51
|
Borisova T. Permanent dynamic transporter-mediated turnover of glutamate across the plasma membrane of presynaptic nerve terminals: arguments in favor and against. Rev Neurosci 2016; 27:71-81. [DOI: 10.1515/revneuro-2015-0023] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/07/2015] [Indexed: 12/14/2022]
Abstract
AbstractMechanisms for maintenance of the extracellular level of glutamate in brain tissue and its regulation still remain almost unclear, and criticism of the current paradigm of glutamate transport and homeostasis has recently appeared. The main premise for this study is the existence of a definite and non-negligible concentration of ambient glutamate between the episodes of exocytotic release in our experiments with rat brain nerve terminals (synaptosomes), despite the existence of a very potent Na+-dependent glutamate uptake. Glutamate transporter reversal is considered as the main mechanisms of glutamate release under special conditions of energy deprivation, hypoxia, hypoglycemia, brain trauma, and stroke, underlying an increase in the ambient glutamate concentration and development of excitotoxicity. In the present study, a new vision on transporter-mediated release of glutamate as one of the main mechanisms involved in the maintenance of definite concentration of ambient glutamate under normal energetical status of nerve terminals is forwarded. It has been suggested that glutamate transporters act effectively in outward direction in a non-pathological manner, and this process is thermodynamically synchronized with uptake and provides effective outward glutamate current, thereby establishing and maintaining permanent and dynamic glutamatein/glutamateout gradient and turnover across the plasma membrane. In this context, non-transporter tonic glutamate release by diffusion, spontaneous exocytosis, cystine-glutamate exchanger, and leakage through anion channels can be considered as a permanently added ‘new’ exogenous substrate using two-substrate kinetic model calculations. Permanent glutamate turnover is of value for tonic activation of post/presynaptic glutamate receptors, long-term potentiation, memory formation, etc. Counterarguments against this mechanism are also considered.
Collapse
Affiliation(s)
- Tatiana Borisova
- 1Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev 01601, Ukraine
| |
Collapse
|
52
|
Matott MP, Ruyle BC, Hasser EM, Kline DD. Excitatory amino acid transporters tonically restrain nTS synaptic and neuronal activity to modulate cardiorespiratory function. J Neurophysiol 2015; 115:1691-702. [PMID: 26719090 DOI: 10.1152/jn.01054.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/24/2015] [Indexed: 11/22/2022] Open
Abstract
The nucleus tractus solitarii (nTS) is the initial central termination site for visceral afferents and is important for modulation and integration of multiple reflexes including cardiorespiratory reflexes. Glutamate is the primary excitatory neurotransmitter in the nTS and is removed from the extracellular milieu by excitatory amino acid transporters (EAATs). The goal of this study was to elucidate the role of EAATs in the nTS on basal synaptic and neuronal function and cardiorespiratory regulation. The majority of glutamate clearance in the central nervous system is believed to be mediated by astrocytic EAAT 1 and 2. We confirmed the presence of EAAT 1 and 2 within the nTS and their colocalization with astrocytic markers. EAAT blockade withdl-threo-β-benzyloxyaspartic acid (TBOA) produced a concentration-related depolarization, increased spontaneous excitatory postsynaptic current (EPSC) frequency, and enhanced action potential discharge in nTS neurons. Solitary tract-evoked EPSCs were significantly reduced by EAAT blockade. Microinjection of TBOA into the nTS of anesthetized rats induced apneic, sympathoinhibitory, depressor, and bradycardic responses. These effects mimicked the response to microinjection of exogenous glutamate, and glutamate responses were enhanced by EAAT blockade. Together these data indicate that EAATs tonically restrain nTS excitability to modulate cardiorespiratory function.
Collapse
Affiliation(s)
- Michael P Matott
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Brian C Ruyle
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Eileen M Hasser
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - David D Kline
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
53
|
Pál B. Astrocytic Actions on Extrasynaptic Neuronal Currents. Front Cell Neurosci 2015; 9:474. [PMID: 26696832 PMCID: PMC4673305 DOI: 10.3389/fncel.2015.00474] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/20/2015] [Indexed: 01/23/2023] Open
Abstract
In the last few decades, knowledge about astrocytic functions has significantly increased. It was demonstrated that astrocytes are not passive elements of the central nervous system (CNS), but active partners of neurons. There is a growing body of knowledge about the calcium excitability of astrocytes, the actions of different gliotransmitters and their release mechanisms, as well as the participation of astrocytes in the regulation of synaptic functions and their contribution to synaptic plasticity. However, astrocytic functions are even more complex than being a partner of the “tripartite synapse,” as they can influence extrasynaptic neuronal currents either by releasing substances or regulating ambient neurotransmitter levels. Several types of currents or changes of membrane potential with different kinetics and via different mechanisms can be elicited by astrocytic activity. Astrocyte-dependent phasic or tonic, inward or outward currents were described in several brain areas. Such currents, together with the synaptic actions of astrocytes, can contribute to neuromodulatory mechanisms, neurosensory and -secretory processes, cortical oscillatory activity, memory, and learning or overall neuronal excitability. This mini-review is an attempt to give a brief summary of astrocyte-dependent extrasynaptic neuronal currents and their possible functional significance.
Collapse
Affiliation(s)
- Balázs Pál
- Department of Physiology, Faculty of Medicine, University of Debrecen Debrecen, Hungary
| |
Collapse
|
54
|
Shi J, He Y, Hewett SJ, Hewett JA. Interleukin 1β Regulation of the System xc- Substrate-specific Subunit, xCT, in Primary Mouse Astrocytes Involves the RNA-binding Protein HuR. J Biol Chem 2015; 291:1643-1651. [PMID: 26601945 DOI: 10.1074/jbc.m115.697821] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Indexed: 01/05/2023] Open
Abstract
System xc(-) is a heteromeric amino acid cystine/glutamate antiporter that is constitutively expressed by cells of the CNS, where it functions in the maintenance of intracellular glutathione and extracellular glutamate levels. We recently determined that the cytokine, IL-1β, increases the activity of system xc(-) in CNS astrocytes secondary to an up-regulation of its substrate-specific light chain, xCT, and that this occurs, in part, at the level of transcription. However, an in silico analysis of the murine xCT 3'-UTR identified numerous copies of adenine- and uridine-rich elements, raising the possibility that undefined trans-acting factors governing mRNA stability and translation may also contribute to xCT expression. Here we show that IL-1β increases the level of mRNA encoding xCT in primary cultures of astrocytes isolated from mouse cortex in association with an increase in xCT mRNA half-life. Additionally, IL-1β induces HuR translocation from the nucleus to the cytoplasm. RNA immunoprecipitation analysis reveals that HuR binds directly to the 3'-UTR of xCT in an IL-1β-dependent manner. Knockdown of endogenous HuR protein abrogates the IL-1β-mediated increase in xCT mRNA half-life, whereas overexpression of HuR in unstimulated primary mouse astrocytes doubles the half-life of constitutive xCT mRNA. This latter effect is accompanied by an increase in xCT protein levels, as well as a functional increase in system xc(-) activity. Altogether, these data support a critical role for HuR in mediating the IL-1β-induced stabilization of astrocyte xCT mRNA.
Collapse
Affiliation(s)
- Jingxue Shi
- From the Department of Biology and Program in Neuroscience, Syracuse University, Syracuse, New York 13244
| | - Yan He
- From the Department of Biology and Program in Neuroscience, Syracuse University, Syracuse, New York 13244
| | - Sandra J Hewett
- From the Department of Biology and Program in Neuroscience, Syracuse University, Syracuse, New York 13244
| | - James A Hewett
- From the Department of Biology and Program in Neuroscience, Syracuse University, Syracuse, New York 13244.
| |
Collapse
|
55
|
Thorn TL, He Y, Jackman NA, Lobner D, Hewett JA, Hewett SJ. A Cytotoxic, Co-operative Interaction Between Energy Deprivation and Glutamate Release From System xc- Mediates Aglycemic Neuronal Cell Death. ASN Neuro 2015; 7:1759091415614301. [PMID: 26553727 PMCID: PMC4641554 DOI: 10.1177/1759091415614301] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The astrocyte cystine/glutamate antiporter (system xc(-)) contributes substantially to the excitotoxic neuronal cell death facilitated by glucose deprivation. The purpose of this study was to determine the mechanism by which this occurred. Using pure astrocyte cultures, as well as, mixed cortical cell cultures containing both neurons and astrocytes, we found that neither an enhancement in system xc(-) expression nor activity underlies the excitotoxic effects of aglycemia. In addition, using three separate bioassays, we demonstrate no change in the ability of glucose-deprived astrocytes--either cultured alone or with neurons--to remove glutamate from the extracellular space. Instead, we demonstrate that glucose-deprived cultures are 2 to 3 times more sensitive to the killing effects of glutamate or N-methyl-D-aspartate when compared with their glucose-containing controls. Hence, our results are consistent with the weak excitotoxic hypothesis such that a bioenergetic deficiency, which is measureable in our mixed but not astrocyte cultures, allows normally innocuous concentrations of glutamate to become excitotoxic. Adding to the burgeoning literature detailing the contribution of astrocytes to neuronal injury, we conclude that under our experimental paradigm, a cytotoxic, co-operative interaction between energy deprivation and glutamate release from astrocyte system xc(-) mediates aglycemic neuronal cell death.
Collapse
Affiliation(s)
- Trista L Thorn
- Department of Biology, Program in Neuroscience, Syracuse University, NY, USA Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Yan He
- Department of Biology, Program in Neuroscience, Syracuse University, NY, USA
| | - Nicole A Jackman
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Doug Lobner
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - James A Hewett
- Department of Biology, Program in Neuroscience, Syracuse University, NY, USA Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Sandra J Hewett
- Department of Biology, Program in Neuroscience, Syracuse University, NY, USA Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
56
|
Patel D, Kharkar PS, Nandave M. Emerging roles of system antiporter and its inhibition in CNS disorders. Mol Membr Biol 2015; 32:89-116. [PMID: 26508554 DOI: 10.3109/09687688.2015.1096972] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | - Prashant S. Kharkar
- Department of Pharmaceutical Chemistry, SPP School of Pharmacy and Technology Management, SVKM’s NMIMS University, Mumbai, India
| | | |
Collapse
|
57
|
Hunsberger HC, Weitzner DS, Rudy CC, Hickman JE, Libell EM, Speer RR, Gerhardt GA, Reed MN. Riluzole rescues glutamate alterations, cognitive deficits, and tau pathology associated with P301L tau expression. J Neurochem 2015; 135:381-94. [PMID: 26146790 DOI: 10.1111/jnc.13230] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/22/2015] [Accepted: 06/30/2015] [Indexed: 11/30/2022]
Abstract
Hyperexcitability of the hippocampus is a commonly observed phenomenon in the years preceding a diagnosis of Alzheimer's disease (AD). Our previous work suggests a dysregulation in glutamate neurotransmission may mediate this hyperexcitability, and glutamate dysregulation correlates with cognitive deficits in the rTg(TauP301L)4510 mouse model of AD. To determine whether improving glutamate regulation would attenuate cognitive deficits and AD-related pathology, TauP301L mice were treated with riluzole (~ 12.5 mg/kg/day p.o.), an FDA-approved drug for amyotrophic lateral sclerosis that lowers extracellular glutamate levels. Riluzole-treated TauP301L mice exhibited improved performance in the water radial arm maze and the Morris water maze, associated with a decrease in glutamate release and an increase in glutamate uptake in the dentate gyrus, cornu ammonis 3 (CA3), and cornu ammonis 1 (CA1) regions of the hippocampus. Riluzole also attenuated the TauP301L-mediated increase in hippocampal vesicular glutamate transporter 1, which packages glutamate into vesicles and influences glutamate release; and the TauP301L-mediated decrease in hippocampal glutamate transporter 1, the major transporter responsible for removing glutamate from the extracellular space. The TauP301L-mediated reduction in PSD-95 expression, a marker of excitatory synapses in the hippocampus, was also rescued by riluzole. Riluzole treatment reduced total levels of tau, as well as the pathological phosphorylation and conformational changes in tau associated with the P301L mutation. These findings open new opportunities for the development of clinically applicable therapeutic approaches to regulate glutamate in vulnerable circuits for those at risk for the development of AD.
