51
|
Chiang KJ, Chiu LC, Kang YN, Chen C. Autologous Stem Cell Therapy for Chronic Lower Extremity Wounds: A Meta-Analysis of Randomized Controlled Trials. Cells 2021; 10:3307. [PMID: 34943815 PMCID: PMC8699089 DOI: 10.3390/cells10123307] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Lower extremity chronic wounds (LECWs) commonly occur in patients with diabetes mellitus (DM) and peripheral arterial disease (PAD). Autologous stem cell therapy (ASCT) has emerged as a promising alternative treatment for those who suffered from LECWs. The purpose of this study was to assess the effects of ASCT on LECWs. Two authors searched three core databases, and independently identified evidence according to predefined criteria. They also individually assessed the quality of the included randomized controlled trials (RCTs), and extracted data on complete healing rate, amputation rate, and outcomes regarding peripheral circulation. The extracted data were pooled using a random-effects model due to clinical heterogeneity among the included RCTs. A subgroup analysis was further performed according to etiology, source of stem cells, follow-up time, and cell markers. A total of 28 RCTs (n = 1096) were eligible for this study. The pooled results showed that patients receiving ASCT had significantly higher complete healing rates (risk ratio (RR) = 1.67, 95% confidence interval (CI) 1.28-2.19) as compared with those without ASCT. In the CD34+ subgroup, ASCT significantly led to a higher complete healing rate (RR = 2.70, 95% CI 1.50-4.86), but there was no significant difference in the CD34- subgroup. ASCT through intramuscular injection can significantly improve wound healing in patients with LECWs caused by either DM or critical limb ischemia. Lastly, CD34+ is an important cell marker for potential wound healing. However, more extensive scale and well-designed studies are necessary to explore the details of ASCT and chronic wound healing.
Collapse
Affiliation(s)
- Kuan-Ju Chiang
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (K.-J.C.); (L.-C.C.)
| | - Li-Cheng Chiu
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (K.-J.C.); (L.-C.C.)
| | - Yi-No Kang
- Department of Health Care Management, College of Health Technology, National Taipei University of Nursing Health Sciences, Taipei 112, Taiwan
- Evidence-Based Medicine Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Research Center of Big Data and Meta-Analysis Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Cochrane Taiwan, Taipei Medical University, Taipei 110, Taiwan
- Institute of Health Policy & Management, College of Public Health, National Taiwan University, Taipei 100, Taiwan
| | - Chiehfeng Chen
- Evidence-Based Medicine Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Cochrane Taiwan, Taipei Medical University, Taipei 110, Taiwan
- Division of Plastic Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
52
|
Isolating and characterizing lymphatic endothelial progenitor cells for potential therapeutic lymphangiogenic applications. Acta Biomater 2021; 135:191-202. [PMID: 34384911 DOI: 10.1016/j.actbio.2021.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022]
Abstract
Lymphatic dysfunction is associated with the progression of several vascular disorders, though currently, there are limited strategies to promote new lymphatic vasculature (i.e., lymphangiogenesis) to restore lost lymphatic function. One promising approach to stimulate lymphangiogenesis involves delivering endothelial progenitor cells (EPCs), which are naturally involved in de novo blood vessel formation and have recently been identified to include a lymphatic subpopulation. However, the contribution of lymphatic EPCs in lymphangiogenesis is not clear and challenges with maintaining the activity of transplanted EPCs remain. Thus, the objective of this study was to isolate lymphatic EPCs from human umbilical cord blood and characterize their role in the initial stages of blood or lymphatic vasculature formation. Furthermore, this study also tested the applicability of alginate hydrogels to deliver lymphatic EPCs for a possible therapeutic application. We postulated and confirmed that blood and lymphatic EPC colonies could be isolated from human umbilical cord blood. Additionally, EPC populations responded to either angiogenic or lymphangiogenic growth factors and could stimulate their respective mature endothelial cells in vasculature models in vitro. Finally, lymphatic EPCs maintained their ability to promote lymphatic sprouts after prolonged interactions with the alginate hydrogel microenvironment. These results suggest EPCs have both a blood and a lymphatic population that have specific roles in promoting revascularization and highlight the potential of alginate hydrogels for the delivery of lymphatic EPCs. STATEMENT OF SIGNIFICANCE: Despite the potential therapeutic benefit of promoting lymphatic vasculature, lymphangiogenesis remains understudied. One appealing strategy for promoting lymphangiogenesis involves delivering lymphatic endothelial progenitor cells (EPCs), which are a subpopulation of EPCs involved in de novo vessel formation. Here, we investigate the role of isolated blood and lymphatic EPC subpopulations in promoting the early stages of vascularization and the utility of alginate hydrogels to deliver lymphatic EPCs. We determined that EPCs had two populations that expressed either blood or lymphatic markers, could stimulate their respective mature vasculature in tissue constructs and that alginate hydrogels maintained the therapeutic potential of lymphatic EPCs. We anticipate this work could support promising biomaterial applications of EPCs to promote revascularization, which could have many therapeutic applications.
Collapse
|
53
|
Construction of transplantable artificial vascular tissue based on adipose tissue-derived mesenchymal stromal cells by a cell coating and cryopreservation technique. Sci Rep 2021; 11:17989. [PMID: 34504254 PMCID: PMC8429436 DOI: 10.1038/s41598-021-97547-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
Prevascularized artificial three-dimensional (3D) tissues are effective biomaterials for regenerative medicine. We have previously established a scaffold-free 3D artificial vascular tissue from normal human dermal fibroblasts (NHDFs) and umbilical vein-derived endothelial cells (HUVECs) by layer-by-layer cell coating technique. In this study, we constructed an artificial vascular tissue constructed by human adipose tissue-derived stromal cells (hASCs) and HUVECs (ASCVT) by a modified technique with cryopreservation. ASCVT showed a higher thickness with more dense vascular networks than the 3D tissue based on NHDFs. Correspondingly, 3D-cultured ASCs showed higher expression of several angiogenesis-related factors, including vascular endothelial growth factor-A and hepatic growth factor, compared to that of NHDFs. Moreover, perivascular cells in ASCVT were detected by pericyte markers, suggesting the differentiation of hASCs into pericyte-like cells. Subcutaneous transplantation of ASCVTs to nude mice resulted in an engraftment with anastomosis of host's vascular structures at 2 weeks after operation. In the engrafted tissue, the vascular network was surrounded by mural-like structure-forming hASCs, in which some parts developed to form vein-like structures at 4 weeks, suggesting the generation of functional vessel networks. These results demonstrated that cryopreserved human cells, including hASCs, could be used directly to construct the artificial transplantable tissue for regenerative medicine.
Collapse
|
54
|
Long Term Response to Circulating Angiogenic Cells, Unstimulated or Atherosclerotic Pre-Conditioned, in Critical Limb Ischemic Mice. Biomedicines 2021; 9:biomedicines9091147. [PMID: 34572333 PMCID: PMC8469527 DOI: 10.3390/biomedicines9091147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 01/05/2023] Open
Abstract
Critical limb ischemia (CLI), the most severe form of peripheral artery disease, results from the blockade of peripheral vessels, usually correlated to atherosclerosis. Currently, endovascular and surgical revascularization strategies cannot be applied to all patients due to related comorbidities, and even so, most patients require re-intervention or amputation within a year. Circulating angiogenic cells (CACs) constitute a good alternative as CLI cell therapy due to their vascular regenerative potential, although the mechanisms of action of these cells, as well as their response to pathological conditions, remain unclear. Previously, we have shown that CACs enhance angiogenesis/arteriogenesis from the first days of administration in CLI mice. Also, the incubation ex vivo of these cells with factors secreted by atherosclerotic plaques promotes their activation and mobilization. Herein, we have evaluated the long-term effect of CACs administration in CLI mice, whether pre-stimulated or not with atherosclerotic factors. Remarkably, mice receiving CACs and moreover, pre-stimulated CACs, presented the highest blood flow recovery, lower progression of ischemic symptoms, and decrease of immune cells recruitment. In addition, many proteins potentially involved, like CD44 or matrix metalloproteinase 9 (MMP9), up-regulated in response to ischemia and decreased after CACs administration, were identified by a quantitative proteomics approach. Overall, our data suggest that pre-stimulation of CACs with atherosclerotic factors might potentiate the regenerative properties of these cells in vivo.
Collapse
|
55
|
Sakinah S, Priya SP, Mok PL, Munisvaradass R, Teh SW, Sun Z, Alzahrani B, Abu Bakar F, Chee HY, Awang Hamat R, He G, Xiong C, Joseph N, Tong JB, Wu X, Maniam M, Samrot AV, Higuchi A, Kumar SS. Stem Cell Therapy in Dengue Virus-Infected BALB/C Mice Improves Hepatic Injury. Front Cell Dev Biol 2021; 9:637270. [PMID: 34291043 PMCID: PMC8287336 DOI: 10.3389/fcell.2021.637270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/25/2021] [Indexed: 01/02/2023] Open
Abstract
Extensive clinical efforts have been made to control the severity of dengue diseases; however, the dengue morbidity and mortality have not declined. Dengue virus (DENV) can infect and cause systemic damage in many organs, resulting in organ failure. Here, we present a novel report showing a tailored stem-cell-based therapy that can aid in viral clearance and rescue liver cells from further damage during dengue infection. We administered a combination of hematopoietic stem cells and endothelial progenitor cells in a DENV-infected BALB/c mouse model and found that delivery of this cell cocktail had improved their liver functions, confirmed by hematology, histopathology, and next-generation sequencing. These stem and progenitor cells can differentiate into target cells and repair the damaged tissues. In addition, the regime can regulate endothelial proliferation and permeability, modulate inflammatory reactions, enhance extracellular matrix production and angiogenesis, and secrete an array of growth factors to create an enhanced milieu for cell reparation. No previous study has been published on the treatment of dengue infection using stem cells combination. In conclusion, dengue-induced liver damage was rescued by administration of stem cell therapy, with less apoptosis and improved repair and regeneration in the dengue mouse model.
Collapse
Affiliation(s)
- S Sakinah
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Sivan Padma Priya
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Pooi Ling Mok
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakakah, Saudi Arabia.,Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Rusheni Munisvaradass
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Seoh Wei Teh
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Zhong Sun
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakakah, Saudi Arabia
| | - Faizal Abu Bakar
- Bioinformatics and Computational Biology, Malaysia Genome Institute, National Institute of Biotechnology Malaysia (NIBM), Kajang, Malaysia
| | - Hui-Yee Chee
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Rukman Awang Hamat
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Guozhong He
- Institute of Health, Kunming Medical University, Kunming, China
| | - Chenglong Xiong
- Department of Medical Microbiology, School of Public Health, Fudan University, Shanghai, China
| | - Narcisse Joseph
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Jia Bei Tong
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Xiaoyun Wu
- First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Mahendran Maniam
- First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Antony V Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia
| | - Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, Taoyuan City, Taiwan.,R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan City, Taiwan
| | - S Suresh Kumar
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia.,Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
56
|
Lee YN, Wu YJ, Lee HI, Wang HH, Chang CY, Tien TY, Lin CF, Su CH, Yeh HI. Ultrasonic microbubble VEGF gene delivery improves angiogenesis of senescent endothelial progenitor cells. Sci Rep 2021; 11:13449. [PMID: 34188086 PMCID: PMC8242093 DOI: 10.1038/s41598-021-92754-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 06/10/2021] [Indexed: 11/17/2022] Open
Abstract
The therapeutic effects of ultrasonic microbubble transfection (UMT)-based vascular endothelial growth factor 165 (VEGF165) gene delivery on young and senescent endothelial progenitor cells (EPCs) were investigated. By UMT, plasmid DNA (pDNA) can be delivered into both young EPCs and senescent EPCs. In the UMT groups, higher pDNA-derived protein expression was found in senescent EPCs than in young EPCs. Consistent with this finding, a higher intracellular level of pDNA copy number was detected in senescent EPCs, with a peak at the 2-h time point post UMT. Ultrasonic microbubble delivery with or without VEGF improved the angiogenic properties, including the proliferation and/or migration activities, of senescent EPCs. Supernatants from young and senescent EPCs subjected to UMT-mediated VEGF transfection enhanced the proliferation and migration of human aortic endothelial cells (HAECs), and the supernatant of senescent EPCs enhanced proliferation more strongly than the supernatant from young EPCs. In the UMT groups, the stronger enhancing effect of the supernatant from senescent cells on HAEC proliferation was consistent with the higher intracellular VEGF pDNA copy number and level of protein production per cell in the supernatant from senescent cells in comparison to the supernatant from young EPCs. Given that limitations for cell therapies are the inadequate number of transplanted cells and/or insufficient cell angiogenesis, these findings provide a foundation for enhancing the therapeutic angiogenic effect of cell therapy with senescent EPCs in ischaemic cardiovascular diseases.
