PMC6723113 DOI: 10.3390/polym11081327] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 01/15/2023] Open
Abstract
Bone morphogenetic protein 2 (BMP-2) has received considerable attention because of its osteoinductivity, but its use is limited owing to its instability and adverse effects. To reduce the dose of BMP-2, complexation with heparin is a promising approach, because heparin enhances the osteoinductivity of BMP-2. However, the clinical use of heparin is restricted because of its anticoagulant activity. Herein, to explore alternative polymers that show heparin-like activity, four polycarboxylates, poly(acrylic acid) (PAA), poly(methacrylic acid) (PMAA), poly(aspartic acid) (PAsp), and poly(glutamic acid) (PGlu), were selected and their capability to modulate the osteoinductivity of BMP-2 was evaluated. Dynamic light scattering indicated that these polycarboxylates formed polyelectrolyte complexes with BMP-2. The osteogenic differentiation efficiency of MC3T3-E1 cells treated with the polycarboxylate/BMP-2 complexes was investigated in comparison to that of the heparin/BMP-2 complex. As a result, PGlu/BMP-2 complex showed the highest activity of alkaline phosphatase, which is an early-stage marker of osteogenic differentiation, and rapid mineralization. Based on these observations, PGlu could serve as an alternative to heparin in the regenerative therapy of bone using BMP-2.
Collapse
Affiliation(s)
- Masahiko Terauchi
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| | - Asato Tonegawa
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Satoshi Yamaguchi
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Tetsuya Yoda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
92
|
Hevey R. Bioisosteres of Carbohydrate Functional Groups in Glycomimetic Design. Biomimetics (Basel) 2019; 4:E53. [PMID: 31357673 PMCID: PMC6784292 DOI: 10.3390/biomimetics4030053] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
The aberrant presentation of carbohydrates has been linked to a number of diseases, such as cancer metastasis and immune dysregulation. These altered glycan structures represent a target for novel therapies by modulating their associated interactions with neighboring cells and molecules. Although these interactions are highly specific, native carbohydrates are characterized by very low affinities and inherently poor pharmacokinetic properties. Glycomimetic compounds, which mimic the structure and function of native glycans, have been successful in producing molecules with improved pharmacokinetic (PK) and pharmacodynamic (PD) features. Several strategies have been developed for glycomimetic design such as ligand pre-organization or reducing polar surface area. A related approach to developing glycomimetics relies on the bioisosteric replacement of carbohydrate functional groups. These changes can offer improvements to both binding affinity (e.g., reduced desolvation costs, enhanced metal chelation) and pharmacokinetic parameters (e.g., improved oral bioavailability). Several examples of bioisosteric modifications to carbohydrates have been reported; this review aims to consolidate them and presents different possibilities for enhancing core interactions in glycomimetics.
Collapse
Affiliation(s)
- Rachel Hevey
- Molecular Pharmacy, Department Pharmaceutical Sciences, University of Basel, Klingelbergstr. 50, 4056 Basel, Switzerland.
| |
Collapse
|
93
|
dos Santos-Fidencio GC, Gonçalves AG, Noseda MD, Duarte MER, Ducatti DR. Effects of carboxyl group on the anticoagulant activity of oxidized carrageenans. Carbohydr Polym 2019; 214:286-293. [DOI: 10.1016/j.carbpol.2019.03.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 01/18/2023]
|
94
|
Dinoro J, Maher M, Talebian S, Jafarkhani M, Mehrali M, Orive G, Foroughi J, Lord MS, Dolatshahi-Pirouz A. Sulfated polysaccharide-based scaffolds for orthopaedic tissue engineering. Biomaterials 2019; 214:119214. [PMID: 31163358 DOI: 10.1016/j.biomaterials.2019.05.025] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/11/2022]
Abstract
Given their native-like biological properties, high growth factor retention capacity and porous nature, sulfated-polysaccharide-based scaffolds hold great promise for a number of tissue engineering applications. Specifically, as they mimic important properties of tissues such as bone and cartilage they are ideal for orthopaedic tissue engineering. Their biomimicry properties encompass important cell-binding motifs, native-like mechanical properties, designated sites for bone mineralisation and strong growth factor binding and signaling capacity. Even so, scientists in the field have just recently begun to utilise them as building blocks for tissue engineering scaffolds. Most of these efforts have so far been directed towards in vitro studies, and for these reasons the clinical gap is still substantial. With this review paper, we have tried to highlight some of the important chemical, physical and biological features of sulfated-polysaccharides in relation to their chondrogenic and osteogenic inducing capacity. Additionally, their usage in various in vivo model systems is discussed. The clinical studies reviewed herein paint a promising picture heralding a brave new world for orthopaedic tissue engineering.