Collapse
Affiliation(s)
- Holly C Hunsberger
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, West Virginia, USA
| | - Daniel S Weitzner
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, West Virginia, USA
| | - Carolyn C Rudy
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, West Virginia, USA
| | - James E Hickman
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, West Virginia, USA
| | - Eric M Libell
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Rebecca R Speer
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Greg A Gerhardt
- Center for Microelectrode Technology (CenMeT), Department of Anatomy and Neurobiology, University of Kentucky Health Sciences Center, Lexington, Kentucky, USA
| | - Miranda N Reed
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, West Virginia, USA.,Center for Neuroscience, West Virginia University, Morgantown, West Virginia, USA.,Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, West Virginia, USA.,Drug Discovery & Development Department, School of Pharmacy, Auburn University, Auburn, Alabama
| |
Collapse
|
58
|
López-Valenzuela CL, Morales-Villagrán A, Medina-Ceja L. A novel method for simultaneous glutamate and extracellular activity measurement in brain slices with high temporal resolution. Talanta 2015; 144:1231-8. [PMID: 26452952 DOI: 10.1016/j.talanta.2015.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/02/2015] [Accepted: 08/05/2015] [Indexed: 11/30/2022]
Abstract
Measurement of neurotransmitters during normal or altered function in cerebral slices could be an important tool to better understand the relationship between biochemical changes and electrophysiological activity. Some attempts of this analysis have been made; however, the current techniques do not have the appropriate time resolution to establish this relationship. The use of electrochemical biosensors has allowed for good time resolution, but problems related to the reduction of signal noise and biofouling of the electrode surface could be an important issue. In this work, we propose a new alternative to simultaneously measure glutamate and electrical activity with a high temporal resolution in brain slices. This approach is based on the use of enzymatic reactors that generate a fluorescent derivative from glutamate that can be measured at high temporal resolution. The results presented here show a reliable measurement of this neurotransmitter in brain slices obtained from intact animals under the effect of a glutamate transporter blocker DL-threo-beta-benzyloxyaspartate as well as the potassium channel blocker 4-aminopyridine. Differences in the levels of glutamate and high frequency and amplitude discharges as an effect of drug administration were found in brain slices obtained from epileptic rats (p<0.05). In conclusion, this method could be used to measure neurotransmitter concentration online at a near physiological temporal resolution, which can then be correlated to the electrical activity that is simultaneously recorded.
Collapse
Affiliation(s)
- C L López-Valenzuela
- Laboratory of Neurophysiology and Neurochemistry, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Jalisco, Mexico
| | - A Morales-Villagrán
- Laboratory of Neurophysiology and Neurochemistry, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Jalisco, Mexico.
| | - L Medina-Ceja
- Laboratory of Neurophysiology and Neurochemistry, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Jalisco, Mexico
| |
Collapse
|
59
|
Brolese G, Lunardi P, de Souza DF, Lopes FM, Leite MC, Gonçalves CA. Pre- and postnatal exposure to moderate levels of ethanol can have long-lasting effects on hippocampal glutamate uptake in adolescent offspring. PLoS One 2015; 10:e0127845. [PMID: 25978644 PMCID: PMC4433332 DOI: 10.1371/journal.pone.0127845] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/21/2015] [Indexed: 12/25/2022] Open
Abstract
The developing brain is vulnerable to the effects of ethanol. Glutamate is the main mediator of excitatory signals in the brain and is probably involved in most aspects of normal brain function during development. The aim of this study was to investigate vulnerability to and the impact of ethanol toxicity on glutamate uptake signaling in adolescent rats after moderate pre and postnatal ethanol exposure. Pregnant female rats were divided into three groups and treated only with water (control), non-alcoholic beer (vehicle) or 10% (v/v) beer solution (moderate prenatal alcohol exposure—MPAE). Thirty days after birth, adolescent male offspring were submitted to hippocampal acute slice procedure. We assayed glutamate uptake and measured glutathione content and also quantified glial glutamate transporters (EAAT 1 and EAAT 2). The glutamate system vulnerability was tested with different acute ethanol doses in naïve rats and compared with the MPAE group. We also performed a (lipopolysaccharide-challenge (LPS-challenge) with all groups to test the glutamate uptake response after an insult. The MPAE group presented a decrease in glutamate uptake corroborating a decrease in glutathione (GSH) content. The reduction in GSH content suggests oxidative damage after acute ethanol exposure. The glial glutamate transporters were also altered after prenatal ethanol treatment, suggesting a disturbance in glutamate signaling. This study indicates that impairment of glutamate uptake can be dose-dependent and the glutamate system has a higher vulnerability to ethanol toxicity after moderate ethanol exposure In utero. The effects of pre- and postnatal ethanol exposure can have long-lasting impacts on the glutamate system in adolescence and potentially into adulthood.
Collapse
Affiliation(s)
- Giovana Brolese
- Department of Neuroscience, Basic Science Health Institute, Federal University of Rio Grande do Sul—UFRGS—Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| | - Paula Lunardi
- Department of Biochemistry—Basic Science Health Institute—Federal University of Rio Grande do Sul—UFRGS—Porto Alegre, Rio Grande do Sul, Brazil
| | - Daniela F. de Souza
- Department of Biochemistry—Basic Science Health Institute—Federal University of Rio Grande do Sul—UFRGS—Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda M. Lopes
- Department of Neuroscience, Basic Science Health Institute, Federal University of Rio Grande do Sul—UFRGS—Porto Alegre, Rio Grande do Sul, Brazil
| | - Marina C. Leite
- Department of Biochemistry—Basic Science Health Institute—Federal University of Rio Grande do Sul—UFRGS—Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos-Alberto Gonçalves
- Department of Neuroscience, Basic Science Health Institute, Federal University of Rio Grande do Sul—UFRGS—Porto Alegre, Rio Grande do Sul, Brazil
- Department of Biochemistry—Basic Science Health Institute—Federal University of Rio Grande do Sul—UFRGS—Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
60
|
Vroman R, Kamermans M. Feedback-induced glutamate spillover enhances negative feedback from horizontal cells to cones. J Physiol 2015; 593:2927-40. [PMID: 25820622 DOI: 10.1113/jp270158] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/24/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS In the retina, horizontal cells feed back negatively to cone photoreceptors. Glutamate released from cones can spill over to neighbouring cones. Here we show that cone glutamate release induced by negative feedback can also spill over to neighbouring cones. This glutamate activates the glutamate transporter-associated chloride current in these neighbouring cones, which leads to a change in their membrane potential and thus modulates their output. In this way, feedback-induced glutamate spillover enhances negative feedback from horizontal cells to cones, thus forming an additional feedback pathway. This effect will be particularly prominent in cones that are strongly hyperpolarized by light. ABSTRACT Inhibition in the outer retina functions via an unusual mechanism. When horizontal cells hyperpolarize the activation potential of the Ca(2+) current of cones shifts to more negative potentials. The underlying mechanism consists of an ephaptic component and a Panx1/ATP-mediated component. Here we identified a third feedback component, which remains active outside the operating range of the Ca(2+) current. We show that the glutamate transporters of cones can be activated by glutamate released from their neighbours. This pathway can be triggered by negative feedback from horizontal cells to cones, thus providing an additional feedback pathway. This additional pathway is mediated by a Cl(-) current, can be blocked by either removing the gradient of K(+) or by adding the glutamate transporter blocker TBOA, or low concentrations of Zn(2+) . These features point to a glutamate transporter-associated Cl(-) current. The pathway has a delay of 4.7 ± 1.7 ms. The effectiveness of this pathway in modulating the cone output depends on the equilibrium potential of Cl(-) (ECl ) and the membrane potential of the cone. Because estimates of ECl show that it is around the dark resting membrane potential of cones, the activation of the glutamate transporter-associated Cl(-) current will be most effective in changing the membrane potential during strong hyperpolarization of cones. This means that negative feedback would particularly be enhanced by this pathway when cones are hyperpolarized. Spatially, this pathway does not reach further than the direct neighbouring cones. The consequence is that this feedback pathway transmits information between cones of different spectral type.
Collapse
Affiliation(s)
- Rozan Vroman
- Retinal Signal Processing Lab, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Maarten Kamermans
- Retinal Signal Processing Lab, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands.,Department of Neurogenetics, University of Amsterdam, Academic Medical Centre, Meibergdreef 15, 1105 AZ, Amsterdam, Netherlands
| |
Collapse
|
61
|
Ferreira NR, Lourenço C, Barbosa RM, Laranjinha J. Coupling of ascorbate and nitric oxide dynamics in vivo in the rat hippocampus upon glutamatergic neuronal stimulation: A novel functional interplay. Brain Res Bull 2015; 114:13-9. [DOI: 10.1016/j.brainresbull.2015.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 02/09/2015] [Accepted: 03/07/2015] [Indexed: 01/01/2023]
|
62
|
Yang Y, Xu-Friedman MA. Different pools of glutamate receptors mediate sensitivity to ambient glutamate in the cochlear nucleus. J Neurophysiol 2015; 113:3634-45. [PMID: 25855696 DOI: 10.1152/jn.00693.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 04/08/2015] [Indexed: 01/14/2023] Open
Abstract
Ambient glutamate plays an important role in pathological conditions, such as stroke, but its role during normal activity is not clear. In addition, it is not clear how ambient glutamate acts on glutamate receptors with varying affinities or subcellular localizations. To address this, we studied "endbulb of Held" synapses, which are formed by auditory nerve fibers onto bushy cells (BCs) in the anteroventral cochlear nucleus. When ambient glutamate was increased by applying the glutamate reuptake inhibitor TFB-TBOA, BCs depolarized as a result of activation of N-methyl-D-aspartate receptors (NMDARs) and group I metabotropic glutamate receptors (mGluRs). Application of antagonists against NMDARs (in 0 Mg(2+)) or mGluRs caused hyperpolarization, indicating that these receptors were bound by a tonic source of glutamate. AMPA receptors did not show these effects, consistent with their lower glutamate affinity. We also evaluated the subcellular localization of the receptors activated by ambient glutamate. The mGluRs were not activated by synaptic stimulation and thus appear to be exclusively extrasynaptic. By contrast, NMDARs in both synaptic and extrasynaptic compartments were activated by ambient glutamate, as shown using the use-dependent antagonist MK-801. Levels of ambient glutamate appeared to be regulated in a spike-independent manner, and glia likely play a major role. These low levels of ambient glutamate likely have functional consequences, as even low concentrations of TBOA caused significant increases in BC spiking following synaptic stimulation. These results indicate that normal resting potential appears to be poised in the region of maximal sensitivity to small changes in ambient glutamate.