Collapse
Affiliation(s)
- Yi-Nan Lee
- Cardiovascular Center, Departments of Medical Research, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei City, 10449, Taiwan
| | - Yih-Jer Wu
- Cardiovascular Center, Departments of Medical Research, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei City, 10449, Taiwan.,Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd. Sanzhi Dist. 252, New Taipei City, Taiwan
| | - Hsin-I Lee
- Cardiovascular Center, Departments of Medical Research, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei City, 10449, Taiwan
| | - Hsueh-Hsiao Wang
- Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd. Sanzhi Dist. 252, New Taipei City, Taiwan
| | - Chiung-Yin Chang
- Cardiovascular Center, Departments of Medical Research, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei City, 10449, Taiwan
| | - Ting-Yi Tien
- Cardiovascular Center, Departments of Medical Research, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei City, 10449, Taiwan
| | - Chao-Feng Lin
- Cardiovascular Center, Departments of Medical Research, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei City, 10449, Taiwan
| | - Cheng-Huang Su
- Cardiovascular Center, Departments of Medical Research, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei City, 10449, Taiwan. .,Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd. Sanzhi Dist. 252, New Taipei City, Taiwan.
| | - Hung-I Yeh
- Cardiovascular Center, Departments of Medical Research, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei City, 10449, Taiwan.,Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd. Sanzhi Dist. 252, New Taipei City, Taiwan
| |
Collapse
|
57
|
Endothelial Progenitor Cell-Derived Extracellular Vesicles: Potential Therapeutic Application in Tissue Repair and Regeneration. Int J Mol Sci 2021; 22:ijms22126375. [PMID: 34203627 PMCID: PMC8232313 DOI: 10.3390/ijms22126375] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 12/19/2022] Open
Abstract
Recently, many studies investigated the role of a specific type of stem cell named the endothelial progenitor cell (EPC) in tissue regeneration and repair. EPCs represent a heterogeneous population of mononuclear cells resident in the adult bone marrow. EPCs can migrate and differentiate in injured sites or act in a paracrine way. Among the EPCs’ secretome, extracellular vesicles (EVs) gained relevance due to their possible use for cell-free biological therapy. They are more biocompatible, less immunogenic, and present a lower oncological risk compared to cell-based options. EVs can efficiently pass the pulmonary filter and deliver to target tissues different molecules, such as micro-RNA, growth factors, cytokines, chemokines, and non-coding RNAs. Their effects are often analogous to their cellular counterparts, and EPC-derived EVs have been tested in vitro and on animal models to treat several medical conditions, including ischemic stroke, myocardial infarction, diabetes, and acute kidney injury. EPC-derived EVs have also been studied for bone, brain, and lung regeneration and as carriers for drug delivery. This review will discuss the pre-clinical evidence regarding EPC-derived EVs in the different disease models and regenerative settings. Moreover, we will discuss the translation of their use into clinical practice and the possible limitations of this process.
Collapse
|
58
|
Beliën H, Evens L, Hendrikx M, Bito V, Bronckaers A. Combining stem cells in myocardial infarction: The road to superior repair? Med Res Rev 2021; 42:343-373. [PMID: 34114238 DOI: 10.1002/med.21839] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/04/2021] [Accepted: 05/29/2021] [Indexed: 12/25/2022]
Abstract
Myocardial infarction irreversibly destroys millions of cardiomyocytes in the ventricle, making it the leading cause of heart failure worldwide. Over the past two decades, many progenitor and stem cell types were proposed as the ideal candidate to regenerate the heart after injury. The potential of stem cell therapy has been investigated thoroughly in animal and human studies, aiming at cardiac repair by true tissue replacement, by immune modulation, or by the secretion of paracrine factors that stimulate endogenous repair processes. Despite some successful results in animal models, the outcome from clinical trials remains overall disappointing, largely due to the limited stem cell survival and retention after transplantation. Extensive interest was developed regarding the combinational use of stem cells and various priming strategies to improve the efficacy of regenerative cell therapy. In this review, we provide a critical discussion of the different stem cell types investigated in preclinical and clinical studies in the field of cardiac repair. Moreover, we give an update on the potential of stem cell combinations as well as preconditioning and explore the future promises of these novel regenerative strategies.
Collapse
Affiliation(s)
- Hanne Beliën
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Agoralaan, Diepenbeek, Belgium
| | - Lize Evens
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Agoralaan, Diepenbeek, Belgium
| | - Marc Hendrikx
- Faculty of Medicine and Life Sciences, UHasselt-Hasselt University, Agoralaan, Diepenbeek, Belgium
| | - Virginie Bito
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Agoralaan, Diepenbeek, Belgium
| | - Annelies Bronckaers
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Agoralaan, Diepenbeek, Belgium
| |
Collapse
|
59
|
Santo SD, Seiler S, Guzman R, Widmer HR. Endothelial Progenitor Cell-Derived Factors Exert Neuroprotection in Cultured Cortical Neuronal Progenitor Cells. Cell Transplant 2021; 29:963689720912689. [PMID: 32193955 PMCID: PMC7444205 DOI: 10.1177/0963689720912689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
There is substantial evidence that stem and progenitor cells secrete
trophic factors that have potential for repairing injured tissues. We
have previously reported that the conditioned medium (CM) obtained
from endothelial progenitor cells (EPC) cultures protects striatal
neurons against 3-nitropropionic acid-induced toxicity. In the present
study we tested the hypothesis that EPC-CM may support cortical
neuronal cell function and/or survival. EPC were isolated from the
peripheral blood of healthy human donors and cultured in hypoxic
conditions (1.5% O2) to stimulate the secretion of growth
factors. The supernatant or conditioned medium (EPC-CM) was then
collected and used for the various experiments. Primary cultures of
cerebral cortex from fetal rat embryonic day 14 were treated with
EPC-CM and challenged by glucose and serum deprivation. We observed
that EPC-CM treatment significantly increased total cell number and
cell viability in the cultures. Similarly, the number of
lba1-expressing cells was significantly upregulated by EPC-CM, while
western blot analyses for the astroglial marker glial fibrillary
acidic protein did not show a marked difference. Importantly, the
number of beta-lll-tubulin-positive neurons in the cultures was
significantly augmented after EPC-CM treatment. Similarly, western
blot analyses for beta-III-tubulin showed significant higher signal
intensities. Furthermore, EPC-CM administration protected neurons
against glucose- and serum deprivation-induced cell loss. In sum, our findings identified EPC-CM as a means to promote viability
and/or differentiation of cortical neurons and suggest that EPC-CM
might be useful for neurorestorative approaches.
Collapse
Affiliation(s)
- Stefano Di Santo
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Bern University Hospital, University of Bern, Bern, Switzerland.,Departments of Neurosurgery and Biomedicine, Basel University Hospital, University of Basel, Basel, Switzerland
| | - Stefanie Seiler
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Raphael Guzman
- Departments of Neurosurgery and Biomedicine, Basel University Hospital, University of Basel, Basel, Switzerland.,Both the authors share senior authorship
| | - Hans Rudolf Widmer
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Bern University Hospital, University of Bern, Bern, Switzerland.,Both the authors share senior authorship
| |
Collapse
|
60
|
Nazeer MA, Karaoglu IC, Ozer O, Albayrak C, Kizilel S. Neovascularization of engineered tissues for clinical translation: Where we are, where we should be? APL Bioeng 2021; 5:021503. [PMID: 33834155 PMCID: PMC8024034 DOI: 10.1063/5.0044027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
One of the key challenges in engineering three-dimensional tissue constructs is the development of a mature microvascular network capable of supplying sufficient oxygen and nutrients to the tissue. Recent angiogenic therapeutic strategies have focused on vascularization of the constructed tissue, and its integration in vitro; these strategies typically combine regenerative cells, growth factors (GFs) with custom-designed biomaterials. However, the field needs to progress in the clinical translation of tissue engineering strategies. The article first presents a detailed description of the steps in neovascularization and the roles of extracellular matrix elements such as GFs in angiogenesis. It then delves into decellularization, cell, and GF-based strategies employed thus far for therapeutic angiogenesis, with a particularly detailed examination of different methods by which GFs are delivered in biomaterial scaffolds. Finally, interdisciplinary approaches involving advancement in biomaterials science and current state of technological development in fabrication techniques are critically evaluated, and a list of remaining challenges is presented that need to be solved for successful translation to the clinics.
Collapse
Affiliation(s)
| | | | - Onur Ozer
- Biomedical Sciences and Engineering, Koç University, Istanbul 34450, Turkey
| | - Cem Albayrak
- Authors to whom correspondence should be addressed: and
| | - Seda Kizilel
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
61
|
A Novel Hypothesis and Characterization to Isolate Microvascular Endothelial Cells Simultaneously with Adipose-Derived Stem Cells from the Human Adipose-Derived Stromal Vascular Fraction. Tissue Eng Regen Med 2021; 18:429-440. [PMID: 33877617 DOI: 10.1007/s13770-021-00332-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Angiogenesis and vasculogenesis are essential processes for successful tissue regeneration in tissue engineering and regenerative medicine. The adipose-derived stromal vascular fraction (SVF) is not only a source of adipose stem cells (ASC) but also a suitable source of microvascular endothelial cells because it is a rich capillary network. So, we propose a new hypothesis for isolating adipose-derived human microvascular endothelial cells (HMVEC-A) from the SVF and developed a dual isolation system that isolates two cell types from one tissue. METHOD To isolate HMVEC-A, we analyzed the supernatant discarded when ASC is isolated from the adipose-derived SVF. Based on this analysis, we assumed that the SVF adherent to the bottom of the culture plate was divided into two fractions: the stromal fraction as the ASC-rich fraction, and the vascular fraction (VF) as the endothelial cells-rich fraction floating in the culture supernatant. VF isolation was optimized and the efficiency was compared, and the endothelial cells characteristics of HMVEC-A were confirmed by flow cytometric analysis, immunocytochemistry (ICC), a DiI-acetylated low-density lipoprotein (DiI-Ac-LDL) uptake, and in vitro tube formation assay. RESULTS Consistent with the hypothesis, we found a large population of HMVEC-A in the VF and isolated these HMVEC-A by our isolation method. Additionally, this method had higher yields and shorter doubling times than other endothelial cells isolation methods and showed typical morphological and phenotypic characteristics of endothelial cells. CONCLUSION Cells obtained by the method according to our hypothesis can be applied as a useful source for studies such as tissue-to-tissue networks, angiogenesis and tissue regeneration, patient-specific cell therapy, and organoid chips.
Collapse
|
62
|
Wang J, Chen S, Yerrapragada SM, Zhang W, Bihl JC. Therapeutic effects of exosomes from angiotensin-converting enzyme 2 - overexpressed endothelial progenitor cells on intracerebral hemorrhagic stroke. BRAIN HEMORRHAGES 2021; 2:57-62. [PMID: 40129927 PMCID: PMC11932701 DOI: 10.1016/j.hest.2020.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Objective We have previously demonstrated that angiotensin-converting enzyme 2 (ACE2) could boost the therapeutic effects of endothelial progenitor cells (ACE2-EPCs) on stroke. However, where this effect comes from is still unclear. Here, we investigated whether the exosomes (EXs) released from ACE2-EPCs could provide the benefit for acute intracerebral hemorrhagic stroke (ICH). Methods The C57BL/6 mice were induced ICH by collagenase injection, followed by intravenously administration of ACE2-EPC-EXs. ACE2 blocker, DX600 was used to verify the effects of ACE2. The neurological deficit score (NDS), hemorrhage volume, brain water content, and blood-brain barrier (BBB) permeability were measured at day 2 after injection. The levels of ACE2 and inflammatory factors/genes in the brain were also measured. Results EPC-EXs decreased hemorrhage volume, brain edema, BBB permeability, and improved NDS, which were enhanced by ACE2-EPC-EXs treatment; 2) As compared to EPC-EXs, ACE2-EPC-EXs resulted in an up-regulation of ACE2 in the brain, associating with the down-regulated expressions of TNF-α and NFκB and up-regulated level of IκBα. 3) DX600 blocked the above mentioned protective effects of ACE2-EPC-EXs in ICH mice. Conclusion These data suggest that the infusion of ACE2-EPC-EXs could provide the therapeutic effect on acute ICH by alleviating the post-stroke inflammation via transferring ACE2.
Collapse
Affiliation(s)
- Jinju Wang
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Shuzhen Chen
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Sri Meghana Yerrapragada
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Wenfeng Zhang
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Ji C. Bihl
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
- Department of Biomedical Science, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
63
|
Current Status of Angiogenic Cell Therapy and Related Strategies Applied in Critical Limb Ischemia. Int J Mol Sci 2021; 22:ijms22052335. [PMID: 33652743 PMCID: PMC7956816 DOI: 10.3390/ijms22052335] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Critical limb ischemia (CLI) constitutes the most severe form of peripheral arterial disease (PAD), it is characterized by progressive blockade of arterial vessels, commonly correlated to atherosclerosis. Currently, revascularization strategies (bypass grafting, angioplasty) remain the first option for CLI patients, although less than 45% of them are eligible for surgical intervention mainly due to associated comorbidities. Moreover, patients usually require amputation in the short-term. Angiogenic cell therapy has arisen as a promising alternative for these "no-option" patients, with many studies demonstrating the potential of stem cells to enhance revascularization by promoting vessel formation and blood flow recovery in ischemic tissues. Herein, we provide an overview of studies focused on the use of angiogenic cell therapies in CLI in the last years, from approaches testing different cell types in animal/pre-clinical models of CLI, to the clinical trials currently under evaluation. Furthermore, recent alternatives related to stem cell therapies such as the use of secretomes, exosomes, or even microRNA, will be also described.
