51
|
Abstract
Bone morphogenetic protein (BMP) signaling pathways regulate multiple aspects of endochondral bone formation. The importance of extracellular antagonists as regulators of BMP signaling has been defined. In vitro studies reveal that the intracellular regulators, inhibitory Smads 6 and 7, can regulate BMP-mediated effects on chondrocytes. Although in vivo studies in which inhibitory Smads were overexpressed in cartilage have shown that inhibitory Smads have the potential to limit BMP signaling in vivo, the physiological relevance of inhibitory Smad activity in skeletal tissues is unknown. In this study, we have determined the role of Smad6 in endochondral bone formation. Loss of Smad6 in mice leads to defects in both axial and appendicular skeletal development. Specifically, Smad6-/- mice exhibit a posterior transformation of the seventh cervical vertebra, bilateral ossification centers in lumbar vertebrae, and bifid sternebrae due to incomplete sternal band fusion. Histological analysis of appendicular bones revealed delayed onset of hypertrophic differentiation and mineralization at midgestation in Smad6-/- mice. By late gestation, however, an expanded hypertrophic zone, associated with an increased pool of proliferating cells undergoing hypertrophy, was evident in Smad6 mutant growth plates. The mutant phenotype is attributed, at least in part, to increased BMP responsiveness in Smad6-deficient chondrocytes. Overall, our results show that Smad6 is required to limit BMP signaling during endochondral bone formation.
Collapse
Affiliation(s)
- Kristine D. Estrada
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
- Department of Orthopaedic Surgery, David Geffen School of Medicine at the University of California, Los Angeles, CA 90095, USA
| | - Kelsey N. Retting
- Department of Orthopaedic Surgery, David Geffen School of Medicine at the University of California, Los Angeles, CA 90095, USA
| | - Alana M. Chin
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Karen M. Lyons
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
- Department of Orthopaedic Surgery, David Geffen School of Medicine at the University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
52
|
Jang YS, Kim JH, Seo GY, Kim PH. TGF-β1 stimulates mouse macrophages to express APRIL through Smad and p38MAPK/CREB pathways. Mol Cells 2011; 32:251-5. [PMID: 21710205 PMCID: PMC3887634 DOI: 10.1007/s10059-011-1040-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/26/2011] [Accepted: 05/30/2011] [Indexed: 12/25/2022] Open
Abstract
A proliferation-inducing ligand (APRIL), a new TNF family member, supports B-cell survival and tumor cell proliferation. APRIL is secreted as a soluble protein by macrophages, dendritic cells and activated T cells. However, factors involved in regulation of APRIL expression are as yet unknown. In this study, we investigated the effect of TGF-β1 on APRIL expression in P388D1, a mouse macrophage cell line. TGF-β1 induced APRIL mRNA expression in a time- and dose-dependent manner. One nanogram per milliliter of TGF-β1 was optimal and APRIL transcripts appeared as early as 3 h after stimulation. Based on our studies, which included overexpression of Smad3, DN-Smad3, and sh-Smad3, we found that Smad3 mediates APRIL transcription at least partially. Further, experiments using inhibitors revealed that p38MAPK and CREB are also involved in TGF-β1-induced APRIL expression. These results suggest that TGF-β1, through Smad3 and p38MAPK/CREB signaling pathways, stimulates APRIL expression in macrophages.
Collapse
Affiliation(s)
- Young-Saeng Jang
- Department of Molecular Bioscience, College of Biomedical Science, Chuncheon 200-701, Korea
| | - Jae-Hee Kim
- Department of Molecular Bioscience, College of Biomedical Science, Chuncheon 200-701, Korea
| | - Goo-Young Seo
- Department of Molecular Bioscience, College of Biomedical Science, Chuncheon 200-701, Korea
| | - Pyeung-Hyeun Kim
- Department of Molecular Bioscience, College of Biomedical Science, Chuncheon 200-701, Korea
- Medical and Bio-Material Research Center, Kangwon National University, Chuncheon 200-701, Korea
| |
Collapse
|
53
|
Bhattacharjee A, Pal S, Feldman GM, Cathcart MK. Hck is a key regulator of gene expression in alternatively activated human monocytes. J Biol Chem 2011; 286:36709-23. [PMID: 21878628 DOI: 10.1074/jbc.m111.291492] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
IL-13 is a Th2 cytokine that promotes alternative activation (M2 polarization) in primary human monocytes. Our studies have characterized the functional IL-13 receptor complex and the downstream signaling events in response to IL-13 stimulation in alternatively activated monocytes/macrophages. In this report, we present evidence that IL-13 induces the activation of a Src family tyrosine kinase, which is required for IL-13 induction of M2 gene expression, including 15-lipoxygenase (15-LO). Our data show that Src kinase activity regulates IL-13-induced p38 MAPK tyrosine phosphorylation via the upstream kinases MKK3 or MKK6. Our findings also reveal that the IL-13 receptor-associated tyrosine kinase Jak2 is required for the activation of both Src kinase as well as p38 MAPK. Further, we found that Src tyrosine kinase-mediated activation of p38 MAPK is required for Stat1 and Stat3 serine 727 phosphorylation in alternatively activated monocytes/macrophages. Additional studies identify Hck as the specific Src family member, stimulated by IL-13 and involved in regulating both p38 MAPK activation and p38 MAPK-mediated 15-LO expression. Finally we show that the Hck regulates the expression of other alternative state (M2)-specific genes (Mannose receptor, MAO-A, and CD36) and therefore conclude that Hck acts as a key regulator controlling gene expression in alternatively activated monocytes/macrophages.
Collapse
Affiliation(s)
- Ashish Bhattacharjee
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, USA.
| | | | | | | |
Collapse
|
54
|
Runchel C, Matsuzawa A, Ichijo H. Mitogen-activated protein kinases in mammalian oxidative stress responses. Antioxid Redox Signal 2011; 15:205-18. [PMID: 21050144 DOI: 10.1089/ars.2010.3733] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
All aerobic organisms are exposed to oxidative stress during their lifetime and are required to respond appropriately for maintenance of their survival and homeostasis. Sustained exposure to oxidative stress has devastating effects in organisms, and, not surprisingly, oxidative stress has been implicated in numerous human diseases. Therefore, an understanding of how mammals respond to oxidative stress is crucial both biologically and clinically. Intracellular signaling pathways, which are activated in response to excessive oxygen radicals, play essential roles in overcoming oxidative stress. The mitogen-activated protein kinase (MAPK) signaling pathways are involved in diverse physiological processes, and are critical for induction of oxidative stress responses. In this review, we will discuss the physiological roles of MAPKs in oxidative stress, the upstream signaling pathways leading to MAPK activation, their regulation, and the MAPK downstream substrates, with a focus on mammalian systems.
Collapse
Affiliation(s)
- Christopher Runchel
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | | | | |
Collapse
|
55
|
Adachi S, Yasuda I, Nakashima M, Yamauchi T, Kawaguchi J, Shimizu M, Itani M, Nakamura M, Nishii Y, Yoshioka T, Hirose Y, Okano Y, Moriwaki H, Kozawa O. Ultraviolet irradiation can induce evasion of colon cancer cells from stimulation of epidermal growth factor. J Biol Chem 2011; 286:26178-87. [PMID: 21646361 DOI: 10.1074/jbc.m111.240630] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Receptor down-regulation is the most prominent regulatory system of EGF receptor (EGFR) signal attenuation and a critical target for therapy against colon cancer, which is highly dependent on the function of the EGFR. In this study, we investigated the effect of ultraviolet-C (UV-C) on down-regulation of EGFR in human colon cancer cells (SW480, HT29, and DLD-1). UV-C caused inhibition of cell survival and proliferation, concurrently inducing the decrease in cell surface EGFR and subsequently its degradation. UV-C, as well as EGFR kinase inhibitors, decreased the expression level of cyclin D1 and the phosphorylated level of retinoblastoma, indicating that EGFR down-regulation is correlated to cell cycle arrest. Although UV-C caused a marked phosphorylation of EGFR at Ser-1046/1047, UV-C also induced activation of p38 MAPK, a stress-inducible kinase believed to negatively regulate tumorigenesis, and the inhibition of p38 MAPK canceled EGFR phosphorylation at Ser-1046/1047, as well as subsequent internalization and degradation, suggesting that p38 MAPK mediates EGFR down-regulation by UV-C. In addition, phosphorylation of p38 MAPK induced by UV-C was mediated through transforming growth factor-β-activated kinase-1. Moreover, pretreatment of the cells with UV-C suppressed EGF-induced phosphorylation of EGFR at tyrosine residues in addition to cell survival signal, Akt. Together, these results suggest that UV-C irradiation induces the removal of EGFRs from the cell surface that can protect colon cancer cells from oncogenic stimulation of EGF, resulting in cell cycle arrest. Hence, UV-C might be applied for clinical strategy against human colon cancers.
Collapse
Affiliation(s)
- Seiji Adachi
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Tian M, Neil JR, Schiemann WP. Transforming growth factor-β and the hallmarks of cancer. Cell Signal 2011; 23:951-62. [PMID: 20940046 PMCID: PMC3076078 DOI: 10.1016/j.cellsig.2010.10.015] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 10/01/2010] [Indexed: 02/07/2023]
Abstract
Tumorigenesis is in many respects a process of dysregulated cellular evolution that drives malignant cells to acquire six phenotypic hallmarks of cancer, including their ability to proliferate and replicate autonomously, to resist cytostatic and apoptotic signals, and to induce tissue invasion, metastasis, and angiogenesis. Transforming growth factor-β (TGF-β) is a potent pleiotropic cytokine that functions as a formidable barrier to the development of cancer hallmarks in normal cells and tissues. Paradoxically, tumorigenesis counteracts the tumor suppressing activities of TGF-β, thus enabling TGF-β to stimulate cancer invasion and metastasis. Fundamental gaps exist in our knowledge of how malignant cells overcome the cytostatic actions of TGF-β, and of how TGF-β stimulates the acquisition of cancer hallmarks by developing and progressing human cancers. Here we review the molecular and cellular mechanisms that underlie the ability of TGF-β to mediate tumor suppression in normal cells, and conversely, to facilitate cancer progression and disease dissemination in malignant cells.