Collapse
Affiliation(s)
- Yang Yang
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Matthew A Xu-Friedman
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York
| |
Collapse
|
63
|
Yang KY, Mun JH, Park KD, Kim MJ, Ju JS, Kim ST, Bae YC, Ahn DK. Blockade of spinal glutamate recycling produces paradoxical antinociception in rats with orofacial inflammatory pain. Prog Neuropsychopharmacol Biol Psychiatry 2015; 57:100-9. [PMID: 25445477 DOI: 10.1016/j.pnpbp.2014.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 10/06/2014] [Accepted: 10/20/2014] [Indexed: 01/06/2023]
Abstract
In our current study, we investigated the role of spinal glutamate recycling in the development of orofacial inflammatory pain. DL-threo-β-benzyloxyaspartate (TBOA) or methionine sulfoximine (MSO) was administered intracisternally to block spinal glutamate transporter and glutamine synthetase activity in astroglia. Intracisternal administration of high dose TBOA (10 μg) produced thermal hyperalgesia in naïve rats but significantly attenuated the thermal hyperalgesia in rats that had been pretreated with interleukin (IL)-1β or Complete Freund's Adjuvant (CFA). In contrast, intracisternal injection of MSO produced anti-hyperalgesic effects against thermal stimuli in CFA-treated rats only. To confirm the paradoxical antinociceptive effects of TBOA and MSO, we examined changes in c-Fos expression in the medullary dorsal horn produced by thermal stimulation in naïve, IL-1β-, or CFA-treated rats, after intracisternal injections of TBOA and MSO. Intracisternal administration of TBOA significantly increased c-Fos immunoreactivity in naïve rats. In contrast, intracisternal administration of TBOA significantly decreased the up-regulation of c-Fos immunoreactivity in the medullary dorsal horn of IL-1β- and CFA-treated rats. However, intracisternal injection of MSO blocked the up-regulation of c-Fos immunoreactivity in CFA-treated rats only. We also investigated the effects of botulinum toxin type A (BoNT-A) on TBOA-induced paradoxical antinociception in CFA-treated rats, as BoNT-A inhibits the release of neurotransmitters, including glutamate. BoNT-A treatment reversed behavioral responses produced by intracisternal administration of TBOA in CFA-treated rats. These results suggest that the paradoxical responses produced by blocking glutamate transporters under inflammatory pain conditions are mediated by the modulation of glutamate release from presynaptic terminals. Moreover, blockade of glutamate reuptake could represent a new therapeutic target for the treatment of chronic inflammatory pain conditions.
Collapse
Affiliation(s)
- Kui Y Yang
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, South Korea.
| | - Jun H Mun
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, South Korea.
| | - Ki D Park
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, South Korea.
| | - Min J Kim
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, South Korea.
| | - Jin S Ju
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, South Korea.
| | - Seong T Kim
- Department of Orofacial Pain and Oral Medicine, School of Dentistry, Yonsei University, Seoul, South Korea.
| | - Yong C Bae
- Oral Anatomy, School of Dentistry, Kyungpook National University, Daegu, South Korea.
| | - Dong K Ahn
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
64
|
Otsu Y, Couchman K, Lyons DG, Collot M, Agarwal A, Mallet JM, Pfrieger FW, Bergles DE, Charpak S. Calcium dynamics in astrocyte processes during neurovascular coupling. Nat Neurosci 2015; 18:210-8. [PMID: 25531572 PMCID: PMC4651918 DOI: 10.1038/nn.3906] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/24/2014] [Indexed: 12/18/2022]
Abstract
Enhanced neuronal activity in the brain triggers a local increase in blood flow, termed functional hyperemia, via several mechanisms, including calcium (Ca(2+)) signaling in astrocytes. However, recent in vivo studies have questioned the role of astrocytes in functional hyperemia because of the slow and sparse dynamics of their somatic Ca(2+) signals and the absence of glutamate metabotropic receptor 5 in adults. Here, we reexamined their role in neurovascular coupling by selectively expressing a genetically encoded Ca(2+) sensor in astrocytes of the olfactory bulb. We show that in anesthetized mice, the physiological activation of olfactory sensory neuron (OSN) terminals reliably triggers Ca(2+) increases in astrocyte processes but not in somata. These Ca(2+) increases systematically precede the onset of functional hyperemia by 1-2 s, reestablishing astrocytes as potential regulators of neurovascular coupling.
Collapse
Affiliation(s)
- Yo Otsu
- 1] Institut National de la Santé et de la Recherche Médicale (INSERM), U1128, Paris, France. [2] Laboratory of Neurophysiology and New Microscopies, Université Paris Descartes, Paris, France
| | - Kiri Couchman
- 1] Institut National de la Santé et de la Recherche Médicale (INSERM), U1128, Paris, France. [2] Laboratory of Neurophysiology and New Microscopies, Université Paris Descartes, Paris, France
| | - Declan G Lyons
- 1] Institut National de la Santé et de la Recherche Médicale (INSERM), U1128, Paris, France. [2] Laboratory of Neurophysiology and New Microscopies, Université Paris Descartes, Paris, France
| | - Mayeul Collot
- 1] Centre National de la Recherche Scientifique (CNRS), UMR 7203, Paris, France. [2] Laboratory of Biomolecules, Université Pierre et Marie Curie, Paris, France
| | - Amit Agarwal
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jean-Maurice Mallet
- 1] Centre National de la Recherche Scientifique (CNRS), UMR 7203, Paris, France. [2] Laboratory of Biomolecules, Université Pierre et Marie Curie, Paris, France
| | - Frank W Pfrieger
- CNRS UPR 3212, University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI), Strasbourg, France
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Serge Charpak
- 1] Institut National de la Santé et de la Recherche Médicale (INSERM), U1128, Paris, France. [2] Laboratory of Neurophysiology and New Microscopies, Université Paris Descartes, Paris, France
| |
Collapse
|
65
|
Karus C, Mondragão MA, Ziemens D, Rose CR. Astrocytes restrict discharge duration and neuronal sodium loads during recurrent network activity. Glia 2015; 63:936-57. [PMID: 25639699 DOI: 10.1002/glia.22793] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/08/2015] [Indexed: 12/31/2022]
Abstract
Influx of sodium ions into active neurons is a highly energy-expensive process which must be strictly limited. Astrocytes could play an important role herein because they take up glutamate and potassium from the extracellular space, thereby dampening neuronal excitation. Here, we performed sodium imaging in mouse hippocampal slices combined with field potential and whole-cell patch-clamp recordings and measurement of extracellular potassium ([K(+)]o). Network activity was induced by Mg(2+)-free, bicuculline-containing saline, during which neurons showed recurring epileptiform bursting, accompanied by transient increases in [K(+)]o and astrocyte depolarizations. During bursts, neurons displayed sodium increases by up to 22 mM. Astrocyte sodium concentration increased by up to 8.5 mM, which could be followed by an undershoot below baseline. Network sodium oscillations were dependent on action potentials and activation of ionotropic glutamate receptors. Inhibition of glutamate uptake caused acceleration, followed by cessation of electrical activity, irreversible sodium increases, and swelling of neurons. The gliotoxin NaFAc (sodium-fluoroacetate) resulted in elevation of astrocyte sodium concentration and reduced glial uptake of glutamate and potassium uptake through Na(+) /K(+)-ATPase. Moreover, NaFAc extended epileptiform bursts, caused elevation of neuronal sodium, and dramatically prolonged accompanying sodium signals, most likely because of the decreased clearance of glutamate and potassium by astrocytes. Our experiments establish that recurrent neuronal bursting evokes sodium transients in neurons and astrocytes and confirm the essential role of glutamate transporters for network activity. They suggest that astrocytes restrict discharge duration and show that an intact astrocyte metabolism is critical for the neurons' capacity to recover from sodium loads during synchronized activity.
Collapse
Affiliation(s)
- Claudia Karus
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| | | | | | | |
Collapse
|
66
|
Abstract
Most extracellular glutamate in the brain is released by xCT, a glial antiporter that exports glutamate and imports cystine. The function of xCT, and extracellular glutamate in general, remains unclear. Several lines of evidence suggest that glutamate from xCT could act in a paracrine fashion to suppress glutamatergic synapse strength by triggering removal of postsynaptic glutamate receptors. To test this idea, we used whole-cell patch-clamp electrophysiology and immunohistochemistry to quantify receptor number and synapse function in xCT knock-out mouse hippocampal CA3-CA1 synapses. Consistent with the hypothesis that xCT suppresses glutamate receptor number and synapse strength, xCT knock-out synapses showed increased AMPA receptor abundance with concomitant large enhancements of spontaneous and evoked synaptic transmission. We saw no evidence for changes in GABA receptor abundance or the overall number of glutamatergic synapses. The xCT knock-out phenotype was replicated by incubating slices in the xCT inhibitor (S)-4-carboxyphenylglycine, and consistent with the idea that xCT works by regulating extracellular glutamate, the xCT knock-out phenotype could be reproduced in controls by incubating the slices in glutamate-free aCSF. We conclude that glutamate secreted via xCT suppresses glutamatergic synapse strength by triggering removal of postsynaptic AMPA receptors.
Collapse
|
67
|
Jafarinejad-Farsangi S, Farazmand A, Rezayof A, Darbandi N. Proteome Analysis of Rat Hippocampus Following Morphine-induced Amnesia and State-dependent Learning. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2015; 14:591-602. [PMID: 25901168 PMCID: PMC4403077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Morphine's effects on learning and memory processes are well known to depend on synaptic plasticity in the hippocampus. Whereas the role of the hippocampus in morphine-induced amnesia and state-dependent learning is established, the biochemical and molecular mechanisms underlying these processes are poorly understood. The present study intended to investigate whether administration of morphine can change the expression level of rat hippocampal proteins during learning of a passive avoidance task. A step-through type passive avoidance task was used for the assessment of memory retention. To identify the complex pattern of protein expression induced by morphine, we compared rat hippocampal proteome either in morphine-induced amnesia or in state-dependent learning by two-dimensional gel electerophoresis and combined mass spectrometry (MS and MS/MS). Post-training administration of morphine decreased step-through latency. Pre-test administration of morphine induced state-dependent retrieval of the memory acquired under post-training morphine influence. In the hippocampus, a total of 18 proteins were identified whose MASCOT (Modular Approach to Software Construction Operation and Test) scores were inside 95% confidence level. Of these, five hippocampal proteins altered in morphine-induced amnesia and ten proteins were found to change in the hippocampus of animals that had received post-training and pre-test morphine. These proteins show known functions in cytoskeletal architecture, cell metabolism, neurotransmitter secretion and neuroprotection. The findings indicate that the effect of morphine on memory formation in passive avoidance learning has a morphological correlate on the hippocampal proteome level. In addition, our proteomicscreensuggests that morphine induces memory impairment and state-dependent learning through modulating neuronal plasticity.
