51
|
Chen F, Becker A, LoTurco J. Overview of Transgenic Glioblastoma and Oligoastrocytoma CNS Models and Their Utility in Drug Discovery. ACTA ACUST UNITED AC 2016; 72:14.37.1-14.37.12. [PMID: 26995546 DOI: 10.1002/0471141755.ph1437s72] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Many animal models have been developed to investigate the sources of central nervous system (CNS) tumor heterogeneity. Reviewed in this unit is a recently developed CNS tumor model using the piggyBac transposon system delivered by in utero electroporation, in which sources of tumor heterogeneity can be conveniently studied. Their applications for studying CNS tumors and drug discovery are also reviewed. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Fuyi Chen
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Conn.,Current address: Department of Neurology, Yale School of Medicine, New Haven, Conn
| | - Albert Becker
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Joseph LoTurco
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Conn
| |
Collapse
|
52
|
Leferink AM, van Blitterswijk CA, Moroni L. Methods of Monitoring Cell Fate and Tissue Growth in Three-Dimensional Scaffold-Based Strategies for In Vitro Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:265-83. [PMID: 26825610 DOI: 10.1089/ten.teb.2015.0340] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the field of tissue engineering, there is a need for methods that allow assessing the performance of tissue-engineered constructs noninvasively in vitro and in vivo. To date, histological analysis is the golden standard to retrieve information on tissue growth, cellular distribution, and cell fate on tissue-engineered constructs after in vitro cell culture or on explanted specimens after in vivo applications. Yet, many advances have been made to optimize imaging techniques for monitoring tissue-engineered constructs with a sub-mm or μm resolution. Many imaging modalities have first been developed for clinical applications, in which a high penetration depth has been often more important than lateral resolution. In this study, we have reviewed the current state of the art in several imaging approaches that have shown to be promising in monitoring cell fate and tissue growth upon in vitro culture. Depending on the aimed tissue type and scaffold properties, some imaging methods are more applicable than others. Optical methods are mostly suited for transparent materials such as hydrogels, whereas magnetic resonance-based methods are mostly applied to obtain contrast between hard and soft tissues regardless of their transparency. Overall, this review shows that the field of imaging in scaffold-based tissue engineering is developing at a fast pace and has the potential to overcome the limitations of destructive endpoint analysis.
Collapse
Affiliation(s)
- Anne M Leferink
- 1 Department of Tissue Regeneration, MIRA Institute, University of Twente , Enschede, The Netherlands .,2 Department of Complex Tissue Regeneration, Maastricht University , Maastricht, The Netherlands .,3 BIOS/Lab-on-a-chip Group, MIRA Institute, University of Twente , Enschede, The Netherlands
| | - Clemens A van Blitterswijk
- 1 Department of Tissue Regeneration, MIRA Institute, University of Twente , Enschede, The Netherlands .,2 Department of Complex Tissue Regeneration, Maastricht University , Maastricht, The Netherlands
| | - Lorenzo Moroni
- 1 Department of Tissue Regeneration, MIRA Institute, University of Twente , Enschede, The Netherlands .,2 Department of Complex Tissue Regeneration, Maastricht University , Maastricht, The Netherlands
| |
Collapse
|
53
|
Hoffman RM. Use of fluorescent proteins and color-coded imaging to visualize cancer cells with different genetic properties. Cancer Metastasis Rev 2016; 35:5-19. [PMID: 26942457 DOI: 10.1007/s10555-016-9610-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fluorescent proteins are very bright and available in spectrally-distinct colors, enable the imaging of color-coded cancer cells growing in vivo and therefore the distinction of cancer cells with different genetic properties. Non-invasive and intravital imaging of cancer cells with fluorescent proteins allows the visualization of distinct genetic variants of cancer cells down to the cellular level in vivo. Cancer cells with increased or decreased ability to metastasize can be distinguished in vivo. Gene exchange in vivo which enables low metastatic cancer cells to convert to high metastatic can be color-coded imaged in vivo. Cancer stem-like and non-stem cells can be distinguished in vivo by color-coded imaging. These properties also demonstrate the vast superiority of imaging cancer cells in vivo with fluorescent proteins over photon counting of luciferase-labeled cancer cells.
Collapse
Affiliation(s)
- Robert M Hoffman
- AntiCancer Inc., 7917 Ostrow Street, San Diego, CA, 92111, USA.
- Department of Surgery, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
54
|
Berke IM, Miola JP, David MA, Smith MK, Price C. Seeing through Musculoskeletal Tissues: Improving In Situ Imaging of Bone and the Lacunar Canalicular System through Optical Clearing. PLoS One 2016; 11:e0150268. [PMID: 26930293 PMCID: PMC4773178 DOI: 10.1371/journal.pone.0150268] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/11/2016] [Indexed: 12/17/2022] Open
Abstract
In situ, cells of the musculoskeletal system reside within complex and often interconnected 3-D environments. Key to better understanding how 3-D tissue and cellular environments regulate musculoskeletal physiology, homeostasis, and health is the use of robust methodologies for directly visualizing cell-cell and cell-matrix architecture in situ. However, the use of standard optical imaging techniques is often of limited utility in deep imaging of intact musculoskeletal tissues due to the highly scattering nature of biological tissues. Drawing inspiration from recent developments in the deep-tissue imaging field, we describe the application of immersion based optical clearing techniques, which utilize the principle of refractive index (RI) matching between the clearing/mounting media and tissue under observation, to improve the deep, in situ imaging of musculoskeletal tissues. To date, few optical clearing techniques have been applied specifically to musculoskeletal tissues, and a systematic comparison of the clearing ability of optical clearing agents in musculoskeletal tissues has yet to be fully demonstrated. In this study we tested the ability of eight different aqueous and non-aqueous clearing agents, with RIs ranging from 1.45 to 1.56, to optically clear murine knee joints and cortical bone. We demonstrated and quantified the ability of these optical clearing agents to clear musculoskeletal tissues and improve both macro- and micro-scale imaging of musculoskeletal tissue across several imaging modalities (stereomicroscopy, spectroscopy, and one-, and two-photon confocal microscopy) and investigational techniques (dynamic bone labeling and en bloc tissue staining). Based upon these findings we believe that optical clearing, in combination with advanced imaging techniques, has the potential to complement classical musculoskeletal analysis techniques; opening the door for improved in situ investigation and quantification of musculoskeletal tissues.
Collapse
Affiliation(s)
- Ian M. Berke
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Joseph P. Miola
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Michael A. David
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Melanie K. Smith
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Christopher Price
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
- * E-mail:
| |
Collapse
|
55
|
Yano S, Takehara K, Miwa S, Kishimoto H, Hiroshima Y, Murakami T, Urata Y, Kagawa S, Bouvet M, Fujiwara T, Hoffman RM. Improved Resection and Outcome of Colon-Cancer Liver Metastasis with Fluorescence-Guided Surgery Using In Situ GFP Labeling with a Telomerase-Dependent Adenovirus in an Orthotopic Mouse Model. PLoS One 2016; 11:e0148760. [PMID: 26849435 PMCID: PMC4743860 DOI: 10.1371/journal.pone.0148760] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/30/2015] [Indexed: 01/30/2023] Open
Abstract
Fluorescence-guided surgery (FGS) of cancer is an area of intense development. In the present report, we demonstrate that the telomerase-dependent green fluorescent protein (GFP)-containing adenovirus OBP-401 could label colon-cancer liver metastasis in situ in an orthotopic mouse model enabling successful FGS. OBP-401-GFP-labeled liver metastasis resulted in complete resection with FGS, in contrast, conventional bright-light surgery (BLS) did not result in complete resection of the metastasis. OBP-401-FGS reduced the recurrence rate and prolonged over-all survival compared with BLS. In conclusion, adenovirus OBP-401 is a powerful tool to label liver metastasis in situ with GFP which enables its complete resection, not possible with conventional BLS.
Collapse
Affiliation(s)
- Shuya Yano
- AntiCancer, Inc., San Diego, CA, United States of America
- Department of Surgery, University of California San Diego, San Diego, CA, United States of America
- Department of Gastroenterological Surgery, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kiyoto Takehara
- AntiCancer, Inc., San Diego, CA, United States of America
- Department of Surgery, University of California San Diego, San Diego, CA, United States of America
- Department of Gastroenterological Surgery, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinji Miwa
- AntiCancer, Inc., San Diego, CA, United States of America
- Department of Surgery, University of California San Diego, San Diego, CA, United States of America
| | - Hiroyuki Kishimoto
- Department of Gastroenterological Surgery, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yukihiko Hiroshima
- AntiCancer, Inc., San Diego, CA, United States of America
- Department of Surgery, University of California San Diego, San Diego, CA, United States of America
| | - Takashi Murakami
- AntiCancer, Inc., San Diego, CA, United States of America
- Department of Surgery, University of California San Diego, San Diego, CA, United States of America
| | | | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, San Diego, CA, United States of America
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Robert M. Hoffman
- AntiCancer, Inc., San Diego, CA, United States of America
- Department of Surgery, University of California San Diego, San Diego, CA, United States of America
- * E-mail:
| |
Collapse
|
56
|
Animal models of colorectal cancer with liver metastasis. Cancer Lett 2016; 387:114-120. [PMID: 26850374 DOI: 10.1016/j.canlet.2016.01.048] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 01/01/2023]
Abstract
Liver metastasis is a leading cause of death in patients with colorectal cancer. Investigating the mechanisms of liver metastasis and control of disease progression are important strategies for improving survival of these patients. Liver metastasis is a multi-step process and relevant models representing these steps are necessary to understand the mechanism of liver metastasis and establish appropriate treatments. Recently, the development of animal models for use in metastasis research has greatly increased; however, there is still a lack of models that sufficiently represent human cancer. Thus, in order to select an optimal model for of a given study, it is necessary to fully understand the characteristics of each animal model. In this review, we describe the mouse models currently used for colorectal cancer with liver metastasis, their characteristics, and their pros and cons. This may help us specify the mechanism of liver metastasis and provide evidence relevant to clinical applications.
Collapse
|
57
|
Feng H, Xia X, Li C, Song Y, Qin C, Zhang Y, Lan X. TYR as a multifunctional reporter gene regulated by the Tet-on system for multimodality imaging: an in vitro study. Sci Rep 2015; 5:15502. [PMID: 26483258 PMCID: PMC4611178 DOI: 10.1038/srep15502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 09/24/2015] [Indexed: 12/04/2022] Open
Abstract
The human tyrosinase gene TYR is a multifunctional reporter gene with potential use in photoacoustic imaging (PAI), positron emission tomography (PET), and magnetic resonance imaging (MRI). We sought to establish and evaluate a reporter gene system using TYR under the control of the Tet-on gene expression system (gene expression induced by doxycycline [Dox]) as a multimodality imaging agent. We transfected TYR into human breast cancer cells (MDA-MB-231), naming the resulting cell line 231-TYR. Using non-transfected MDA-MB-231 cells as a control, we verified successful expression of TYR by 231-TYR after incubation with Dox using western blot, cellular tyrosinase activity, Masson-Fontana silver staining, and a cell immunofluorescence study, while the control cells and 231-TYR cells without Dox exposure revealed no TYR expression. Detected by its absorbance at 405 nm, increasing concentrations of melanin correlated positively with Dox concentration and incubation time. TYR expression by Dox-induced transfected cells shortened MRI T1 and T2 relaxation times. Photoacoustic signals were easily detected in these cells. (18)F-5-fluoro-N-(2-[diethylamino]ethyl)picolinamide ((18)F-5-FPN), which targets melanin, quickly accumulated in Dox-induced 231-TYR cells. These show that TYR induction of melanin production is regulated by the Tet-on system, and TYR-containing indicator cells may have utility in multimodality imaging.