Collapse
Affiliation(s)
- Maozhen Tian
- Division of General Medical Sciences–Oncology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106
| | - Jason R. Neil
- Department of Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - William P. Schiemann
- Division of General Medical Sciences–Oncology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
57
|
Shah P, Keppler L, Rutkowski J. Bone morphogenic protein: an elixir for bone grafting--a review. J ORAL IMPLANTOL 2011; 38:767-78. [PMID: 21574851 DOI: 10.1563/aaid-joi-d-10-00196] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bone morphogenetic proteins (BMPs) are multifunctional growth factors that belong to the transforming growth factor beta superfamily. This literature review focuses on the molecular biology of BMPs, their mechanism of action, and subsequent applications. It also discusses uses of BMPs in the fields of dentistry and orthopedics, research on methods of delivering BMPs, and their role in tissue regeneration. BMP has positive effects on bone grafts, and their calculated and timely use with other growth factors can provide extraordinary results in fractured or nonhealing bones. Use of BMP introduces new applications in the field of implantology and bone grafting. This review touches on a few unknown facts about BMP and this ever-changing field of research to improve human life.
Collapse
Affiliation(s)
- Prasun Shah
- St Vincent Charity Hospital, Cleveland, OH, USA.
| | | | | |
Collapse
|
58
|
Gottar-Guillier M, Dodeller F, Huesken D, Iourgenko V, Mickanin C, Labow M, Gaveriaux S, Kinzel B, Mueller M, Alitalo K, Littlewood-Evans A, Cenni B. The Tyrosine Kinase BMX Is an Essential Mediator of Inflammatory Arthritis in a Kinase-Independent Manner. THE JOURNAL OF IMMUNOLOGY 2011; 186:6014-23. [DOI: 10.4049/jimmunol.1002813] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
59
|
Xin X, Zhou L, Reyes CM, Liu F, Dong LQ. APPL1 mediates adiponectin-stimulated p38 MAPK activation by scaffolding the TAK1-MKK3-p38 MAPK pathway. Am J Physiol Endocrinol Metab 2011; 300:E103-10. [PMID: 20978232 PMCID: PMC3023211 DOI: 10.1152/ajpendo.00427.2010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The adaptor protein APPL1 mediates the stimulatory effect of adiponectin on p38 mitogen-activated protein kinase (MAPK) signaling, yet the underlying mechanism remains unclear. Here we show that, in C(2)C(12) cells, overexpression or suppression of APPL1 enhanced or suppressed, respectively, adiponectin-stimulated p38 MAPK upstream kinase cascade, consisting of transforming growth factor-β-activated kinase 1 (TAK1) and mitogen-activated protein kinase kinase 3 (MKK3). In vitro affinity binding and coimmunoprecipitation experiments revealed that TAK1 and MKK3 bind to different regions of APPL1, suggesting that APPL1 functions as a scaffolding protein to facilitate adiponectin-stimulated p38 MAPK activation. Interestingly, suppressing APPL1 had no effect on TNFα-stimulated p38 MAPK phosphorylation in C(2)C(12) myotubes, indicating that the stimulatory effect of APPL1 on p38 MAPK activation is selective. Taken together, our study demonstrated that the TAK1-MKK3 cascade mediates adiponectin signaling and uncovers a scaffolding role of APPL1 in regulating the TAK1-MKK3-p38 MAPK pathway, specifically in response to adiponectin stimulation.
Collapse
Affiliation(s)
- Xiaoban Xin
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | | | |
Collapse
|
60
|
Paul PK, Gupta SK, Bhatnagar S, Panguluri SK, Darnay BG, Choi Y, Kumar A. Targeted ablation of TRAF6 inhibits skeletal muscle wasting in mice. J Cell Biol 2010; 191:1395-411. [PMID: 21187332 PMCID: PMC3010064 DOI: 10.1083/jcb.201006098] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 11/19/2010] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle wasting is a major human morbidity, and contributes to mortality in a variety of clinical settings, including denervation and cancer cachexia. In this study, we demonstrate that the expression level and autoubiquitination of tumor necrosis factor (α) receptor adaptor protein 6 (TRAF6), a protein involved in receptor-mediated activation of several signaling pathways, is enhanced in skeletal muscle during atrophy. Skeletal muscle-restricted depletion of TRAF6 rescues myofibril degradation and preserves muscle fiber size and strength upon denervation. TRAF6 mediates the activation of JNK1/2, p38 mitogen-activated protein kinase, adenosine monophosphate-activated protein kinase, and nuclear factor κB, and induces the expression of muscle-specific E3 ubiquitin ligases and autophagy-related molecules in skeletal muscle upon denervation. Inhibition of TRAF6 also preserves the orderly pattern of intermyofibrillar and subsarcolemmal mitochondria in denervated muscle. Moreover, depletion of TRAF6 prevents cancer cachexia in an experimental mouse model. This study unveils a novel mechanism of skeletal muscle atrophy and suggests that TRAF6 is an important therapeutic target to prevent skeletal muscle wasting.
Collapse
Affiliation(s)
- Pradyut K. Paul
- Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Sanjay K. Gupta
- Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Shephali Bhatnagar
- Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Siva K. Panguluri
- Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Bryant G. Darnay
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Yongwon Choi
- Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Ashok Kumar
- Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
| |
Collapse
|
61
|
Keshet Y, Seger R. The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions. Methods Mol Biol 2010; 661:3-38. [PMID: 20811974 DOI: 10.1007/978-1-60761-795-2_1] [Citation(s) in RCA: 439] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Sequential activation of kinases within the mitogen-activated protein (MAP) kinase (MAPK) cascades is a common, and evolutionary-conserved mechanism of signal transduction. Four MAPK cascades have been identified in the last 20 years and those are usually named according to the MAPK components that are the central building blocks of each of the cascades. These are the extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-Terminal kinase (JNK), p38, and ERK5 cascades. Each of these cascades consists of a core module of three tiers of protein kinases termed MAPK, MAPKK, and MAP3K, and often two additional tiers, the upstream MAP4K and the downstream MAPKAPK, which can complete five tiers of each cascade in certain cell lines or stimulations. The transmission of the signal via each cascade is mediated by sequential phosphorylation and activation of the components in the sequential tiers. These cascades cooperate in transmitting various extracellular signals and thus control a large number of distinct and even opposing cellular processes such as proliferation, differentiation, survival, development, stress response, and apoptosis. One way by which the specificity of each cascade is regulated is through the existence of several distinct components in each tier of the different cascades. About 70 genes, which are each translated to several alternatively spliced isoforms, encode the entire MAPK system, and allow the wide array of cascade's functions. These components, their regulation, as well as their involvement together with other mechanisms in the determination of signaling specificity by the MAPK cascade is described in this review. Mis-regulation of the MAPKs signals usually leads to diseases such as cancer and diabetes; therefore, studying the mechanisms of specificity-determination may lead to better understanding of these signaling-related diseases.
Collapse
Affiliation(s)
- Yonat Keshet
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
62
|
Klatt AR, Klinger G, Paul-Klausch B, Renno JH, Schmidt J, Malchau G, Wielckens K. TAK1 mediates the collagen-II-dependent induction of the COX-2 gene and PGE2 release in primary human chondrocytes. Connect Tissue Res 2010; 51:452-8. [PMID: 20604713 DOI: 10.3109/03008201003668360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We investigated the role of transforming growth factor-beta activated kinase 1 (TAK1) in collagen II signaling in primary human chondrocytes (PHCs). We asked whether TAK1 acts as a modulator of collagen II signaling with respect to collagen-II-dependent induction of cyclooxigenase-2 (COX-2) in PHCs and release of PGE2 from PHCs. Therefore, PHCs were incubated with collagen II, and cells were then analyzed by RT-PCR for the expression of COX-2. ELISA was used to quantify PGE2 release. To examine the influence of TAK1 on these events, TAK1 gene silencing was performed by RNAi in PHCs prior to collagen II treatment. Results indicated that COX-2 gene expression and PGE2 release are specific outcomes of collagen II signaling and that both depend on TAK1 mediation. These findings are promising in that therapeutic inhibition of TAK1 might be used to reduce pain and relieve inflammatory symptoms that are common in osteoarthritis.
Collapse
Affiliation(s)
- Andreas R Klatt
- Institute for Clinical Chemistry, University of Cologne, Cologne, Germany.
| | | | | | | | | | | | | |
Collapse
|
63
|
Downes CE, Crack PJ. Neural injury following stroke: are Toll-like receptors the link between the immune system and the CNS? Br J Pharmacol 2010; 160:1872-88. [PMID: 20649586 DOI: 10.1111/j.1476-5381.2010.00864.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The CNS can exhibit features of inflammation in response to injury, infection or disease, whereby resident cells generate inflammatory mediators, including cytokines, prostaglandins, free radicals and complement, chemokines and adhesion molecules that recruit immune cells, and activate glia and microglia. Cerebral ischaemia triggers acute inflammation, which exacerbates primary brain damage. The regulation of inflammation after stroke is multifaceted and comprises vascular effects, distinct cellular responses, apoptosis and chemotaxis. There are many cell types that are affected including neurons, astrocytes, microglia and endothelial cells, all responding to the resultant neuroinflammation in different ways. Over the past 20 years, researchers examining brain tissue at various time intervals after stroke observed the presence of inflammatory cells, neutrophils and monocytes at the site of injury, as well as the activation of endogenous glia and microglia. This review examines the involvement of these cells in the progression of neural injury and proposes that the Toll-like receptors (TLRs) are likely to be an integral component in the communication between the CNS and the periphery. This receptor system is the archetypal pathogen sensing receptor system and its presence and signalling in the brain following neural injury suggests a more diverse role. We propose that the TLR system presents excellent pharmacological targets for the design of a new generation of therapeutic agents to modulate the inflammation that accompanies neural injury.