Collapse
Affiliation(s)
- Saeideh Jafarinejad-Farsangi
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Ali Farazmand
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran.
| | - Niloufar Darbandi
- Department of Biology, Faculty of Science, Arak University, Arak, Iran.
| |
Collapse
|
68
|
Hunsberger HC, Rudy CC, Batten SR, Gerhardt GA, Reed MN. P301L tau expression affects glutamate release and clearance in the hippocampal trisynaptic pathway. J Neurochem 2015; 132:169-82. [PMID: 25319522 PMCID: PMC4302046 DOI: 10.1111/jnc.12967] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/25/2014] [Accepted: 10/02/2014] [Indexed: 12/31/2022]
Abstract
Individuals at risk of developing Alzheimer's disease (AD) often exhibit hippocampal hyperexcitability. A growing body of evidence suggests that perturbations in the glutamatergic tripartite synapse may underlie this hyperexcitability. Here, we used a tau mouse model of AD (rTg(TauP301L)4510) to examine the effects of tau pathology on hippocampal glutamate regulation. We found a 40% increase in hippocampal vesicular glutamate transporter, which packages glutamate into vesicles, and has previously been shown to influence glutamate release, and a 40% decrease in hippocampal glutamate transporter 1, the major glutamate transporter responsible for removing glutamate from the extracellular space. To determine whether these alterations affected glutamate regulation in vivo, we measured tonic glutamate levels, potassium-evoked glutamate release, and glutamate uptake/clearance in the dentate gyrus, cornu ammonis 3(CA3), and cornu ammonis 1(CA1) regions of the hippocampus. P301L tau expression resulted in a 4- and 7-fold increase in potassium-evoked glutamate release in the dentate gyrus and CA3, respectively, and significantly decreased glutamate clearance in all three regions. Both release and clearance correlated with memory performance in the hippocampal-dependent Barnes maze task. Alterations in mice expressing P301L were observed at a time when tau pathology was subtle and before readily detectable neuron loss. These data suggest novel mechanisms by which tau may mediate hyperexcitability. Pre-synaptic vesicular glutamate transporters (vGLUTs) package glutamate into vesicles before exocytosis into the synaptic cleft. Once in the extracellular space, glutamate acts on glutamate receptors. Glutamate is removed from the extracellular space by excitatory amino acid transporters, including GLT-1, predominantly localized to glia. P301L tau expression increases vGLUT expression and glutamate release, while also decreasing GLT-1 expression and glutamate clearance.
Collapse
Affiliation(s)
- Holly C. Hunsberger
- Behavioral Neuroscience, Department of Psychology, University of Kentucky Health Sciences Center, Lexington, KY 40536-0298
| | - Carolyn C. Rudy
- Behavioral Neuroscience, Department of Psychology, University of Kentucky Health Sciences Center, Lexington, KY 40536-0298
| | - Seth R. Batten
- Center for Microelectrode Technology (CenMeT), Department of Anatomy and Neurobiology, University of Kentucky Health Sciences Center, Lexington, KY 40536-0298
| | - Greg A. Gerhardt
- Center for Microelectrode Technology (CenMeT), Department of Anatomy and Neurobiology, University of Kentucky Health Sciences Center, Lexington, KY 40536-0298
| | - Miranda N. Reed
- Behavioral Neuroscience, Department of Psychology, University of Kentucky Health Sciences Center, Lexington, KY 40536-0298
- Center for Neuroscience, West Virginia University, Morgantown, 26506 WV, USA
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, 26506 WV, USA
| |
Collapse
|
69
|
Lutgen V, Resch J, Qualmann K, Raddatz NJ, Panhans C, Olander EM, Kong L, Choi S, Mantsch JR, Baker DA. Behavioral assessment of acute inhibition of system xc (-) in rats. Psychopharmacology (Berl) 2014; 231:4637-47. [PMID: 24828877 PMCID: PMC4474164 DOI: 10.1007/s00213-014-3612-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 05/01/2014] [Indexed: 12/20/2022]
Abstract
RATIONALE Gaps in our understanding of glutamatergic signaling may be key obstacles in accurately modeling complex CNS diseases. System xc (-) is an example of a poorly understood component of glutamate homeostasis that has the potential to contribute to CNS diseases. OBJECTIVES This study aims to determine whether system xc (-) contributes to behaviors used to model features of CNS disease states. METHODS In situ hybridization was used to map mRNA expression of xCT throughout the brain. Microdialysis in the prefrontal cortex was used to sample extracellular glutamate levels; HPLC was used to measure extracellular glutamate and tissue glutathione concentrations. Acute administration of sulfasalazine (8-16 mg/kg, IP) was used to decrease system xc (-) activity. Behavior was measured using attentional set shifting, elevated plus maze, open-field maze, Porsolt swim test, and social interaction paradigm. RESULTS The expression of xCT mRNA was detected throughout the brain, with high expression in several structures including the basolateral amygdala and prefrontal cortex. Doses of sulfasalazine that produced a reduction in extracellular glutamate levels were identified and subsequently used in the behavioral experiments. Sulfasalazine impaired performance in attentional set shifting and reduced the amount of time spent in an open arm of an elevated plus maze and the center of an open-field maze without altering behavior in a Porsolt swim test, total distance moved in an open-field maze, or social interaction. CONCLUSIONS The widespread distribution of system xc (-) and involvement in a growing list of behaviors suggests that this form of nonvesicular glutamate release is a key component of excitatory signaling.
Collapse
Affiliation(s)
- Victoria Lutgen
- Department of Biomedical Sciences, Marquette University, Suite 446, 561 N. 15 St, Milwaukee, WI 53233
| | - Jon Resch
- Department of Biomedical Sciences, Marquette University, Suite 446, 561 N. 15 St, Milwaukee, WI 53233
| | - Krista Qualmann
- Department of Biomedical Sciences, Marquette University, Suite 446, 561 N. 15 St, Milwaukee, WI 53233
| | - Nicholas J. Raddatz
- Department of Biomedical Sciences, Marquette University, Suite 446, 561 N. 15 St, Milwaukee, WI 53233
| | - Cristina Panhans
- Department of Biomedical Sciences, Marquette University, Suite 446, 561 N. 15 St, Milwaukee, WI 53233
| | - Ellen M. Olander
- Department of Biomedical Sciences, Marquette University, Suite 446, 561 N. 15 St, Milwaukee, WI 53233
| | - Linghai Kong
- Department of Biomedical Sciences, Marquette University, Suite 446, 561 N. 15 St, Milwaukee, WI 53233
| | - SuJean Choi
- Department of Biomedical Sciences, Marquette University, Suite 446, 561 N. 15 St, Milwaukee, WI 53233
| | - John R. Mantsch
- Department of Biomedical Sciences, Marquette University, Suite 446, 561 N. 15 St, Milwaukee, WI 53233
| | - David A. Baker
- Department of Biomedical Sciences, Marquette University, Suite 446, 561 N. 15 St, Milwaukee, WI 53233
| |
Collapse
|
70
|
Zhou Y, Danbolt NC. Glutamate as a neurotransmitter in the healthy brain. J Neural Transm (Vienna) 2014; 121:799-817. [PMID: 24578174 PMCID: PMC4133642 DOI: 10.1007/s00702-014-1180-8] [Citation(s) in RCA: 545] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/11/2014] [Indexed: 12/13/2022]
Abstract
Glutamate is the most abundant free amino acid in the brain and is at the crossroad between multiple metabolic pathways. Considering this, it was a surprise to discover that glutamate has excitatory effects on nerve cells, and that it can excite cells to their death in a process now referred to as "excitotoxicity". This effect is due to glutamate receptors present on the surface of brain cells. Powerful uptake systems (glutamate transporters) prevent excessive activation of these receptors by continuously removing glutamate from the extracellular fluid in the brain. Further, the blood-brain barrier shields the brain from glutamate in the blood. The highest concentrations of glutamate are found in synaptic vesicles in nerve terminals from where it can be released by exocytosis. In fact, glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. It took, however, a long time to realize that. The present review provides a brief historical description, gives a short overview of glutamate as a transmitter in the healthy brain, and comments on the so-called glutamate-glutamine cycle. The glutamate transporters responsible for the glutamate removal are described in some detail.
Collapse
Affiliation(s)
- Y. Zhou
- The Neurotransporter Group, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Blindern, P.O. Box 1105, 0317 Oslo, Norway
| | - N. C. Danbolt
- The Neurotransporter Group, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Blindern, P.O. Box 1105, 0317 Oslo, Norway
| |
Collapse
|
71
|
Differential Synaptic and Extrasynaptic Glutamate-Receptor Alterations in Striatal Medium-Sized Spiny Neurons of Aged YAC128 Huntington's Disease Mice. PLOS CURRENTS 2014; 6. [PMID: 24894506 PMCID: PMC4032384 DOI: 10.1371/currents.hd.34957c4f8bd7cb1f5ec47381dfc811c3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Huntington’s disease (HD) is a late-onset, slowly progressing neurodegenerative disorder caused by an expansion of glutamine repeats. The YAC128 mouse model has been widely used to study the progression of HD symptoms, but little is known about synaptic alterations in very old animals. The present experiments examined synaptic properties of striatal medium-sized spiny neurons (MSNs) in 16 month-old YAC128 mice. These mice were crossed with mice expressing enhanced green fluorescent protein (EGFP) under the control of either D1 or D2 dopamine receptor promoters to identify MSNs originating the direct and indirect pathways, respectively. The input-output curves of evoked excitatory postsynaptic currents mediated by activation of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) or N-methyl-D-aspartate (NMDA) receptors were reduced in MSNs in both pathways. In the presence of DL-threo-β-Benzyloxyaspartic acid (DL-TBOA), a glutamate transporter blocker used to increase activation of extrasynaptic receptors, NMDA receptor-mediated currents displayed altered amplitudes, longer decay times, and greater charge (response areas) in both direct and indirect pathway MSNs in YAC128 mice compared to wildtype controls. Amplitudes were significantly increased, primarily in direct pathway MSNs while normalized areas were significantly increased only in indirect pathway MSNs, suggesting that the two types of MSNs are affected in different ways. It may be that indirect pathway neurons are more susceptible to changes in glutamate transport. Taken together, the present findings demonstrate differential alterations in synaptic versus extrasynaptic NMDA receptors in both direct and indirect pathway MSNs in late HD, which may contribute to the dysfunction and degeneration in both pathways.
Collapse
|
72
|
Borisova T, Krisanova N, Borуsov A, Sivko R, Ostapchenko L, Babic M, Horak D. Manipulation of isolated brain nerve terminals by an external magnetic field using D-mannose-coated γ-Fe2O3 nano-sized particles and assessment of their effects on glutamate transport. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:778-88. [PMID: 24991515 PMCID: PMC4077395 DOI: 10.3762/bjnano.5.90] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 05/12/2014] [Indexed: 06/03/2023]
Abstract
The manipulation of brain nerve terminals by an external magnetic field promises breakthroughs in nano-neurotechnology. D-Mannose-coated superparamagnetic nanoparticles were synthesized by coprecipitation of Fe(II) and Fe(III) salts followed by oxidation with sodium hypochlorite and addition of D-mannose. Effects of D-mannose-coated superparamagnetic maghemite (γ-Fe2O3) nanoparticles on key characteristics of the glutamatergic neurotransmission were analysed. Using radiolabeled L-[(14)C]glutamate, it was shown that D-mannose-coated γ-Fe2O3 nanoparticles did not affect high-affinity Na(+)-dependent uptake, tonic release and the extracellular level of L-[(14)C]glutamate in isolated rat brain nerve terminals (synaptosomes). Also, the membrane potential of synaptosomes and acidification of synaptic vesicles was not changed as a result of the application of D-mannose-coated γ-Fe2O3 nanoparticles. This was demonstrated with the potential-sensitive fluorescent dye rhodamine 6G and the pH-sensitive dye acridine orange. The study also focused on the analysis of the potential use of these nanoparticles for manipulation of nerve terminals by an external magnetic field. It was shown that more than 84.3 ± 5.0% of L-[(14)C]glutamate-loaded synaptosomes (1 mg of protein/mL) incubated for 5 min with D-mannose-coated γ-Fe2O3 nanoparticles (250 µg/mL) moved to an area, in which the magnet (250 mT, gradient 5.5 Т/m) was applied compared to 33.5 ± 3.0% of the control and 48.6 ± 3.0% of samples that were treated with uncoated nanoparticles. Therefore, isolated brain nerve terminals can be easily manipulated by an external magnetic field using D-mannose-coated γ-Fe2O3 nanoparticles, while the key characteristics of glutamatergic neurotransmission are not affected. In other words, functionally active synaptosomes labeled with D-mannose-coated γ-Fe2O3 nanoparticles were obtained.