Collapse
Affiliation(s)
- Jeremy Dinoro
- Intelligent Polymer Research Institute ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong, Australia
| | - Malachy Maher
- Intelligent Polymer Research Institute ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong, Australia
| | - Sepehr Talebian
- Intelligent Polymer Research Institute ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Mahboubeh Jafarkhani
- Technical University of Denmark, DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Denmark
| | - Mehdi Mehrali
- Technical University of Denmark, DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Denmark
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore
| | - Javad Foroughi
- Intelligent Polymer Research Institute ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Megan S Lord
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Alireza Dolatshahi-Pirouz
- Technical University of Denmark, DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Denmark; Department of Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, Nijmegen, 6525 EX, the Netherlands.
| |
Collapse
|
95
|
Lin TX, Lai PX, Mao JY, Chu HW, Unnikrishnan B, Anand A, Huang CC. Supramolecular Aptamers on Graphene Oxide for Efficient Inhibition of Thrombin Activity. Front Chem 2019; 7:280. [PMID: 31157200 PMCID: PMC6532589 DOI: 10.3389/fchem.2019.00280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/05/2019] [Indexed: 01/08/2023] Open
Abstract
Graphene oxide (GO), a two-dimensional material with a high aspect ratio and polar functional groups, can physically adsorb single-strand DNA through different types of interactions, such as hydrogen bonding and π-π stacking, making it an attractive nanocarrier for nucleic acids. In this work, we demonstrate a strategy to target exosites I and II of thrombin simultaneously by using programmed hybrid-aptamers for enhanced anticoagulation efficiency and stability. The targeting ligand is denoted as Supra-TBA15/29 (supramolecular TBA15/29), containing TBA15 (a 15-base nucleotide, targeting exosite I of thrombin) and TBA29 (a 29-base nucleotide, targeting exosite II of thrombin), and it is designed to allow consecutive hybridization of TBA15 and TBA29 to form a network of TBAs (i.e., supra-TBA15/29). The programmed hybrid-aptamers (Supra-TBA15/29) were self-assembled on GO to further boost anticoagulation activity by inhibiting thrombin activity, and thus suppress the thrombin-induced fibrin formation from fibrinogen. The Supra-TBA15/29-GO composite was formed mainly through multivalent interaction between poly(adenine) from Supra-TBA15/29 and GO. We controlled the assembly of Supra-TBA15/29 on GO by regulating the preparation temperature and the concentration ratio of Supra-TBA15/29 to GO to optimize the distance between TBA15 and TBA29 units, aptamer density, and aptamer orientation on the GO surfaces. The dose-dependent thrombin clotting time (TCT) delay caused by Supra-TBA15/29-GO was >10 times longer than that of common anticoagulant drugs including heparin, argatroban, hirudin, and warfarin. Supra-TBA15/29-GO exhibits high biocompatibility, which has been proved by in vitro cytotoxicity and hemolysis assays. In addition, the thromboelastography of whole-blood coagulation and rat-tail bleeding assays indicate the anticoagulation ability of Supra-TBA15/29-GO is superior to the most widely used anticoagulant (heparin). Our highly biocompatible Supra-TBA15/29-GO with strong multivalent interaction with thrombin [dissociation constant (K d) = 1.9 × 10-11 M] shows great potential as an effective direct thrombin inhibitor for the treatment of hemostatic disorders.