Collapse
Affiliation(s)
- Catherine E Downes
- Department of Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
64
|
Rasheed Z, Akhtar N, Haqqi TM. Pomegranate extract inhibits the interleukin-1β-induced activation of MKK-3, p38α-MAPK and transcription factor RUNX-2 in human osteoarthritis chondrocytes. Arthritis Res Ther 2010; 12:R195. [PMID: 20955562 PMCID: PMC2991031 DOI: 10.1186/ar3166] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 09/27/2010] [Accepted: 10/18/2010] [Indexed: 01/23/2023] Open
Abstract
Introduction Pomegranate has been revered throughout history for its medicinal properties. p38-MAPK is a major signal-transducing pathway in osteoarthritis (OA) and its activation by interleukin-1β (IL-1β) plays a critical role in the expression and production of several mediators of cartilage catabolism in OA. In this study we determined the effect of a standardized pomegranate extract (PE) on the IL-1β-induced activation of MKK3/6, p38-MAPK isoforms and the activation of transcription factor RUNX-2 in primary human OA chondrocytes. Methods Human chondrocytes were derived from OA cartilage by enzymatic digestion, treated with PE and then stimulated with IL-1β. Gene expression of p38-MAPK isoforms was measured by RT-PCR. Western immunoblotting was used to analyze the activation of MAPKs. Immunoprecipitation was used to determine the activation of p38-MAPK isoforms. DNA binding activity of RUNX-2 was determined using a highly sensitive and specific ELISA. Pharmacological studies to elucidate the involved pathways were executed using transfection with siRNAs. Results Human OA chondrocytes expressed p38-MAPK isoforms p38α, -γ and -δ, but not p38β. IL-1β enhances the phosphorylation of the p38α-MAPK and p38γ-MAPK isoforms but not of p38δ-MAPK isoform in human OA chondrocytes. Activation of p38-MAPK in human OA chondrocytes was preferentially mediated via activation of MKK3. In addition, we also demonstrate that polyphenol rich PE inhibited the IL-1β-induced activation of MKK3, p38α-MAPK isoform and DNA binding activity of the transcription factor RUNX-2. Conclusions Our results provide an important insight into the molecular basis of the reported cartilage protective and arthritis inhibitory effects of pomegranate extract. These novel pharmacological actions of PE on IL-1β stimulated human OA chondrocytes impart a new suggestion that PE or PE-derived compounds may be developed as MKK and p38-MAPK inhibitors for the treatment of OA and other degenerative/inflammatory diseases.
Collapse
Affiliation(s)
- Zafar Rasheed
- Department of Medicine, Division of Rheumatology, MetroHealth Medical Center/Case Western Reserve University, 2500 Metro Health Drive, Cleveland, OH 44109, USA.
| | | | | |
Collapse
|
65
|
Moriguchi M, Yamada M, Miake Y, Yanagisawa T. Immunolocalization of TAK1, TAB1, and p38 in the developing rat molar. Anat Sci Int 2010; 86:69-77. [PMID: 20730577 DOI: 10.1007/s12565-010-0089-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 06/30/2010] [Indexed: 01/23/2023]
Abstract
In tooth development, transforming growth factor beta (TGF-β) and bone morphogenetic protein (BMP) are involved in cell differentiation and matrix protein production. TGF-β and BMP have two signaling pathways: the Smad pathway and the non-Smad pathway. However, only a few studies have focused on the non-Smad pathway in tooth development. TGF-β-activated kinase 1 (TAK1) is activated by TGF-β or BMP and binds to TAK1-binding protein (TAB1), activating p38 or c-Jun N-terminal kinase (JNK), forming the non-Smad signaling pathway. In this study, we examined the distribution of these kinases, TGF-β receptor 1 (TGF-β-R1), BMP receptor-1B (BMPR-1B) and Smad4 in cells of the rat molar germ histochemically, in order to investigate the signaling pathway in each type of cell. Immunostaining for TGF-β-R1, BMPR-1B, Smad4, TAK1, TAB1 and phosphorylated-p38 (p-p38) showed similar reactions. In the cervical loop, reactions were clearer than in other enamel epithelium. In the inner enamel epithelium, signal increased with differentiation into ameloblasts, became strongest in the secretory stage, and decreased rapidly in the maturation stage. Signal also increased upon differentiation from preodontoblasts to odontoblasts. In Hertwig's epithelial sheath, with the exception of BMPR-1B, reactions were stronger in the later stage, showing more enamel protein secretion than in the early stage. However, no clear reaction corresponding to phosphorylated-JNK was observed in any type of cell. These results suggest that TGF-β or BMP is involved in the induction of differentiation of inner enamel epithelium cells into ameloblasts, and preodontoblast differentiation into odontoblasts, the regulation of cervical loop cell proliferation, the elongation or regulation of the epithelial sheath, and the secretion of enamel protein and dentin matrix protein through the non-Smad signaling pathway via TAK1, TAB1 and p38 as well as Smad signaling pathways in the rat molar germ.
Collapse
Affiliation(s)
- Mitsuko Moriguchi
- Department of Ultrastructural Science, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, Chiba, 261-8502, Japan.
| | | | | | | |
Collapse
|
66
|
Li TF, Gao L, Sheu TJ, Sampson ER, Flick LM, Konttinen YT, Chen D, Schwarz EM, Zuscik MJ, Jonason JH, O'Keefe RJ. Aberrant hypertrophy in Smad3-deficient murine chondrocytes is rescued by restoring transforming growth factor beta-activated kinase 1/activating transcription factor 2 signaling: a potential clinical implication for osteoarthritis. ARTHRITIS AND RHEUMATISM 2010; 62:2359-69. [PMID: 20506210 PMCID: PMC2921996 DOI: 10.1002/art.27537] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To investigate the biologic significance of Smad3 in the progression of osteoarthritis (OA), the crosstalk between Smad3 and activating transcription factor 2 (ATF-2) in the transforming growth factor beta (TGFbeta) signaling pathway, and the effects of ATF-2 overexpression and p38 activation in chondrocyte differentiation. METHODS Joint disease in Smad3-knockout (Smad3(-/-)) mice was examined by microfocal computed tomography and histologic analysis. Numerous in vitro methods including immunostaining, real-time polymerase chain reaction, Western blotting, an ATF-2 DNA-binding assay, and a p38 kinase activity assay were used to study the various signaling responses and protein interactions underlying the altered chondrocyte phenotype in Smad3(-/-) mice. RESULTS In Smad3(-/-) mice, an end-stage OA phenotype gradually developed. TGFbeta-activated kinase 1 (TAK1)/ATF-2 signaling was disrupted in Smad3(-/-) mouse chondrocytes at the level of p38 MAP kinase (MAPK) activation, resulting in reduced ATF-2 phosphorylation and transcriptional activity. Reintroduction of Smad3 into Smad3(-/-) cells restored the normal p38 response to TGFbeta. Phosphorylated p38 formed a complex with Smad3 by binding to a portion of Smad3 containing both the MAD homology 1 and linker domains. Additionally, Smad3 inhibited the dephosphorylation of p38 by MAPK phosphatase 1 (MKP-1). Both ATF-2 overexpression and p38 activation repressed type X collagen expression in wild-type and Smad3(-/-) chondrocytes. P38 was detected in articular cartilage and perichondrium; articular and sternal chondrocytes expressed p38 isoforms alpha, beta, and gamma, but not delta. CONCLUSION Smad3 is involved in both the onset and progression of OA. Loss of Smad3 abrogates TAK1/ATF-2 signaling, most likely by disrupting the Smad3-phosphorylated p38 complex, thereby promoting p38 dephosphorylation and inactivation by MKP-1. ATF-2 and p38 activation inhibit chondrocyte hypertrophy. Modulation of p38 isoform activity may provide a new therapeutic approach for OA.
Collapse
Affiliation(s)
- Tian-Fang Li
- University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Gunnell LM, Jonason JH, Loiselle AE, Kohn A, Schwarz EM, Hilton MJ, O'Keefe RJ. TAK1 regulates cartilage and joint development via the MAPK and BMP signaling pathways. J Bone Miner Res 2010; 25:1784-97. [PMID: 20213696 PMCID: PMC3153349 DOI: 10.1002/jbmr.79] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 01/24/2010] [Accepted: 02/25/2010] [Indexed: 01/08/2023]
Abstract
The importance of canonical transforming growth factor beta (TGF-beta) and bone morphogenetic protein (BMP) signaling during cartilage and joint development is well established, but the necessity for noncanonical (SMAD-independent) signaling during these processes is largely unknown. TGF-beta activated kinase 1 (TAK1) is a MAP3K activated by TGF-beta, BMP, and other mitogen-activated protein kinase (MAPK) signaling components. We set out to define the potential role for noncanonical, TAK1-mediated signaling in cartilage and joint development via deletion of Tak1 in chondrocytes (Col2Cre;Tak1(f/f)) and the developing limb mesenchyme (Prx1Cre;Tak1(f/f)). Deletion of Tak1 in chondrocytes resulted in novel embryonic developmental cartilage defects including decreased chondrocyte proliferation, reduced proliferating chondrocyte survival, delayed onset of hypertrophy, reduced Mmp13 expression, and a failure to maintain interzone cells of the elbow joint, which were not observed previously in another Col2Cre;Tak1(f/f) model. Deletion of Tak1 in limb mesenchyme resulted in widespread joint fusions likely owing to the differentiation of interzone cells to the chondrocyte lineage. The Prx1Cre;Tak1(f/f) model also allowed us to identify novel columnar chondrocyte organization and terminal maturation defects owing to the interplay between chondrocytes and the surrounding mesenchyme. Furthermore, both our in vivo models and in vitro cell culture studies demonstrate that loss of Tak1 results in impaired activation of the downstream MAPK target p38, as well as diminished activation of the BMP/SMAD signaling pathway. Taken together, these data demonstrate that TAK1 is a critical regulator of both MAPK and BMP signaling and is necessary for proper cartilage and joint development.