Collapse
Affiliation(s)
- Tatiana Borisova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kiev, 01601, Ukraine
| | - Natalia Krisanova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kiev, 01601, Ukraine
| | - Arsenii Borуsov
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kiev, 01601, Ukraine
- The Biological Faculty, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str, Kiev, Ukraine
| | - Roman Sivko
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kiev, 01601, Ukraine
| | - Ludmila Ostapchenko
- The Biological Faculty, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str, Kiev, Ukraine
| | - Michal Babic
- The Department of Polymer Particles, Institute of Macromolecular Chemistry AS CR, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Daniel Horak
- The Department of Polymer Particles, Institute of Macromolecular Chemistry AS CR, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
73
|
Sun W, Shchepakin D, Kalachev LV, Kavanaugh MP. Glutamate transporter control of ambient glutamate levels. Neurochem Int 2014; 73:146-51. [PMID: 24768447 DOI: 10.1016/j.neuint.2014.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 04/08/2014] [Accepted: 04/10/2014] [Indexed: 11/26/2022]
Abstract
Accurate knowledge of the ambient extracellular glutamate concentration in brain is required for understanding its potential impacts on tonic and phasic receptor signaling. Estimates of ambient glutamate based on microdialysis measurements are generally in the range of ∼2-10μM, approximately 100-fold higher than estimates based on electrophysiological measurements of tonic NMDA receptor activity (∼25-90nM). The latter estimates are closer to the low nanomolar estimated thermodynamic limit of glutamate transporters. The reasons for this discrepancy are not known, but it has been suggested that microdialysis measurements could overestimate ambient extracellular glutamate because of reduced glutamate transporter activity in a region of metabolically impaired neuropil adjacent to the dialysis probe. We explored this issue by measuring diffusion gradients created by varying membrane densities of glutamate transporters expressed in Xenopus oocytes. With free diffusion from a pseudo-infinite 10μM glutamate source, the surface concentration of glutamate depended on transporter density and was reduced over 2 orders of magnitude by transporters expressed at membrane densities similar to those previously reported in hippocampus. We created a diffusion model to simulate the effect of transport impairment on microdialysis measurements with boundary conditions corresponding to a 100μm radius probe. A gradient of metabolic disruption in a thin (∼100μm) region of neuropil adjacent to the probe increased predicted [Glu] in the dialysate over 100-fold. The results provide support for electrophysiological estimates of submicromolar ambient extracellular [Glu] in brain and provide a possible explanation for the higher values reported using microdialysis approaches.
Collapse
Affiliation(s)
- Weinan Sun
- Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, United States
| | - Denis Shchepakin
- Department of Mathematics, The University of Montana, Missoula, MT 59812, United States
| | - Leonid V Kalachev
- Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, United States; Department of Mathematics, The University of Montana, Missoula, MT 59812, United States
| | - Michael P Kavanaugh
- Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, United States.
| |
Collapse
|
74
|
Yan X, Yadav R, Gao M, Weng HR. Interleukin-1 beta enhances endocytosis of glial glutamate transporters in the spinal dorsal horn through activating protein kinase C. Glia 2014; 62:1093-109. [PMID: 24677092 DOI: 10.1002/glia.22665] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 03/12/2014] [Accepted: 03/12/2014] [Indexed: 01/01/2023]
Abstract
Excessive activation of glutamate receptors in spinal dorsal horn neurons is a key mechanism leading to abnormal neuronal activation in pathological pain conditions. Previous studies have shown that activation of glutamate receptors in the spinal dorsal horn is enhanced by impaired glial glutamate transporter functions and proinflammatory cytokines including interleukin-1 beta (IL-1β). In this study, we for the first time revealed that spinal glial glutamate transporter activities in the neuropathic animals are attenuated by endogenous IL-1β. Specifically, we demonstrated that nerve injury results in an increased expression of IL-1β and activation of PKC in the spinal dorsal horn as well as suppression of glial glutamate uptake activities. We provided evidence that the nerve-injury induced suppression of glial glutamate uptake is at least in part ascribed to endogenous IL-1β and activation of PKC in the spinal dorsal horn. IL-1β reduces glial glutamate transporter activities through enhancing the endocytosis of both GLT-1 and GLAST glial glutamate transporters. The IL-1β induced trafficking of glial glutamate transporters is through the calcium/PKC signaling pathway, and the dynamin-dependent endocytosis, which is dependent on the integrity of actin filaments. The signaling pathway regulating glial glutamate transporters revealed in this study provides novel targets to attenuate aberrant activation of glutamate receptors in the spinal dorsal horn, which could ultimately help the development of analgesics.
Collapse
Affiliation(s)
- Xisheng Yan
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, Georgia; Department of Cardiovascular Medicine, The Third Hospital of Wuhan, Wuhan, Hubei Province, China
| | | | | | | |
Collapse
|
75
|
Krisanova N, Sivko R, Kasatkina L, Borуsov A, Borisova T. Excitotoxic potential of exogenous ferritin and apoferritin: Changes in ambient level of glutamate and synaptic vesicle acidification in brain nerve terminals. Mol Cell Neurosci 2014; 58:95-104. [DOI: 10.1016/j.mcn.2013.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 11/04/2013] [Accepted: 12/02/2013] [Indexed: 12/14/2022] Open
|
76
|
Freestone PS, Guatteo E, Piscitelli F, di Marzo V, Lipski J, Mercuri NB. Glutamate spillover drives endocannabinoid production and inhibits GABAergic transmission in the Substantia Nigra pars compacta. Neuropharmacology 2013; 79:467-75. [PMID: 24334069 DOI: 10.1016/j.neuropharm.2013.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/19/2013] [Accepted: 12/03/2013] [Indexed: 12/11/2022]
Abstract
Endocannabinoids (eCBs) modulate synaptic transmission in the brain, but little is known of their regulatory role in nigral dopaminergic neurons, and whether transmission to these neurons is tonically inhibited by eCBs as seen in some other brain regions. Using whole-cell recording in midbrain slices, we observed potentiation of evoked IPSCs (eIPSCs) in these neurons after blocking CB1 receptors with rimonabant or LY-320,135, indicating the presence of an eCB tone reducing inhibitory synaptic transmission. Increased postsynaptic calcium buffering and block of mGluR1 or postsynaptic G-protein coupled receptors prevented this potentiation. Increasing spillover of endogenous glutamate by inhibiting uptake attenuated eIPSC amplitude, while enhancing the potentiation by rimonabant. Group I mGluR activation transiently inhibited eIPSCs, which could be prevented by GDP-β-S, increased calcium buffering or rimonabant. We explored the possibility that the dopamine-derived eCB N-arachidonoyl dopamine (NADA) is involved. The eCB tone was abolished by preventing dopamine synthesis, and enhanced by l-DOPA. It was not detected in adjacent non-dopaminergic neurons. Preventing 2-AG synthesis did not affect the tone, while inhibition of NADA production abolished it. Quantification of ventral midbrain NADA suggested a basal level that increased following prolonged depolarization or mGluR activation. Since block of the tone was not always accompanied by attenuation of depolarization-induced suppression of inhibition (DSI) and vice versa, our results indicate DSI and the eCB tone are mediated by distinct eCBs. This study provides evidence that dopamine modulates the activity of SNc neurons not only by conventional dopamine receptors, but also by CB1 receptors, potentially via NADA.
Collapse
Affiliation(s)
- Peter S Freestone
- Department of Physiology and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, New Zealand; Laboratorio di Neurologia Sperimentale, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Ezia Guatteo
- Laboratorio di Neurologia Sperimentale, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | - Vincenzo di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | - Janusz Lipski
- Department of Physiology and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Nicola B Mercuri
- Laboratorio di Neurologia Sperimentale, Fondazione Santa Lucia IRCCS, Rome, Italy; Dipartimento di Medicina dei Sistemi, Universitá di Tor Vergata, Rome, Italy.
| |
Collapse
|
77
|
Glutamate transporters in the biology of malignant gliomas. Cell Mol Life Sci 2013; 71:1839-54. [PMID: 24281762 DOI: 10.1007/s00018-013-1521-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/22/2013] [Accepted: 11/11/2013] [Indexed: 12/11/2022]
Abstract
Malignant gliomas are relentless tumors that offer a dismal clinical prognosis. They develop many biological advantages that allow them to grow and survive in the unique environment of the brain. The glutamate transporters system x c (-) and excitatory amino acid transporters (EAAT) are emerging as key players in the biology and malignancy of these tumors. Gliomas manipulate glutamate transporter expression and function to alter glutamate homeostasis in the brain, which supports their own growth, invasion, and survival. As a consequence, malignant cells are able to quickly destroy and invade surrounding normal brain. Recent findings are painting a larger picture of these transporters in glioma biology, and as such are providing opportunities for clinical intervention for patients. This review will detail the current understanding of glutamate transporters in the biology of malignant gliomas and highlight some of the unique aspects of these tumors that make them so devastating and difficult to treat.
Collapse
|
78
|
Glutamate release from platelets: Exocytosis versus glutamate transporter reversal. Int J Biochem Cell Biol 2013; 45:2585-95. [DOI: 10.1016/j.biocel.2013.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 08/02/2013] [Accepted: 08/07/2013] [Indexed: 11/22/2022]
|
79
|
Shi J, McLamore ES, Porterfield DM. Nanomaterial based self-referencing microbiosensors for cell and tissue physiology research. Biosens Bioelectron 2013; 40:127-34. [PMID: 22889647 PMCID: PMC3604890 DOI: 10.1016/j.bios.2012.06.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/23/2012] [Accepted: 06/25/2012] [Indexed: 12/11/2022]
Abstract
Physiological studies require sensitive tools to directly quantify transport kinetics in the cell/tissue spatial domain under physiological conditions. Although biosensors are capable of measuring concentration, their applications in physiological studies are limited due to the relatively low sensitivity, excessive drift/noise, and inability to quantify analyte transport. Nanomaterials significantly improve the electrochemical transduction of microelectrodes, and make the construction of highly sensitive microbiosensors possible. Furthermore, a novel biosensor modality, self-referencing (SR), enables direct measurement of real-time flux and drift/noise subtraction. SR microbiosensors based on nanomaterials have been used to measure the real-time analyte transport in several cell/tissue studies coupled with various stimulators/inhibitors. These studies include: glucose uptake in pancreatic β cells, cancer cells, muscle tissues, intestinal tissues and P. Aeruginosa biofilms; glutamate flux near neuronal cells; and endogenous indole-3-acetic acid flux near the surface of Zea mays roots. Results from the SR studies provide important insights into cancer, diabetes, nutrition, neurophysiology, environmental and plant physiology studies under dynamic physiological conditions, demonstrating that the SR microbiosensors are an extremely valuable tool for physiology research.