Collapse
Affiliation(s)
- Ting-Xuan Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Pei-Xin Lai
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Ju-Yi Mao
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Han-Wei Chu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Binesh Unnikrishnan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Anisha Anand
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.,Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan.,School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
96
|
Qiu H, Qi P, Liu J, Yang Y, Tan X, Xiao Y, Maitz MF, Huang N, Yang Z. Biomimetic engineering endothelium-like coating on cardiovascular stent through heparin and nitric oxide-generating compound synergistic modification strategy. Biomaterials 2019; 207:10-22. [PMID: 30947118 DOI: 10.1016/j.biomaterials.2019.03.033] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 01/23/2023]
Abstract
Co-immobilization of two or more molecules with different and complementary functions to prevent thrombosis, suppress smooth muscle cell (SMC) proliferation, and support endothelial cell (EC) growth is generally considered to be promising for the re-endothelialization on cardiovascular stents. However, integration of molecules with distinct therapeutic effects does not necessarily result in synergistic physiological functions due to the lack of interactions among them, limiting their practical efficacy. Herein, we apply heparin and nitric oxide (NO), two key molecules of the physiological functions of endothelium, to develop an endothelium-mimetic coating. Such coating is achieved by sequential conjugation of heparin and the NO-generating compound selenocystamine (SeCA) on an amine-bearing film of plasma polymerized allylamine. The resulting surface combines the anti-coagulant (anti-FXa) function provided by the heparin and the anti-platelet activity of the catalytically produced NO. It also endows the stents with the ability to simultaneously up-regulate α-smooth muscle actin (α-SMA) expression and to increase cyclic guanylate monophosphate (cGMP) synthesis of SMC, thereby significantly promoting their contractile phenotype and suppressing their proliferation. Importantly, this endothelium-biomimetic coating creates a favorable microenvironment for EC over SMC. These features impressively improve the antithrombogenicity, re-endothelialization and anti-restenosis of vascular stents in vivo.
Collapse
Affiliation(s)
- Hua Qiu
- Key Lab of Advanced Technology of Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Pengkai Qi
- Key Lab of Advanced Technology of Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jingxia Liu
- Physical Education Department, Southwest Jiaotong University, Chengdu, 610031, China
| | - Ying Yang
- Key Lab of Advanced Technology of Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China; Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059, Australia
| | - Xing Tan
- Key Lab of Advanced Technology of Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yu Xiao
- Key Lab of Advanced Technology of Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Manfred F Maitz
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Dresden, 01069, Germany
| | - Nan Huang
- Key Lab of Advanced Technology of Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Zhilu Yang
- Key Lab of Advanced Technology of Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
97
|
Samsonov SA, Zacharias M, Chauvot de Beauchene I. Modeling large protein-glycosaminoglycan complexes using a fragment-based approach. J Comput Chem 2019; 40:1429-1439. [PMID: 30768805 DOI: 10.1002/jcc.25797] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 11/07/2022]
Abstract
Glycosaminoglycans (GAGs), a major constituent of the extracellular matrix, participate in cell-signaling by binding specific proteins. Structural data on protein-GAG interactions are crucial to understand and modulate these signaling processes, with potential applications in regenerative medicine. However, experimental and theoretical approaches used to study GAG-protein systems are challenged by GAGs high flexibility limiting the conformational sampling above a certain size, and by the scarcity of GAG-specific docking tools compared to protein-protein or protein-drug docking approaches. We present for the first time an automated fragment-based method for docking GAGs on a protein binding site. In this approach, trimeric GAG fragments are flexibly docked to the protein, assembled based on their spacial overlap, and refined by molecular dynamics. The method appeared more successful than the classical full-ligand approach for most of 13 tested complexes with known structure. The approach is particularly promising for docking of long GAG chains, which represents a bottleneck for classical docking approaches applied to these systems. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sergey A Samsonov
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Martin Zacharias
- Physics Department, Technical University of Munich, James-Franck Strasse 1, 85748, Garching, Germany
| | - Isaure Chauvot de Beauchene
- CNRS, LORIA (CNRS, Inria NGE, Université de Lorraine), Campus Scientifique, 615 rue du Jardin Botanique, Vandœuvre-lès-Nancy, F-54506, France
| |
Collapse
|
98
|
Wei J, Wu J, Tang Y, Ridgeway ME, Park MA, Costello CE, Zaia J, Lin C. Characterization and Quantification of Highly Sulfated Glycosaminoglycan Isomers by Gated-Trapped Ion Mobility Spectrometry Negative Electron Transfer Dissociation MS/MS. Anal Chem 2019; 91:2994-3001. [PMID: 30649866 DOI: 10.1021/acs.analchem.8b05283] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glycosaminoglycans (GAGs) play vital roles in many biological processes and are naturally present as complex mixtures of polysaccharides with tremendous structural heterogeneity, including many structural isomers. Mass spectrometric analysis of GAG isomers, in particular highly sulfated heparin (Hep) and heparan sulfate (HS), is challenging because of their structural similarity and facile sulfo losses during analysis. Herein, we show that highly sulfated Hep/HS isomers may be resolved by gated-trapped ion mobility spectrometry (gated-TIMS) with negligible sulfo losses. Subsequent negative electron transfer dissociation (NETD) tandem mass spectrometry (MS/MS) analysis of TIMS-separated Hep/HS isomers generated extensive glycosidic and cross-ring fragments for confident isomer differentiation and structure elucidation. The high mobility resolution and preservation of labile sulfo modifications afforded by gated-TIMS MS analysis also allowed relative quantification of highly sulfated heparin isomers. These results show that the gated-TIMS-NETD MS/MS approach is useful for both qualitative and quantitative analysis of highly sulfated Hep/HS compounds in a manner not possible with other techniques.