Collapse
Affiliation(s)
- Hongyan Feng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaotian Xia
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Chongjiao Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yiling Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Chunxia Qin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yongxue Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| |
Collapse
|
58
|
Abstract
In this chapter, we describe protocols for tumor imaging technologies in mouse models. These models utilize human cancer cell lines which have been genetically engineered to selectively express high levels of green fluorescent protein (GFP) or red fluorescent protein (RFP). Tumors with fluorescent genetic reporters are established subcutaneously in nude mice, and fragments of the subcutaneous tumors are then surgically transplanted onto the orthotopic organ. Locoregional tumor growth and distant metastasis of these orthotopic implants occur spontaneously and rapidly throughout the abdomen in a manner consistent with clinical human disease. Highly specific, high-resolution, real-time quantitative fluorescence imaging of tumor growth and metastasis may be achieved in vivo without the need for contrast agents, invasive techniques, or expensive imaging equipment. Transplantation of RFP-expressing tumor fragments onto the pancreas of GFP- or cyan fluorescent protein (CFP)-expressing transgenic nude mice was used to facilitate visualization of tumor-host interaction between the pancreatic cancer cells and host-derived stroma and vasculature. Such in vivo models have enabled us to visualize in real time and acquire images of the progression of pancreatic cancer in the live animal, and to demonstrate the real-time antitumor and antimetastatic effects of several novel therapeutic strategies on a variety of malignancies. We discuss studies from our laboratory that demonstrate that fluorescence imaging in mice is complementary to other modalities such as magnetic resonance imaging (MRI) or ultrasound. These fluorescent models are powerful and reliable tools with which to investigate metastatic human cancer and novel therapeutic strategies directed against it.
Collapse
|
59
|
Murakami T, Hiroshima Y, Zhang Y, Bouvet M, Chishima T, Tanaka K, Endo I, Hoffman RM. Improved disease-free survival and overall survival after fluorescence-guided surgery of liver metastasis in an orthotopic nude mouse model. J Surg Oncol 2015; 112:119-24. [PMID: 26266663 DOI: 10.1002/jso.23986] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/10/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND In the present study, we sought to determine if fluorescence-guided surgery (FGS) would improve survival compared to standard bright light surgery (BLS) in an experimental colorectal liver metastasis nude mouse model. METHODS Orthotopic nude-mouse models of human HT-29-GFP colon cancer liver metastasis were established in the left lobe of the liver of mice. Fourteen mice with a single liver metastasis were randomized into FGS or BLS groups of seven each. FGS of liver metastasis was performed using a hand-held portable fluorescence imaging system (Dino-Lite) to visualize the GFP fluorescence of the metastasis. The BLS- and FGS-treated mice were followed by weekly fluorescence imaging in order to detect recurrence. RESULTS The bright fluorescence of GFP provided sufficient illumination to accurately distinguish the margins of the metastasis within the liver. Recurrence occurred in multiple sites including the liver, lung, and other organs in the BLS-treated mice but was significantly reduced in FGS-treated mice. The FGS-treated mice had significantly prolonged disease-free survival (P = 0.001) and overall survival (P = 0.027) compared to BLS-treated mice. CONCLUSION The results of the present report demonstrate the feasibility and efficacy of FGS for liver metastasis and suggest its important clinical potential.
Collapse
Affiliation(s)
- Takashi Murakami
- AntiCancer, Inc., San Diego, California.,Department of Surgery, University of California San Diego, San Diego, California.,Department of Gastroenterological Surgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Yukihiko Hiroshima
- AntiCancer, Inc., San Diego, California.,Department of Surgery, University of California San Diego, San Diego, California.,Department of Gastroenterological Surgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | | | - Michael Bouvet
- Department of Surgery, University of California San Diego, San Diego, California
| | - Takashi Chishima
- Department of Gastroenterological Surgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Kuniya Tanaka
- Department of Gastroenterological Surgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, California.,Department of Surgery, University of California San Diego, San Diego, California
| |
Collapse
|
60
|
Rohner NA, McClain J, Tuell SL, Warner A, Smith B, Yun Y, Mohan A, Sushnitha M, Thomas SN. Lymph node biophysical remodeling is associated with melanoma lymphatic drainage. FASEB J 2015; 29:4512-22. [PMID: 26178165 DOI: 10.1096/fj.15-274761] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/30/2015] [Indexed: 12/24/2022]
Abstract
Tissue remodeling is a characteristic of many solid tumor malignancies including melanoma. By virtue of tumor lymphatic transport, remodeling pathways active within the local tumor microenvironment have the potential to be operational within lymph nodes (LNs) draining the tumor interstitium. Here, we show that lymphatic drainage from murine B16 melanomas in syngeneic, immune-competent C57Bl/6 mice is associated with LN enlargement as well as nonuniform increases in bulk tissue elasticity and viscoelasticity, as measured by the response of whole LNs to compression. These remodeling responses, which quickly manifest in tumor-draining lymph nodes (TDLNs) after tumor inoculation and before apparent metastasis, were accompanied by changes in matrix composition, including up to 3-fold increases in the abundance of soluble collagen and hyaluronic acid. Intranodal pressures were also significantly increased in TDLNs (+1 cmH2O) relative to both non-tumor-draining LNs (-1 cmH2O) and LNs from naive animals (-1 to 2 cmH2O). These data suggest that the reorganization of matrix structure, composition, and fluid microenvironment within LNs associated with tumor lymphatic drainage parallels remodeling seen in primary malignancies and has the potential to regulate the adhesion, proliferation, and signaling function of LN-resident cells involved in directing melanoma disease progression.
Collapse
Affiliation(s)
- Nathan Andrew Rohner
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Jacob McClain
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Sara Lydia Tuell
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Alex Warner
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Blair Smith
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Youngho Yun
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Abhinav Mohan
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Manuela Sushnitha
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Susan Napier Thomas
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
61
|
Deliolanis NC, Ale A, Morscher S, Burton NC, Schaefer K, Radrich K, Razansky D, Ntziachristos V. Deep-tissue reporter-gene imaging with fluorescence and optoacoustic tomography: a performance overview. Mol Imaging Biol 2015; 16:652-60. [PMID: 24609633 DOI: 10.1007/s11307-014-0728-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE A primary enabling feature of near-infrared fluorescent proteins (FPs) and fluorescent probes is the ability to visualize deeper in tissues than in the visible. The purpose of this work is to find which is the optimal visualization method that can exploit the advantages of this novel class of FPs in full-scale pre-clinical molecular imaging studies. PROCEDURES Nude mice were stereotactically implanted with near-infrared FP expressing glioma cells to from brain tumors. The feasibility and performance metrics of FPs were compared between planar epi-illumination and trans-illumination fluorescence imaging, as well as to hybrid Fluorescence Molecular Tomography (FMT) system combined with X-ray CT and Multispectral Optoacoustic (or Photoacoustic) Tomography (MSOT). RESULTS It is shown that deep-seated glioma brain tumors are possible to visualize both with fluorescence and optoacoustic imaging. Fluorescence imaging is straightforward and has good sensitivity; however, it lacks resolution. FMT-XCT can provide an improved rough resolution of ∼1 mm in deep tissue, while MSOT achieves 0.1 mm resolution in deep tissue and has comparable sensitivity. CONCLUSIONS We show imaging capacity that can shift the visualization paradigm in biological discovery. The results are relevant not only to reporter gene imaging, but stand as cross-platform comparison for all methods imaging near infrared fluorescent contrast agents.
Collapse
Affiliation(s)
- Nikolaos C Deliolanis
- Institute for Biological and Medical Imaging, Helmholtz Zentrum München and Technische Universität München, Munich, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Zheng X, Tang H, Xie C, Zhang J, Wu W, Jiang X. Tracking Cancer Metastasis In Vivo by Using an Iridium-Based Hypoxia-Activated Optical Oxygen Nanosensor. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
63
|
Zheng X, Tang H, Xie C, Zhang J, Wu W, Jiang X. Tracking Cancer Metastasis In Vivo by Using an Iridium-Based Hypoxia-Activated Optical Oxygen Nanosensor. Angew Chem Int Ed Engl 2015; 54:8094-9. [PMID: 26037656 DOI: 10.1002/anie.201503067] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/08/2015] [Indexed: 12/27/2022]
Abstract
We have developed a nanosensor for tracking cancer metastasis by noninvasive real-time whole-body optical imaging. The nanosensor is prepared by the formation of co-micelles from a poly(N-vinylpyrrolidone)-conjugated iridium(III) complex (Ir-PVP) and poly(ε-caprolactone)-b-poly(N-vinylpyrrolidone) (PCL-PVP). The near-infrared phosphorescence emission of the nanosensor could be selectively activated in the hypoxic microenvironment induced by cancer cells. The detection ability of the nanosensor was examined in cells and different animal models. After intravenous injection, the nanosensor can be effectively delivered to the lung and lymph node, and cancer cell metastasis through bloodstream or lymphatics can be quickly detected with high signal-to-background ratio by whole-body imaging and organ imaging. Moreover, the nanosensor exhibits good biocompatibility both in vitro and in vivo. The nanosensor is believed to be a powerful tool for the diagnosis of cancer metastasis.
Collapse
Affiliation(s)
- Xianchuang Zheng
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Collaborative Innovation Center of Chemistry for Life Sciences, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093 (P. R. China)
| | - Huang Tang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Collaborative Innovation Center of Chemistry for Life Sciences, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093 (P. R. China)
| | - Chen Xie
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Collaborative Innovation Center of Chemistry for Life Sciences, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093 (P. R. China)
| | - Jialiang Zhang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Collaborative Innovation Center of Chemistry for Life Sciences, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093 (P. R. China)
| | - Wei Wu
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Collaborative Innovation Center of Chemistry for Life Sciences, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093 (P. R. China)
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Collaborative Innovation Center of Chemistry for Life Sciences, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093 (P. R. China).
| |
Collapse
|
64
|
Abstract
Multicolored proteins have allowed the color-coding of cancer cells growing in vivo and enabled the distinction of host from tumor with single-cell resolution. Non-invasive imaging with fluorescent proteins enabled the dynamics of metastatic cancer to be followed in real time in individual animals. Non-invasive imaging of cancer cells expressing fluorescent proteins has allowed the real-time determination of efficacy of candidate antitumor and antimetastatic agents in mouse models. The use of fluorescent proteins to differentially label cancer cells in the nucleus and cytoplasm can visualize the nuclear-cytoplasmic dynamics of cancer cells in vivo including: mitosis, apoptosis, cell-cycle position, and differential behavior of nucleus and cytoplasm that occurs during cancer-cell deformation and extravasation. Recent applications of the technology described here include linking fluorescent proteins with cell-cycle-specific proteins such that the cells change color from red to green as they transit from G1 to S phases. With the macro- and micro-imaging technologies described here, essentially any in vivo process can be imaged, giving rise to the new field of in vivo cell biology using fluorescent proteins.