Collapse
Affiliation(s)
- Jin Shi
- Birck-Bindley Physiological Sensing Facility, Purdue University, United States
- Department of Agricultural & Biological Engineering, Purdue University, United States
| | - Eric S. McLamore
- Department of Agricultural & Biological Engineering, University of Florida, United States
| | - D. Marshall Porterfield
- Birck-Bindley Physiological Sensing Facility, Purdue University, United States
- Department of Agricultural & Biological Engineering, Purdue University, United States
- Department of Horticulture and Landscape Architecture, Purdue University, United States
- Weldon School of Biomedical Engineering, Purdue University, United States
| |
Collapse
|
80
|
Abstract
The mammalian genome contains four genes encoding GABA transporters (GAT1, slc6a1; GAT2, slc6a13; GAT3, slc6a11; BGT1, slc6a12) and five glutamate transporter genes (EAAT1, slc1a3; EAAT2, slc1a2; EAAT3, slc1a1; EAAT4, slc1a6; EAAT5, slc1a7). These transporters keep the extracellular levels of GABA and excitatory amino acids low and provide amino acids for metabolic purposes. The various transporters have different properties both with respect to their transport functions and with respect to their ability to act as ion channels. Further, they are differentially regulated. To understand the physiological roles of the individual transporter subtypes, it is necessary to obtain information on their distributions and expression levels. Quantitative data are important as the functional capacity is limited by the number of transporter molecules. The most important and most abundant transporters for removal of transmitter glutamate in the brain are EAAT2 (GLT-1) and EAAT1 (GLAST), while GAT1 and GAT3 are the major GABA transporters in the brain. EAAT3 (EAAC1) does not appear to play a role in signal transduction, but plays other roles. Due to their high uncoupled anion conductance, EAAT4 and EAAT5 seem to be acting more like inhibitory glutamate receptors than as glutamate transporters. GAT2 and BGT1 are primarily expressed in the liver and kidney, but are also found in the leptomeninges, while the levels in brain tissue proper are too low to have any impact on GABA removal, at least in normal young adult mice. The present review will provide summary of what is currently known and will also discuss some methodological pitfalls.
Collapse
Affiliation(s)
- Yun Zhou
- The Neurotransporter Group, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Niels Christian Danbolt
- The Neurotransporter Group, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- *Correspondence: Niels Christian Danbolt, The Neurotransporter Group, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105 Blindern, Oslo N-0317, Norway e-mail:
| |
Collapse
|
81
|
The influence of cold temperature on cellular excitability of hippocampal networks. PLoS One 2012; 7:e52475. [PMID: 23300680 PMCID: PMC3534091 DOI: 10.1371/journal.pone.0052475] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/14/2012] [Indexed: 11/19/2022] Open
Abstract
The hippocampus plays an important role in short term memory, learning and spatial navigation. A characteristic feature of the hippocampal region is its expression of different electrical population rhythms and activities during different brain states. Physiological fluctuations in brain temperature affect the activity patterns in hippocampus, but the underlying cellular mechanisms are poorly understood. In this work, we investigated the thermal modulation of hippocampal activity at the cellular network level. Primary cell cultures of mouse E17 hippocampus displayed robust network activation upon light cooling of the extracellular solution from baseline physiological temperatures. The activity generated was dependent on action potential firing and excitatory glutamatergic synaptic transmission. Involvement of thermosensitive channels from the transient receptor potential (TRP) family in network activation by temperature changes was ruled out, whereas pharmacological and immunochemical experiments strongly pointed towards the involvement of temperature-sensitive two-pore-domain potassium channels (K2P), TREK/TRAAK family. In hippocampal slices we could show an increase in evoked and spontaneous synaptic activity produced by mild cooling in the physiological range that was prevented by chloroform, a K2P channel opener. We propose that cold-induced closure of background TREK/TRAAK family channels increases the excitability of some hippocampal neurons, acting as a temperature-sensitive gate of network activation. Our findings in the hippocampus open the possibility that small temperature variations in the brain in vivo, associated with metabolism or blood flow oscillations, act as a switch mechanism of neuronal activity and determination of firing patterns through regulation of thermosensitive background potassium channel activity.
Collapse
|
82
|
Striatal interaction among dopamine, glutamate and ascorbate. Neuropharmacology 2012; 63:1308-14. [DOI: 10.1016/j.neuropharm.2012.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/24/2012] [Accepted: 08/13/2012] [Indexed: 11/23/2022]
|
83
|
Min R, Santello M, Nevian T. The computational power of astrocyte mediated synaptic plasticity. Front Comput Neurosci 2012; 6:93. [PMID: 23125832 PMCID: PMC3485583 DOI: 10.3389/fncom.2012.00093] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 10/15/2012] [Indexed: 12/05/2022] Open
Abstract
Research in the last two decades has made clear that astrocytes play a crucial role in the brain beyond their functions in energy metabolism and homeostasis. Many studies have shown that astrocytes can dynamically modulate neuronal excitability and synaptic plasticity, and might participate in higher brain functions like learning and memory. With the plethora of astrocyte mediated signaling processes described in the literature today, the current challenge is to identify, which of these processes happen under what physiological condition, and how this shapes information processing and, ultimately, behavior. To answer these questions will require a combination of advanced physiological, genetical, and behavioral experiments. Additionally, mathematical modeling will prove crucial for testing predictions on the possible functions of astrocytes in neuronal networks, and to generate novel ideas as to how astrocytes can contribute to the complexity of the brain. Here, we aim to provide an outline of how astrocytes can interact with neurons. We do this by reviewing recent experimental literature on astrocyte-neuron interactions, discussing the dynamic effects of astrocytes on neuronal excitability and short- and long-term synaptic plasticity. Finally, we will outline the potential computational functions that astrocyte-neuron interactions can serve in the brain. We will discuss how astrocytes could govern metaplasticity in the brain, how they might organize the clustering of synaptic inputs, and how they could function as memory elements for neuronal activity. We conclude that astrocytes can enhance the computational power of neuronal networks in previously unexpected ways.
Collapse
Affiliation(s)
- Rogier Min
- Department of Physiology, University of Berne Berne, Switzerland
| | | | | |
Collapse
|
84
|
Agulhon C, Sun MY, Murphy T, Myers T, Lauderdale K, Fiacco TA. Calcium Signaling and Gliotransmission in Normal vs. Reactive Astrocytes. Front Pharmacol 2012; 3:139. [PMID: 22811669 PMCID: PMC3395812 DOI: 10.3389/fphar.2012.00139] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/26/2012] [Indexed: 01/07/2023] Open
Abstract
A prominent area of neuroscience research over the past 20 years has been the acute modulation of neuronal synaptic activity by Ca2+-dependent release of the transmitters ATP, D-serine, and glutamate (called gliotransmitters) by astrocytes. Although the physiological relevance of this mechanism is under debate, emerging evidence suggests that there are critical factors in addition to Ca2+ that are required for gliotransmitters to be released from astrocytes. Interestingly, these factors include activated microglia and the proinflammatory cytokine Tumor Necrosis Factor α (TNFα), chemotactic cytokine Stromal cell-Derived Factor-1α (SDF-1α), and inflammatory mediator prostaglandin E2 (PGE2). Of note, microglial activation and release of inflammatory molecules from activated microglia and reactive astrocytes can occur within minutes of a triggering stimulus. Therefore, activation of astrocytes by inflammatory molecules combined with Ca2+ elevations may lead to gliotransmitter release, and be an important step in the early sequence of events contributing to hyperexcitability, excitotoxicity, and neurodegeneration in the damaged or diseased brain. In this review, we will first examine evidence questioning Ca2+-dependent gliotransmitter release from astrocytes in healthy brain tissue, followed by a close examination of recent work suggesting that Ca2+-dependent gliotransmitter release occurs as an early event in the development of neurological disorders and neuroinflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Cendra Agulhon
- UFR Biomédicale, CNRS UMR 8154, Université Paris Descartes Paris, France
| | | | | | | | | | | |
Collapse
|
85
|
Bridges R, Lutgen V, Lobner D, Baker DA. Thinking outside the cleft to understand synaptic activity: contribution of the cystine-glutamate antiporter (System xc-) to normal and pathological glutamatergic signaling. Pharmacol Rev 2012; 64:780-802. [PMID: 22759795 PMCID: PMC3400835 DOI: 10.1124/pr.110.003889] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
System x(c)(-) represents an intriguing target in attempts to understand the pathological states of the central nervous system. Also called a cystine-glutamate antiporter, system x(c)(-) typically functions by exchanging one molecule of extracellular cystine for one molecule of intracellular glutamate. Nonvesicular glutamate released during cystine-glutamate exchange activates extrasynaptic glutamate receptors in a manner that shapes synaptic activity and plasticity. These findings contribute to the intriguing possibility that extracellular glutamate is regulated by a complex network of release and reuptake mechanisms, many of which are unique to glutamate and rarely depicted in models of excitatory signaling. Because system x(c)(-) is often expressed on non-neuronal cells, the study of cystine-glutamate exchange may advance the emerging viewpoint that glia are active contributors to information processing in the brain. It is noteworthy that system x(c)(-) is at the interface between excitatory signaling and oxidative stress, because the uptake of cystine that results from cystine-glutamate exchange is critical in maintaining the levels of glutathione, a critical antioxidant. As a result of these dual functions, system x(c)(-) has been implicated in a wide array of central nervous system diseases ranging from addiction to neurodegenerative disorders to schizophrenia. In the current review, we briefly discuss the major cellular components that regulate glutamate homeostasis, including glutamate release by system x(c)(-). This is followed by an in-depth discussion of system x(c)(-) as it relates to glutamate release, cystine transport, and glutathione synthesis. Finally, the role of system x(c)(-) is surveyed across a number of psychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Richard Bridges
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, USA
| | | | | | | |
Collapse
|
86
|
Wu YW, Grebenyuk S, McHugh TJ, Rusakov DA, Semyanov A. Backpropagating action potentials enable detection of extrasynaptic glutamate by NMDA receptors. Cell Rep 2012; 1:495-505. [PMID: 22832274 PMCID: PMC3740263 DOI: 10.1016/j.celrep.2012.03.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 01/11/2012] [Accepted: 03/22/2012] [Indexed: 12/19/2022] Open
Abstract
Synaptic NMDA receptors (NMDARs) are crucial for neural coding and plasticity. However, little is known about the adaptive function of extrasynaptic NMDARs occurring mainly on dendritic shafts. Here, we find that in CA1 pyramidal neurons, backpropagating action potentials (bAPs) recruit shaft NMDARs exposed to ambient glutamate. In contrast, spine NMDARs are “protected,” under baseline conditions, from such glutamate influences by perisynaptic transporters: we detect bAP-evoked Ca2+ entry through these receptors upon local synaptic or photolytic glutamate release. During theta-burst firing, NMDAR-dependent Ca2+ entry either downregulates or upregulates an h-channel conductance (Gh) of the cell depending on whether synaptic glutamate release is intact or blocked. Thus, the balance between activation of synaptic and extrasynaptic NMDARs can determine the sign of Gh plasticity. Gh plasticity in turn regulates dendritic input probed by local glutamate uncaging. These results uncover a metaplasticity mechanism potentially important for neural coding and memory formation.