Collapse
Affiliation(s)
- Juan Wei
- Center for Biomedical Mass Spectrometry , Boston University School of Medicine , Boston , Massachusetts 02118 , United States
| | - Jiandong Wu
- Center for Biomedical Mass Spectrometry , Boston University School of Medicine , Boston , Massachusetts 02118 , United States
| | - Yang Tang
- Center for Biomedical Mass Spectrometry , Boston University School of Medicine , Boston , Massachusetts 02118 , United States.,Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Mark E Ridgeway
- Bruker Daltonics , Billerica , Massachusetts 01821 , United States
| | - Melvin A Park
- Bruker Daltonics , Billerica , Massachusetts 01821 , United States
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry , Boston University School of Medicine , Boston , Massachusetts 02118 , United States.,Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Joseph Zaia
- Center for Biomedical Mass Spectrometry , Boston University School of Medicine , Boston , Massachusetts 02118 , United States
| | - Cheng Lin
- Center for Biomedical Mass Spectrometry , Boston University School of Medicine , Boston , Massachusetts 02118 , United States
| |
Collapse
|
99
|
Peng Y, Wang T, Zheng Y, Lian A, Zhang D, Xiong Z, Hu Z, Xia K, Shu C. A novel variation of SERPINC1 caused deep venous thrombosis in a Chinese family: A case report. Medicine (Baltimore) 2019; 98:e13999. [PMID: 30608445 PMCID: PMC6344114 DOI: 10.1097/md.0000000000013999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
RATIONALE Deep vein thrombosis (DVT) is the formation of a blood clot formed in the deep veins of the lower limbs. Known genetic factors of DVT include deficiencies of antithrombin (AT), protein C, protein S, factor V Leiden mutation, and prothrombin G20210A mutation. Here, a 5-generation Chinese family with inherited DVT was recruited for genetic analysis. PATIENT CONCERNS The patient came to see a doctor because of leg swelling. A color Doppler ultrasound examination showed extensive thrombosis within the deep veins of her left leg. Computed tomography angiography showed a pulmonary embolism in her right lower pulmonary artery. DIAGNOSES Type II AT deficiency lead to inherited DVT. INTERVENTIONS Whole-exome sequencing and cosegregation analysis were carried for the DVT family. OUTCOMES An unreported heterozygous missense variation, c.281T>C, was identified within the SERPINC1 gene. This missense variation of SERPINC1 leads to type II AT deficiency. LESSONS This result further enriched the variation spectrum of the SERPINC1 gene.
Collapse
Affiliation(s)
- Yu Peng
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University
| | - Tun Wang
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University
| | - Yu Zheng
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University
| | - Aojie Lian
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University
| | - Di Zhang
- Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhimin Xiong
- Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhengmao Hu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University
| | - Kun Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University
| | - Chang Shu
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University
| |
Collapse
|
100
|
Xu L, Tang L, Zhang L. Proteoglycans as miscommunication biomarkers for cancer diagnosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 162:59-92. [DOI: 10.1016/bs.pmbts.2018.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|