Collapse
Affiliation(s)
- Robert M. Hoffman
- AntiCancer, Inc., Dept. of Surgery, University of California San Diego
| |
Collapse
|
65
|
Photoimmunotherapy of gastric cancer peritoneal carcinomatosis in a mouse model. PLoS One 2014; 9:e113276. [PMID: 25401794 PMCID: PMC4234664 DOI: 10.1371/journal.pone.0113276] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/21/2014] [Indexed: 12/28/2022] Open
Abstract
Photoimmunotherapy (PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. We performed PIT in a model of disseminated gastric cancer peritoneal carcinomatosis and monitored efficacy with in vivo GFP fluorescence imaging. In vitro and in vivo experiments were conducted with a HER2-expressing, GFP-expressing, gastric cancer cell line (N87-GFP). A conjugate comprised of a photosensitizer, IR-700, conjugated to trastuzumab (tra-IR700), followed by NIR light was used for PIT. In vitro PIT was evaluated by measuring cytotoxicity with dead staining and a decrease in GFP fluorescence. In vivo PIT was evaluated in a disseminated peritoneal carcinomatosis model and a flank xenograft using tumor volume measurements and GFP fluorescence intensity. In vivo anti-tumor effects of PIT were confirmed by significant reductions in tumor volume (at day 15, p<0.0001 vs. control) and GFP fluorescence intensity (flank model: at day 3, PIT treated vs. control p<0.01 and peritoneal disseminated model: at day 3 PIT treated vs. control, p<0.05). Cytotoxic effects in vitro were shown to be dependent on the light dose and caused necrotic cell rupture leading to GFP release and a decrease in fluorescence intensity in vitro. Thus, loss of GFP fluorescence served as a useful biomarker of cell necrosis after PIT.
Collapse
|
66
|
Liu F, Cao X, Liu S, Zhang B, He W, Song J, Dai Z, Zhang B, Luo J, Li Y, Shan B, Bai J. Monitoring of tumor response to cisplatin with simultaneous fluorescence and positron emission tomography: a feasibility study. JOURNAL OF BIOPHOTONICS 2014; 7:889-96. [PMID: 23853154 DOI: 10.1002/jbio.201300069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 06/18/2013] [Accepted: 06/27/2013] [Indexed: 06/02/2023]
Abstract
Dual modality molecular imaging can capture concurrent molecular events and evaluate therapeutic efficacy from uniquely different perspectives based on different molecular targets. In this work, dual modality tomographic imaging, (18) F-fluorodeoxyglucose based positron emission tomography and subsurface fluorescence molecular tomography ([(18) F]FDG-PET/subsurface FMT), is proposed to monitor tumor response to cisplatin on a mouse xenograft model in vivo. One mouse was administered with cisplatin (1.0 mg/kg) by intraperitoneal injection once every day for 14 days, and another mouse was administered with saline to serve as the control. Dual modality [(18) F]FDG-PET/subsurface FMT imaging was conducted on days 0, 2, 5, 9, 15, and 22. In vivo imaging and quantitative analysis demonstrated the feasibility of [(18) F]FDG-PET/subsurface FMT imaging in tracking the changes of [(18) F]FDG tumor uptake and amount of red fluorescent protein (RFP) synthesized by tumor cells in the same mouse simultaneously. Dual modality [(18) F]FDG-PET/subsurface FMT imaging may thus provide a powerful tool for better understanding disease progress and treatment evaluation from different perspectives.
Collapse
Affiliation(s)
- Fei Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Miwa S, Matsumoto Y, Hiroshima Y, Yano S, Uehara F, Yamamoto M, Zhang Y, Kimura H, Hayashi K, Yamamoto N, Bouvet M, Sugimoto N, Tsuchiya H, Hoffman RM. Fluorescence-guided surgery of prostate cancer bone metastasis. J Surg Res 2014; 192:124-33. [PMID: 24972740 DOI: 10.1016/j.jss.2014.05.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/16/2014] [Accepted: 05/16/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND The aim of this study is to investigate the effectiveness of fluorescence-guided surgery (FGS) of prostate cancer experimental skeletal metastasis. MATERIALS AND METHODS Green fluorescent protein-expressing PC-3 human prostate cancer cells (PC-3-green fluorescent protein) were injected into the intramedullary cavity of the tibia in 32 nude mice. After 2 wk, 16 of the mice underwent FGS; the other 16 mice underwent bright-light surgery (BLS). Half of BLS and FGS mice (8 mice in each group) received zoledronic acid (ZOL). Weekly fluorescence imaging of the mice was performed. Six weeks after surgery, metastases to lung and inguinal lymph node were evaluated by fluorescence imaging. RESULTS The percentage of residual tumor after BLS and FGS was 9.9 ± 2.2% and 0.9 ± 0.3%, respectively (P < 0.001). FGS reduced recurrent cancer growth compared with BLS (P < 0.005). Although FGS alone had no significant effect on inguinal lymph node metastases, lung metastasis or disease-free survival (DFS), ZOL in combination with FGS significantly increased DFS (P = 0.01) in comparison with the combination of BLS and ZOL. ZOL reduced lymph node metastases (P = 0.033) but not lung metastasis. CONCLUSIONS FGS significantly reduced recurrence of experimental prostate cancer bone metastasis compared with BLS. The combination of FGS and ZOL increased DFS over BLS and ZOL. ZOL inhibited lymph node metastasis but not lung metastasis.
Collapse
Affiliation(s)
- Shinji Miwa
- AntiCancer, Inc, San Diego, California; Department of Surgery, University of California, San Diego, San Diego, California; Department of Orthopedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Yasunori Matsumoto
- Department of Surgery, University of California, San Diego, San Diego, California
| | - Yukihiko Hiroshima
- AntiCancer, Inc, San Diego, California; Department of Surgery, University of California, San Diego, San Diego, California
| | - Shuya Yano
- AntiCancer, Inc, San Diego, California; Department of Surgery, University of California, San Diego, San Diego, California
| | - Fuminari Uehara
- AntiCancer, Inc, San Diego, California; Department of Surgery, University of California, San Diego, San Diego, California
| | - Mako Yamamoto
- AntiCancer, Inc, San Diego, California; Department of Surgery, University of California, San Diego, San Diego, California
| | | | - Hiroaki Kimura
- Department of Orthopedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Norio Yamamoto
- Department of Orthopedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, San Diego, California.
| | - Naotoshi Sugimoto
- Department of Physiology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Robert M Hoffman
- AntiCancer, Inc, San Diego, California; Department of Surgery, University of California, San Diego, San Diego, California
| |
Collapse
|
68
|
Castillo-Pichardo L, Humphries-Bickley T, De La Parra C, Forestier-Roman I, Martinez-Ferrer M, Hernandez E, Vlaar C, Ferrer-Acosta Y, Washington AV, Cubano LA, Rodriguez-Orengo J, Dharmawardhane S. The Rac Inhibitor EHop-016 Inhibits Mammary Tumor Growth and Metastasis in a Nude Mouse Model. Transl Oncol 2014; 7:546-55. [PMID: 25389450 PMCID: PMC4225654 DOI: 10.1016/j.tranon.2014.07.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 07/14/2014] [Accepted: 07/18/2014] [Indexed: 01/19/2023] Open
Abstract
Metastatic disease still lacks effective treatments, and remains the primary cause of cancer mortality. Therefore, there is a critical need to develop better strategies to inhibit metastatic cancer. The Rho family GTPase Rac is an ideal target for anti-metastatic cancer therapy, because Rac is a key molecular switch that is activated by a myriad of cell surface receptors to promote cancer cell migration/invasion and survival. Previously, we reported the design and development of EHop-016, a small molecule compound, which inhibits Rac activity of metastatic cancer cells with an IC50 of 1 μM. EHop-016 also inhibits the activity of the Rac downstream effector p21-activated kinase (PAK), lamellipodia extension, and cell migration in metastatic cancer cells. Herein, we tested the efficacy of EHop-016 in a nude mouse model of experimental metastasis, where EHop-016 administration at 25 mg/kg body weight (BW) significantly reduced mammary fat pad tumor growth, metastasis, and angiogenesis. As quantified by UPLC MS/MS, EHop-016 was detectable in the plasma of nude mice at 17 to 23 ng/ml levels at 12 h following intraperitoneal (i.p.) administration of 10 to 25 mg/kg BW EHop-016. The EHop-016 mediated inhibition of angiogenesis In Vivo was confirmed by immunohistochemistry of excised tumors and by In Vitro tube formation assays of endothelial cells. Moreover, EHop-016 affected cell viability by down-regulating Akt and Jun kinase activities and c-Myc and Cyclin D expression, as well as increasing caspase 3/7 activities in metastatic cancer cells. In conclusion, EHop-016 has potential as an anticancer compound to block cancer progression via multiple Rac-directed mechanisms.
Collapse
Affiliation(s)
- Linette Castillo-Pichardo
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico ; Department of Pathology and Laboratory Medicine, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico
| | - Tessa Humphries-Bickley
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Columba De La Parra
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Ingrid Forestier-Roman
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Magaly Martinez-Ferrer
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Eliud Hernandez
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Cornelis Vlaar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | | | | | - Luis A Cubano
- Department of Anatomy and Cell Biology, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico
| | - Jose Rodriguez-Orengo
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
69
|
Fong P, Meng LR. Effect of mTOR inhibitors in nude mice with endometrial carcinoma and variable PTEN expression status. Med Sci Monit Basic Res 2014; 20:146-52. [PMID: 25266877 PMCID: PMC4189716 DOI: 10.12659/msmbr.892514] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background The aim of this study was to investigate the sensitivity to rapamycin of endometrial cancer cells with different phosphatase and tensin homologue (PTEN) expression to understand the mechanism of resistance to mammalian target of rapamycin (mTOR) inhibitors in the treatment of endometrial cancer. Material/Methods Twenty specific pathogen-free female BALB/c mice received transplants of either HEC-1A (PTEN-positive) or Ishikawa (PTEN-negative) cells. Mice in the treatment group were injected intraperitoneally once a week for 4 consecutive weeks. The control group was injected weekly with phosphate buffer saline (PBS) for 4 consecutive weeks. Tumor volume, tumor mass, growth curves, and inhibition rate were measured, after which the mice were killed. Results Both tumor growth rate and size were slower in the treatment group than in the control group for all mice that received transplants of either HEC-1A or Ishikawa cells. The tumor inhibition rates in the treatment group were 48.1% and 67.1% in mice transplanted with HEC-1A and Ishikawa cells, respectively. Conclusions The inhibitory effects of rapamycin were enhanced in PTEN-negative Ishikawa tumor cells compared with PTEN-positive HEC-1A cells, which could explain the reduced effect of rapalogues in some endometrial cancer patients and help to understand the mechanism of resistance to this drug.