Collapse
|
64
|
Prasad M, Corban MT, Henry TD, Dietz AB, Lerman LO, Lerman A. Promise of autologous CD34+ stem/progenitor cell therapy for treatment of cardiovascular disease. Cardiovasc Res 2021; 116:1424-1433. [PMID: 32022845 DOI: 10.1093/cvr/cvaa027] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/26/2019] [Accepted: 01/28/2020] [Indexed: 12/22/2022] Open
Abstract
CD34+ cells are haematopoietic stem cells used therapeutically in patients undergoing radiation or chemotherapy due to their regenerative potential and ability to restore the haematopoietic system. In animal models, CD34+ cells have been associated with therapeutic angiogenesis in response to ischaemia. Several trials have shown the potential safety and efficacy of CD34+ cell delivery in various cardiovascular diseases. Moreover, Phase III trials have now begun to explore the potential role of CD34+ cells in treatment of both myocardial and peripheral ischaemia. CD34+ cells have been shown to be safe and well-tolerated in the acute myocardial infarction (AMI), heart failure, and angina models. Several studies have suggested potential benefit of CD34+ cell therapy in patients with coronary microvascular disease as well. In this review, we will discuss the therapeutic potential of CD34+ cells, and describe the pertinent trials that have used autologous CD34+ cells in no-options refractory angina, AMI, and heart failure. Lastly, we will review the potential utility of autologous CD34+ cells in coronary endothelial and microvascular dysfunction.
Collapse
Affiliation(s)
- Megha Prasad
- Department of Cardiovascular Diseases, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, USA
| | - Michel T Corban
- Department of Cardiovascular Diseases, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, USA
| | - Timothy D Henry
- The Christ Hospital Heart and Vascular Center, The Carl and Edyth Lindner Center for Research and Education at The Christ Hospital, Cincinnati, OH 45219, USA
| | - Allan B Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Lilach O Lerman
- Department of Cardiovascular Diseases, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, USA.,Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
65
|
Abstract
Traumatic injuries are a leading cause of death and disability in both military and civilian populations. Given the complexity and diversity of traumatic injuries, novel and individualized treatment strategies are required to optimize outcomes. Cellular therapies have potential benefit for the treatment of acute or chronic injuries, and various cell-based pharmaceuticals are currently being tested in preclinical studies or in clinical trials. Cellular therapeutics may have the ability to complement existing therapies, especially in restoring organ function lost due to tissue disruption, prolonged hypoxia or inflammatory damage. In this article we highlight the current status and discuss future directions of cellular therapies for the treatment of traumatic injury. Both published research and ongoing clinical trials are discussed here.
Collapse
|
66
|
Alwjwaj M, Kadir RRA, Bayraktutan U. The secretome of endothelial progenitor cells: a potential therapeutic strategy for ischemic stroke. Neural Regen Res 2021; 16:1483-1489. [PMID: 33433461 PMCID: PMC8323700 DOI: 10.4103/1673-5374.303012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ischemic stroke continues to be a leading cause of mortality and morbidity in the world. Despite recent advances in the field of stroke medicine, thrombolysis with recombinant tissue plasminogen activator remains as the only pharmacological therapy for stroke patients. However, due to short therapeutic window (4.5 hours of stroke onset) and increased risk of hemorrhage beyond this point, each year globally less than 1% of stroke patients receive this therapy which necessitate the discovery of safe and efficacious therapeutics that can be used beyond the acute phase of stroke. Accumulating evidence indicates that endothelial progenitor cells (EPCs), equipped with an inherent capacity to migrate, proliferate and differentiate, may be one such therapeutics. However, the limited availability of EPCs in peripheral blood and early senescence of few isolated cells in culture conditions adversely affect their application as effective therapeutics. Given that much of the EPC-mediated reparative effects on neurovasculature is realized by a wide range of biologically active substances released by these cells, it is possible that EPC-secretome may serve as an important therapeutic after an ischemic stroke. In light of this assumption, this review paper firstly discusses the main constituents of EPC-secretome that may exert the beneficial effects of EPCs on neurovasculature, and then reviews the currently scant literature that focuses on its therapeutic capacity.
Collapse
Affiliation(s)
- Mansour Alwjwaj
- Stroke, Division of Clinical Neuroscience, University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Rais Reskiawan A Kadir
- Stroke, Division of Clinical Neuroscience, University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Ulvi Bayraktutan
- Stroke, Division of Clinical Neuroscience, University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK
| |
Collapse
|
67
|
Rojas-Torres M, Jiménez-Palomares M, Martín-Ramírez J, Beltrán-Camacho L, Sánchez-Gomar I, Eslava-Alcon S, Rosal-Vela A, Gavaldá S, Durán-Ruiz MC. REX-001, a BM-MNC Enriched Solution, Induces Revascularization of Ischemic Tissues in a Murine Model of Chronic Limb-Threatening Ischemia. Front Cell Dev Biol 2020; 8:602837. [PMID: 33363160 PMCID: PMC7755609 DOI: 10.3389/fcell.2020.602837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Bone Marrow Mononuclear Cells (BM-MNC) constitute a promising alternative for the treatment of Chronic Limb-Threatening ischemia (CLTI), a disease characterized by extensive blockade of peripheral arteries, clinically presenting as excruciating pain at rest and ischemic ulcers which may lead to gangrene and amputation. BM-MNC implantation has shown to be efficient in promoting angiogenesis and ameliorating ischemic symptoms in CLTI patients. However, the variability seen between clinical trials makes necessary a further understanding of the mechanisms of action of BM-MNC, and moreover, to improve trial characteristics such as endpoints, inclusion/exclusion criteria or drug product compositions, in order to implement their use as stem-cell therapy. Materials: Herein, the effect of REX-001, a human-BM derived cell suspension enriched for mononuclear cells, granulocytes and CD34+ cells, has been assessed in a murine model of CLTI. In addition, a REX-001 placebo solution containing BM-derived red blood cells (BM-RBCs) was also tested. Thus, 24 h after double ligation of the femoral artery, REX-001 and placebo were administrated intramuscularly to Balb-c nude mice (n:51) and follow-up of ischemic symptoms (blood flow perfusion, motility, ulceration and necrosis) was carried out for 21 days. The number of vessels and vascular diameter sizes were measured within the ischemic tissues to evaluate neovascularization and arteriogenesis. Finally, several cell-tracking assays were performed to evaluate potential biodistribution of these cells. Results: REX-001 induced a significant recovery of blood flow by increasing vascular density within the ischemic limbs, with no cell translocation to other organs. Moreover, cell tracking assays confirmed a decrease in the number of infused cells after 2 weeks post-injection despite on-going revascularization, suggesting a paracrine mechanism of action. Conclusion: Overall, our data supported the role of REX-001 product to improve revascularization and ischemic reperfusion in CLTI.
Collapse
Affiliation(s)
- Marta Rojas-Torres
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), Cádiz, Spain
| | - Margarita Jiménez-Palomares
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), Cádiz, Spain
| | | | - Lucía Beltrán-Camacho
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), Cádiz, Spain
| | - Ismael Sánchez-Gomar
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), Cádiz, Spain
| | - Sara Eslava-Alcon
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), Cádiz, Spain
| | - Antonio Rosal-Vela
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), Cádiz, Spain
| | - Sandra Gavaldá
- R&D Department at Rexgenero Biosciences Sociedad Limitada (SL), Seville, Spain
| | - Mª Carmen Durán-Ruiz
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), Cádiz, Spain
| |
Collapse
|
68
|
Quiroz HJ, Parikh PP, Lassance-Soares RM, Regueiro MM, Li Y, Shao H, Vazquez-Padron R, Percival J, Liu ZJ, Velazquez OC. Gangrene, revascularization, and limb function improved with E-selectin/adeno-associated virus gene therapy. JVS Vasc Sci 2020; 2:20-32. [PMID: 34617055 PMCID: PMC8489216 DOI: 10.1016/j.jvssci.2020.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/19/2020] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Novel therapeutic angiogenic concepts for critical limb ischemia are still needed for limb salvage. E-selectin, a cell-adhesion molecule, is vital for recruitment of the stem/progenitor cells necessary for neovascularization in ischemic tissues. We hypothesized that priming ischemic limb tissue with E-selectin/adeno-associated virus (AAV) gene therapy, in a murine hindlimb ischemia and gangrene model, would increase therapeutic angiogenesis and improve gangrene. METHODS FVB/NJ mice were given intramuscular hindlimb injections of either E-selectin/AAV or LacZ/AAV and then underwent induction of gangrene via femoral artery ligation and concomitant systemic injections of the nitric oxide synthesis inhibitor L-NAME (L-NG-Nitro arginine methyl ester; 40 mg/kg). Gangrene was evaluated via the Faber hindlimb appearance score. The rate of ischemic limb reperfusion and ischemic tissue angiogenesis were evaluated using laser Doppler perfusion imaging and DiI perfusion with confocal laser scanning microscopy of the ischemic footpads, respectively. The treadmill exhaustion test was performed on postoperative day (POD) 8 to determine hindlimb functionality. RESULTS The E-selectin/AAV-treated mice (n = 10) had decreased Faber ischemia scores compared with those of the LacZ/AAV-treated mice (n = 7) at both PODs 7 and 14 (P < .05 and P < .01, respectively), improved laser Doppler perfusion imaging reperfusion indexes by POD 14 (P < .01), and greater gangrene footpad capillary density (P < .001). E-selectin/AAV-treated mice also had improved exercise tolerance (P < .05) and lower relative muscular atrophy (P < .01). CONCLUSION We surmised that E-selectin/AAV gene therapy would significantly promote hindlimb angiogenesis, reperfusion, and limb functionality in mice with hindlimb ischemia and gangrene. Our findings highlight the reported novel gene therapy approach to critical limb ischemia as a potential therapeutic option for future clinical studies.
Collapse
Affiliation(s)
- Hallie J. Quiroz
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, Fla
| | - Punam P. Parikh
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, Fla
| | - Roberta M. Lassance-Soares
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, Fla
| | - Manuela M. Regueiro
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, Fla
| | - Yan Li
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, Fla
| | - Hongwei Shao
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, Fla
| | - Roberto Vazquez-Padron
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, Fla
| | - Justin Percival
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, Fla
| | - Zhao-Jun Liu
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, Fla
| | - Omaida C. Velazquez
- Division of Vascular Surgery, DeWitt-Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, Fla
| |
Collapse
|
69
|
Duddu S, Chakrabarti R, Ghosh A, Shukla PC. Hematopoietic Stem Cell Transcription Factors in Cardiovascular Pathology. Front Genet 2020; 11:588602. [PMID: 33193725 PMCID: PMC7596349 DOI: 10.3389/fgene.2020.588602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Transcription factors as multifaceted modulators of gene expression that play a central role in cell proliferation, differentiation, lineage commitment, and disease progression. They interact among themselves and create complex spatiotemporal gene regulatory networks that modulate hematopoiesis, cardiogenesis, and conditional differentiation of hematopoietic stem cells into cells of cardiovascular lineage. Additionally, bone marrow-derived stem cells potentially contribute to the cardiovascular cell population and have shown potential as a therapeutic approach to treat cardiovascular diseases. However, the underlying regulatory mechanisms are currently debatable. This review focuses on some key transcription factors and associated epigenetic modifications that modulate the maintenance and differentiation of hematopoietic stem cells and cardiac progenitor cells. In addition to this, we aim to summarize different potential clinical therapeutic approaches in cardiac regeneration therapy and recent discoveries in stem cell-based transplantation.
Collapse
Affiliation(s)
| | | | | | - Praphulla Chandra Shukla
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
70
|
Zhu J, Sun LL, Li WD, Li XQ. Clarification of the Role of miR-9 in the Angiogenesis, Migration, and Autophagy of Endothelial Progenitor Cells Through RNA Sequence Analysis. Cell Transplant 2020; 29:963689720963936. [PMID: 33028108 PMCID: PMC7784562 DOI: 10.1177/0963689720963936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We have previously reported that miR-9 promotes the homing, proliferation, and angiogenesis of endothelial progenitor cells (EPCs) by targeting transient receptor potential melastatin 7 via the AKT autophagy pathway. In this way, miR-9 promotes thrombolysis and recanalization following deep vein thrombosis (DVT). However, the influence of miR-9 on messenger RNA (mRNA) expression profiles of EPCs remains unclear. The current study comprises a comprehensive exploration of the mechanisms underlying the miR-9-regulated angiogenesis of EPCs and highlights potential treatment strategies for DVT. We performed RNA sequence analysis, which revealed that 4068 mRNAs were differentially expressed between EPCs overexpressing miR-9 and the negative control group, of which 1894 were upregulated and 2174 were downregulated. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that these mRNAs were mainly involved in regulating cell proliferation/migration processes/pathways and the autophagy pathway, both of which represent potential EPC-based treatment strategies for DVT. Reverse transcriptase quantitative polymerase chain reaction confirmed the changes in mRNA expression related to EPC angiogenesis, migration, and autophagy. We also demonstrate that miR-9 promotes EPC migration and angiogenesis by regulating FGF5 directly or indirectly. In summary, miR-9 enhances the expression of VEGFA, FGF5, FGF12, MMP2, MMP7, MMP10, MMP11, MMP24, and ATG7, which influences EPC migration, angiogenesis, and autophagy. We provide a comprehensive evaluation of the miR-9-regulated mRNA expression in EPCs and highlight potential targets for the development of new therapeutic interventions for DVT.