Collapse
Affiliation(s)
| | | | | | | | | | - Matthew J Hilton
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of RochesterRochester, NY, USA
| | | |
Collapse
|
68
|
Breckpot K, Escors D. Dendritic cells for active anti-cancer immunotherapy: targeting activation pathways through genetic modification. Endocr Metab Immune Disord Drug Targets 2010; 9:328-43. [PMID: 19857199 DOI: 10.2174/187153009789839156] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 05/13/2009] [Indexed: 12/17/2022]
Abstract
Tumour immunotherapy has become a treatment modality for cancer, harnessing the immune system to recognize and eradicate tumour cells specifically. It is based on the expression of tumour associated antigens (TAA) by the tumour cells and aims at the induction of TAA-specific effector T cell responses, whilst overruling various mechanisms that can hamper the anti-tumour immune response, e.g. regulatory T cells (Treg). (Re-) activation of effector T cells requires the completion of a carefully orchestrated series of specific steps. Particularly important is the provision of TAA presentation and strong stimulatory signals, delivered by co-stimulatory surface molecules and cytokines. These can only be delivered by professional antigen-presenting cells, in particular dendritic cells (DC). Therefore, DC need to be loaded with TAA and appropriately activated. It is not surprising that an extensive part of DC research has focused on the delivery of both TAA and activation signals to DC, developing a one step approach to obtain potent stimulatory DC. The simultaneous delivery of TAA and activation signals is therefore the topic of this review, emphasizing the role of DC in mediating T cell activation and how we can manipulate DC for the pill-pose of enhancing tumour immunotherapy. As we gain a better understanding of the molecular and cellular mechanisms that mediate induction of TAA-specific T cells, rational approaches for the activation of T cell responses can be developed for the treatment of cancer.
Collapse
Affiliation(s)
- Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Department of Physiology-Immunology, Medical School of the Vrije Universiteit Brussel, Laarbeeklaan 103 building E, 1090 Jette, Belgium.
| | | |
Collapse
|
69
|
Harding SJ, Browne GJ, Miller BW, Prigent SA, Dickens M. Activation of ASK1, downstream MAPKK and MAPK isoforms during cardiac ischaemia. Biochim Biophys Acta Mol Basis Dis 2010; 1802:733-40. [PMID: 20550965 PMCID: PMC2954285 DOI: 10.1016/j.bbadis.2010.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 06/08/2010] [Accepted: 06/09/2010] [Indexed: 11/28/2022]
Abstract
p38 MAPK is activated potently during cardiac ischaemia, although the precise mechanism by which it is activated is unclear. We used the isolated perfused rat heart to investigate the signalling pathways activated upstream of p38 during global cardiac ischaemia. Ischaemia strongly activated p38α but not the JNK pathway. The MAPKKs, MKK3, MKK4 and MKK6 have previously been identified as potential upstream activators of p38; however, in the ischaemic perfused heart, we saw activation of MKK3 and MKK6 but not MKK4. MKK3 and MKK6 showed different temporal patterns of activity, indicating distinct modes of activation and physiological function. Consistent with a lack of JNK activation, we saw no activation of MKK4 or MKK7 at any time point during ischaemia. A lack of MKK4 activation indicates, at least in the ischaemic heart, that MKK4 is not a physiologically relevant activator of p38. The MAPKKK, ASK1, was strongly activated late during ischaemia, with a similar time course to that of MKK6 and in ischaemic neonatal cardiac myocytes ASK1 expression preferentially activated MKK6 rather than MKK3. These observations suggest that during ischaemia ASK1 is coupled to p38 activation primarily via MKK6. Potent activation of ASK1 during ischaemia without JNK activation shows that during cardiac ischaemia, ASK1 preferentially activates the p38 pathway. These results demonstrate a specificity of responses seldom seen in previous studies and illustrate the benefits of using direct assays in intact tissues responding to physiologically relevant stimuli to unravel the complexities of MAPK signalling.
Collapse
Affiliation(s)
- Stephen J Harding
- Department of Biochemistry, Henry Wellcome Building, University of Leicester, Leicester, UK
| | | | | | | | | |
Collapse
|
70
|
Scholz R, Sidler CL, Thali RF, Winssinger N, Cheung PCF, Neumann D. Autoactivation of transforming growth factor beta-activated kinase 1 is a sequential bimolecular process. J Biol Chem 2010; 285:25753-66. [PMID: 20538596 DOI: 10.1074/jbc.m109.093468] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Transforming growth factor-beta-activated kinase 1 (TAK1), an MAP3K, is a key player in processing a multitude of inflammatory stimuli. TAK1 autoactivation involves the interplay with TAK1-binding proteins (TAB), e.g. TAB1 and TAB2, and phosphorylation of several activation segment residues. However, the TAK1 autoactivation is not yet fully understood on the molecular level due to the static nature of available x-ray structural data and the complexity of cellular systems applied for investigation. Here, we established a bacterial expression system to generate recombinant mammalian TAK1 complexes. Co-expression of TAK1 and TAB1, but not TAB2, resulted in a functional and active TAK1-TAB1 complex capable of directly activating full-length heterotrimeric mammalian AMP-activated protein kinase (AMPK) in vitro. TAK1-dependent AMPK activation was mediated via hydrophobic residues of the AMPK kinase domain alphaG-helix as observed in vitro and in transfected cell culture. Co-immunoprecipitation of differently epitope-tagged TAK1 from transfected cells and mutation of hydrophobic alphaG-helix residues in TAK1 point to an intermolecular mechanism of TAB1-induced TAK1 autoactivation, as TAK1 autophosphorylation of the activation segment was impaired in these mutants. TAB1 phosphorylation was enhanced in a subset of these mutants, indicating a critical role of alphaG-helix residues in this process. Analyses of phosphorylation site mutants of the activation segment indicate that autophosphorylation of Ser-192 precedes TAB1 phosphorylation and is followed by sequential phosphorylation of Thr-178, Thr-187, and finally Thr-184. Finally, we present a model for the chronological order of events governing TAB1-induced TAK1 autoactivation.
Collapse
Affiliation(s)
- Roland Scholz
- Department of Biology, Institute of Cell Biology, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
71
|
McNeer JL, Goussetis DJ, Sassano A, Dolniak B, Kroczynska B, Glaser H, Altman JK, Platanias LC. Arsenic trioxide-dependent activation of thousand-and-one amino acid kinase 2 and transforming growth factor-beta-activated kinase 1. Mol Pharmacol 2010; 77:828-35. [PMID: 20159944 PMCID: PMC2872974 DOI: 10.1124/mol.109.061507] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 02/12/2010] [Indexed: 01/15/2023] Open
Abstract
Arsenic trioxide (As(2)O(3)) has potent antileukemic properties in vitro and in vivo, but the mechanisms by which it generates its effects on target leukemic cells are not well understood. Understanding cellular mechanisms and pathways that are activated in leukemic cells to control the generation of As(2)O(3) responses should have important implications in the development of novel approaches using As(2)O(3) for the treatment of leukemias. In this study, we used immunoblotting and immune complex kinase assays to provide evidence that the kinases thousand-and-one amino acid kinase 2 (TAO2) and transforming growth factor-beta-activated kinase 1 (TAK1) are rapidly activated in response to treatment of acute leukemia cells with As(2)O(3). Such activation occurs after the generation of reactive oxygen species and regulates downstream engagement of the p38 mitogen-activated protein kinase. Our studies demonstrate that siRNA-mediated knockdown of TAO2 or TAK1 or pharmacological inhibition of TAK1 enhances the suppressive effects of As(2)O(3) on KT-1-derived leukemic progenitor colony formation and on primary leukemic progenitors from patients with acute myelogenous leukemia. These results indicate key negative-feedback regulatory roles for these kinases in the generation of the antileukemic effects of As(2)O(3). Thus, molecular or pharmacological targeting of these kinases may provide a novel approach to enhance the generation of arsenic-dependent antileukemic responses.
Collapse
Affiliation(s)
- Jennifer L McNeer
- Division of Hematology/Oncology, Department of Pediatrics, Northwestern University Medical School, Chicago, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Huang HM, Li YC, Chung MH. Activin A induction of erythroid differentiation through MKK6-p38alpha/p38beta pathway is inhibited by follistatin. J Cell Physiol 2010; 223:687-94. [PMID: 20162623 DOI: 10.1002/jcp.22074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Activin A is a member of the transforming growth factor (TGF)-beta superfamily that regulates cell proliferation and differentiation. Using the p38 inhibitor SB203580, our previous studies demonstrated that p38 was involved in activin A-mediated hemoglobin (Hb) synthesis in K562 cells. SB203580 is an inhibitor of p38alpha and p38beta isoforms. In this study, we show that p38alpha and p38beta mRNA were expressed in K562 cells and that activin A activated the kinase activities of these isoforms. To investigate the roles of p38alpha and p38beta isoforms in activin A-mediated erythroid differentiation, we generated stable clones that over-expressed the dominant negative p38 isoforms p38alpha(AF) and p38beta(AF) in K562 cells. The expressions of either p38alpha(AF) or p38beta(AF) reduced activin A-induced p38 activation, Hb synthesis, and zeta-globin promoter activity. Similarly, down-regulation of either p38alpha or p38beta by isoform-specific siRNAs also reduced activin A-induced zeta-globin promoter activity. Co-expressions of p38alpha(AF) and p38beta(AF), together, greatly inhibited the transcription activity of the zeta-globin promoter. Conversely, expression of mitogen-activated protein kinase kinase (MKK) 6b(E), a constitutive activator of p38, significantly activated zeta-globin promoter. Co-expressions of either p38alpha or p38beta with MKK6b had a similar activation of zeta-globin promoter. Activin A induction of erythroid differentiation was inhibited by follistatin. Activin A-induced phosphorylation of MKK6 and p38 was also inhibited by follistatin. Moreover, over-expression of MKK6b(E) reverted follistatin inhibition of activin A-induced zeta-globin promoter activity. These results demonstrate that activin A induces erythroid differentiation of K562 cells through activation of MKK6-p38alpha/p38beta pathway and follistatin inhibits those effects.