Collapse
Affiliation(s)
- Pedro Fong
- School of Health Sciences, Macao Polytechnic Institute, Macao, China (mainland)
| | - Li-rong Meng
- School of Health Sciences, Macao Polytechnic Institute, Macao, China (mainland)
| |
Collapse
|
70
|
Alsidawi S, Malek E, Driscoll JJ. MicroRNAs in brain metastases: potential role as diagnostics and therapeutics. Int J Mol Sci 2014; 15:10508-26. [PMID: 24921708 PMCID: PMC4100165 DOI: 10.3390/ijms150610508] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/22/2014] [Accepted: 06/06/2014] [Indexed: 12/12/2022] Open
Abstract
Brain metastases remain a daunting adversary that negatively impact patient survival. Metastatic brain tumors affect up to 45% of all cancer patients with systemic cancer and account for ~20% of all cancer-related deaths. A complex network of non-coding RNA molecules, microRNAs (miRNAs), regulate tumor metastasis. The brain micro-environment modulates metastatic tumor growth; however, defining the precise genetic events that promote metastasis in the brain niche represents an important, unresolved problem. Understanding these events will reveal disease-based targets and offer effective strategies to treat brain metastases. Effective therapeutic strategies based upon the biology of brain metastases represent an urgent, unmet need with immediate potential for clinical impact. Studies have demonstrated the ability of miRNAs to distinguish normal from cancerous cells, primary from secondary brain tumors, and correctly categorize metastatic brain tumor tissue of origin based solely on miRNA profiles. Interestingly, manipulation of miRNAs has proven effective in cancer treatment. With the promise of reduced toxicity, increased efficacy and individually directed personalized anti-cancer therapy, using miRNA in the treatment of metastatic brain tumors may prove very useful and improve patient outcome. In this review, we focus on the potential of miRNAs as diagnostic and therapeutic targets for the treatment of metastatic brain lesions.
Collapse
Affiliation(s)
- Samer Alsidawi
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - Ehsan Malek
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - James J Driscoll
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
71
|
Abstract
With the wide use of small animals for biomedical studies, in vivo small-animal whole-body imaging plays an increasingly important role. Photoacoustic tomography (PAT) is an emerging whole-body imaging modality that shows great potential for preclinical research. As a hybrid technique, PAT is based on the acoustic detection of optical absorption from either endogenous tissue chromophores, such as oxyhemoglobin and deoxyhemoglobin, or exogenous contrast agents. Because ultrasound scatters much less than light in tissue, PAT generates high-resolution images in both the optical ballistic and diffusive regimes. Using near-infrared light, which has relatively low blood absorption, PAT can image through the whole body of small animals with acoustically defined spatial resolution. Anatomical and vascular structures are imaged with endogenous hemoglobin contrast, while functional and molecular images are enabled by the wide choice of exogenous optical contrasts. This paper reviews the rapidly growing field of small-animal whole-body PAT and highlights studies done in the past decade.
Collapse
Affiliation(s)
- Jun Xia
- J. Xia and L.V. Wang are with the Optical Imaging Lab, Department of Biomedical Engineering, Washington University in St. Louis ( and )
| | - Lihong V. Wang
- J. Xia and L.V. Wang are with the Optical Imaging Lab, Department of Biomedical Engineering, Washington University in St. Louis ( and )
| |
Collapse
|
72
|
Miwa S, Yano S, Hiroshima Y, Tome Y, Uehara F, Mii S, Efimova EV, Kimura H, Hayashi K, Tsuchiya H, Hoffman RM. Imaging UVC-induced DNA damage response in models of minimal cancer. J Cell Biochem 2014; 114:2493-9. [PMID: 23744630 DOI: 10.1002/jcb.24599] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 05/13/2013] [Indexed: 12/14/2022]
Abstract
We have previously demonstrated that the ultraviolet (UV) light is effective against a variety of cancer cells in vivo as well as in vitro. In the present report, we imaged the DNA damage repair response of minimal cancer after UVC irradiation. DNA-damage repair response to UV irradiation was imaged on tumors growing in 3D culture and in superficial tumors grown in vivo. UV-induced DNA damage repair was imaged with GFP fused to the DNA damage response (DDR)-related chromatin-binding protein 53BP1 in MiaPaCa-2 human pancreatic cancer cells. Three-dimensional Gelfoam® histocultures and confocal imaging enabled 53BP1-GFP nuclear foci to be observed within 1 h after UVC irradiation, indicating the onset of DNA damage repair response. A clonogenic assay showed that UVC inhibited MiaPaCa-2 cell proliferation in a dose-dependent manner, while UVA and UVB showed little effect on cell proliferation. Induction of UV-induced 53BP1-GFP focus formation was limited up to a depth of 40 µm in 3D-culture of MiaPaCa-2 cells. The MiaPaCa-2 cells irradiated by UVC light in a skin-flap mouse model had a significant decrease of tumor growth compared to untreated controls. Our results also demonstrate that 53BP1-GFP is an imageable marker of UV-induced DNA damage repair response of minimal cancer and that UVC is a useful tool for the treatment of residual cancer since UVC can kill superficial cancer cells without damage to deep tissue.
Collapse
Affiliation(s)
- Shinji Miwa
- AntiCancer, Inc., San Diego, California; Department of Surgery, University of California, San Diego, California; Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Wang Q, Shen B, Chen L, Zheng P, Feng H, Hao Q, Liu X, Liu L, Xu S, Chen J, Teng J. Extracellular calumenin suppresses ERK1/2 signaling and cell migration by protecting fibulin-1 from MMP-13-mediated proteolysis. Oncogene 2014; 34:1006-18. [DOI: 10.1038/onc.2014.52] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/06/2014] [Accepted: 01/20/2014] [Indexed: 01/04/2023]
|
74
|
New researches and application progress of commonly used optical molecular imaging technology. BIOMED RESEARCH INTERNATIONAL 2014; 2014:429198. [PMID: 24696850 PMCID: PMC3947735 DOI: 10.1155/2014/429198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 12/20/2013] [Indexed: 12/26/2022]
Abstract
Optical molecular imaging, a new medical imaging technique, is developed based on genomics, proteomics and modern optical imaging technique, characterized by non-invasiveness, non-radiativity, high cost-effectiveness, high resolution, high sensitivity and simple operation in comparison with conventional imaging modalities. Currently, it has become one of the most widely used molecular imaging techniques and has been applied in gene expression regulation and activity detection, biological development and cytological detection, drug research and development, pathogenesis research, pharmaceutical effect evaluation and therapeutic effect evaluation, and so forth, This paper will review the latest researches and application progresses of commonly used optical molecular imaging techniques such as bioluminescence imaging and fluorescence molecular imaging.
Collapse
|
75
|
Abstract
In the past 10 years, we have developed a new approach to the development of a clinically accurate rodent model for human cancer based on our invention of surgical orthotopic implantation (SOI). The SOI models have been described in approx. 70 publications and in 4 patents.*SOI allows human tumors of all the major types of human cancer to reproduce clinical like tumor growth and metastasis in the transplanted rodents. The major features of the SOI models are reviewed here and also compared to transgenic mouse models of cancer.
Collapse
|
76
|
A versatile technique for the in vivo imaging of human tumor xenografts using near-infrared fluorochrome-conjugated macromolecule probes. PLoS One 2013; 8:e82708. [PMID: 24358218 PMCID: PMC3866180 DOI: 10.1371/journal.pone.0082708] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 10/26/2013] [Indexed: 11/28/2022] Open
Abstract
Here, we present a versatile method for detecting human tumor xenografts in vivo, based on the enhanced permeability and retention (EPR) effect, using near-infrared (NIR) fluorochrome-conjugated macromolecule probes. Bovine serum albumin (BSA) and two immunoglobulins—an anti-human leukocyte antigen (HLA) monoclonal antibody and isotype control IgG2a—were labeled with XenoLight CF770 fluorochrome and used as NIR-conjugated macromolecule probes to study whole-body imaging in a variety of xenotransplantation mouse models. NIR fluorescent signals were observed in subcutaneously transplanted BxPC-3 (human pancreatic cancer) cells and HCT 116 (colorectal cancer) cells within 24 h of NIR-macromolecule probe injection, but the signal from the fluorochrome itself or from the NIR-conjugated small molecule (glycine) injection was not observed. The accuracy of tumor targeting was confirmed by the localization of the NIR-conjugated immunoglobulin within the T-HCT 116 xenograft (in which the orange-red fluorescent protein tdTomato was stably expressed by HCT 116 cells) in the subcutaneous transplantation model. However, there was no significant difference in the NIR signal intensity of the region of interest between the anti-HLA antibody group and the isotype control group in the subcutaneous transplantation model. Therefore, the antibody accumulation within the tumor in vivo is based on the EPR effect. The liver metastasis generated by an intrasplenic injection of T-HCT 116 cells was clearly visualized by the NIR-conjugated anti-HLA probe but not by the orange-red fluorescent signal derived from the tdTomato reporter. This result demonstrated the superiority of the NIR probes over the tdTomato reporter protein at enhancing tissue penetration. In another xenograft model, patient-derived xenografts (PDX) of LC11-JCK (human non-small cell lung cancer) were successfully visualized using the NIR-conjugated macromolecule probe without any genetic modification. These results suggested that NIR-conjugated macromolecule, preferably, anti-HLA antibody probe is a valuable tool for the detection of human tumors in experimental metastasis models using whole-body imaging.
Collapse
|
77
|
Ingram N, Macnab SA, Marston G, Scott N, Carr IM, Markham AF, Whitehouse A, Coletta PL. The use of high-frequency ultrasound imaging and biofluorescence for in vivo evaluation of gene therapy vectors. BMC Med Imaging 2013; 13:35. [PMID: 24219244 PMCID: PMC3831818 DOI: 10.1186/1471-2342-13-35] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 11/01/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Non-invasive imaging of the biodistribution of novel therapeutics including gene therapy vectors in animal models is essential. METHODS This study assessed the utility of high-frequency ultrasound (HF-US) combined with biofluoresence imaging (BFI) to determine the longitudinal impact of a Herpesvirus saimiri amplicon on human colorectal cancer xenograft growth. RESULTS HF-US imaging of xenografts resulted in an accurate and informative xenograft volume in a longitudinal study. The volumes correlated better with final ex vivo volume than mechanical callipers (R2 = 0.7993, p = 0.0002 vs. R2 = 0.7867, p = 0.0014). HF-US showed that the amplicon caused lobe formation. BFI demonstrated retention and expression of the amplicon in the xenografts and quantitation of the fluorescence levels also correlated with tumour volumes. CONCLUSIONS The use of multi-modal imaging provided useful and enhanced insights into the behaviour of gene therapy vectors in vivo in real-time. These relatively inexpensive technologies are easy to incorporate into pre-clinical studies.