Collapse
Affiliation(s)
- Jian Zhu
- Department of Vascular Surgery, 105860The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Vascular Surgery, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Li-Li Sun
- Department of Vascular Surgery, 105860The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Vascular Surgery, Kunshan First People's Hospital, Kunshan, Jiangsu, China
| | - Wen-Dong Li
- Department of Vascular Surgery, Kunshan First People's Hospital, Kunshan, Jiangsu, China
| | - Xiao-Qiang Li
- Department of Vascular Surgery, 105860The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Vascular Surgery, Kunshan First People's Hospital, Kunshan, Jiangsu, China
| |
Collapse
|
71
|
Chopra H, Han Y, Zhang C, Pow EHN. CD133 +CD34 + cells can give rise to EPCs: A comparative rabbit and human study. Blood Cells Mol Dis 2020; 86:102487. [PMID: 32920463 DOI: 10.1016/j.bcmd.2020.102487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 01/13/2023]
Affiliation(s)
- Hitesh Chopra
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.
| | - Yuanyuan Han
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.
| | - Chengfei Zhang
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.
| | - Edmond Ho Nang Pow
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
72
|
Nazarnezhad S, Baino F, Kim HW, Webster TJ, Kargozar S. Electrospun Nanofibers for Improved Angiogenesis: Promises for Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1609. [PMID: 32824491 PMCID: PMC7466668 DOI: 10.3390/nano10081609] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/27/2022]
Abstract
Angiogenesis (or the development of new blood vessels) is a key event in tissue engineering and regenerative medicine; thus, a number of biomaterials have been developed and combined with stem cells and/or bioactive molecules to produce three-dimensional (3D) pro-angiogenic constructs. Among the various biomaterials, electrospun nanofibrous scaffolds offer great opportunities for pro-angiogenic approaches in tissue repair and regeneration. Nanofibers made of natural and synthetic polymers are often used to incorporate bioactive components (e.g., bioactive glasses (BGs)) and load biomolecules (e.g., vascular endothelial growth factor (VEGF)) that exert pro-angiogenic activity. Furthermore, seeding of specific types of stem cells (e.g., endothelial progenitor cells) onto nanofibrous scaffolds is considered as a valuable alternative for inducing angiogenesis. The effectiveness of these strategies has been extensively examined both in vitro and in vivo and the outcomes have shown promise in the reconstruction of hard and soft tissues (mainly bone and skin, respectively). However, the translational of electrospun scaffolds with pro-angiogenic molecules or cells is only at its beginning, requiring more research to prove their usefulness in the repair and regeneration of other highly-vascularized vital tissues and organs. This review will cover the latest progress in designing and developing pro-angiogenic electrospun nanofibers and evaluate their usefulness in a tissue engineering and regenerative medicine setting.
Collapse
Affiliation(s)
- Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran;
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Hae-Won Kim
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Korea;
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan 31116, Korea
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA;
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran;
| |
Collapse
|
73
|
Atherosclerotic Pre-Conditioning Affects the Paracrine Role of Circulating Angiogenic Cells Ex-Vivo. Int J Mol Sci 2020; 21:ijms21155256. [PMID: 32722151 PMCID: PMC7432497 DOI: 10.3390/ijms21155256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
In atherosclerosis, circulating angiogenic cells (CAC), also known as early endothelial progenitor cells (eEPC), are thought to participate mainly in a paracrine fashion by promoting the recruitment of other cell populations such as late EPC, or endothelial colony-forming cells (ECFC), to the injured areas. There, ECFC replace the damaged endothelium, promoting neovascularization. However, despite their regenerative role, the number and function of EPC are severely affected under pathological conditions, being essential to further understand how these cells react to such environments in order to implement their use in regenerative cell therapies. Herein, we evaluated the effect of direct incubation ex vivo of healthy CAC with the secretome of atherosclerotic arteries. By using a quantitative proteomics approach, 194 altered proteins were identified in the secretome of pre-conditioned CAC, many of them related to inhibition of angiogenesis (e.g., endostatin, thrombospondin-1, fibulins) and cell migration. Functional assays corroborated that healthy CAC released factors enhanced ECFC angiogenesis, but, after atherosclerotic pre-conditioning, the secretome of pre-stimulated CAC negatively affected ECFC migration, as well as their ability to form tubules on a basement membrane matrix assay. Overall, we have shown here, for the first time, the effect of atherosclerotic factors over the paracrine role of CAC ex vivo. The increased release of angiogenic inhibitors by CAC in response to atherosclerotic factors induced an angiogenic switch, by blocking ECFC ability to form tubules in response to pre-conditioned CAC. Thus, we confirmed here that the angiogenic role of CAC is highly affected by the atherosclerotic environment.
Collapse
|
74
|
Rossi E, Poirault-Chassac S, Bieche I, Chocron R, Schnitzler A, Lokajczyk A, Bourdoncle P, Dizier B, Bacha NC, Gendron N, Blandinieres A, Guerin CL, Gaussem P, Smadja DM. Human Endothelial Colony Forming Cells Express Intracellular CD133 that Modulates their Vasculogenic Properties. Stem Cell Rev Rep 2020; 15:590-600. [PMID: 30879244 DOI: 10.1007/s12015-019-09881-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Stem cells at the origin of endothelial progenitor cells and in particular endothelial colony forming cells (ECFCs) subtype have been largely supposed to be positive for the CD133 antigen, even though no clear correlation has been established between its expression and function in ECFCs. We postulated that CD133 in ECFCs might be expressed intracellularly, and could participate to vasculogenic properties. ECFCs extracted from cord blood were used either fresh (n = 4) or frozen (n = 4), at culture days <30, to investigate the intracellular presence of CD133 by flow cytometry and confocal analysis. Comparison with HUVEC and HAEC mature endothelial cells was carried out. Then, CD133 was silenced in ECFCs using specific siRNA (siCD133-ECFCs) or scramble siRNA (siCtrl-ECFCs). siCD133-ECFCs (n = 12), siCtrl-ECFCs (n = 12) or PBS (n = 12) were injected in a hind-limb ischemia nude mouse model and vascularization was quantified at day 14 with H&E staining and immunohistochemistry for CD31. Results of flow cytometry and confocal microscopy evidenced the positivity of CD133 in ECFCs after permeabilization compared with not permeabilized ECFCs (p < 0.001) and mature endothelial cells (p < 0.03). In the model of mouse hind-limb ischemia, silencing of CD133 in ECFCs significantly abolished post-ischemic revascularization induced by siCtrl-ECFCs; indeed, a significant reduction in cutaneous blood flows (p = 0.03), capillary density (CD31) (p = 0.01) and myofiber regeneration (p = 0.04) was observed. Also, a significant necrosis (p = 0.02) was observed in mice receiving siCD133-ECFCs compared to those treated with siCtrl-ECFCs. In conclusion, our work describes for the first time the intracellular expression of the stemness marker CD133 in ECFCs. This feature could resume the discrepancies found in the literature concerning CD133 positivity and ontogeny in endothelial progenitors.
Collapse
Affiliation(s)
- Elisa Rossi
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S1140, Paris, France
| | - Sonia Poirault-Chassac
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S1140, Paris, France
| | - Ivan Bieche
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Department of genetics, Pharmacogenomics Unit, Institut Curie, Paris, France
| | - Richard Chocron
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S970, Paris, France.,AP-HP, Emergency Medicine Department, Hôpital Européen Georges Pompidou, Paris, France
| | - Anne Schnitzler
- Department of genetics, Pharmacogenomics Unit, Institut Curie, Paris, France
| | - Anna Lokajczyk
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S1140, Paris, France
| | - Pierre Bourdoncle
- Plate-forme IMAG'IC Institut Cochin Inserm U1016-CNRS UMR8104, Université Paris Descartes, Paris, France
| | - Blandine Dizier
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S1140, Paris, France
| | - Nour C Bacha
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S1140, Paris, France
| | - Nicolas Gendron
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S1140, Paris, France.,AP-HP, Hematology Department, Hôpital Européen Georges Pompidou, Paris, France
| | - Adeline Blandinieres
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S1140, Paris, France.,AP-HP, Hematology Department, Hôpital Européen Georges Pompidou, Paris, France
| | - Coralie L Guerin
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S1140, Paris, France.,Cytometry Unit, Institut Curie, Paris, France
| | - Pascale Gaussem
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S1140, Paris, France.,AP-HP, Hematology Department, Hôpital Européen Georges Pompidou, Paris, France
| | - David M Smadja
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France. .,Inserm UMR-S1140, Paris, France. .,AP-HP, Hematology Department, Hôpital Européen Georges Pompidou, Paris, France. .,Laboratory of Biosurgical Research, Carpentier Foundation, Hôpital Européen Georges Pompidou, Paris, France.
| |
Collapse
|
75
|
Sherman SE, Kuljanin M, Cooper TT, Lajoie GA, Hess DA. Purification and Functional Characterization of CD34-Expressing Cell Subsets Following Ex Vivo Expansion of Umbilical Cord Blood-Derived Endothelial Colony-Forming Cells. Stem Cells Dev 2020; 29:895-910. [DOI: 10.1089/scd.2020.0008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Stephen E. Sherman
- Molecular Medicine Research Group, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada
- Department of Physiology and Pharmacology, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Miljan Kuljanin
- Don Rix Protein Identification Facility, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Tyler T. Cooper
- Molecular Medicine Research Group, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada
- Department of Physiology and Pharmacology, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Don Rix Protein Identification Facility, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Gilles A. Lajoie
- Don Rix Protein Identification Facility, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - David A. Hess
- Molecular Medicine Research Group, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada
- Department of Physiology and Pharmacology, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
76
|
Endothelial Progenitor Cells Induce Angiogenesis: a Potential Mechanism Underlying Neovascularization in Encephaloduroarteriosynangiosis. Transl Stroke Res 2020; 12:357-365. [PMID: 32632776 DOI: 10.1007/s12975-020-00834-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/10/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022]
Abstract
Encephaloduroarteriosynangiosis (EDAS) is one of the most commonly used indirect vascular reconstruction methods. EDAS aids in the formation of collateral vessels from the extracranial to the intracranial circulation in patients with moyamoya disease (MMD). However, the underlying mechanism of collateral vessel formation is not well understood. Endothelial progenitor cells (EPCs) differentiate to form the vascular endothelial cells and play a very important role in angiogenesis. We designed this prospective clinical trial to investigate the presence of EPCs in patients with MMD and to explore the neovascularization mechanism mediated by the EPCs in EDAS. The patients who were diagnosed with MMD were recruited between February 5, 2017, and January 7, 2018. The blood samples were obtained from an antecubital vein and were analyzed using flow cytometry. EPCs were defined as CD34brCD133+CD45dimKDR+. All the patients enrolled in the study underwent EDAS. Cerebral arteriography was performed 6 months post-EDAS to assess the efficacy of synangiosis. The correlation between EPC count and good collateral circulation was evaluated. Among the 116 patients with MMD enrolled in this study, 73 were women and 43 were men. The average age of the patients was 33.8 ± 15.2 years. The EPC count of the patients with MMD was 0.071% ± 0.050% (expressed as percentage of the peripheral blood mononuclear cells). The EPC count in the good postoperative collateral circulation group was significantly higher (0.085% ± 0.054%) than that in the poor collateral circulation group (0.048% ± 0.034%) (P = 0.000). The age, modified Suzuki-Mugikura grade, and EPC count were significantly correlated with the good collateral circulation post-EDAS in the multivariate analysis (P = 0.018, P = 0.007, and P = 0.003, respectively). The formation of collateral vessels by EDAS is primarily driven by angiogenesis. The EPC count may be the most critical factor for collateral circulation. The therapeutic effect of EDAS is more likely to benefit younger or severe ischemic patients with MMD.