Collapse
Affiliation(s)
- Huei-Mei Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | | | | |
Collapse
|
73
|
Allison CC, Kufer TA, Kremmer E, Kaparakis M, Ferrero RL. Helicobacter pylori induces MAPK phosphorylation and AP-1 activation via a NOD1-dependent mechanism. THE JOURNAL OF IMMUNOLOGY 2010; 183:8099-109. [PMID: 20007577 DOI: 10.4049/jimmunol.0900664] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Helicobacter pylori rapidly activates MAPKs and transcription factors, NF-kappaB and AP-1, in gastric epithelial cells following host attachment. Activation of these signal transducers is largely dependent on the cag pathogenicity island (cagPAI)-encoded Type IV Secretion System. H. pylori was shown to translocate peptidoglycan through the Type IV Secretion System, which is recognized by the pathogen recognition molecule, NOD1, thus resulting in NF-kappaB activation. The mechanisms of H. pylori-induced MAPK and AP-1 activation, however, are less well defined and therefore, we assessed the contribution of NOD1 to their activation. For this, we used gastric epithelial cell lines, stably expressing siRNA to either NOD1 or a control gene. In siNOD1-expressing cells stimulated with cagPAI(+) H. pylori, we observed significant reductions in p38 and ERK phosphorylation (p < 0.05), whereas the levels of Jnk phosphorylation remained unchanged. Consistent with a previous report, however, we were able to demonstrate NOD1-dependent Jnk phosphorylation by the invasive pathogen Shigella flexneri, highlighting pathogen-specific host responses to infection. We also show that NOD1 was essential for H. pylori induction of not only NF-kappaB, but also AP-1 activation, implying that NOD1 induces robust proinflammatory responses, in an attempt to rapidly control infection. Pharmacological inhibition of p38 and ERK activity significantly reduced IL-8 production in response to H. pylori, further emphasizing the importance of MAPKs in innate immune responses to the pathogen. Thus, for the first time we have shown the important role for NOD1 in MAPK and AP-1 activation in response to cagPAI(+) H. pylori.
Collapse
Affiliation(s)
- Cody C Allison
- Department of Microbiology, Monash University, Clayton, Australia
| | | | | | | | | |
Collapse
|
74
|
Bhatnagar S, Kumar A, Makonchuk DY, Li H, Kumar A. Transforming growth factor-beta-activated kinase 1 is an essential regulator of myogenic differentiation. J Biol Chem 2009; 285:6401-11. [PMID: 20037161 DOI: 10.1074/jbc.m109.064063] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Satellite cells/myoblasts account for the majority of muscle regenerative potential in response to injury and muscular adaptation to exercise. Although the ability to influence this process would provide valuable benefits for treating a variety of patients suffering from muscle loss, the regulatory mechanisms of myogenesis are not completely understood. We have tested the hypothesis that transforming growth factor-beta-activated kinase 1 (TAK1) is an important regulator of skeletal muscle formation. TAK1 is expressed in proliferating C2C12 myoblasts, and its levels are reduced upon differentiation of myoblasts into myotubes. In vivo, TAK1 is predominantly expressed in developing skeletal muscle of young mice. However, the expression of TAK1 was significantly up-regulated in regenerating skeletal muscle of adult mice. Overexpression of a dominant negative mutant of TAK1 or knockdown of TAK1 inhibited the proliferation and differentiation of C2C12 myoblasts. TAK1 was required for the expression of myogenic regulatory factors in differentiating myoblasts. Genetic ablation of TAK1 also inhibited the MyoD-driven transformation of mouse embryonic fibroblasts into myotubes. Inhibition of TAK1 suppressed the differentiation-associated activation of p38 mitogen-activated protein kinase (MAPK) and Akt kinase. Overexpression of a constitutively active mutant of MAPK kinase 6 (MKK6, an upstream activator of p38 MAPK) but not constitutive active Akt restored the myogenic differentiation in TAK1-deficient mouse embryonic fibroblasts. Insulin growth factor 1-induced myogenic differentiation was also found to involve TAK1. Collectively, our results suggest that TAK1 is an important upstream regulator of skeletal muscle cell differentiation.
Collapse
Affiliation(s)
- Shephali Bhatnagar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | | | | | | | |
Collapse
|
75
|
Remy G, Risco AM, Iñesta-Vaquera FA, González-Terán B, Sabio G, Davis RJ, Cuenda A. Differential activation of p38MAPK isoforms by MKK6 and MKK3. Cell Signal 2009; 22:660-7. [PMID: 20004242 DOI: 10.1016/j.cellsig.2009.11.020] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 11/25/2009] [Accepted: 11/28/2009] [Indexed: 12/13/2022]
Abstract
All four members of the mammalian p38 mitogen-activated protein kinase (MAPK) family (p38alpha, p38beta, p38gamma and p38delta) are activated by dual phosphorylation in the TGY motif in the activation loop. This phosphorylation is mediated by three kinases, MKK3, MKK6 and MKK4, at least in vitro. The role of these MKK in the activation of p38alpha has been demonstrated in studies using fibroblasts that lack MKK3 and/or MKK6. Nonetheless, the physiological upstream activators of the other p38MAPK isoforms have not yet been reported using MKK knockout cells. In this study, we examined p38beta, gamma and delta activation by MKK3 and MKK6, in cells lacking MKK3, MKK6 or both. We show that MKK3 and MKK6 are both essential for the activation of p38gamma and p38beta induced by environmental stress, whereas MKK6 is the major p38gamma activator in response to TNFalpha. In contrast, p38delta activation by ultraviolet radiation, hyperosmotic shock, anisomycin or by TNFalpha is mediated by MKK3. Moreover, in response to osmotic stress, MKK3 and MKK6 are crucial in regulating the phosphorylation of the p38gamma substrate hDlg and its activity as scaffold protein. These data indicate that activation of distinct p38MAPK isoforms is regulated by the selective and synchronized action of two kinases, MKK3 and MKK6, in response to cell stress.
Collapse
Affiliation(s)
- Gaëlle Remy
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/CSIC, Darwin 3, UAM Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
76
|
Yong HY, Koh MS, Moon A. The p38 MAPK inhibitors for the treatment of inflammatory diseases and cancer. Expert Opin Investig Drugs 2009; 18:1893-905. [DOI: 10.1517/13543780903321490] [Citation(s) in RCA: 306] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
77
|
Larsen KC, Spencer AJ, Goodman AL, Gilchrist A, Furze J, Rollier CS, Kiss-Toth E, Gilbert SC, Bregu M, Soilleux EJ, Hill AVS, Wyllie DH. Expression of tak1 and tram induces synergistic pro-inflammatory signalling and adjuvants DNA vaccines. Vaccine 2009; 27:5589-98. [PMID: 19646407 DOI: 10.1016/j.vaccine.2009.07.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 05/21/2009] [Accepted: 07/13/2009] [Indexed: 01/07/2023]
Abstract
Improving vaccine immunogenicity remains a major challenge in the fight against developing country diseases like malaria and AIDS. We describe a novel strategy to identify new DNA vaccine adjuvants. We have screened components of the Toll-like receptor signalling pathways for their ability to activate pro-inflammatory target genes in transient transfection assays and assessed in vivo adjuvant activity by expressing the activators from the DNA backbone of vaccines. We find that a robust increase in the immune response necessitates co-expression of two activators. Accordingly, the combination of tak1 and tram elicits synergistic reporter activation in transient transfection assays. In a mouse model this combination, but not the individual molecules, induced approximately twofold increases in CD8+ T-cell immune responses. These results indicate that optimal immunogenicity may require activation of distinct innate immune signalling pathways. Thus this strategy offers a novel route to the discovery of a new generation of adjuvants.
Collapse
|
78
|
Kim D, Kim J, Kang SS, Jin EJ. Transforming growth factor-β3-induced Smad signaling regulates actin reorganization during chondrogenesis of chick leg bud mesenchymal cells. J Cell Biochem 2009; 107:622-9. [DOI: 10.1002/jcb.22191] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
79
|
Shin MS, Shinghirunnusorn P, Sugishima Y, Nishimura M, Suzuki S, Koizumi K, Saiki I, Sakurai H. Cross interference with TNF-alpha-induced TAK1 activation via EGFR-mediated p38 phosphorylation of TAK1-binding protein 1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1156-64. [PMID: 19393267 DOI: 10.1016/j.bbamcr.2009.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 03/31/2009] [Accepted: 04/13/2009] [Indexed: 12/17/2022]
Abstract
Transforming growth factor-alpha-activated kinase 1 (TAK1) has been widely recognized as a kinase that regulates multiple intracellular signaling pathways evoked by cytokines and immune receptor activation. We have recently reported that tumor necrosis factor-alpha (TNF-alpha) triggers internalization of epidermal growth factor receptor (EGFR) through a TAK1-p38alpha signaling pathway, which results in a transient suppression of the EGFR. In the present study, we investigated the pathway of intracellular signaling in the opposite direction. Ligand-induced activation of EGFR caused phosphorylation of the TAK1-binding proteins TAB1 and TAB2 in a TAK1-independent manner. EGFR-mediated phosphorylation of TAB1 was completely inhibited by a chemical inhibitor and siRNA of p38alpha. The phosphorylation of TAB1 was occurred at Ser-423 and Thr-431, the residues underlying the p38-mediated feedback inhibition of TAK1. In contrast, phosphorylation of TAB2 was sustained, and largely resistant to p38 inhibition. The inducible phosphorylation of TAB1 interfered with a response of EGF-treated cells to TNF-alpha-induced TAK1 activation, which led to the reduction of NF-kappaB activation. Collectively, these results demonstrated that EGFR activation interfered with TNF-alpha-induced TAK1 activation via p38-mediated phosphorylation of TAB1.