Collapse
Affiliation(s)
- Yu-Wei Wu
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
87
|
Parasynaptic NMDA receptor signaling couples neuronal glutamate transporter function to AMPA receptor synaptic distribution and stability. J Neurosci 2012; 32:2552-63. [PMID: 22396428 DOI: 10.1523/jneurosci.3237-11.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
At synapses, two major processes occur concomitantly after the release of glutamate: activation of AMPA receptors (AMPARs) to conduct synaptic transmission and activation of excitatory amino acid transporters (EAATs) for transmitter removal. Although crosstalk between the receptors and EAATs is conceivable, whether and how the transporter activity affects AMPAR synaptic localization remain unknown. Using cultured hippocampal and cortical rat neurons, we show that inhibition of glutamate transporters leads to rapid reduction in AMPAR synaptic accumulation and total AMPAR abundance. EAAT inactivity also results in elevated internalization and reduced surface expression of AMPARs. The reduction in AMPAR amount is accompanied by receptor ubiquitination and can be blocked by suppression of proteasome activity, indicating the involvement of proteasome-mediated receptor degradation. Consistent with glutamate spillover, effect of EAAT inhibition on AMPAR distribution and stability is dependent on the activation of parasynaptically localized NR2B-containing NMDA receptors (NMDARs). Moreover, we show that neuronal glutamate transporters, especially those localized at the postsynaptic sites, are responsible for the observed effect during EAAT suppression. These results indicate a role for neuron-specific glutamate transporters in AMPAR synaptic localization and stability.
Collapse
|
88
|
Hinzman JM, Thomas TC, Quintero JE, Gerhardt GA, Lifshitz J. Disruptions in the regulation of extracellular glutamate by neurons and glia in the rat striatum two days after diffuse brain injury. J Neurotrauma 2012; 29:1197-208. [PMID: 22233432 DOI: 10.1089/neu.2011.2261] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Disrupted regulation of extracellular glutamate in the central nervous system contributes to and can exacerbate the acute pathophysiology of traumatic brain injury (TBI). Previously, we reported increased extracellular glutamate in the striatum of anesthetized rats 2 days after diffuse brain injury. To determine the mechanism(s) responsible for increased extracellular glutamate, we used enzyme-based microelectrode arrays (MEAs) coupled with specific pharmacological agents targeted at in vivo neuronal and glial regulation of extracellular glutamate. After TBI, extracellular glutamate was significantly increased in the striatum by (∼90%) averaging 4.1±0.6 μM compared with sham 2.2±0.4 μM. Calcium-dependent neuronal glutamate release, investigated by local application of an N-type calcium channel blocker, was no longer a significant source of extracellular glutamate after TBI, compared with sham. In brain-injured animals, inhibition of glutamate uptake with local application of an excitatory amino acid transporter inhibitor produced significantly greater increase in glutamate spillover (∼ 65%) from the synapses compared with sham. Furthermore, glutamate clearance measured by locally applying glutamate into the extracellular space revealed significant reductions in glutamate clearance parameters in brain-injured animals compared with sham. Taken together, these data indicate that disruptions in calcium-mediated glutamate release and glial regulation of extracellular glutamate contribute to increased extracellular glutamate in the striatum 2 days after diffuse brain injury. Overall, these data suggest that therapeutic strategies used to regulate glutamate release and uptake may improve excitatory circuit function and, possibly, outcomes following TBI.
Collapse
Affiliation(s)
- Jason M Hinzman
- Department of Anatomy and Neurobiology, University of Kentucky Chandler Medical Center, Lexington, Kentucky 40536-0509, USA
| | | | | | | | | |
Collapse
|
89
|
Molinari F, Cattani A, Mdzomba J, Aniksztejn L. Glutamate transporters control metabotropic glutamate receptors activation to prevent the genesis of paroxysmal burst in the developing hippocampus. Neuroscience 2012; 207:25-36. [DOI: 10.1016/j.neuroscience.2012.01.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 12/23/2011] [Accepted: 01/19/2012] [Indexed: 12/26/2022]
|
90
|
Pendyam S, Mohan A, Kalivas PW, Nair SS. Role of perisynaptic parameters in neurotransmitter homeostasis--computational study of a general synapse. Synapse 2012; 66:608-21. [PMID: 22460547 DOI: 10.1002/syn.21547] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/05/2012] [Accepted: 02/01/2012] [Indexed: 01/17/2023]
Abstract
Extracellular neurotransmitter concentrations vary over a wide range depending on the type of neurotransmitter and location in the brain. Neurotransmitter homeostasis near a synapse is achieved by a balance of several mechanisms including vesicular release from the presynapse, diffusion, uptake by transporters, nonsynaptic production, and regulation of release by autoreceptors. These mechanisms are also affected by the glia surrounding the synapse. However, the role of these mechanisms in achieving neurotransmitter homeostasis is not well understood. A biophysical modeling framework was proposed, based on a cortico-accumbens synapse example case, to reverse engineer glial configurations and parameters related to homeostasis for synapses that support a range of neurotransmitter gradients. Model experiments reveal that synapses with extracellular neurotransmitter concentrations in the micromolar range require nonsynaptic neurotransmitter sources and tight synaptic isolation by extracellular glial formations. The model was used to identify the role of perisynaptic parameters on neurotransmitter homeostasis and to propose glial configurations that could support different levels of extracellular neurotransmitter concentrations. Ranking the parameters based on their effect on neurotransmitter homeostasis, nonsynaptic sources were found to be the most important followed by transporter concentration and diffusion coefficient.
Collapse
Affiliation(s)
- Sandeep Pendyam
- Department of Electrical and Computer Engineering, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | |
Collapse
|
91
|
Jackman NA, Melchior SE, Hewett JA, Hewett SJ. Non-cell autonomous influence of the astrocyte system xc- on hypoglycaemic neuronal cell death. ASN Neuro 2012; 4:e00074. [PMID: 22220511 PMCID: PMC3275339 DOI: 10.1042/an20110030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 01/03/2012] [Accepted: 01/05/2012] [Indexed: 01/13/2023] Open
Abstract
Despite longstanding evidence that hypoglycaemic neuronal injury is mediated by glutamate excitotoxicity, the cellular and molecular mechanisms involved remain incompletely defined. Here, we demonstrate that the excitotoxic neuronal death that follows GD (glucose deprivation) is initiated by glutamate extruded from astrocytes via system xc---an amino acid transporter that imports L-cystine and exports L-glutamate. Specifically, we find that depriving mixed cortical cell cultures of glucose for up to 8 h injures neurons, but not astrocytes. Neuronal death is prevented by ionotropic glutamate receptor antagonism and is partially sensitive to tetanus toxin. Removal of amino acids during the deprivation period prevents--whereas addition of L-cystine restores--GD-induced neuronal death, implicating the cystine/glutamate antiporter, system xc-. Indeed, drugs known to inhibit system xc- ameliorate GD-induced neuronal death. Further, a dramatic reduction in neuronal death is observed in chimaeric cultures consisting of neurons derived from WT (wild-type) mice plated on top of astrocytes derived from sut mice, which harbour a naturally occurring null mutation in the gene (Slc7a11) that encodes the substrate-specific light chain of system xc- (xCT). Finally, enhancement of astrocytic system xc- expression and function via IL-1β (interleukin-1β) exposure potentiates hypoglycaemic neuronal death, the process of which is prevented by removal of l-cystine and/or addition of system xc- inhibitors. Thus, under the conditions of GD, our studies demonstrate that astrocytes, via system xc-, have a direct, non-cell autonomous effect on cortical neuron survival.
Collapse
Key Words
- aglycaemia
- astrocyte
- cystine
- glutamate
- neuronal death
- non-cell autonomous
- arac, β-d-cytosine arabinofuranoside
- bss, balanced salt solution
- cns, central nervous system
- cpg, carboxyphenylglycine
- gd, glucose deprivation
- il-1β, interleukin-1β
- ldh, lactate dehydrogenase
- mcao, middle cerebral artery occlusion
- nmda, n-methyl-d-aspartate
- qpcr, quantitative pcr
- wt, wild-type
Collapse
Affiliation(s)
- Nicole A Jackman
- *Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, U.S.A
| | - Shannon E Melchior
- *Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, U.S.A
| | - James A Hewett
- †Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY 13244, U.S.A
| | - Sandra J Hewett
- †Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY 13244, U.S.A
| |
Collapse
|
92
|
Moussawi K, Riegel A, Nair S, Kalivas PW. Extracellular glutamate: functional compartments operate in different concentration ranges. Front Syst Neurosci 2011; 5:94. [PMID: 22275885 PMCID: PMC3254064 DOI: 10.3389/fnsys.2011.00094] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 10/31/2011] [Indexed: 12/24/2022] Open
Abstract
Extracellular glutamate of glial origin modulates glial and neuronal glutamate release and synaptic plasticity. Estimates of the tonic basal concentration of extracellular glutamate range over three orders of magnitude (0.02-20 μM) depending on the technology employed to make the measurement. Based upon binding constants for glutamate receptors and transporters, this range of concentrations translates into distinct physiological and pathophysiological roles for extracellular glutamate. Here we speculate that the difference in glutamate measurements can be explained if there is patterned membrane surface expression of glutamate release and transporter sites creating extracellular subcompartments that vary in glutamate concentration and are preferentially sampled by different technologies.
Collapse
Affiliation(s)
- Khaled Moussawi
- Department of Neurosciences, Medical University of South Carolina Charleston, SC, USA
| | | | | | | |
Collapse
|
93
|
Distribution of extracellular glutamate in the neuropil of hippocampus. PLoS One 2011; 6:e26501. [PMID: 22069455 PMCID: PMC3206024 DOI: 10.1371/journal.pone.0026501] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 09/28/2011] [Indexed: 01/17/2023] Open
Abstract
Reported values of extracellular glutamate concentrations in the resting state depend on the method of measurement and vary ∼1000-fold. As glutamate levels in the micromolar range can cause receptor desensitization and excitotoxicity, and thus affect neuronal excitability, an accurate determination of ambient glutamate is important. Part of the variability of previous measurements may have resulted from the sampling of glutamate in different extracellular compartments, e.g., synaptic versus extrasynaptic volumes. A steep concentration gradient of glutamate between these two compartments could be maintained, for example, by high densities of glutamate transporters arrayed at the edges of synapses. We have used two photon laser scanning microscopy and electrophysiology to investigate whether extracellular glutamate is compartmentalized in acute hippocampal slices. Pharmacological blockade of NMDARs had no effect on Ca(2+) transients generated in dendritic shafts or spines of CA1 pyramidal neurons by depolarization, suggesting that ambient glutamate is too low to activate a significant number of NMDARs. Furthermore, blockade of transporters did not flood the synapse with glutamate, indicating that synaptic NMDARs are not protected from high concentrations of extrasynaptic glutamate. We suggest that, in the CA1 region of hippocampus, glutamate transporters do not create a privileged space within the synapse but rather keep ambient glutamate at very low levels throughout the neuropil.