Collapse
|
77
|
Metformin inhibits angiogenesis of endothelial progenitor cells via miR-221-mediated p27 expression and autophagy. Future Med Chem 2020; 11:2263-2272. [PMID: 31581911 DOI: 10.4155/fmc-2019-0017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To explore the underlying mechanisms of metformin on the angiogenic capacity of endothelial progenitor cells (EPCs). Results: EPC growth and miR-221 expression decreased concentration-dependence with metformin, and a negative correlation was observed between miR-221 expression and metformin concentration (p < 0.001). miR-221 overexpression using a mimic decreased the metformin-mediated angiogenic effects in EPCs (p < 0.01). Metformin increased p27 and LC3II expression and AMP-activated protein kinase (AMPK) phosphorylation, and decreased p62 expression, while miR-221 overexpression reversed the effects of metformin. Additionally, AMPK inhibition by compound C reversed the increase in p27 and LC3II levels and AMPK phosphorylation or miR-221 siRNA treatment. Conclusion: Metformin inhibits the angiogenic capacity of EPCs. The underlying mechanism involves AMPK-mediated autophagy pathway activity and increases miR-221-mediated p27 expression.
Collapse
|
78
|
Yuan Y, Khan S, Stewart DJ, Courtman DW. Engineering blood outgrowth endothelial cells to optimize endothelial nitric oxide synthase and extracellular matrix production for coating of blood contacting surfaces. Acta Biomater 2020; 109:109-120. [PMID: 32302726 DOI: 10.1016/j.actbio.2020.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/26/2022]
Abstract
Coverage of blood contacting surfaces by a functional endothelial layer is likely required to induce and maintain homeostasis. Blood outgrowth endothelial cells (BOECs), cultured from human peripheral blood monocytes, are readily available and functional autologous endothelial source that may represent a reasonable alternative to vascular derived cells. Endothelial nitric oxide synthase (eNOS) produces NO, an important factor that regulates homeostasis at the blood-contacting surface. We found that BOECs express markedly lower levels of eNOS protein (34% ± 13%, Western blot) and mRNA (29% ± 17%, qRT-PCR), as well as exhibiting reduced activity (49% ± 18%, Nitrite analysis) when compared to human umbilical vein endothelial cells (HUVECs) and human aortic endothelial cells. HUVECs grown on fibronectin, type I collagen, or laminin -coated surfaces exhibited significant reduction of eNOS mRNA and protein expression. However, no decrease in eNOS levels was observed in BOECs. Interestingly BOECs expressed significantly higher Collagen (Col) I compared to HUVECs, and blocking Col I synthesis significantly enhanced eNOS expression in BOECs. Inhibition of β1 integrin, focal adhesion kinase (FAK), or actin polymerization increased eNOS in both BOECs and HUVECs suggesting involvement of a signaling pathway culminating in stabilization of the cytoskeleton. Finally, we demonstrated that a Rho-associated protein kinases (ROCK) inhibitor, as a disruptor of actin stabilization, enhanced both eNOS expression and bioactivity. Taken together, our findings demonstrate that cell-ECM interactions are fundamental to the regulation of eNOS in BOECs and suggest that disruption of key intracellular pathways (such as ROCK) may be necessary to enhance functional activity of an endothelialized surface. STATEMENT OF SIGNIFICANCE: Development of biocompatible blood-contacting biomaterial surfaces has not been possible to date, leading many investigators to believe that a complete autologous endothelial layer will be necessary. Blood outgrowth endothelial cells (BOECs), cultured from human peripheral blood monocytes, are readily available and functional autologous endothelial source. Endothelial nitric oxide synthase (eNOS) produces NO, an important factor that regulates homeostasis at the blood-contacting surface. In this study, we show that eNOS displays limited expression in cultured BOECs. We further demonstrate that a strong negative regulation of eNOS is mediated by collagen substrates and that treatment with ROCK inhibitor could enhance both eNOS expression and activity in BOECs and help to rapidly establish a functional autologous endothelial layer on cardiovascular biomaterials.
Collapse
Affiliation(s)
- Yifan Yuan
- Ottawa Hospital Research Institute, General Campus, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Department of Anaesthesiology, Yale University, 10 Amistad Rd, New Haven, CT 06519, United States
| | - Saad Khan
- Ottawa Hospital Research Institute, General Campus, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - Duncan J Stewart
- Ottawa Hospital Research Institute, General Campus, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Department of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - David W Courtman
- Ottawa Hospital Research Institute, General Campus, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada; Department of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
79
|
Tamari T, Kawar-Jaraisy R, Doppelt O, Giladi B, Sabbah N, Zigdon-Giladi H. The Paracrine Role of Endothelial Cells in Bone Formation via CXCR4/SDF-1 Pathway. Cells 2020; 9:cells9061325. [PMID: 32466427 PMCID: PMC7349013 DOI: 10.3390/cells9061325] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Vascularization is a prerequisite for bone formation. Endothelial progenitor cells (EPCs) stimulate bone formation by creating a vascular network. Moreover, EPCs secrete various bioactive molecules that may regulate bone formation. The aim of this research was to shed light on the pathways of EPCs in bone formation. In a subcutaneous nude mouse ectopic bone model, the transplantation of human EPCs onto β-TCP scaffold increased angiogenesis (p < 0.001) and mineralization (p < 0.01), compared to human neonatal dermal fibroblasts (HNDF group) and a-cellular scaffold transplantation (β-TCP group). Human EPCs were lining blood vessels lumen; however, the majority of the vessels originated from endogenous mouse endothelial cells at a higher level in the EPC group (p < 01). Ectopic mineralization was mostly found in the EPCs group, and can be attributed to the recruitment of endogenous mesenchymal cells ten days after transplantation (p < 0.0001). Stromal derived factor-1 gene was expressed at high levels in EPCs and controlled the migration of mesenchymal and endothelial cells towards EPC conditioned medium in vitro. Blocking SDF-1 receptors on both cells abolished cell migration. In conclusion, EPCs contribute to osteogenesis mainly by the secretion of SDF-1, that stimulates homing of endothelial and mesenchymal cells. This data may be used to accelerate bone formation in the future.
Collapse
Affiliation(s)
- Tal Tamari
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa 3109601, Israel; (T.T.); (O.D.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (B.G.); (N.S.)
| | - Rawan Kawar-Jaraisy
- The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv 69978, Israel;
| | - Ofri Doppelt
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa 3109601, Israel; (T.T.); (O.D.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (B.G.); (N.S.)
| | - Ben Giladi
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (B.G.); (N.S.)
| | - Nadin Sabbah
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (B.G.); (N.S.)
| | - Hadar Zigdon-Giladi
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa 3109601, Israel; (T.T.); (O.D.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (B.G.); (N.S.)
- Correspondence: ; Tel.: +972-4-8543606
| |
Collapse
|
80
|
Deng Y, Zhou Z, Lin S, Yu B. METTL1 limits differentiation and functioning of EPCs derived from human-induced pluripotent stem cells through a MAPK/ERK pathway. Biochem Biophys Res Commun 2020; 527:791-798. [PMID: 32430183 DOI: 10.1016/j.bbrc.2020.04.115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/22/2020] [Indexed: 01/11/2023]
Abstract
Transplantation of endothelial progenitor cells (EPCs) has high therapeutic potential for ischemia-related ailments like heart attacks and claudication. Due to limited EPC sources, direct reprogramming is a fast-developing way to convert human-induced pluripotent stem cells (hiPSCs) into EPCs fit for transplantation. However, the procedural efficacy was affected by multiple factors, including epigenetic modifications. Recent studies have shown that m7G methylation mediated by Methyltransferase like 1 (METTL1) is required for mouse embryonic stem cells (mESCs) to differentiate normally. Yet, its contributions to EPC differentiation still require elucidation. Here, using immunofluorescence microscopy and Fluorescence-activated Cell Sorting (FACS), we found that the typical EPC markers were significantly increased in METTL1 knockdown (METTL1-KD) hiPSCs-derived EPCs compared to those of control types. In addition, we found that METTL1 knockdown activates the MAPK/ERK signaling pathway during EPCs differentiation from hiPSCs. Furthermore, functional properties of METTL1-KD EPCs were significantly raised above those of control hiPSCs-derived EPCs. Moreover, we proved that METTL1-KD hiPSCs-derived EPCs significantly accelerate vascular smooth muscle cell proliferation and 'phenotype switching' through a co-culture system. To sum up, our results demonstrate that METTL1-KD significantly promotes the differentiation of EPCs along with their in vitro functions, and this effect may be achieved through activation of the MAPK/ERK signaling pathway. This enhances current knowledge of EPC generation from hiPSCs and presents a new therapeutic target of vascular diseases.
Collapse
Affiliation(s)
- Yujie Deng
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhongyang Zhou
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuibin Lin
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Beixin Yu
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
81
|
Zhou DM, Sun LL, Zhu J, Chen B, Li XQ, Li WD. MiR-9 promotes angiogenesis of endothelial progenitor cell to facilitate thrombi recanalization via targeting TRPM7 through PI3K/Akt/autophagy pathway. J Cell Mol Med 2020; 24:4624-4632. [PMID: 32147957 PMCID: PMC7176881 DOI: 10.1111/jcmm.15124] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/11/2019] [Accepted: 01/06/2020] [Indexed: 12/13/2022] Open
Abstract
Endothelial progenitor cells (EPCs) have emerged as a promising therapeutic choice for thrombi recanalization. However, this role of EPCs is confined by some detrimental factors. The aim of this study was to explore the role of the miR‐9‐5p in regulation of the proliferation, migration and angiogenesis of EPCs and the subsequent therapeutic role in thrombosis event. Wound healing, transwell assay, tube formation assay and in vivo angiogenesis assay were carried out to measure cell migration, invasion and angiogenic abilities, respectively. Western blot was performed to elucidate the relationship between miR‐9‐5p and TRPM7 in the autophagy pathway. It was found that miR‐9‐5p could promote migration, invasion and angiogenesis of EPCs by attenuating TRPM7 expression via activating PI3K/Akt/autophagy pathway. In conclusion, miR‐9‐5p, targets TRPM7 via the PI3K/Ak/autophagy pathway, thereby mediating cell proliferation, migration and angiogenesis in EPCs. Acting as a potential therapeutic target, miR‐9‐5p may play an important role in the prognosis of DVT.
Collapse
Affiliation(s)
- Dong-Ming Zhou
- Department of Hematology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Li-Li Sun
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.,Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Zhu
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Bing Chen
- Department of Hematology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Xiao-Qiang Li
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Wen-Dong Li
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
82
|
Beltran-Camacho L, Jimenez-Palomares M, Rojas-Torres M, Sanchez-Gomar I, Rosal-Vela A, Eslava-Alcon S, Perez-Segura MC, Serrano A, Antequera-González B, Alonso-Piñero JA, González-Rovira A, Extremera-García MJ, Rodriguez-Piñero M, Moreno-Luna R, Larsen MR, Durán-Ruiz MC. Identification of the initial molecular changes in response to circulating angiogenic cells-mediated therapy in critical limb ischemia. Stem Cell Res Ther 2020; 11:106. [PMID: 32143690 PMCID: PMC7060566 DOI: 10.1186/s13287-020-01591-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/10/2020] [Accepted: 02/06/2020] [Indexed: 12/18/2022] Open
Abstract
Background Critical limb ischemia (CLI) constitutes the most aggressive form of peripheral arterial occlusive disease, characterized by the blockade of arteries supplying blood to the lower extremities, significantly diminishing oxygen and nutrient supply. CLI patients usually undergo amputation of fingers, feet, or extremities, with a high risk of mortality due to associated comorbidities. Circulating angiogenic cells (CACs), also known as early endothelial progenitor cells, constitute promising candidates for cell therapy in CLI due to their assigned vascular regenerative properties. Preclinical and clinical assays with CACs have shown promising results. A better understanding of how these cells participate in vascular regeneration would significantly help to potentiate their role in revascularization. Herein, we analyzed the initial molecular mechanisms triggered by human CACs after being administered to a murine model of CLI, in order to understand how these cells promote angiogenesis within the ischemic tissues. Methods Balb-c nude mice (n:24) were distributed in four different groups: healthy controls (C, n:4), shams (SH, n:4), and ischemic mice (after femoral ligation) that received either 50 μl physiological serum (SC, n:8) or 5 × 105 human CACs (SE, n:8). Ischemic mice were sacrificed on days 2 and 4 (n:4/group/day), and immunohistochemistry assays and qPCR amplification of Alu-human-specific sequences were carried out for cell detection and vascular density measurements. Additionally, a label-free MS-based quantitative approach was performed to identify protein changes related. Results Administration of CACs induced in the ischemic tissues an increase in the number of blood vessels as well as the diameter size compared to ischemic, non-treated mice, although the number of CACs decreased within time. The initial protein changes taking place in response to ischemia and more importantly, right after administration of CACs to CLI mice, are shown. Conclusions Our results indicate that CACs migrate to the injured area; moreover, they trigger protein changes correlated with cell migration, cell death, angiogenesis, and arteriogenesis in the host. These changes indicate that CACs promote from the beginning an increase in the number of vessels as well as the development of an appropriate vascular network. Graphical abstract ![]()
Collapse
Affiliation(s)
- Lucia Beltran-Camacho
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cadiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cadiz, Spain
| | - Margarita Jimenez-Palomares
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cadiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cadiz, Spain
| | - Marta Rojas-Torres
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cadiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cadiz, Spain
| | - Ismael Sanchez-Gomar
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cadiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cadiz, Spain
| | - Antonio Rosal-Vela
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cadiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cadiz, Spain
| | - Sara Eslava-Alcon
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cadiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cadiz, Spain
| | | | - Ana Serrano
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cadiz, Spain
| | - Borja Antequera-González
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cadiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cadiz, Spain
| | - Jose Angel Alonso-Piñero
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cadiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cadiz, Spain
| | - Almudena González-Rovira
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cadiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cadiz, Spain
| | - Mª Jesús Extremera-García
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cadiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cadiz, Spain
| | | | - Rafael Moreno-Luna
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Martin Røssel Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Mª Carmen Durán-Ruiz
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cadiz, Spain. .,Institute of Biomedical Research Cadiz (INIBICA), Cadiz, Spain.