Collapse
Affiliation(s)
- Myoung-Sook Shin
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Craig EA, Stevens MV, Vaillancourt RR, Camenisch TD. MAP3Ks as central regulators of cell fate during development. Dev Dyn 2009; 237:3102-14. [PMID: 18855897 DOI: 10.1002/dvdy.21750] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The cytoplasmic serine/threonine kinases transduce extracellular signals into regulatory events that impact cellular responses. The induction of one kinase triggers the activation of several downstream kinases, leading to the regulation of transcription factors to affect gene function. This arrangement allows for the kinase cascade to be amplified, and integrated according to the cellular context. An upstream mitogen or growth factor signal initiates a module of three kinases: a mitogen-activated protein (MAP) kinase kinase kinase (MAPKKK; e.g., Raf) that phosphorylates and activates a MAP kinase kinase (MAPKK; e.g., MEK) and finally activation of MAP kinase (MAPK; e.g., ERK). Thus, this MAP3K-MAP2K-MAPK module represents critical effectors that regulate extracellular stimuli into cellular responses, such as differentiation, proliferation, and apoptosis all of which function during development. There are 21 characterized MAP3Ks that activate known MAP2Ks, and they function in many aspects of developmental biology. This review summarizes known transduction routes linked to each MAP3K and highlights mouse models that provide clues to their physiological functions. This perspective reveals that some of these MAP3K effectors may have redundant functions, and also serve as unique nexus depending on the context of the signaling pathway.
Collapse
Affiliation(s)
- Evisabel A Craig
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | | | | | | |
Collapse
|
81
|
Kumar M, Makonchuk DY, Li H, Mittal A, Kumar A. TNF-like weak inducer of apoptosis (TWEAK) activates proinflammatory signaling pathways and gene expression through the activation of TGF-beta-activated kinase 1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:2439-48. [PMID: 19201899 PMCID: PMC2652039 DOI: 10.4049/jimmunol.0803357] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
TWEAK, TNF-like weak inducer of apoptosis, is a relatively recently identified proinflammatory cytokine that functions through binding to Fn14 receptor in target cells. Although TWEAK has been shown to modulate several biological responses, the TWEAK-induced signaling pathways remain poorly understood. In this study, we tested the hypothesis that TAK1 (TGF-beta-activated kinase 1) is involved in TWEAK-induced activation of NF-kappaB and MAPK and expression of proinflammatory protein. TWEAK increased the phosphorylation and kinase activity of TAK1 in cultured myoblast and fibroblast cells. The activation of NF-kappaB was significantly inhibited in TAK1-deficient (TAK1(-/-)) mouse embryonic fibroblasts (MEF) compared with wild-type MEF. Deficiency of TAK1 also inhibited the TWEAK-induced activation of IkappaB kinase and the phosphorylation and degradation of IkappaBalpha protein. However, there was no difference in the levels of p100 protein in TWEAK-treated wild-type and TAK1(-/-) MEF. Furthermore, TWEAK-induced transcriptional activation of NF-kappaB was significantly reduced in TAK1(-/-) MEF and in C2C12 myoblasts transfected with a dominant-negative TAK1 or TAK1 short interfering RNA. TAK1 was also required for the activation of AP-1 in response to TWEAK. Activation of JNK1 and p38 MAPK, but not ERK1/2 or Akt kinase, was significantly inhibited in TAK1(-/-) MEF compared with wild-type MEF upon treatment with TWEAK. TWEAK-induced expression of proinflammatory genes such as MMP-9, CCL-2, and VCAM-1 was also reduced in TAK1(-/-) MEF compared with wild-type MEF. Furthermore, the activation of NF-kappaB and the expression of MMP-9 in response to TWEAK involved the upstream activation of Akt kinase. Collectively, our study demonstrates that TAK1 and Akt are the important components of TWEAK-induced proinflammatory signaling and gene expression.
Collapse
Affiliation(s)
- Mukesh Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Denys Y. Makonchuk
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Hong Li
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Ashwani Mittal
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
| |
Collapse
|
82
|
Chen J, Li C, Pei DS, Han D, Liu XM, Jiang HX, Wang XT, Guan QH, Wen XR, Hou XY, Zhang GY. GluR6-containing KA receptor mediates the activation of p38 MAP kinase in rat hippocampal CA1 region during brain ischemia injury. Hippocampus 2009; 19:79-89. [PMID: 18680160 DOI: 10.1002/hipo.20479] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Our previous study showed that kainate (KA) receptor subunit GluR6 played an important role in ischemia-induced MLK3 and JNK activation and neuronal degeneration through the GluR6-PSD95-MLK3 signaling module. However, whether the KA receptors subunit GluR6 is involved in the activation of p38 MAP kinase during the transient brain ischemia/reperfusion (I/R) in the rat hippocampal CA1 subfield is still unknown. In this present study, we first evaluated the time-course of phospho-p38 MAP kinase at various time-points after 15 min of ischemia and then observed the effects of antagonist of KA receptor subunit GluR6, GluR6 antisence oligodeoxynucleotides on the phosphorylation of p38 MAP kinase induced by I/R. Results showed that inhibiting KA receptor GluR6 or suppressing the expression of KA receptor GluR6 could down-regulate the elevation of phospho-p38 MAP kinase induced by I/R. These drugs also reduced the phosphorylation of MLK3, MKK3/MKK6, MKK4, and MAPKAPK2. Additionally, our results indicated administration of three drugs, including p38 MAP kinase inhibitor before brain ischemia significantly decreased the number of TUNEL-positive cells detected at 3 days of reperfusion and increased the number of the surviving CA1 pyramidal cells at 5 days of reperfusion after 15 min of ischemia. Taken together, we suggest that GluR6-contained KA receptors can mediate p38 MAP kinase activation through a kinase cascade, including MLK3, MKK3/MKK6, and MKK4 and then induce increased phosphorylation of MAPKAPK-2 during ischemia injury and ultimately result in neuronal cell death in the rat hippocampal CA1 region.
Collapse
Affiliation(s)
- Juan Chen
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Gribar SC, Richardson WM, Sodhi CP, Hackam DJ. No longer an innocent bystander: epithelial toll-like receptor signaling in the development of mucosal inflammation. Mol Med 2008; 14:645-59. [PMID: 18584047 PMCID: PMC2435494 DOI: 10.2119/2008-00035.gribar] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 06/14/2008] [Indexed: 12/17/2022] Open
Abstract
Diseases of mucosal inflammation represent important causes of morbidity and mortality, and have led to intense research efforts to understand the factors that lead to their development. It is well accepted that a breakdown of the normally impermeant epithelial barrier of the intestine, the lung, and the kidney is associated with the development of inflammatory disease in these organs, yet significant controversy exists as to how this breakdown actually occurs, and how such a breakdown may lead to inflammation. In this regard, much work has focused upon the role of the epithelium as an “innocent bystander,” a target of a leukocyte-mediated inflammatory cascade that leads to its destruction in the mucosal inflammatory process. However, recent evidence from a variety of laboratories indicates that the epithelium is not merely a passive component in the steps that lead to mucosal inflammation, but is a central participant in the process. In addressing this controversy, we and others have determined that epithelial cells express Toll-like receptors (TLRs) of the innate immune system, and that activation of TLRs by endogenous and exogenous ligands may play a central role in determining the balance between a state of “mucosal homeostasis,” as is required for optimal organ function, and “mucosal injury,” leading to mucosal inflammation and barrier breakdown. In particular, activation of TLRs within intestinal epithelial cells leads to the development of cellular injury and impairment in mucosal repair in the pathogenesis of intestinal inflammation, while activation of TLRs in the lung and kidney may participate in the development of pneumonitis and nephritis respectively. Recent work in support of these concepts is extensively reviewed, while essential areas of further study that are required to determine the significance of epithelial TLR signaling during states of health and disease are outlined.
Collapse
Affiliation(s)
- Steven C Gribar
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
84
|
Winkel A, Stricker S, Tylzanowski P, Seiffart V, Mundlos S, Gross G, Hoffmann A. Wnt-ligand-dependent interaction of TAK1 (TGF-β-activated kinase-1) with the receptor tyrosine kinase Ror2 modulates canonical Wnt-signalling. Cell Signal 2008; 20:2134-44. [DOI: 10.1016/j.cellsig.2008.08.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Revised: 08/08/2008] [Accepted: 08/11/2008] [Indexed: 10/21/2022]
|
85
|
Gingery A, Bradley EW, Pederson L, Ruan M, Horwood NJ, Oursler MJ. TGF-beta coordinately activates TAK1/MEK/AKT/NFkB and SMAD pathways to promote osteoclast survival. Exp Cell Res 2008; 314:2725-38. [PMID: 18586026 PMCID: PMC2578840 DOI: 10.1016/j.yexcr.2008.06.006] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 06/04/2008] [Accepted: 06/05/2008] [Indexed: 11/26/2022]
Abstract
To better understand the roles of TGF-beta in bone metabolism, we investigated osteoclast survival in response TGF-beta and found that TGF-beta inhibited apoptosis. We examined the receptors involved in promotion of osteoclast survival and found that the canonical TGF-beta receptor complex is involved in the survival response. The upstream MEK kinase TAK1 was rapidly activated following TGF-beta treatment. Since osteoclast survival involves MEK, AKT, and NFkappaB activation, we examined TGF-beta effects on activation of these pathways and observed rapid phosphorylation of MEK, AKT, IKK, IkappaB, and NFkappaB. The timing of activation coincided with SMAD activation and dominant negative SMAD expression did not inhibit NFkappaB activation, indicating that kinase pathway activation is independent of SMAD signaling. Inhibition of TAK1, MEK, AKT, NIK, IKK, or NFkappaB repressed TGF-beta-mediated osteoclast survival. Adenoviral-mediated TAK1 or MEK inhibition eliminated TGF-beta-mediated kinase pathway activation and constitutively active AKT expression overcame apoptosis induction following MEK inhibition. TAK1/MEK activation induces pro-survival BclX(L) expression and TAK1/MEK and SMAD pathway activation induces pro-survival Mcl-1 expression. These data show that TGF-beta-induced NFkappaB activation is through TAK1/MEK-mediated AKT activation, which is essential for TGF-beta to support of osteoclast survival.