Collapse
Affiliation(s)
- Nicola Ingram
- School of Medicine, University of Leeds Brenner Building, St James's University Hospital, Leeds LS9 7TF, UK.
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Zhang L, Wu C, Zhang Y, Liu F, Zhao M, Bouvet M, Hoffman RM. Efficacy comparison of traditional Chinese medicine LQ versus gemcitabine in a mouse model of pancreatic cancer. J Cell Biochem 2013; 114:2131-7. [PMID: 23553901 DOI: 10.1002/jcb.24561] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/21/2013] [Indexed: 11/10/2022]
Abstract
Pancreatic cancer is highly treatment-resistant and has one of the highest fatality rates of all cancers and is the fourth highest cancer killer worldwide. Novel, more effective strategies are needed to treat this disease. We report here on the use of patient-like orthotopic nude-mouse models of human metastatic pancreatic cancer to compare the traditional Chinese medicine (TCM) herbal mixture LQ to gemcitabine, which is first-line therapy for this disease, for anti-metastatic and anti-tumor activity as well as safety. The human pancreatic cancer cell line, MiaPaCa-2, labeled with red fluorescent protein (RFP), was used for the orthotopic model. LQ (gavage, 600 mg/kg/day) significantly inhibited pancreatic cancer tumor growth and metastasis, as measured by imaging, with no overt toxicity. Survival of tumor-bearing mice was also prolonged by LQ. The therapeutic efficacy of LQ is comparable with gemcitabine but with less toxicity, as indicated by a lack of body-weight loss with LQ, but not gemcitabine. The results indicate that TCM can have non-toxic efficacy against metastatic pancreatic cancer comparable to gemcitabine in a clinically-relevant orthotopic mouse model.
Collapse
Affiliation(s)
- Lei Zhang
- AntiCancer, Inc., San Diego, California, USA
| | | | | | | | | | | | | |
Collapse
|
79
|
Han HJ, Kim HB, Cha J, Lee JK, Youn H, Chung JK, Kim S, Soh KS. Primo vessel as a novel cancer cell migration path from testis with nanoparticle-labeled and GFP expressing cancer cells. J Acupunct Meridian Stud 2013; 6:298-305. [PMID: 24290794 DOI: 10.1016/j.jams.2013.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/12/2013] [Accepted: 09/23/2013] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND/AIM Recently, a novel circulatory system, the primo vascular system (PVS), was found to be a potent metastatic route of cancer cells. The aim of the current work is to demonstrate that cancer cells injected into the testis migrate through the primo vessel (PV). MATERIALS AND METHODS NCI-H460 cells labeled with fluorescent nanoparticles (FNP) or green fluorescent protein (GFP) gene transfection were injected into testicular parenchyma in 24 rats. After 24 hours of injection, the abdominal cavity was investigated via a stereomicroscope, to detect the PVS, and the samples were analyzed histologically with 4',6-diamidino-2-phenylindole (DAPI) and hematoxylin and eosin. RESULTS Injected cancer cells were detected inside the PVS distributed on the abdominal organs. Some were detected inside intestinal parenchyma into which the attached primo vessels (PVs) entered. CONCLUSION The results supported the fact that the PVS may be a novel migration path of cancer cells, in addition to the lymphatic and hematogenous routes.
Collapse
Affiliation(s)
- Hyun-Jung Han
- Nano Primo Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Miwa S, Yano S, Tome Y, Sugimoto N, Hiroshima Y, Uehara F, Mii S, Kimura H, Hayashi K, Efimova EV, Fujiwara T, Tsuchiya H, Hoffman RM. Dynamic color-coded fluorescence imaging of the cell-cycle phase, mitosis, and apoptosis demonstrates how caffeine modulates cisplatinum efficacy. J Cell Biochem 2013; 114:2454-60. [DOI: 10.1002/jcb.24593] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/01/2013] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | - Naotoshi Sugimoto
- Department of Physiology; Kanazawa University Graduate School of Medical Sciences; Kanazawa; Ishikawa; Japan
| | | | | | | | - Hiroaki Kimura
- Department of Orthopedic Surgery; Kanazawa University Graduate School of Medical Sciences; Kanazawa; Ishikawa; Japan
| | - Katsuhiro Hayashi
- Department of Orthopedic Surgery; Kanazawa University Graduate School of Medical Sciences; Kanazawa; Ishikawa; Japan
| | - Elena V. Efimova
- Ludwig Center for Metastasis Research; The University of Chicago; Chicago; Illinois
| | - Toshiyoshi Fujiwara
- Division of Surgical Oncology; Department of Gastroenterological Surgery; Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences; Okayama; Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopedic Surgery; Kanazawa University Graduate School of Medical Sciences; Kanazawa; Ishikawa; Japan
| | | |
Collapse
|
81
|
Rich RM, Gryczynski I, Fudala R, Borejdo J, Stankowska DL, Krishnamoorthy RR, Raut S, Maliwal BP, Shumilov D, Doan H, Gryczynski Z. Multiple-pulse pumping for enhanced fluorescence detection and molecular imaging in tissue. Methods 2013; 66:292-8. [PMID: 23994243 DOI: 10.1016/j.ymeth.2013.08.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/09/2013] [Accepted: 08/16/2013] [Indexed: 11/17/2022] Open
Abstract
Applications of fluorescence based imaging techniques for detection in cellular and tissue environments are severely limited by autofluorescence of endogenous components of cells, tissue, and the fixatives used in sample processing. To achieve sufficient signal-to-background ratio, a high concentration of the probe needs to be used which is not always feasible. Since typically autofluorescence is in the nanosecond range, long-lived fluorescence probes in combination with time-gated detection can be used for suppression of unwanted autofluorescence. Unfortunately, this requires the sacrifice of the large portion the probe signal in order to sufficiently filter the background. We report a simple and practical approach to achieve a many-fold increase in the intensity of a long-lived probe without increasing the background fluorescence. Using controllable, well separated bursts of closely spaced laser excitation pulses, we are able to highly increase the fluorescence signal of a long-lived marker over the endogenous fluorescent background and scattering, thereby greatly increasing detection sensitivity. Using a commercially available confocal microscopy system equipped with a laser diode and time correlated single photon counting (TCSPC) detection, we are able to enhance the signal of a long-lived Ruthenium (Ru)-based probe by nearly an order of magnitude. We used 80 MHz bursts of pulses (12.5 ns pulse separation) repeated with a 320 kHz repetition rate as needed to adequately image a dye with a 380 ns lifetime. Just using 10 pulses in the burst increases the Ru signal almost 10-fold without any increase in the background signal.
Collapse
Affiliation(s)
- Ryan M Rich
- Department of Molecular Biology and Immunology, Center for Commercialization of Fluorescence Technologies, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Ignacy Gryczynski
- Department of Molecular Biology and Immunology, Center for Commercialization of Fluorescence Technologies, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Rafal Fudala
- Department of Molecular Biology and Immunology, Center for Commercialization of Fluorescence Technologies, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Julian Borejdo
- Department of Molecular Biology and Immunology, Center for Commercialization of Fluorescence Technologies, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Dorota L Stankowska
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Raghu R Krishnamoorthy
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Sangram Raut
- Department of Molecular Biology and Immunology, Center for Commercialization of Fluorescence Technologies, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Badri P Maliwal
- Department of Molecular Biology and Immunology, Center for Commercialization of Fluorescence Technologies, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Dmytro Shumilov
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA
| | - Hung Doan
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA
| | - Zygmunt Gryczynski
- Department of Molecular Biology and Immunology, Center for Commercialization of Fluorescence Technologies, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA.
| |
Collapse
|
82
|
Chen CL, Tsukamoto H, Liu JC, Kashiwabara C, Feldman D, Sher L, Dooley S, French SW, Mishra L, Petrovic L, Jeong JH, Machida K. Reciprocal regulation by TLR4 and TGF-β in tumor-initiating stem-like cells. J Clin Invest 2013; 123:2832-49. [PMID: 23921128 PMCID: PMC3696549 DOI: 10.1172/jci65859] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 04/08/2013] [Indexed: 12/17/2022] Open
Abstract
Tumor-initiating stem-like cells (TICs) are resistant to chemotherapy and associated with hepatocellular carcinoma (HCC) caused by HCV and/or alcohol-related chronic liver injury. Using HCV Tg mouse models and patients with HCC, we isolated CD133(+) TICs and identified the pluripotency marker NANOG as a direct target of TLR4, which drives the tumor-initiating activity of TICs. These TLR4/NANOG-dependent TICs were defective in the TGF-β tumor suppressor pathway. Functional oncogene screening of a TIC cDNA library identified Yap1 and Igf2bp3 as NANOG-dependent genes that inactivate TGF-β signaling. Mechanistically, we determined that YAP1 mediates cytoplasmic retention of phosphorylated SMAD3 and suppresses SMAD3 phosphorylation/activation by the IGF2BP3/AKT/mTOR pathway. Silencing of both YAP1 and IGF2BP3 restored TGF-β signaling, inhibited pluripotency genes and tumorigenesis, and abrogated chemoresistance of TICs. Mice with defective TGF-β signaling (Spnb2(+/-) mice) exhibited enhanced liver TLR4 expression and developed HCC in a TLR4-dependent manner. Taken together, these results suggest that the activated TLR4/NANOG oncogenic pathway is linked to suppression of cytostatic TGF-β signaling and could potentially serve as a therapeutic target for HCV-related HCC.
Collapse
MESH Headings
- AC133 Antigen
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Antigens, CD/metabolism
- Antineoplastic Agents/pharmacology
- Base Sequence
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Separation
- Drug Resistance, Neoplasm
- Flow Cytometry
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Glycoproteins/metabolism
- Homeodomain Proteins/metabolism
- Humans
- Inhibitory Concentration 50
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mice, Transgenic
- Nanog Homeobox Protein
- Neoplastic Stem Cells/metabolism
- Niacinamide/analogs & derivatives
- Niacinamide/pharmacology
- Oncogenes
- Peptides/metabolism
- Phenylurea Compounds/pharmacology
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- RNA, Small Interfering/genetics
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Signal Transduction
- Sirolimus/pharmacology
- Smad Proteins/metabolism
- Sorafenib
- Spheroids, Cellular/metabolism
- Toll-Like Receptor 4/genetics
- Toll-Like Receptor 4/metabolism
- Transcription Factors
- Transcriptional Activation
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
- Tumor Burden
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- Chia-Lin Chen
- Department of Molecular Microbiology and Immunology and
Department of Pathology, University of Southern California, Los Angeles, California, USA.
Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA.
Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Department of Surgery, University of Southern California, Los Angeles, California, USA.
Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Department of Pathology, Harbor-UCLA Medical Center, Los Angeles, California, USA.
Department of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hidekazu Tsukamoto
- Department of Molecular Microbiology and Immunology and
Department of Pathology, University of Southern California, Los Angeles, California, USA.
Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA.
Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Department of Surgery, University of Southern California, Los Angeles, California, USA.
Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Department of Pathology, Harbor-UCLA Medical Center, Los Angeles, California, USA.
Department of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jian-Chang Liu
- Department of Molecular Microbiology and Immunology and
Department of Pathology, University of Southern California, Los Angeles, California, USA.
Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA.
Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Department of Surgery, University of Southern California, Los Angeles, California, USA.
Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Department of Pathology, Harbor-UCLA Medical Center, Los Angeles, California, USA.
Department of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Claudine Kashiwabara
- Department of Molecular Microbiology and Immunology and
Department of Pathology, University of Southern California, Los Angeles, California, USA.
Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA.
Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Department of Surgery, University of Southern California, Los Angeles, California, USA.
Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Department of Pathology, Harbor-UCLA Medical Center, Los Angeles, California, USA.
Department of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Douglas Feldman
- Department of Molecular Microbiology and Immunology and
Department of Pathology, University of Southern California, Los Angeles, California, USA.
Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA.
Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Department of Surgery, University of Southern California, Los Angeles, California, USA.
Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Department of Pathology, Harbor-UCLA Medical Center, Los Angeles, California, USA.
Department of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Linda Sher
- Department of Molecular Microbiology and Immunology and
Department of Pathology, University of Southern California, Los Angeles, California, USA.
Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA.
Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Department of Surgery, University of Southern California, Los Angeles, California, USA.
Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Department of Pathology, Harbor-UCLA Medical Center, Los Angeles, California, USA.
Department of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steven Dooley
- Department of Molecular Microbiology and Immunology and
Department of Pathology, University of Southern California, Los Angeles, California, USA.
Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA.
Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Department of Surgery, University of Southern California, Los Angeles, California, USA.
Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Department of Pathology, Harbor-UCLA Medical Center, Los Angeles, California, USA.
Department of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Samuel W. French
- Department of Molecular Microbiology and Immunology and
Department of Pathology, University of Southern California, Los Angeles, California, USA.
Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA.
Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Department of Surgery, University of Southern California, Los Angeles, California, USA.
Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Department of Pathology, Harbor-UCLA Medical Center, Los Angeles, California, USA.
Department of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lopa Mishra
- Department of Molecular Microbiology and Immunology and
Department of Pathology, University of Southern California, Los Angeles, California, USA.
Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA.
Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Department of Surgery, University of Southern California, Los Angeles, California, USA.
Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Department of Pathology, Harbor-UCLA Medical Center, Los Angeles, California, USA.
Department of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lydia Petrovic
- Department of Molecular Microbiology and Immunology and
Department of Pathology, University of Southern California, Los Angeles, California, USA.
Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA.
Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Department of Surgery, University of Southern California, Los Angeles, California, USA.
Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Department of Pathology, Harbor-UCLA Medical Center, Los Angeles, California, USA.
Department of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joseph H. Jeong
- Department of Molecular Microbiology and Immunology and
Department of Pathology, University of Southern California, Los Angeles, California, USA.
Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA.
Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Department of Surgery, University of Southern California, Los Angeles, California, USA.
Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Department of Pathology, Harbor-UCLA Medical Center, Los Angeles, California, USA.
Department of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Keigo Machida
- Department of Molecular Microbiology and Immunology and
Department of Pathology, University of Southern California, Los Angeles, California, USA.
Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA.
Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Department of Surgery, University of Southern California, Los Angeles, California, USA.
Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Department of Pathology, Harbor-UCLA Medical Center, Los Angeles, California, USA.
Department of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
83
|
Chen SH, Kuo YT, Cheng TL, Chen CY, Chiu YY, Lai JJ, Chang CC, Jaw TS, Wang YM, Liu GC. In vivo magnetic resonance imaging of mice liver tumors using a new gadolinium-based contrast agent. Kaohsiung J Med Sci 2013; 29:246-53. [PMID: 23639510 DOI: 10.1016/j.kjms.2012.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 04/24/2012] [Indexed: 10/27/2022] Open
Abstract
We compared the enhancement effect between a newly synthesized tissue-specific contrast agent, [Gd-DOTA-FPβG], and a commercially available agent, [Gd(DOTA)](-), in a murine model of liver tumor using a clinical magnetic resonance imaging scanner. The colon cancer cell lines with and without β-glucuronidase (βG) expression were implanted into the liver of mice. Self-synthesized gadolinium-based magnetic resonance contrast agent, [Gd(DOTA-FPβG)], was administered to measure enhancement on magnetic resonance images using a commercially available agent, [Gd(DOTA)](-), as control in a clinical 3.0 tesla (T) magnetic resonance scanner. In vivo fluorescence imaging and histopathology of the liver were also performed to compare and correlate with the magnetic resonance studies. The in vivo fluorescence imaging failed to depict a sufficiently intense signal for liver or liver tumor of mice without exposure of the liver following an incision on the abdominal wall. The tissue-specific magnetic resonance agent, [Gd(DOTA-FPβG)], caused significantly stronger enhancement in tumors expressing βG (CT26/mβG-eB7) than in tumors not expressing βG (CT26) (p < 0.05). In the magnetic resonance imaging studies using control agent [Gd(DOTA)](-), the tumors with and without βG expression depicted no significant difference in enhancement on the T1-weighted images. The [Gd(DOTA-FPβG)] also provided significantly more contrast uptake in the CT26/mβG-eB7 tumor than in the normal liver parenchyma, whereas the [Gd(DOTA)](-) did not. This study confirms that better contrast enhancement can be readily detected in vivo by the use of a tissue-specific magnetic resonance contrast agent to target tumor cells with specific biomarkers in a clinical magnetic resonance imaging scanner.
Collapse
Affiliation(s)
- Shih-Hsien Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Abel TJ, Ryken T, Lesniak MS, Gabikian P. Gliadel for brain metastasis. Surg Neurol Int 2013; 4:S289-93. [PMID: 23717799 PMCID: PMC3656564 DOI: 10.4103/2152-7806.111305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 04/05/2013] [Indexed: 11/04/2022] Open
Abstract
With therapies for systemic malignancy improving, life expectancy for cancer patients is becoming increasingly dependent on control of brain metastatic disease. Despite improvements in surgical and radiotherapy modalities for control of brain metastasis, the prognosis for patients with brain metastases is poor. The development of controlled release polymers has lead to novel new therapies for malignant brain tumors consisting of direct surgical delivery of chemotherapy agents to the tumor bed and sustained chemotherapy release over a prolonged period of time. Although there is a large body of literature in support of BCNU polymer wafer for primary brain malignancy and experimental brain metastases, clinical studies evaluating the BCNU polymer wafer for brain metastatic disease are relatively sparse. In this review, we discuss the role of the BCNU polymer wafer for brain metastasis focusing specifically on rationale for use of locally delivered sustained release polymers, history of the BCNU polymer wafer, and emerging studies examining the role of the BCNU polymer wafer for metastatic brain tumors.
Collapse
Affiliation(s)
- Taylor J Abel
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | | | | | | |
Collapse
|
85
|
Castillo-Pichardo L, Dharmawardhane SF. Grape polyphenols inhibit Akt/mammalian target of rapamycin signaling and potentiate the effects of gefitinib in breast cancer. Nutr Cancer 2013; 64:1058-69. [PMID: 23061908 DOI: 10.1080/01635581.2012.716898] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We recently reported that a combination of dietary grape polyphenols resveratrol, quercetin, and catechin (RQC), at low concentrations, was effective at inhibiting metastatic cancer progression. Herein, we investigate the molecular mechanisms of RQC in breast cancer and explore the potential of RQC as a potentiation agent for the epidermal growth factor receptor (EGFR) therapeutic gefitinib. Our in vitro experiments showed RQC induced apoptosis in gefitinib-resistant breast cancer cells via regulation of a myriad of proapoptotic proteins. Because the Akt/mammalian target of rapamycin (mTOR) signaling pathway is often elevated during development of anti-EGFR therapy resistance, the effect of RQC on the mTOR upstream effector Akt and the negative regulator AMP kinase (AMPK) was investigated. RQC was found to reduce Akt activity, induce the activation of AMPK, and inhibit mTOR signaling in breast cancer cells. Combined RQC and gefitinib decreased gefitinib resistant breast cancer cell viability to a greater extent than RQC or gefitinib alone. Moreover, RQC inhibited Akt and mTOR and activated AMPK even in the presence of gefitinib. Our in vivo experiments showed combined RQC and gefitinib was more effective than the individual treatments at inhibiting mammary tumor growth and metastasis in nude mice. Therefore, RQC treatment inhibits breast cancer progression and may potentiate anti-EGFR therapy by inhibition of Akt/mTOR signaling.
Collapse
Affiliation(s)
- Linette Castillo-Pichardo
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | | |
Collapse
|
86
|
Saxena M, Christofori G. Rebuilding cancer metastasis in the mouse. Mol Oncol 2013; 7:283-96. [PMID: 23474222 DOI: 10.1016/j.molonc.2013.02.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/06/2013] [Indexed: 12/17/2022] Open
Abstract
Most cancer deaths are due to the systemic dissemination of cancer cells and the formation of secondary tumors (metastasis) in distant organs. Recent years have brought impressive progress in metastasis research, yet we still lack sufficient insights into how cancer cells migrate out of primary tumors and invade into neighboring tissue, intravasate into the blood or the lymphatic circulation, survive in the blood stream, and target specific organs to initiate metastatic outgrowth. While a large number of cellular and animal models of cancer have been crucial in delineating the molecular mechanisms underlying tumor initiation and progression, experimental models that faithfully recapitulate the multiple stages of metastatic disease are still scarce. The advent of sophisticated genetic engineering in mice, in particular the ability to manipulate gene expression in specific tissue and at desired time points at will, have allowed to rebuild the metastatic process in mice. Here, we describe a selection of cellular experimental systems, tumor transplantation mouse models and genetically engineered mouse models that are used for monitoring specific processes involved in metastasis, such as cell migration and invasion, and for investigating the full metastatic process. Such models not only aid in deciphering the pathomechanisms of metastasis, but are also instrumental for the preclinical testing of anti-metastatic therapies and further refinement and generation of improved models.
Collapse
Affiliation(s)
- Meera Saxena
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | | |
Collapse
|
87
|
Momiyama M, Suetsugu A, Kimura H, Kishimoto H, Aki R, Yamada A, Sakurada H, Chishima T, Bouvet M, Endo I, Hoffman RM. Imaging the efficacy of UVC irradiation on superficial brain tumors and metastasis in live mice at the subcellular level. J Cell Biochem 2013; 114:428-34. [PMID: 22961687 DOI: 10.1002/jcb.24381] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 08/30/2012] [Indexed: 01/13/2023]
Abstract
The effect of UVC irradiation was investigated on a model of brain cancer and a model of experimental brain metastasis. For the brain cancer model, brain cancer cells were injected stereotactically into the brain. For the brain metastasis model, lung cancer cells were injected intra-carotidally or stereotactically. The U87 human glioma cell line was used for the brain cancer model, and the Lewis lung carcinoma (LLC) was used for the experimental brain metastasis model. Both cancer cell types were labeled with GFP in the nucleus and RFP in the cytoplasm. A craniotomy open window was used to image single cancer cells in the brain. This double labeling of the cancer cells with GFP and RFP enabled apoptosis of single cells to be imaged at the subcellular level through the craniotomy open window. UVC irradiation, beamed through the craniotomy open window, induced apoptosis in the cancer cells. UVC irradiation was effective on LLC and significantly extended survival of the mice with experimental brain metastasis. In contrast, the U87 glioma was relatively resistant to UVC irradiation. The results of this study suggest the use of UVC for treatment of superficial brain cancer or metastasis.