Collapse
|
94
|
Machado-Vieira R, Ibrahim L, Henter ID, Zarate CA. Novel glutamatergic agents for major depressive disorder and bipolar disorder. Pharmacol Biochem Behav 2011; 100:678-87. [PMID: 21971560 DOI: 10.1016/j.pbb.2011.09.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 09/09/2011] [Accepted: 09/20/2011] [Indexed: 12/11/2022]
Abstract
Mood disorders such as major depressive disorder (MDD) and bipolar disorder (BPD) are common, chronic, recurrent mental illnesses that affect the lives and functioning of millions of individuals worldwide. Growing evidence suggests that the glutamatergic system is central to the neurobiology and treatment of these disorders. Here, we review data supporting the involvement of the glutamatergic system in the pathophysiology of mood disorders as well as the efficacy of glutamatergic agents as novel therapeutics.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- LIM-27, Institute and Department of Psychiatry, University of Sao Paulo Medical School, USP, Sao Paulo, Brazil
| | | | | | | |
Collapse
|
95
|
Jones SM, Palmer MJ. Pharmacological analysis of the activation and receptor properties of the tonic GABA(C)R current in retinal bipolar cell terminals. PLoS One 2011; 6:e24892. [PMID: 21949779 PMCID: PMC3174224 DOI: 10.1371/journal.pone.0024892] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/22/2011] [Indexed: 11/29/2022] Open
Abstract
GABAergic inhibition in the central nervous system (CNS) can occur via rapid, transient postsynaptic currents and via a tonic increase in membrane conductance, mediated by synaptic and extrasynaptic GABAA receptors (GABAARs) respectively. Retinal bipolar cells (BCs) exhibit a tonic current mediated by GABACRs in their axon terminal, in addition to synaptic GABAAR and GABACR currents, which strongly regulate BC output. The tonic GABACR current in BC terminals (BCTs) is not dependent on vesicular GABA release, but properties such as the alternative source of GABA and the identity of the GABACRs remain unknown. Following a recent report that tonic GABA release from cerebellar glial cells is mediated by Bestrophin 1 anion channels, we have investigated their role in non-vesicular GABA release in the retina. Using patch-clamp recordings from BCTs in goldfish retinal slices, we find that the tonic GABACR current is not reduced by the anion channel inhibitors NPPB or flufenamic acid but is reduced by DIDS, which decreases the tonic current without directly affecting GABACRs. All three drugs also exhibit non-specific effects including inhibition of GABA transporters. GABACR ρ subunits can form homomeric and heteromeric receptors that differ in their properties, but BC GABACRs are thought to be ρ1-ρ2 heteromers. To investigate whether GABACRs mediating tonic and synaptic currents may differ in their subunit composition, as is the case for GABAARs, we have examined the effects of two antagonists that show partial ρ subunit selectivity: picrotoxin and cyclothiazide. Tonic and synaptic GABACR currents were differentially affected by both drugs, suggesting that a population of homomeric ρ1 receptors contributes to the tonic current. These results extend our understanding of the multiple forms of GABAergic inhibition that exist in the CNS and contribute to visual signal processing in the retina.
Collapse
Affiliation(s)
- Stefanie M. Jones
- Neuroscience Group, Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom
| | - Mary J. Palmer
- Neuroscience Group, Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom
- * E-mail:
| |
Collapse
|
96
|
The central cavity in trimeric glutamate transporters restricts ligand diffusion. Proc Natl Acad Sci U S A 2011; 108:14980-5. [PMID: 21873219 DOI: 10.1073/pnas.1108785108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A prominent aqueous cavity is formed by the junction of three identical subunits in the excitatory amino acid transporter (EAAT) family. To investigate the effect of this structure on the interaction of ligands with the transporter, we recorded currents in voltage-clamped Xenopus oocytes expressing EAATs and used concentration jumps to measure binding and unbinding rates of a high-affinity aspartate analog that competitively blocks transport (β-2-fluorenyl-aspartylamide; 2-FAA). The binding rates of the blocker were approximately one order of magnitude slower than l-Glu and were not significantly different for EAAT1, EAAT2, or EAAT3, but 2-FAA exhibited higher affinity for the neuronal transporter EAAT3 as a result of a slower dissociation rate. Unexpectedly, the rate of recovery from block was increased by l-Glu in a saturable and concentration-dependent manner, ruling out a first-order mechanism and suggesting that following unbinding, there is a significant probability of ligand rebinding to the same or neighboring subunits within a trimer. Consistent with such a mechanism, coexpression of wild-type subunits with mutant (R447C) subunits that do not bind glutamate or 2-FAA also increased the unblocking rate. The data suggest that electrostatic and steric factors result in an effective dissociation rate that is approximately sevenfold slower than the microscopic subunit unbinding rate. The quaternary structure, which has been conserved through evolution, is expected to increase the transporters' capture efficiency by increasing the probability that following unbinding, a ligand will rebind as opposed to being lost to diffusion.
Collapse
|
97
|
Cortical cultures coupled to micro-electrode arrays: a novel approach to perform in vitro excitotoxicity testing. Neurotoxicol Teratol 2011; 34:116-27. [PMID: 21856414 DOI: 10.1016/j.ntt.2011.08.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 07/03/2011] [Accepted: 08/04/2011] [Indexed: 01/08/2023]
Abstract
In vitro neuronal cultures exhibit spontaneous electrophysiological activity that can be modulated by chemical stimulation and can be monitored over time by using Micro-Electrode Arrays (MEAs), devices composed by a glass substrate and metal electrodes. Dissociated networks respond to transmitters, their blockers and many other pharmacological substances, including neurotoxic compounds. In this paper we present results related to the effects, both acute (i.e. 1 hour after the treatment) and chronic (3 days after the treatment), of increasing glutamatergic transmission induced by the application of rising concentrations of glutamate and its agonists (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid - AMPA, N-methyl-D-aspartate - NMDA and AMPA together with cyclothiazide - CTZ). Increase of available glutamate was obtained in two ways: 1) by direct application of exogenous glutamate and 2) by inhibiting the clearance of the endogenously released glutamate through DL-threo-β-benzyloxyaspartate (TBOA). Our findings show that fine modulations (i.e. low concentrations of drug) of the excitatory synaptic transmission are reflected in the electrophysiological activation of the network, while intervention leading to excessive direct stimulation of glutamatergic pathways (i.e. medium and high concentrations of drug) results in the abolishment of the electrophysiological activity and eventually cell death. The results obtained by means of the MEA recordings have been compared to the analysis of cell viability to confirm the excitotoxic effect of the applied drug. In conclusion, our study demonstrates that MEA-coupled cortical networks are very sensitive to pharmacological manipulation of the excitatory ionotropic glutamatergic transmission and might provide sensitive endpoints to detect acute and chronic neurotoxic effects of chemicals and drugs for predictive toxicity testing.
Collapse
|
98
|
Fleming TM, Scott V, Naskar K, Joe N, Brown CH, Stern JE. State-dependent changes in astrocyte regulation of extrasynaptic NMDA receptor signalling in neurosecretory neurons. J Physiol 2011; 589:3929-41. [PMID: 21690192 DOI: 10.1113/jphysiol.2011.207340] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite the long-established presence of glutamate NMDA receptors at extrasynaptic sites (eNMDARs), their functional roles remain poorly understood. Factors influencing the concentration and time course of glutamate in the extrasynaptic space, such as the topography of the neuronal–glial microenvironment, as well as glial glutamate transporters, are expected to affect eNMDAR-mediated signalling strength. In this study, we used in vitro and in vivo electrophysiological recordings to assess the properties, functional relevance and modulation of a persistent excitatory current mediated by activation of eNMDARs in hypothalamic supraoptic nucleus (SON) neurons. We found that ambient glutamate of a non-synaptic origin activates eNMDARs to mediate a persistent excitatory current (termed tonic I(NMDA)), which tonically stimulates neuronal activity. Pharmacological blockade of GLT1 astrocyte glutamate transporters, as well as the gliotoxin α-aminodadipic acid, enhanced tonic I(NMDA) and neuronal activity, supporting an astrocyte regulation of tonic I(NMDA) strength. Dehydration, a physiological challenge known to increase SON firing activity and to induce neuroglial remodelling, including reduced neuronal ensheathment by astrocyte processes, resulted in blunted GLT1 efficacy, enhanced tonic I(NMDA) strength, and increased neuronal activity. Taken together, our studies support the view that glial modulation of tonic I(NMDA) activation contributes to regulation of SON neuronal activity, contributing in turn to neuronal homeostatic responses during a physiological challenge.
Collapse
Affiliation(s)
- Tiffany M Fleming
- Department of Physiology, Medical College of Georgia, 1120 15th Street Augusta, GA 30912, USA
| | | | | | | | | | | |
Collapse
|
99
|
Effect of inhibition of spinal cord glutamate transporters on inflammatory pain induced by formalin and complete Freund's adjuvant. Anesthesiology 2011; 114:412-23. [PMID: 21245732 DOI: 10.1097/aln.0b013e318205df50] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Spinal cord glutamate transporters clear synaptically released glutamate and maintain normal sensory transmission. However, their ultrastructural localization is unknown. Moreover, whether and how they participate in inflammatory pain has not been carefully studied. METHODS Immunogold labeling with electron microscopy was carried out to characterize synaptic and nonsynaptic localization of glutamate transporters in the superficial dorsal horn. Their expression and uptake activity after formalin- and complete Freund's adjuvant (CFA)-induced inflammation were evaluated by Western blot analysis and glutamate uptake assay. Effects of intrathecal glutamate transporter activator (R)-(-)-5-methyl-1-nicotinoyl-2-pyrazoline and inhibitors (DL-threo-β-benzyloxyaspartate [TBOA], dihydrokainate, and DL-threo-β-hydroxyaspartate), or TBOA plus group III metabotropic glutamate receptor antagonist (RS)-α-methylserine-O-phosphate, on formalin- and CFA-induced inflammatory pain were examined. RESULTS In the superficial dorsal horn, excitatory amino acid carrier 1 is localized in presynaptic membrane, postsynaptic membrane, and axonal and dendritic membranes at nonsynaptic sites, whereas glutamate transporter-1 and glutamate/aspartate transporter are prominent in glial membranes. Although expression of these three spinal glutamate transporters was not altered 1 h after formalin injection or 6 h after CFA injection, glutamate uptake activity was decreased at these time points. Intrathecal (R)-(-)-5-methyl-1-nicotinoyl-2-pyrazoline had no effect on formalin-induced pain behaviors. In contrast, intrathecal TBOA, dihydrokainate, and DL-threo-β-hydroxyaspartate reduced formalin-evoked pain behaviors in the second phase. Intrathecal TBOA also attenuated CFA-induced thermal hyperalgesia at 6 h after CFA injection. The antinociceptive effects of TBOA were blocked by coadministration of (RS)-α-methylserine-O-phosphate. CONCLUSION Our findings suggest that spinal glutamate transporter inhibition relieves inflammatory pain through activation of inhibitory presynaptic group III metabotropic glutamate receptors.
Collapse
|
100
|
Maldonado PP, Vélez-Fort M, Angulo MC. Is neuronal communication with NG2 cells synaptic or extrasynaptic? J Anat 2011; 219:8-17. [PMID: 21352226 DOI: 10.1111/j.1469-7580.2011.01350.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
NG2-expressing glial cells (NG2 cells) represent a major pool of progenitors able to generate myelinating oligodendrocytes, and perhaps astrocytes and neurones, in the postnatal brain. In the last decade, it has been demonstrated that NG2 cells receive functional glutamatergic and GABAergic synapses mediating fast synaptic transmission in different brain regions. However, several controversies exist in this field. While two classes of NG2 cells have been defined by the presence or absence of Na(+) channels, action potential firing and neuronal input, other studies suggest that all NG2 cells possess Na(+) conductances and are the target of quantal neuronal release, but are unable to trigger action potential firing. Here we bring new evidence supporting the idea that the level of expression of Na(+) conductances is not a criterion to discriminate NG2 cell subpopulations in the somatosensory cortex. Surprisingly, recent reports demonstrated that NG2 cells detect quantal glutamate release from unmyelinated axons in white matter regions. Yet, it is difficult from these studies to establish whether axonal vesicular release in white matter occurs at genuine synaptic junctions or at ectopic release sites. In addition, we recently reported a new mode of extrasynaptic communication between neurones and NG2 cells that relies on pure GABA spillover and does not require GABAergic synaptic input. This review discusses the properties of quantal neuronal release onto NG2 cells and gives an extended overview of potential extrasynaptic modes of transmission, from ectopic to diffuse volume transmission, between neurones and NG2 cells in the brain.
Collapse
|