Collapse
Affiliation(s)
- Anne Gingery
- Department of Biochemistry and Molecular Biology, University of Minnesota, Duluth, Minnesota, 55812
| | - Elizabeth W. Bradley
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905
| | - Larry Pederson
- Department of Endocrine Research Unit, Mayo Clinic, Rochester, MN, 55905
| | - Ming Ruan
- Department of Endocrine Research Unit, Mayo Clinic, Rochester, MN, 55905
| | - Nikki J. Horwood
- The Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College, London W6 8LH, United Kingdom
| | - Merry Jo Oursler
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905
- Department of Endocrine Research Unit, Mayo Clinic, Rochester, MN, 55905
| |
Collapse
|
86
|
Hansen TE, Puntervoll P, Seternes OM, Jørgensen JB. Atlantic salmon possess three mitogen activated protein kinase kinase 6 paralogs responding differently to stress. FEBS J 2008; 275:4887-902. [DOI: 10.1111/j.1742-4658.2008.06628.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
87
|
Oda S, Oda T, Nishi K, Takabuchi S, Wakamatsu T, Tanaka T, Adachi T, Fukuda K, Semenza GL, Hirota K. Macrophage migration inhibitory factor activates hypoxia-inducible factor in a p53-dependent manner. PLoS One 2008; 3:e2215. [PMID: 18493321 PMCID: PMC2375051 DOI: 10.1371/journal.pone.0002215] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 04/14/2008] [Indexed: 11/18/2022] Open
Abstract
Background Macrophage migration inhibitory factor (MIF) is not only a cytokine which has a critical role in several inflammatory conditions but also has endocrine and enzymatic functions. MIF is identified as an intracellular signaling molecule and is implicated in the process of tumor progression, and also strongly enhances neovascularization. Overexpression of MIF has been observed in tumors from various organs. MIF is one of the genes induced by hypoxia in an hypoxia-inducible factor 1 (HIF-1)-dependent manner. Methods/Principal Findings The effect of MIF on HIF-1 activity was investigated in human breast cancer MCF-7 and MDA-MB-231 cells, and osteosarcoma Saos-2 cells. We demonstrate that intracellular overexpression or extracellular administration of MIF enhances activation of HIF-1 under hypoxic conditions in MCF-7 cells. Mutagenesis analysis of MIF and knockdown of 53 demonstrates that the activation is not dependent on redox activity of MIF but on wild-type p53. We also indicate that the MIF receptor CD74 is involved in HIF-1 activation by MIF at least when MIF is administrated extracellularly. Conclusion/Significance MIF regulates HIF-1 activity in a p53-dependent manner. In addition to MIF's potent effects on the immune system, MIF is linked to fundamental processes conferring cell proliferation, cell survival, angiogenesis, and tumor invasiveness. This functional interdependence between MIF and HIF-1α protein stabilization and transactivation activity provide a molecular mechanism for promotion of tumorigenesis by MIF.
Collapse
Affiliation(s)
- Seiko Oda
- Department of Anesthesia, Kyoto University Hospital, Kyoto University, Kyoto, Japan
- The Tazuke Kofukai Medical Research Institute Kitano Hospital, Osaka, Japan
| | - Tomoyuki Oda
- The Tazuke Kofukai Medical Research Institute Kitano Hospital, Osaka, Japan
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenichiro Nishi
- The Tazuke Kofukai Medical Research Institute Kitano Hospital, Osaka, Japan
- Department of Anesthesiology, Kansai Medical University, Moriguchi-City, Osaka, Japan
| | - Satoshi Takabuchi
- Department of Anesthesia, Kyoto University Hospital, Kyoto University, Kyoto, Japan
- The Tazuke Kofukai Medical Research Institute Kitano Hospital, Osaka, Japan
| | - Takuhiko Wakamatsu
- Department of Anesthesia, Kyoto University Hospital, Kyoto University, Kyoto, Japan
| | - Tomoharu Tanaka
- Department of Anesthesia, Kyoto University Hospital, Kyoto University, Kyoto, Japan
| | - Takehiko Adachi
- The Tazuke Kofukai Medical Research Institute Kitano Hospital, Osaka, Japan
| | - Kazuhiko Fukuda
- Department of Anesthesia, Kyoto University Hospital, Kyoto University, Kyoto, Japan
| | - Gregg L. Semenza
- Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kiichi Hirota
- Department of Anesthesia, Kyoto University Hospital, Kyoto University, Kyoto, Japan
- The Tazuke Kofukai Medical Research Institute Kitano Hospital, Osaka, Japan
- * E-mail:
| |
Collapse
|
88
|
Itoh S, Kanno S, Gai Z, Suemoto H, Kawakatsu M, Tanishima H, Morimoto Y, Nishioka K, Hatamura I, Yoshida M, Muragaki Y. Trps1 plays a pivotal role downstream of Gdf5 signaling in promoting chondrogenesis and apoptosis of ATDC5 cells. Genes Cells 2008; 13:355-63. [PMID: 18363966 DOI: 10.1111/j.1365-2443.2008.01170.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tricho-rhino-phalangeal syndrome (TRPS) is an autosomal dominant skeletal disorder caused by mutations of TRPS1. Based on the similar expression patterns of Trps1 and Gdf5, we hypothesized a possible functional interaction between these two molecules. Using a chondrogenic cell line (ATDC5), we investigated the association of Gdf5-mediated signaling pathways with Trps1 and the phenotypic changes of ATDC5 cells due to over-expression or suppression of Trps1. Treatment of cells with Gdf5 enhanced Trps1 protein levels and phosphorylation of p38 mitogen-activated protein kinase (MAPK) in a dose-dependent manner. Nuclear translocation of Trps1 was also induced by Gdf5. These effects were blocked by a dominant negative form of activin-linked kinase 6 (dn-Alk6) and by SB203580, an inhibitor of the p38 MAPK pathway. Conversely, Gdf5 expression was suppressed by the over-expression of Trps1. Trps1-overexpressing ATDC5 (O/E) cells differentiated into chondrocytes more quickly than mock-infected control cells, whereas cells transfected with dn-Alk6 showed slower differentiation. On the other hand, O/E cells showed an increase of apoptosis along with the up-regulation of cleaved caspase 3 and down-regulation of Bcl-2, whereas dn-Alk6 cells showed suppression of apoptosis. In conclusion, Trps1 acts downstream of the Gdf5 signaling pathway and promotes the differentiation and apoptosis of ATDC5 cells.
Collapse
Affiliation(s)
- Shunji Itoh
- First Department of Pathology, Wakayama Medical University, Wakayama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Abstract
Mitogen-activated protein kinase (MAPK) cascades are central pathways that participate in the intracellular transmission of extracellular signals. Each of the MAPK signaling cascades seems to consist of three to five tiers of protein kinases that sequentially activate each other by phosphorylation. Since the majority of MAPK cascade components are kinases, the methods used to detect their activation involve determining phosphorylation state and protein kinase activities. The primary method describes the use of immunoblotting with specific anti-phospho antibody to detect activation of MAPK components. Alternative methods described are immunoprecipitation of desired protein kinases followed by phosphorylation of specific substrates and the use of an in-gel kinase assay. These methods have proven useful in the study of the MAPK signaling cascades.
Collapse
Affiliation(s)
- Yoav Shaul
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
90
|
Cullingford TE, Butler MJ, Marshall AK, Tham EL, Sugden PH, Clerk A. Differential regulation of Krüppel-like factor family transcription factor expression in neonatal rat cardiac myocytes: effects of endothelin-1, oxidative stress and cytokines. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1229-36. [PMID: 18406357 PMCID: PMC2396231 DOI: 10.1016/j.bbamcr.2008.03.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 03/11/2008] [Accepted: 03/12/2008] [Indexed: 02/03/2023]
Abstract
Krüppel-like transcription factors (Klfs) modulate fundamental cell processes. Cardiac myocytes are terminally-differentiated, but hypertrophy in response to stimuli such as endothelin-1. H2O2 or cytokines promote myocyte apoptosis. Microarray studies of neonatal rat myocytes identified several Klfs as endothelin-1-responsive genes. We used quantitative PCR for further analysis of Klf expression in neonatal rat myocytes. In response to endothelin-1, Klf2 mRNA expression was rapidly increased (∼ 9-fold; 15–30 min) with later increases in expression of Klf4 and Klf6 (∼ 5-fold; 30–60 min). All were regulated as immediate early genes (cycloheximide did not inhibit the increases in expression). Klf5 expression was increased at 1–2 h (∼ 13-fold) as a second phase response (cycloheximide inhibited the increase). These increases were transient and attenuated by U0126. H2O2 increased expression of Klf2, Klf4 and Klf6, but interleukin-1β or tumor necrosis factor α downregulated Klf2 expression with no effect on Klf4 or Klf6. Of the Klfs which repress transcription, endothelin-1 rapidly downregulated expression of Klf3, Klf11 and Klf15. The dynamic regulation of expression of multiple Klf family members in cardiac myocytes suggests that, as a family, they are actively involved in regulating phenotypic responses (hypertrophy and apoptosis) to extracellular stimuli.