| |
Collapse
|
83
|
Zhang J, Cui Y, Li X, Xiao Y, Liu L, Jia F, He J, Xie X, Parthasarathy S, Hao H, Fang N. 5F peptide promotes endothelial differentiation of bone marrow stem cells through activation of ERK1/2 signaling. Eur J Pharmacol 2020; 876:173051. [PMID: 32145325 DOI: 10.1016/j.ejphar.2020.173051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 11/29/2022]
Abstract
Synthetic apolipoprotein A-I (apoA-I) mimetic peptide 5F exhibits anti-atherosclerotic ability with largely unknown mechanism(s). Bone marrow (BM)-derived endothelial progenitor cells (EPCs) play a critical role in vascular integrity and function. The objective of the present study was to evaluate the effect of 5F on endothelial differentiation of BM stem cells and related mechanisms. Murine BM multipotent adult progenitor cells (MAPCs) were induced to differentiate into endothelial cells in vitro with or without 5F. The expression of endothelial markers vWF, Flk-1 and CD31 was significantly increased in the cells treated with 5F with enhanced in vitro vascular tube formation and LDL uptake without significant changes on proliferation and stem cell maker Oct-4 expression. Phosphorylated ERK1/2, not Akt, was significantly increased in 5F-treated cells. Treatment of MAPCs with PD98059 or small interfering RNA against ERK2 substantially attenuated ERK1/2 phosphorylation, and effectively prevented 5F-induced enhancement of endothelial differentiation of MAPCs. In vivo studies revealed that 5F increased EPCs number in the BM in mice after acute hindlimb ischemia that was effectively prevented with PD98059 treatment. These data supported the conclusion that 5F promoted endothelial differentiation of MAPCs through activation of ERK1/2 signaling.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, 200127, China; Davis Heart & Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Yuqi Cui
- Davis Heart & Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Xin Li
- Davis Heart & Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Yuan Xiao
- Davis Heart & Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Lingjuan Liu
- Davis Heart & Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Fengpeng Jia
- Davis Heart & Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jianfeng He
- Davis Heart & Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Xiaoyun Xie
- Davis Heart & Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sampath Parthasarathy
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, USA
| | - Hong Hao
- Davis Heart & Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ningyuan Fang
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, 200127, China.
| |
Collapse
|
84
|
Aoki H, Yamashita M, Hashita T, Ogami K, Hoshino S, Iwao T, Matsunaga T. Efficient differentiation and purification of human induced pluripotent stem cell-derived endothelial progenitor cells and expansion with the use of inhibitors of ROCK, TGF-β, and GSK3β. Heliyon 2020; 6:e03493. [PMID: 32154424 PMCID: PMC7056658 DOI: 10.1016/j.heliyon.2020.e03493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/14/2020] [Accepted: 02/24/2020] [Indexed: 01/29/2023] Open
Abstract
Endothelial cells (ECs) and endothelial progenitor cells (EPCs) play crucial roles in maintaining vascular health and homeostasis. Both cell types have been used in regenerative therapy as well as in various in vitro models; however, the properties of primary human ECs and EPCs are dissimilar owing to differences in genetic backgrounds and sampling techniques. Human induced pluripotent stem cells (hiPSCs) are an alternative cell source of ECs and EPCs. However, owing to the low purity of differentiated cells from hiPSCs, purification via an antigen–antibody reaction, which damages the cells, is indispensable. Besides, owing to limited expandability, it is difficult to produce these cells in large numbers. Here we report the development of relatively simple differentiation and purification methods for hiPSC-derived EPCs (iEPCs). Furthermore, we discovered that a combination of three small molecules, that is, Y-27632 (a selective inhibitor of Rho-associated, coiled-coil containing protein kinase [ROCK]), A 83–01 (a receptor-like kinase inhibitor of transforming growth factor beta [TGF-β]), and CHIR-99021 (a selective inhibitor of glycogen synthase kinase-3β [GSK3β] that also activates Wnt), dramatically stimulated protein synthesis-related pathways and enhanced the proliferative capacity of iEPCs. These findings will help to establish a supply system of EPCs at an industrial scale.
Collapse
Affiliation(s)
- Hiromasa Aoki
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Misaki Yamashita
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Tadahiro Hashita
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Koichi Ogami
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Shinichi Hoshino
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
- Corresponding author.
| |
Collapse
|
85
|
Deutsch MA, Brunner S, Grabmaier U, David R, Ott I, Huber BC. Cardioprotective Potential of Human Endothelial-Colony Forming Cells from Diabetic and Nondiabetic Donors. Cells 2020; 9:cells9030588. [PMID: 32131432 PMCID: PMC7140510 DOI: 10.3390/cells9030588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 12/20/2022] Open
Abstract
Objective: The potential therapeutic role of endothelial progenitor cells (EPCs) in ischemic heart disease for myocardial repair and regeneration is subject to intense investigation. The aim of the study was to investigate the proregenerative potential of human endothelial colony-forming cells (huECFCs), a very homogenous and highly proliferative endothelial progenitor cell subpopulation, in a myocardial infarction (MI) model of severe combined immunodeficiency (SCID) mice. Methods: CD34+ peripheral blood mononuclear cells were isolated from patient blood samples using immunomagnetic beads. For generating ECFCs, CD34+ cells were plated on fibronectin-coated dishes and were expanded by culture in endothelial-specific cell medium. Either huECFCs (5 × 105) or control medium were injected into the peri-infarct region after surgical MI induction in SCID/beige mice. Hemodynamic function was assessed invasively by conductance micromanometry 30 days post-MI. Hearts of sacrificed animals were analyzed by immunohistochemistry to assess cell fate, infarct size, and neovascularization (huECFCs n = 15 vs. control n = 10). Flow-cytometric analysis of enzymatically digested whole heart tissue was used to analyze different subsets of migrated CD34+/CD45+ peripheral mononuclear cells as well as CD34−/CD45− cardiac-resident stem cells two days post-MI (huECFCs n = 10 vs. control n = 6). Results: Transplantation of human ECFCs after MI improved left ventricular (LV) function at day 30 post-MI (LVEF: 30.43 ± 1.20% vs. 22.61 ± 1.73%, p < 0.001; ΔP/ΔTmax 5202.28 ± 316.68 mmHg/s vs. 3896.24 ± 534.95 mmHg/s, p < 0.05) when compared to controls. In addition, a significantly reduced infarct size (50.3 ± 4.5% vs. 66.1 ± 4.3%, p < 0.05) was seen in huECFC treated animals compared to controls. Immunohistochemistry failed to show integration and survival of transplanted cells. However, anti-CD31 immunohistochemistry demonstrated an increased vascular density within the infarct border zone (8.6 ± 0.4 CD31+ capillaries per HPF vs. 6.2 ± 0.5 CD31+ capillaries per HPF, p < 0.001). Flow cytometry at day two post-MI showed a trend towards increased myocardial homing of CD45+/CD34+ mononuclear cells (1.1 ± 0.3% vs. 0.7 ± 0.1%, p = 0.2). Interestingly, we detected a significant increase in the population of CD34−/CD45−/Sca1+ cardiac resident stem cells (11.7 ± 1.7% vs. 4.7 ± 1.7%, p < 0.01). In a subgroup analysis no significant differences were seen in the cardioprotective effects of huECFCs derived from diabetic or nondiabetic patients. Conclusions: In a murine model of myocardial infarction in SCID mice, transplantation of huECFCs ameliorated myocardial function by attenuation of adverse post-MI remodeling, presumably through paracrine effects. Cardiac repair is enhanced by increasing myocardial neovascularization and the pool of Sca1+ cardiac resident stem cells. The use of huECFCs for treating ischemic heart disease warrants further investigation.
Collapse
Affiliation(s)
- Marcus-André Deutsch
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, Ruhr-University Bochum, Georgstr. 11, D-32545 Bad Oeynhausen, Germany;
| | - Stefan Brunner
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Marchioninistr. 15, D-81377 Munich, Germany; (S.B.); (U.G.)
| | - Ulrich Grabmaier
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Marchioninistr. 15, D-81377 Munich, Germany; (S.B.); (U.G.)
| | - Robert David
- Reference- and Translation Center for Cardiac Stem Cell Therapy (RTC), Rostock University Medical Center, Department of Cardiac Surgery, Department Life, Light & Matter (LL&M), 18057 Rostock, Germany;
| | - Ilka Ott
- Department of Internal Medicine, Division of Cardiology, Helios Klinikum Pforzheim, Kanzlerstraße 2-6, D-75175 Pforzheim, Germany;
| | - Bruno C. Huber
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Marchioninistr. 15, D-81377 Munich, Germany; (S.B.); (U.G.)
- Correspondence: ; Tel.: +49-89-44-000
| |
Collapse
|
86
|
Murohara T. Therapeutic Angiogenesis with Somatic Stem Cell Transplantation. Korean Circ J 2020; 50:12-21. [PMID: 31854154 PMCID: PMC6923231 DOI: 10.4070/kcj.2019.0288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022] Open
Abstract
Therapeutic angiogenesis is an important strategy to rescue ischemic tissues in patients with critical limb ischemia having no other treatment option such as endovascular angioplasty or bypass surgery. Studies indicated so far possibilities of therapeutic angiogenesis using autologous bone marrow mononuclear cells, CD34⁺ cells, peripheral blood mononuclear cells, adipose-derived stem/progenitor cells, and etc. Recent studies indicated that subcutaneous adipose tissue contains stem/progenitor cells that can give rise to several mesenchymal lineage cells. Moreover, these mesenchymal progenitor cells release a variety of angiogenic growth factors including vascular endothelial growth factor, fibroblast growth factor, hepatocyte growth factor and chemokine stromal cell-derived factor-1. Subcutaneous adipose tissues can be harvested by less invasive technique. These biological properties of adipose-derived regenerative cells (ADRCs) implicate that autologous subcutaneous adipose tissue would be a useful cell source for therapeutic angiogenesis in humans. In this review, I would like to discuss biological properties and future perspective of ADRCs-mediated therapeutic angiogenesis.