Collapse
|
88
|
Castillo-Pichardo L, Cubano LA, Dharmawardhane S. Dietary grape polyphenol resveratrol increases mammary tumor growth and metastasis in immunocompromised mice. Altern Ther Health Med 2013; 13:6. [PMID: 23298290 PMCID: PMC3544562 DOI: 10.1186/1472-6882-13-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 01/02/2013] [Indexed: 11/20/2022]
Abstract
Background Resveratrol, a polyphenol from grapes and red wine has many health beneficial effects, including protection against cardiovascular and neurodegenerative diseases and cancer. However, our group and others have provided evidence for a dual cancer promoting or inhibitory role for resveratrol in breast cancer, dependent on estrogenic or antiestrogenic activities. Moreover, much of the inhibitory effects of resveratrol have been reported from studies with high non-physiological concentrations. Methods We investigated the effects of a range of concentrations (0.5, 5, 50 mg/kg body weight) of resveratrol on mammary tumor development post-initiation, using immunocompromised mice. Results Our findings suggest promotion of mammary tumor growth and metastasis by resveratrol at all concentrations tested in tumors derived from the low metastatic estrogen receptor (ER)α(-), ERβ(+) MDA-MB-231 and the highly metastatic ER(-) MDA-MB-435 cancer cell lines. Additionally, the activity of the migration/invasion regulator Rac, which we have previously shown to be regulated by resveratrol in vitro, was measured in tumors from resveratrol treated mice. Our results show a significant induction of tumoral Rac activity and a trend in increased expression of the Rac downstream effector PAK1 and other tumor promoting molecules following resveratrol treatment. Conclusion Taken together, our findings implicate low concentrations of resveratrol in potential promotion of breast cancer. Therefore, this study illuminates the importance of further delineating resveratrol’s concentration dependent effects, particularly in breast cancer, before it can be tested in the clinic or used as a dietary supplement for breast cancer patients.
Collapse
|
89
|
Hoffman RM. Fluorescent proteins as visible in vivo sensors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 113:389-402. [PMID: 23244796 DOI: 10.1016/b978-0-12-386932-6.00010-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fluorescent proteins have enabled a whole new technology of visible in vivo genetic sensors. Fluorescent proteins have revolutionized biology by enabling what was formerly invisible to be seen clearly. These proteins have allowed us to visualize, in real time, important aspects of cancer in living animals, including tumor cell mobility, invasion, metastasis, and angiogenesis. These multicolored proteins have allowed the color coding of cancer cells growing in vivo and enabled the distinction of host from tumor with single-cell resolution. Whole-body imaging with fluorescent proteins has been shown to be a powerful technology to noninvasively follow the dynamics of metastatic cancer. Whole-body imaging of cancer cells expressing fluorescent proteins has enabled the facile determination of efficacy of candidate antitumor and antimetastatic agents in mouse models. The use of fluorescent proteins to differentially label cancer cells in the nucleus and cytoplasm and high-powered imaging technology have enabled the visualization of the nuclear-cytoplasmic dynamics of cancer cells in vivo, including noninvasive techniques. Fluorescent proteins thus enable both macro- and microimaging technology and thereby provide the basis for the new field of in vivo cell biology.
Collapse
|
90
|
|
91
|
Kimura H, Tome Y, Momiyama M, Hayashi K, Tsuchiya H, Bouvet M, Hoffman RM. Imaging the inhibition by anti-β1 integrin antibody of lung seeding of single osteosarcoma cells in live mice. Int J Cancer 2012; 131:2027-33. [PMID: 22323248 DOI: 10.1002/ijc.27475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/30/2012] [Indexed: 11/07/2022]
Abstract
Integrins play a role in tumor growth and metastasis. However, the effect of integrin inhibition has not been visualized on single cancer cells in vivo. In this study, we used a powerful subcellular in vivo imaging model to demonstrate how an anti-integrin antibody affects seeding and growth of osteosarcoma cells on the lung. The 143B human osteosarcoma cell line, expressing red fluorescent protein (RFP) in the cytoplasm and green fluorescent protein (GFP) in the nucleus, was established. Such double-labeled cells enable imaging of apoptosis and mitosis and other nuclear-cytoplasmic dynamics. Using the double-labeled osteosarcoma cells, single cancer-cell seeding in the lung after i.v. injection of osteosarcoma cells was imaged. The anti-β1 integrin monoclonal antibody, AIIB2, greatly inhibited the seeding of cancer cells on the lung (experimental metastasis) while a control antibody had no effect. To image the efficacy of the anti-integrin antibody on spontaneous metastasis, mice with orthotopically-growing 143B-RFP cells in the tibia were also treated with AIIB2 or control anti-rat IgG1 antibody. After 3 weeks treatment, mice were sacrificed and primary tumors and lung metastases were evaluated with fluorescence imaging. AIIB2 significantly inhibited spontaneous lung metastasis but not primary tumor growth, possibly due to inhibition of lung seeding of the cancer cells as imaged in the experimental metastasis study. AIIB2 treatment also increased survival of mice with orthotopically growing 143B-RFP.
Collapse
|
92
|
Momiyama M, Kumamoto T, Suetugu A, Kishimoto H, Chishima T, Tanaka K, Akiyama H, Ichikawa Y, Bouvet M, Endo I, Hoffman RM. Major liver resection stimulates stromal recruitment and metastasis compared with repeated minor resection. J Surg Res 2012; 178:280-7. [PMID: 22487397 PMCID: PMC3396724 DOI: 10.1016/j.jss.2012.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 02/18/2012] [Accepted: 03/09/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND The present study examined the effects of types of liver resection on the growth of liver and lung metastases. METHODS Experimental liver metastases were established by spleen injection of the Colon 26 murine adenocarcinoma cell line expressing green fluorescent protein (GFP) into transgenic nude mice expressing red fluorescent protein. Experimental lung metastases were established by tail-vein injection with Colon 26-GFP. Three days after cell injection, groups of mice underwent (35% + 35% repeated minor resection versus 70% major resection versus 35% minor resection). Metastatic tumor growth was measured by color-coded fluorescence imaging of the GFP-expressing cancer cells and red fluorescent protein-expressing stroma. RESULTS Although major and repeated minor resection removed the same total volume of liver parenchyma, the 2 procedures had very different effects on metastatic tumor growth. Major resection stimulated liver and lung metastatic growth and recruitment of host-derived stroma compared with repeated minor resection. Repeated minor resection did not stimulate metastasis or stromal recruitment. No significant difference was found in liver regeneration between the 2 groups. Host-derived stroma density, which was stimulated by major resection compared with repeated minor resection, might stimulate growth in the liver-metastatic tumor. Transforming growth factor-β is also preferentially stimulated by major resection and might play a role in stromal and metastasis stimulation. CONCLUSIONS The results of the present study indicate that when liver resection is necessary, repeated minor liver resection will be superior to major liver resection, because major resection, unlike repeated minor resection, stimulates metastasis. This should be taken into consideration in clinical situations that require liver resection.
Collapse
Affiliation(s)
- Masashi Momiyama
- AntiCancer, Inc., 7917 Ostrow Street, San Diego, CA 92111
- Department of Surgery, University of California, San Diego, 200 West Arbor Drive, San Diego, California 92103-8220
- Department of Gastroenterological Surgery, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Takafumi Kumamoto
- Department of Gastroenterological Surgery, Yokohama City University, Yokohama, Kanagawa, Japan
| | | | | | - Takashi Chishima
- Department of Gastroenterological Surgery, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Kuniya Tanaka
- Department of Gastroenterological Surgery, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hirotoshi Akiyama
- Department of Gastroenterological Surgery, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Yasushi Ichikawa
- Department of Gastroenterological Surgery, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, 200 West Arbor Drive, San Diego, California 92103-8220
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Robert M. Hoffman
- AntiCancer, Inc., 7917 Ostrow Street, San Diego, CA 92111
- Department of Surgery, University of California, San Diego, 200 West Arbor Drive, San Diego, California 92103-8220
| |
Collapse
|
93
|
Argyros O, Wong SP, Gowers K, Harbottle RP. Genetic modification of cancer cells using non-viral, episomal S/MAR vectors for in vivo tumour modelling. PLoS One 2012; 7:e47920. [PMID: 23110132 PMCID: PMC3482240 DOI: 10.1371/journal.pone.0047920] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 09/20/2012] [Indexed: 01/03/2023] Open
Abstract
The development of genetically marked animal tumour xenografts is an area of ongoing research to enable easier and more reliable testing of cancer therapies. Genetically marked tumour models have a number of advantages over conventional tumour models, including the easy longitudinal monitoring of therapies and the reduced number of animals needed for trials. Several different methods have been used in previous studies to mark tumours genetically, however all have limitations, such as genotoxicity and other artifacts related to the usage of integrating viral vectors. Recently, we have generated an episomally maintained plasmid DNA (pDNA) expression system based on Scaffold/Matrix Attachment Region (S/MAR), which permits long-term luciferase transgene expression in the mouse liver. Here we describe a further usage of this pDNA vector with the human Ubiquitin C promoter to create stably transfected human hepatoma (Huh7) and human Pancreatic Carcinoma (MIA-PaCa2) cell lines, which were delivered into “immune deficient” mice and monitored longitudinally over time using a bioluminometer. Both cell lines revealed sustained episomal long-term luciferase expression and formation of a tumour showing the pathological characteristics of hepatocellular carcinoma (HCC) and pancreatic carcinoma (PaCa), respectively. This is the first demonstration that a pDNA vector can confer sustained episomal luciferase transgene expression in various mouse tumour models and can thus be readily utilised to follow tumour formation without interfering with the cellular genome.