Collapse
Affiliation(s)
- Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
87
|
Can Dynamic Contrast-Enhanced CT Quantify Perfusion in a Stimulated Muscle of Limited Size? A Rat Model. Clin Orthop Relat Res 2020; 478:179-188. [PMID: 31794491 PMCID: PMC7000042 DOI: 10.1097/corr.0000000000001045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Muscle injury may result in damage to the vasculature, rendering it unable to meet the metabolic demands of muscle regeneration and healing. Therefore, therapies frequently aim to maintain, restore, or improve blood supply to the injured muscle. Although there are several options to assess the vascular outcomes of these therapies, few are capable of spatially assessing perfusion in large volumes of tissue. QUESTIONS/PURPOSES Can dynamic contrast-enhanced CT (DCE-CT) imaging acquired with a clinical CT scanner be used in a rat model to quantify perfusion in the anterior tibialis muscle at spatially relevant volumes, as assessed by (1) the blood flow rate and tissue blood volume in the muscle after three levels of muscle stimulation (low, medium, and maximum) relative to baseline as determined by the non-stimulated contralateral leg; and (2) how do these measurements compare with those obtained by the more standard approach of microsphere perfusion? METHODS The right anterior tibialis muscles of adult male Sprague Dawley rats were randomized to low- (n = 10), medium- (n = 6), or maximum- (n = 3) level (duty cycles of 2.5%, 5.0%, and 20%, respectively) nerve electrode coupled muscle stimulation directly followed by DCE-CT imaging. Tissue blood flow and blood volume maps were created using commercial software and volumetrically measured using NIH software. Although differences in blood flow were detectable across the studied levels of muscle stimulation, a review of the evidence suggested the absolute blood flow quantified was underestimated. Therefore, at a later date, a separate set of adult male Sprague Dawley rats were randomized for microsphere perfusion (n = 7) to define blood flow in the animal model with an accepted standard. With this technique, intra-arterial particles sized to freely flow in blood but large enough to lodge in tissue capillaries were injected. Simultaneously, blood sampling at a fixed flow rate was simultaneously performed to provide a fixed blood flow rate sample. The tissues of interest were then explanted and assessed for the total number of particles per tissue volume. Tissue blood flow rate was then calculated based on the particle count ratio within the reference sample. Note that a tissue's blood volume cannot be calculated with this method. Comparison analysis to the non-stimulated baseline leg was performed using two-tailed paired student t-test. An ANOVA was used to compare difference between stimulation groups. RESULTS DCE-CT measured (mean ± SD) increasing tissue blood flow differences in stimulated anterior tibialis muscle at 2.5% duty cycle (32 ± 5 cc/100 cc/min), 5.0% duty cycle (46 ± 13 cc/100 cc/min), and 20% duty cycle (73 ± 3 cc/100 cc/min) compared with the paired contralateral non-stimulated anterior tibialis muscle (10 ± 2 cc/100 cc/min, mean difference 21 cc/100 cc/min [95% CI 17.08 to 25.69]; 9 ± 1 cc/100 cc/min, mean difference 37 cc/100 cc/min [95% CI 23.06 to 50.11]; and 11 ± 2 cc/100 cc/min, mean difference 62 cc/100 cc/min [95% CI 53.67 to 70.03]; all p < 0.001). Similarly, DCE-CT showed increasing differences in tissue blood volumes within the stimulated anterior tibialis muscle at 2.5% duty cycle (23.2 ± 4.2 cc/100 cc), 5.0% duty cycle (39.2 ± 7.2 cc/100 cc), and 20% duty cycle (52.5 ± 13.1 cc/100 cc) compared with the paired contralateral non-stimulated anterior tibialis muscle (3.4 ± 0.7 cc/100 cc, mean difference 19.8 cc/100 cc [95% CI 16.46 to 23.20]; p < 0.001; 3.5 ± 0.4 cc/100 cc, mean difference 35.7 cc/100 cc [95% CI 28.44 to 43.00]; p < 0.001; and 4.2 ± 1.3 cc/100 cc, mean difference 48.3 cc/100 cc [95% CI 17.86 to 78.77]; p = 0.010). Microsphere perfusion measurements also showed an increasing difference in tissue blood flow in the stimulated anterior tibialis muscle at 2.5% duty cycle (62 ± 43 cc/100 cc/min), 5.0% duty cycle (89 ± 52 cc/100 cc/min), and 20% duty cycle (313 ± 269 cc/100 cc/min) compared with the paired contralateral non-stimulated anterior tibialis muscle (8 ± 4 cc/100 cc/min, mean difference 55 cc/100 cc/min [95% CI 15.49 to 94.24]; p = 0.007; 9 ± 9 cc/100 cc/min, mean difference 79 cc/100 cc/min [95% CI 33.83 to 125.09]; p = 0.003; and 18 ± 18 cc/100 cc/min, mean difference 295 cc/100 cc/min [95% CI 8.45 to 580.87]; p = 0.023). Qualitative comparison between the methods suggests that DCE-CT values underestimate tissue blood flow with a post-hoc ANOVA showing DCE-CT blood flow values within the 2.5% duty cycle group (32 ± 5 cc/100 cc/min) to be less than the microsphere perfusion value (62 ± 43 cc/100 cc/min) with a mean difference of 31 cc/100 cc/min (95% CI 2.46 to 60.23; p = 0.035). CONCLUSIONS DCE-CT using a clinical scanner is a feasible modality to measure incremental changes of blood flow and tissue blood volume within a spatially challenged small animal model. Care should be taken in studies where true blood flow values are needed, as this particular small-volume muscle model suggests true blood flow is underestimated using the specific adaptions of DCE-CT acquisition and image processing chosen. CLINICAL RELEVANCE CT perfusion is a clinically available modality allowing for translation of science from bench to bedside. Adapting the modality to fit small animal models that are relevant to muscle healing may hasten time to clinical utility.
Collapse
|
88
|
Daimon A, Morihara H, Tomoda K, Morita N, Koishi Y, Kanki K, Ohmichi M, Asahi M. Intravenously Injected Pluripotent Stem Cell-derived Cells Form Fetomaternal Vasculature and Prevent Miscarriage in Mouse. Cell Transplant 2020; 29:963689720970456. [PMID: 33349053 PMCID: PMC7873769 DOI: 10.1177/0963689720970456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/26/2020] [Accepted: 10/13/2020] [Indexed: 01/22/2023] Open
Abstract
Miscarriage is the most common complication of pregnancy, and about 1% of pregnant women suffer a recurrence. Using a widely used mouse miscarriage model, we previously showed that intravenous injection of bone marrow (BM)-derived endothelial progenitor cells (EPCs) may prevent miscarriage. However, preparing enough BM-derived EPCs to treat a patient might be problematic. Here, we demonstrated the generation of mouse pluripotent stem cells (PSCs), propagation of sufficient PSC-derived cells with endothelial potential (PSC-EPs), and intravenous injection of the PSC-EPs into the mouse miscarriage model. We found that the injection prevented miscarriage. Three-dimensional reconstruction images of the decidua after tissue cleaning revealed robust fetomaternal neovascularization induced by the PSC-EP injection. Additionally, the injected PSC-EPs directly formed spiral arteries. These findings suggest that intravenous injection of PSC-EPs could become a promising remedy for recurrent miscarriage.
Collapse
Affiliation(s)
- Atsushi Daimon
- Department of Obstetrics and Gynecology, Osaka Medical College,
Takatsuki, Japan
- Department of Pharmacology, Osaka Medical College, Takatsuki,
Japan
- These authors contributed equally to
this article
| | - Hirofumi Morihara
- Department of Pharmacology, Osaka Medical College, Takatsuki,
Japan
- These authors contributed equally to
this article
| | - Kiichiro Tomoda
- Department of Pharmacology, Osaka Medical College, Takatsuki,
Japan
- Department of Life Science Frontiers, Center for iPS Cell Research
and Application, Kyoto University, Japan
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA,
USA
- These authors contributed equally to
this article
| | - Natsuko Morita
- Department of Obstetrics and Gynecology, Osaka Medical College,
Takatsuki, Japan
- Department of Pharmacology, Osaka Medical College, Takatsuki,
Japan
| | - Yoshinori Koishi
- Division of Research Animal Laboratory and Translational Medicine,
Research and Development Center, Takatsuki, Osaka, Japan
| | - Kazuyoshi Kanki
- Department of Obstetrics and Gynecology, Osaka Medical College,
Takatsuki, Japan
| | - Masahide Ohmichi
- Department of Obstetrics and Gynecology, Osaka Medical College,
Takatsuki, Japan
| | - Michio Asahi
- Department of Pharmacology, Osaka Medical College, Takatsuki,
Japan
| |
Collapse
|
89
|
Wang N, Liu X, Shi L, Liu Y, Guo S, Liu W, Li X, Meng J, Ma X, Guo Z. Identification of a prolonged action molecular GLP-1R agonist for the treatment of femoral defects. Biomater Sci 2020; 8:1604-1614. [PMID: 31967113 DOI: 10.1039/c9bm01426h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly-GLP-1 promotes angiogenesis to accelerate bone formationviaBMSC differentiation and M2 polarization.
Collapse
|
90
|
Ansari MZ, Mujeeb A. Application of temporal correlation algorithm to interpret laser Doppler perfusion imaging. Lasers Med Sci 2019; 34:1929-1933. [PMID: 31147893 DOI: 10.1007/s10103-019-02811-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 05/21/2019] [Indexed: 10/26/2022]
Affiliation(s)
- M Z Ansari
- International School of Photonics, Cochin University of Science and Technology, Kochi, 682022, Kerala, India.
| | - A Mujeeb
- International School of Photonics, Cochin University of Science and Technology, Kochi, 682022, Kerala, India
| |
Collapse
|
91
|
Sabbah N, Tamari T, Elimelech R, Doppelt O, Rudich U, Zigdon-Giladi H. Predicting Angiogenesis by Endothelial Progenitor Cells Relying on In-Vitro Function Assays and VEGFR-2 Expression Levels. Biomolecules 2019; 9:biom9110717. [PMID: 31717420 PMCID: PMC6921061 DOI: 10.3390/biom9110717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Clinical trials have demonstrated the safety and efficacy of autologous endothelial progenitor cell (EPC) therapy in various diseases. Since EPCs' functions are influenced by genetic, systemic and environmental factors, the therapeutic potential of each individual EPCs is unknown and may affect treatment outcome. Therefore, our aim was to compare EPCs function among healthy donors in order to predict blood vessel formation (angiogenesis) before autologous EPC transplantation. Human EPCs were isolated from the blood of ten volunteers. EPCs proliferation rate, chemoattractant ability, and CXCR4 mRNA levels were different among donors (p < 0.0001, p < 0.01, p < 0.001, respectively). A positive correlation was found between SDF-1, CXCR4, and EPCs proliferation (R = 0.736, p < 0.05 and R = 0.8, p < 0.01, respectively). In-vivo, blood vessels were counted ten days after EPCs transplantation in a subcutaneous mouse model. Mean vessel density was different among donors (p = 0.0001); nevertheless, donors with the lowest vessel densities were higher compared to control (p < 0.05). Finally, using a linear regression model, a mathematical equation was generated to predict blood vessel density relying on: (i) EPCs chemoattractivity, and (ii) VEGFR-2 mRNA levels. Results reveal differences in EPCs functions among healthy individuals, emphasizing the need for a potency assay to pave the way for standardized research and clinical use of human EPCs.
Collapse
Affiliation(s)
- Nadin Sabbah
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa 3109600, Israel; (N.S.); (T.T.); (R.E.); (O.D.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel;
| | - Tal Tamari
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa 3109600, Israel; (N.S.); (T.T.); (R.E.); (O.D.)
| | - Rina Elimelech
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa 3109600, Israel; (N.S.); (T.T.); (R.E.); (O.D.)
- Department of Periodontology, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Ofri Doppelt
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa 3109600, Israel; (N.S.); (T.T.); (R.E.); (O.D.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel;
| | - Utai Rudich
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel;
| | - Hadar Zigdon-Giladi
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa 3109600, Israel; (N.S.); (T.T.); (R.E.); (O.D.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel;
- Department of Periodontology, Rambam Health Care Campus, Haifa 3109601, Israel
- Correspondence: ; Tel.: +972-4-854-3606
| |
Collapse
|
92
|
Andrew TW, Kanapathy M, Murugesan L, Muneer A, Kalaskar D, Atala A. Towards clinical application of tissue engineering for erectile penile regeneration. Nat Rev Urol 2019; 16:734-744. [PMID: 31649327 DOI: 10.1038/s41585-019-0246-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2019] [Indexed: 11/09/2022]
Abstract
Penile wounds after traumatic and surgical amputation require reconstruction in the form of autologous tissue transfers. However, currently used techniques are associated with high infection rates, implant erosion and donor site morbidity. The use of tissue-engineered neocorpora provides an alternative treatment option. Contemporary tissue-engineering strategies enable the seeding of a biomaterial scaffold and subsequent implantation to construct a neocorpus. Tissue engineering of penile tissue should focus on two main strategies: first, correcting the volume deficit for structural integrity in order to enable urinary voiding in the standing position and second, achieving erectile function for sexual activity. The functional outcomes of the neocorpus can be addressed by optimizing the use of stem cells and scaffolds, or alternatively, the use of gene therapy. Current research in penile tissue engineering is largely restricted to rodent and rabbit models, but the use of larger animal models should be considered as a better representation of the anatomical and physiological function in humans. The development of a cell-seeded scaffold to achieve and maintain erection continues to be a considerable challenge in humans. However, advances in penile tissue engineering show great promise and, in combination with gene therapy and surgical techniques, have the potential to substantially improve patient outcomes.
Collapse
Affiliation(s)
- Tom W Andrew
- Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, UK.
| | - Muholan Kanapathy
- Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, UK
| | - Log Murugesan
- Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, UK
| | - Asif Muneer
- Department of Urology, University College London Hospital, London, UK
| | - Deepak Kalaskar
- Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, UK
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, USA
| |
Collapse
|
93
|
Kaushik K, Das A. Endothelial progenitor cell therapy for chronic wound tissue regeneration. Cytotherapy 2019; 21:1137-1150. [PMID: 31668487 DOI: 10.1016/j.jcyt.2019.09.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023]
Abstract
Despite advancements in wound care, healing of chronic diabetic wounds remains a great challenge for the clinical fraternity because of the intricacies of the healing process. Due to the limitations of existing treatment strategies for chronic wounds, stem/progenitor cell transplantation therapies have been explored as an alternative for tissue regeneration at the wound site. The non-healing phenotype of chronic wounds is directly associated with lack of vascularization. Therefore, endothelial progenitor cell (EPC) transplantation is proving to be a promising approach for the treatment of hypo-vascular chronic wounds. With the existing knowledge in EPC biology, significant efforts have been made to enrich EPCs at the chronic wound site, generating EPCs from somatic cells, induced pluripotent stem cells (iPSCs) using transcription factors, or from adult stem cells using chemicals/drugs for use in transplantation, as well as modulating the endogenous dysfunctional/compromised EPCs under diabetic conditions. This review mainly focuses on the pre-clinical and clinical approaches undertaken to date with EPC-based translational therapy for chronic diabetic as well as non-diabetic wounds to evaluate their vascularity-mediated regeneration potential.
Collapse
Affiliation(s)
- Komal Kaushik
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IICT Campus, Hyderabad, India
| | - Amitava Das
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IICT Campus, Hyderabad, India.
| |
Collapse
|
94
|
Mena HA, Zubiry PR, Dizier B, Mignon V, Parborell F, Schattner M, Boisson-Vidal C, Negrotto S. Ceramide 1-Phosphate Protects Endothelial Colony–Forming Cells From Apoptosis and Increases Vasculogenesis In Vitro and In Vivo. Arterioscler Thromb Vasc Biol 2019; 39:e219-e232. [PMID: 31434496 DOI: 10.1161/atvbaha.119.312766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective:
Ceramide 1-phosphate (C1P) is a bioactive sphingolipid highly augmented in damaged tissues. Because of its abilities to stimulate migration of murine bone marrow–derived progenitor cells, it has been suggested that C1P might be involved in tissue regeneration. In the present study, we aimed to investigate whether C1P regulates survival and angiogenic activity of human progenitor cells with great therapeutic potential in regenerative medicine such as endothelial colony–orming cells (ECFCs).
Approach and Results:
C1P protected ECFC from TNFα (tumor necrosis factor-α)-induced and monosodium urate crystal–induced death and acted as a potent chemoattractant factor through the activation of ERK1/2 (extracellular signal-regulated kinases 1 and 2) and AKT pathways. C1P treatment enhanced ECFC adhesion to collagen type I, an effect that was prevented by β1 integrin blockade, and to mature endothelial cells, which was mediated by the E-selectin/CD44 axis. ECFC proliferation and cord-like structure formation were also increased by C1P, as well as vascularization of gel plug implants loaded or not with ECFC. In a murine model of hindlimb ischemia, local administration of C1P alone promoted blood perfusion and reduced necrosis in the ischemic muscle. Additionally, the beneficial effects of ECFC infusion after ischemia were amplified by C1P pretreatment, resulting in a further and significant enhancement of leg reperfusion and muscle repair.
Conclusions:
Our findings suggest that C1P may have therapeutic relevance in ischemic disorders, improving tissue repair by itself, or priming ECFC angiogenic responses such as chemotaxis, adhesion, proliferation, and tubule formation, which result in a better outcome of ECFC-based therapy.
Collapse
Affiliation(s)
- Hebe Agustina Mena
- From the Experimental Thrombosis Laboratory, Institute of Experimental Medicine, National Academy of Medicine–CONICET, Buenos Aires, Argentina (H.A.M., P.R.Z., M.S., S.N.)
| | - Paula Romina Zubiry
- From the Experimental Thrombosis Laboratory, Institute of Experimental Medicine, National Academy of Medicine–CONICET, Buenos Aires, Argentina (H.A.M., P.R.Z., M.S., S.N.)
| | - Blandine Dizier
- Innovative Therapies in Haemostasis, INSERM (B.D., C.B.-V.), Université de Paris, France
| | - Virginie Mignon
- INSERM US025, CNRS UMRS 3612, PTICM (V.M.), Université de Paris, France
| | - Fernanda Parborell
- Experimental Medicine and Biology Institute, CONICET, Buenos Aires, Argentina (F.P.)
| | - Mirta Schattner
- From the Experimental Thrombosis Laboratory, Institute of Experimental Medicine, National Academy of Medicine–CONICET, Buenos Aires, Argentina (H.A.M., P.R.Z., M.S., S.N.)
| | | | - Soledad Negrotto
- From the Experimental Thrombosis Laboratory, Institute of Experimental Medicine, National Academy of Medicine–CONICET, Buenos Aires, Argentina (H.A.M., P.R.Z., M.S., S.N.)
| |
Collapse
|
95
|
Sadanandan N, Di Santo S, Widmer HR. Another win for endothelial progenitor cells: Endothelial progenitor cell-derived conditioned medium promotes proliferation and exerts neuroprotection in cultured neuronal progenitor cells. Brain Circ 2019; 5:106-111. [PMID: 31620656 PMCID: PMC6785943 DOI: 10.4103/bc.bc_41_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 01/08/2023] Open
Abstract
Progress in stem cell research demonstrates stem cells' potential for treating neurodegenerative diseases. Stem cells have proliferative/differentiative properties and produce a variety of paracrine factors that can potentially be used to regenerate nervous tissue. Previous studies have shown the positive regenerative effects of endothelial progenitor cells (EPCs), and thus, they may be used as a tool for regeneration. A study by Di Santo et al. explored whether EPC-derived conditioned medium (EPC-CM) promotes the survival of cultured striatal progenitor cells and attempted to find the paracrine factors and signaling pathways involved with EPC-CM's effects. The neuronal progenitor cells that were cultured with EPC-CM had much higher densities of GABA-immunoreactive (GABA-ir) neurons. It was shown that phosphatidylinositol-3-kinase/AKT and mitogen-activated protein kinase/ERK signaling pathways are involved in the proliferation of GABAergic neurons, as inhibition of these pathways decreased GABAergic densities. In addition, the results suggest that paracrine factors from EPC, both proteinaceous and lipidic, significantly elevated the viability and/or differentiation in the cultures. Importantly, it was found that EPC-CM provided neuroprotection against toxins from 3-nitropropionic acid. In sum, EPC-CM engendered proliferation and regeneration of the cultured striatal cells through paracrine factors and imparted neuroprotection. Furthermore, the effects of EPC-CM may generate a cell-free therapeutic strategy to address neurodegeneration.
Collapse
Affiliation(s)
- Nadia Sadanandan
- Department of Neurosurgery and Brain Repair, College of Medicine, University of South Florida Morsani, Tampa, FL, USA
| | - Stefano Di Santo
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hans Rudolf Widmer
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
96
|
He J, Han X, Wang S, Zhang Y, Dai X, Liu B, Liu L, Zhao X. Cell sheets of co-cultured BMP-2-modified bone marrow stromal cells and endothelial progenitor cells accelerate bone regeneration in vitro. Exp Ther Med 2019; 18:3333-3340. [PMID: 31602206 PMCID: PMC6777308 DOI: 10.3892/etm.2019.7982] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 05/02/2019] [Indexed: 12/20/2022] Open
Abstract
Bone tissue engineering provides a substitute for bone transplantation to address various bone defects. However, bone regeneration involves a large number of cellular events. In addition, obtaining sufficient source material for autogenous bone or alloplastic bone substitutes remains an unsolved issue. In previous studies, it was confirmed that bone marrow stromal cells (BMSCs) and endothelial progenitor cells (EPCs) had the capacity to promote bone regeneration. Additionally, bone morphogenetic protein-2 (BMP-2) has been demonstrated to be an active inducer of osteoblast differentiation. Therefore, the aim of the present study was to produce an effective integration system, including a scaffold, reparative cells and growth factors, that may enhance bone regeneration. Firstly, bone marrow-derived BMSCs and EPCs were isolated and identified by flow cytometry. Cell proliferation ability, secreted BMP-2 levels and alkaline phosphatase (ALP) activity were highest in the cell sheets containing BMP-2-modified BMSCs and EPCs. In addition, the expression levels of osteogenesis-associated genes, including runt related transcription factor 2 (Runx2), distal-less homeobox 5 (Dlx5), ALP and integrin-binding sialoprotein (Ibsp), and osteogenesis-associated proteins, including Runx2, Dlx, ALP, Ibsp, vascular endothelial growth factor, osteonectin, osteopontin and type I collagen, gradually increased during the co-culture of ad-BMP-2-BMSCs/EPCs. The levels of these genes and proteins were increased compared with those observed in the BMSC, EPC and BMP-2-modified BMSC groups. Finally, scanning electron microscopy observation also demonstrated that the BMP2-modified BMSCs were able to combine well with EPCs to construct a cell sheet for bone formation. Collectively, these results describe an adenovirus (ad)-BMP2-BMSCs/EPCs co-culture system that may significantly accelerate bone regeneration compared with a BMSCs/EPCs co-culture system or ad-BMP2-BMSCs alone.
Collapse
Affiliation(s)
- Jia He
- Department of Plastic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Xuesong Han
- Department of Obstetrics and Gynecology, Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Songmei Wang
- School of Public Health, Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Ying Zhang
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Xiaoming Dai
- Department of Plastic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Boyan Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Liu Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Xian Zhao
- Department of Plastic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
97
|
Zhang Q, Cannavicci A, Dai SC, Wang C, Kutryk MJB. MicroRNA profiling of human myeloid angiogenic cells derived from peripheral blood mononuclear cells. Biochem Cell Biol 2019; 98:203-207. [PMID: 31484002 DOI: 10.1139/bcb-2019-0163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human myeloid angiogenic cells (MACs), also termed early endothelial progenitor cells, play an important role in neovascularization and vascular repair. MicroRNAs (miRNAs) are a class of naturally occurring, noncoding, short (∼22 nucleotides), single-stranded RNAs that regulate gene expression post-transcriptionally. MiRNAs have been shown to regulate MAC function. A miRNA signature of MACs was described approximately a decade ago, and many new miRNAs have been discovered in recent years. In this study, we aimed to provide an up-to-date miRNA signature for human MACs. MACs were obtained by culture of human peripheral blood mononuclear cells in endothelial medium for 7 days. Using qPCR array analysis we identified 72 highly expressed miRNAs (CT value < 30) in human MACs. RT-qPCR quantification of select miRNAs revealed a strong correlation between the CT values detected by the array analysis and RT-qPCR, suggesting the miRNA signature generated by the qPCR array assay is accurate and reliable. Experimentally validated target genes of the 10 most highly expressed miRNAs were retrieved. Only a few of the targets and their respective miRNAs have been studied for their role in MAC biology. Our study therefore provides a valuable repository of miRNAs for future exploration of miRNA function in MACs.
Collapse
Affiliation(s)
- Qiuwang Zhang
- Division of Cardiology, Keenan Research Center for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Anthony Cannavicci
- Division of Cardiology, Keenan Research Center for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Si-Cheng Dai
- Division of Cardiology, Keenan Research Center for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Chenxi Wang
- Department of Cardiovascular Surgery, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Michael J B Kutryk
- Division of Cardiology, Keenan Research Center for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
98
|
Hassanshahi M, Khabbazi S, Peymanfar Y, Hassanshahi A, Hosseini-Khah Z, Su YW, Xian CJ. Critical limb ischemia: Current and novel therapeutic strategies. J Cell Physiol 2019; 234:14445-14459. [PMID: 30637723 DOI: 10.1002/jcp.28141] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 01/02/2019] [Indexed: 01/24/2023]
Abstract
Critical limb ischemia (CLI) is the advanced stage of peripheral artery disease spectrum and is defined by limb pain or impending limb loss because of compromised blood flow to the affected extremity. Current conventional therapies for CLI include amputation, bypass surgery, endovascular therapy, and pharmacological approaches. Although these conventional therapeutic strategies still remain as the mainstay of treatments for CLI, novel and promising therapeutic approaches such as proangiogenic gene/protein therapies and stem cell-based therapies have emerged to overcome, at least partially, the limitations and disadvantages of current conventional therapeutic approaches. Such novel CLI treatment options may become even more effective when other complementary approaches such as utilizing proper bioscaffolds are used to increase the survival and engraftment of delivered genes and stem cells. Therefore, herein, we address the benefits and disadvantages of current therapeutic strategies for CLI treatment and summarize the novel and promising therapeutic approaches for CLI treatment. Our analyses also suggest that these novel CLI therapeutic strategies show considerable advantages to be used when current conventional methods have failed for CLI treatment.
Collapse
Affiliation(s)
- Mohammadhossein Hassanshahi
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Samira Khabbazi
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Yaser Peymanfar
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Alireza Hassanshahi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Zahra Hosseini-Khah
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Yu-Wen Su
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
99
|
Fabrication of bacterial cellulose-collagen composite scaffolds and their osteogenic effect on human mesenchymal stem cells. Carbohydr Polym 2019; 219:210-218. [DOI: 10.1016/j.carbpol.2019.05.039] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/01/2019] [Accepted: 05/10/2019] [Indexed: 11/24/2022]
|
100
|
Tompkins BA, Balkan W, Winkler J, Gyöngyösi M, Goliasch G, Fernández-Avilés F, Hare JM. Preclinical Studies of Stem Cell Therapy for Heart Disease. Circ Res 2019; 122:1006-1020. [PMID: 29599277 DOI: 10.1161/circresaha.117.312486] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As part of the TACTICS (Transnational Alliance for Regenerative Therapies in Cardiovascular Syndromes) series to enhance regenerative medicine, here, we discuss the role of preclinical studies designed to advance stem cell therapies for cardiovascular disease. The quality of this research has improved over the past 10 to 15 years and overall indicates that cell therapy promotes cardiac repair. However, many issues remain, including inability to provide complete cardiac recovery. Recent studies question the need for intact cells suggesting that harnessing what the cells release is the solution. Our contribution describes important breakthroughs and current directions in a cell-based approach to alleviating cardiovascular disease.
Collapse
Affiliation(s)
- Bryon A Tompkins
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Wayne Balkan
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Johannes Winkler
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Mariann Gyöngyösi
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Georg Goliasch
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Francisco Fernández-Avilés
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Joshua M Hare
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.).
| |
Collapse
|