Collapse
Affiliation(s)
- Orestis Argyros
- Gene Therapy Research Group, Section of Molecular Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Suet Ping Wong
- Gene Therapy Research Group, Section of Molecular Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Kate Gowers
- Gene Therapy Research Group, Section of Molecular Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Richard Paul Harbottle
- Gene Therapy Research Group, Section of Molecular Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
94
|
Caysa H, Hoffmann S, Luetzkendorf J, Mueller LP, Unverzagt S, Mäder K, Mueller T. Monitoring of xenograft tumor growth and response to chemotherapy by non-invasive in vivo multispectral fluorescence imaging. PLoS One 2012; 7:e47927. [PMID: 23112873 PMCID: PMC3480443 DOI: 10.1371/journal.pone.0047927] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 09/17/2012] [Indexed: 01/01/2023] Open
Abstract
A continuous monitoring of the whole tumor burden of individuals in orthotopic tumor models is a desirable aim and requires non-invasive imaging methods. Here we investigated whether quantification of a xenograft tumor intrinsic fluorescence signal can be used to evaluate tumor growth and response to chemotherapy. Stably fluorescence protein (FP) expressing cell clones of colorectal carcinoma and germ cell tumor lines were generated by lentiviral transduction using the FPs eGFP, dsRed2, TurboFP635, and mPlum. Applying subcutaneous tumor models in different experimental designs, specific correlations between measured total fluorescence intensity (FI) and the tumor volume (V) could be established. The accuracy of correlation of FI and V varied depending on the cell model used. The application of deep-red FP expressing xenografts (TurboFP635, mPlum) was observed to result in improved correlations. This was also reflected by the results of a performed error analysis. In a model of visceral growing mPlum tumors, measurements of FI could be used to follow growth and response to chemotherapy. However, in some cases final necropsy revealed the existence of additional, deeper located tumors that had not been detected in vivo by their mPlum signal. Consistently, only the weights of the tumors that were detected in vivo based on their mPlum signal correlated with FI. In conclusion, as long as tumors are visualized by their fluorescence signal the FI can be used to evaluate tumor burden. Deep-red FPs are more suitable for in vivo applications as compared to eGFP and dsRed2.
Collapse
Affiliation(s)
- Henrike Caysa
- Department of Internal Medicine IV (Oncology/Hematology), Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Stefan Hoffmann
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Jana Luetzkendorf
- Department of Internal Medicine IV (Oncology/Hematology), Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Lutz Peter Mueller
- Department of Internal Medicine IV (Oncology/Hematology), Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Susanne Unverzagt
- Institute of Medical Epidemiology, Biostatistics and Informatics, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Karsten Mäder
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Thomas Mueller
- Department of Internal Medicine IV (Oncology/Hematology), Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
- * E-mail:
| |
Collapse
|
95
|
Nakanishi H, Ito S, Matsui M, Ito Y, Misawa K, Kodera Y. Noninvasive and real-time fluorescence imaging of peritoneal metastasis in nude mice. Methods Mol Biol 2012; 872:85-95. [PMID: 22700405 DOI: 10.1007/978-1-61779-797-2_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Peritoneal metastasis is the most important prognostic factor for gastric and ovarian cancer patients. The protocol in this chapter presents in vivo imaging procedures capable of examining the development of peritoneal metastasis from the micrometastasis stage to the advanced stage. We also describe in vivo imaging procedures for monitoring of antimetastatic agents in nude mice. In vivo imaging systems described consist of green fluorescent protein (GFP) or red fluorescent protein (DsRed) gene-tagged metastatic cancer cell lines and a handy detection device for GFP (or DsRed). This system allows both external, noninvasive, and real-time monitoring of the therapeutic effects of drugs within the animal facility and internal visualization of micrometastases at the cellular level using fluorescence microscopy. Selection of micrometastasis-positive mice and timing of drug administration after injection of tumor cells is critical for accurate evaluation of anti-metastatic efficacy. The present real-time fluorescence imaging system using GFP- and DsRed-tagged metastasis models makes it possible to overcome these problems and therefore is an indispensable tool for preclinical metastasis research and drug discovery.
Collapse
Affiliation(s)
- Hayao Nakanishi
- Division of Oncological Pathology, Aichi Cancer Center Research Institute, Nagoya, Japan.
| | | | | | | | | | | |
Collapse
|
96
|
Hoffman RM. Orthotopic mouse models expressing fluorescent proteins for cancer drug discovery. Expert Opin Drug Discov 2012; 5:851-66. [PMID: 22823260 DOI: 10.1517/17460441.2010.510129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
IMPORTANCE OF THE FIELD Currently used rodent tumor models, including transgenic tumor models, or subcutaneously growing human tumors in immunodeficient mice, do not sufficiently represent clinical cancer, especially with regard to metastasis and drug sensitivity. AREAS COVERED IN THIS REVIEW To obtain clinically accurate models, we have developed the technique of surgical orthotopic implantation (SOI) to transplant histologically intact fragments of human cancer, including tumors taken directly from the patient, to the corresponding organ of immunodeficient rodents. SOI allows the growth and metastatic potential of the transplanted tumors to be expressed and reflects clinical cancer of all types. Effective drugs can be discovered and evaluated in the SOI models utilizing human tumor cell lines and patient tumors. Visualization of many aspects of cancer initiation and progression in vivo has been achieved with fluorescent proteins. Tumors and metastases in the SOI models that express fluorescent proteins can be visualized noninvasively in intact animals, greatly facilitating drug discovery. WHAT THE READER WILL GAIN This review will provide information on the imageable mouse models of cancer that are clinically relevant, especially regarding metastasis and their use for drug discovery and evaluation. TAKE HOME MESSAGE SOI mouse models of cancer reproduce the features of clinical cancer.
Collapse
Affiliation(s)
- Robert M Hoffman
- AntiCancer, Inc., 7917 Ostrow Street, San Diego, CA 92111, USA +1 858 654 2555 ; +1 858 268 4175 ;
| |
Collapse
|
97
|
Du X, Jin R, Ning N, Li L, Wang Q, Liang W, Liu J, Xu Y. In vivo distribution and antitumor effect of infused immune cells in a gastric cancer model. Oncol Rep 2012; 28:1743-9. [PMID: 22948809 DOI: 10.3892/or.2012.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/13/2012] [Indexed: 01/27/2023] Open
Abstract
Adoptive cellular transfer has been employed for cancer immunotherapy, including patients with gastric cancer. However, little is known about the distribution of effector cells after their injection via different pathways. In this study, we used human gastric cancer cells (BGC823) tagged with enhanced green fluorescent protein (EGPF) to establish a subcutaneous gastric cancer model in nude mice. Cytokine-induced killer (CIK) cells and cytotoxic T lymphocytes (CTLs) were generated from human peripheral blood and labeled with red fluorescent PKH26. A portion of CIK cells was armed with CEA/CD3-bispecific single-chain antibody. When CIK cells were injected into nude mice with established subcutaneous gastric cancer via peritumoral (p.t.), intravenous (i.v.) and intraperitoneal (i.p.) infusion respectively, the distribution of cells was observed using a live fluorescence imaging system. We found that only a very small number of CIK cells could travel to the tumor site after i.p. or i.v. infusion, and they inhibited subcutaneous tumor growth in vivo only immediately following injection. In contrast, p.t. injection resulted in a significantly higher accumulation of CIK cells at the tumor site for 48 hours and mediated the greatest tumor inhibition compared with the other two injection methods. In addition, we compared the antitumor activity of CIK, CEA/CD3-bscAb-CIK and CTL cells in vitro and in vivo after p.t. injection. Among the three types of immune cells, CTLs demonstrated the strongest antitumor activity both in vitro and in vivo. CEA/CD3-bispecific single chain antibody could effectively link T lymphocytes and tumor cells expressing CEA, and resulted in significantly higher accumulation of CIK cells at the tumor site compared with the parental CIK cells. This study indicates that peritumoral injection of immune effector cells by minimally invasive surgical procedures represents an effective delivery method of adoptive cellular immunotherapy. Tumor-specific immune cells, such as CTLs, are a better choice of effector cells than CIKs in cellular immunotherapy. Furthermore, CD3+ immune cells armed with the CEA/CD3-bispecific single chain antibody could more effectively travel to and accumulate at the site of tumors expressing CEA, such as gastric cancer.
Collapse
Affiliation(s)
- Xiaohui Du
- General Surgery Department, Hainan Branch of Chinese PLA General Hospital, Sanya, Hainan, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Abstract
The discovery, cloning, and characterization of GFP and related proteins of many colors have enabled live cell imaging to an unprecedented extent and resolution. Essentially, any cellular process can be imaged with a fluorescent protein. These proteins serve as genetic reporters and therefore can be used to follow cellular processes over indefinite periods in vivo as well as in vitro. The brightness and specific spectra of fluorescent proteins allow them to be imaged in vivo, using specific filters, without interference from autofluorescence. This chapter describes the development of live imaging in live animals with subcellular resolution, emphasizing the study of in vivo cell biology of cancer growth, spread, and metastasis.
Collapse
|
99
|
Au GHT, Shih WY, Tseng SJ, Shih WH. Aqueous CdPbS quantum dots for near-infrared imaging. NANOTECHNOLOGY 2012; 23:275601. [PMID: 22706695 DOI: 10.1088/0957-4484/23/27/275601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Quantum dots (QDs) are semiconducting nanocrystals that have photoluminescent (PL) properties brighter than fluorescent molecules and do not photo-bleach, ideal for in vivo imaging of diseased tissues or monitoring of biological processes. Near-infrared (NIR) fluorescent light within the window of 700-1000 nm, which is separated from the major absorption peaks of hemoglobin and water, has the potential to be detected several millimeters under the surface with minimal interference from tissue autofluorescence. Here we report the synthesis and bioimaging demonstration of a new NIR QDs system, namely, CdPbS, made by an aqueous approach with 3-mercaptopropionic acid (MPA) as the capping molecule. The aqueous-synthesized, MPA-capped CdPbS QDs exhibited an NIR emission in the range of 800-950 nm with x(i) ≥ 0.3, where x(i) denotes the initial Pb molar fraction during the synthesis. Optimal PL performance of the CdPbS QDs occurred at x(i) = 0.7, which was about 4 nm in size as determined by transmission electron microscopy, had a rock salt structure and a quantum yield of 12%. Imaging of CdPbS QDs was tested in membrane staining and transfection studies. Cells transfected with CdPbS QDs were shown to be visible underneath a slab of chicken muscle tissue of up to 0.7 mm in thickness without the use of multiple-photon microscopy.
Collapse
Affiliation(s)
- Giang H T Au
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
100
|
In vivo imaging of human cancer with telomerase-specific replication-selective adenovirus. Methods Mol Biol 2012. [PMID: 22700408 DOI: 10.1007/978-1-61779-797-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Tumor-specific replication-competent viruses represent a novel approach for the treatment of neoplastic disease. These vectors can be used to directly label tumor cells in vivo, as they are designed to selectively replicate within such cells. To target cancer cells, there is a need for tissue- or cell-specific promoters that are expressed in diverse tumor types and are silent in normal cells. Telomerase activation is considered to be a critical step in carcinogenesis through the maintenance of telomeres, and its activity is closely correlated with human telomerase reverse transcriptase (hTERT) expression. We constructed a green fluorescent protein (GFP)-expressing attenuated adenovirus-5 vector, in which the hTERT promoter regulates viral replication (TelomeScan, OBP-401). We used TelomeScan to establish a new approach for visualizing metastatic or disseminated human tumors in vivo. Visualization is achieved via illumination with an -excitation lamp under a three-chip color-cooled charged-coupled device camera following injection of TelomeScan into primary tumors or tumor-disseminated cavities. TelomeScan infection increases the -signal-to-background ratio as a tumor-specific probe, because the fluorescent signals are only amplified in tumor cells by viral replication. This technology is adaptable to detect tumor metastasis and/or dissemination in vivo as a preclinical model of surgical navigation.
Collapse
|