Collapse
Affiliation(s)
- Timothy E Cullingford
- National Heart and Lung Institute (NHLI) Division, Faculty of Medicine, Imperial College London, Flowers Building (4th Floor), Armstrong Road, London SW7 2AZ, UK
| | | | | | | | | | | |
Collapse
|
91
|
Neil JR, Schiemann WP. Altered TAB1:I kappaB kinase interaction promotes transforming growth factor beta-mediated nuclear factor-kappaB activation during breast cancer progression. Cancer Res 2008; 68:1462-70. [PMID: 18316610 PMCID: PMC2615489 DOI: 10.1158/0008-5472.can-07-3094] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The conversion of transforming growth factor beta (TGF-beta) from a tumor suppressor to a tumor promoter occurs frequently during mammary tumorigenesis, yet the molecular mechanisms underlying this phenomenon remain undefined. We show herein that TGF-beta repressed nuclear factor-kappaB (NF-kappaB) activity in normal NMuMG cells, but activated this transcription factor in their malignant counterparts, 4T1 cells, by inducing assembly of TGF-beta-activated kinase 1 (TAK1)-binding protein 1 (TAB1):I kappaB kinase beta (IKK beta) complexes, which led to the stimulation of a TAK1:IKK beta:p65 pathway. TAB1:IKK beta complexes could only be detected in NMuMG cells following their induction of epithelial-mesenchymal transition (EMT), which, on TGF-beta treatment, activated NF-kappaB. Expression of a truncated TAB1 mutant [i.e., TAB1(411)] reduced basal and TGF-beta-mediated NF-kappaB activation in NMuMG cells driven to undergo EMT by TGF-beta and in 4T1 cells stimulated by TGF-beta. TAB1(411) expression also inhibited TGF-beta-stimulated tumor necrosis factor-alpha and cyclooxygenase-2 expression in 4T1 cells. Additionally, the ability of human MCF10A-CA1a breast cancer cells to undergo invasion in response to TGF-beta absolutely required the activities of TAK1 and NF-kappaB. Moreover, small interfering RNA-mediated TAK1 deficiency restored the cytostatic activity of TGF-beta in MCF10A-CA1a cells. Finally, expression of truncated TAB1(411) dramatically reduced the growth of 4T1 breast cancers in syngeneic BALB/c, as well as in nude mice, suggesting a potentially important role of NF-kappaB in regulating innate immunity by TGF-beta. Collectively, our findings have defined a novel TAB1:TAK1:IKK beta:NF-kappaB signaling axis that forms aberrantly in breast cancer cells and, consequently, enables oncogenic signaling by TGF-beta.
Collapse
Affiliation(s)
- Jason R Neil
- Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, CO 80045, USA
| | | |
Collapse
|
92
|
Cullingford TE, Markou T, Fuller SJ, Giraldo A, Pikkarainen S, Zoumpoulidou G, Alsafi A, Ekere C, Kemp TJ, Dennis JL, Game L, Sugden PH, Clerk A. Temporal regulation of expression of immediate early and second phase transcripts by endothelin-1 in cardiomyocytes. Genome Biol 2008; 9:R32. [PMID: 18275597 PMCID: PMC2374717 DOI: 10.1186/gb-2008-9-2-r32] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 01/07/2008] [Accepted: 02/14/2008] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Endothelin-1 stimulates Gq protein-coupled receptors to promote proliferation in dividing cells or hypertrophy in terminally differentiated cardiomyocytes. In cardiomyocytes, endothelin-1 rapidly (within minutes) stimulates protein kinase signaling, including extracellular-signal regulated kinases 1/2 (ERK1/2; though not ERK5), with phenotypic/physiological changes developing from approximately 12 h. Hypertrophy is associated with changes in mRNA/protein expression, presumably consequent to protein kinase signaling, but the connections between early, transient signaling events and developed hypertrophy are unknown. RESULTS Using microarrays, we defined the early transcriptional responses of neonatal rat cardiomyocytes to endothelin-1 over 4 h, differentiating between immediate early gene (IEG) and second phase RNAs with cycloheximide. IEGs exhibited differential temporal and transient regulation, with expression of second phase RNAs within 1 h. Of transcripts upregulated at 30 minutes encoding established proteins, 28 were inhibited >50% by U0126 (which inhibits ERK1/2/5 signaling), with 9 inhibited 25-50%. Expression of only four transcripts was not inhibited. At 1 h, most RNAs (approximately 67%) were equally changed in total and polysomal RNA with approximately 17% of transcripts increased to a greater extent in polysomes. Thus, changes in expression of most protein-coding RNAs should be reflected in protein synthesis. However, approximately 16% of transcripts were essentially excluded from the polysomes, including some protein-coding mRNAs, presumably inefficiently translated. CONCLUSION The phasic, temporal regulation of early transcriptional responses induced by endothelin-1 in cardiomyocytes indicates that, even in terminally differentiated cells, signals are propagated beyond the primary signaling pathways through transcriptional networks leading to phenotypic changes (that is, hypertrophy). Furthermore, ERK1/2 signaling plays a major role in this response.
Collapse
Affiliation(s)
- Timothy E Cullingford
- National Heart and Lung Institute Division, Faculty of Medicine, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Thomais Markou
- National Heart and Lung Institute Division, Faculty of Medicine, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Stephen J Fuller
- National Heart and Lung Institute Division, Faculty of Medicine, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Alejandro Giraldo
- National Heart and Lung Institute Division, Faculty of Medicine, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Sampsa Pikkarainen
- National Heart and Lung Institute Division, Faculty of Medicine, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Georgia Zoumpoulidou
- National Heart and Lung Institute Division, Faculty of Medicine, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Ali Alsafi
- National Heart and Lung Institute Division, Faculty of Medicine, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Collins Ekere
- National Heart and Lung Institute Division, Faculty of Medicine, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Timothy J Kemp
- National Heart and Lung Institute Division, Faculty of Medicine, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Jayne L Dennis
- Clinical Sciences Centre/Imperial College Microarray Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Laurence Game
- Clinical Sciences Centre/Imperial College Microarray Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Peter H Sugden
- National Heart and Lung Institute Division, Faculty of Medicine, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Angela Clerk
- National Heart and Lung Institute Division, Faculty of Medicine, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| |
Collapse
|
93
|
Shaul Y, Seger R. The detection of MAPK signaling. CURRENT PROTOCOLS IN CELL BIOLOGY 2008; Chapter 14:Unit 14.3. [PMID: 18228462 DOI: 10.1002/0471143030.cb1403s28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are central pathways that participate in the intracellular transmission of extracellular signals. Each of the MAPK signaling cascades seems to consist of three to five tiers of protein kinases that sequentially activate each other by phosphorylation. Since the majority of MAPK cascade components are kinases, the methods used to detect their activation involve determining phosphorylation state and protein kinase activities. The Basic Protocol describes the use of immunoblotting with specific anti-phospho antibody to detect activation of MAPK components. Alternative methods described are immunoprecipitation of desired protein kinases followed by phosphorylation of specific substrates and the use of an in-gel kinase assay. These methods have proven useful in the study of the MAPK signaling cascades.
Collapse
Affiliation(s)
- Yoav Shaul
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
94
|
Che J, Chan ESL, Cronstein BN. Adenosine A2A receptor occupancy stimulates collagen expression by hepatic stellate cells via pathways involving protein kinase A, Src, and extracellular signal-regulated kinases 1/2 signaling cascade or p38 mitogen-activated protein kinase signaling pathway. Mol Pharmacol 2007; 72:1626-36. [PMID: 17872970 DOI: 10.1124/mol.107.038760] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prior studies indicate that adenosine and the adenosine A2A receptor play a role in hepatic fibrosis by a mechanism that has been proposed to involve direct stimulation of hepatic stellate cells (HSCs). The objective of this study was to determine whether primary hepatic stellate cells produce collagen in response to adenosine (via activation of adenosine A2A receptors) and to further determine the signaling mechanisms involved in adenosine A2A receptor-mediated promotion of collagen production. Cultured primary HSCs increase their collagen production after stimulation of the adenosine A2A receptor in a dose-dependent fashion. Likewise, LX-2 cells, a human HSC line, increases expression of procollagen alphaI and procollagen alphaIII mRNA and their translational proteins, collagen type I and type III, in response to pharmacological stimulation of adenosine A2A receptors. Based on the use of pharmacological inhibitors of signal transduction, adenosine A2A receptor-mediated stimulation of procollagen alphaI mRNA and collagen type I collagen expression were regulated by signal transduction involving protein kinase A, src, and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (erk), but surprisingly, adenosine A2A receptor-mediated stimulation of procollagen alphaIII mRNA and collagen type III protein expression depend on the activation of p38 mitogen-activated protein kinase (MAPK), findings confirmed by small interfering RNA-mediated knockdown of src, erk1, erk2, and p38 MAPK. These results indicate that adenosine A2A receptors signal for increased collagen production by multiple signaling pathways. These results provide strong evidence in support of the hypothesis that adenosine receptors promote hepatic fibrosis, at least in part, via direct stimulation of collagen expression and that signaling for collagen production proceeds via multiple pathways.
Collapse
Affiliation(s)
- Jiantu Che
- Department of Medicine, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|
95
|
Fragoso G, Haines JD, Roberston J, Pedraza L, Mushynski WE, Almazan G. p38 mitogen-activated protein kinase is required for central nervous system myelination. Glia 2007; 55:1531-41. [PMID: 17729284 DOI: 10.1002/glia.20567] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The p38 MAPKs are a family of kinases that regulate a number of cellular functions including cell migration, proliferation, and differentiation. Here, we report that p38 regulates oligodendrocyte differentiation. Inhibition of p38 with PD169316 and SB203580 prevented accumulation of protein and mRNA of cell-stage specific markers characteristic of differentiated oligodendrocytes, including myelin basic protein, myelin-associated glycoprotein, and the glycosphingolipids, galactosylceramide and sulfatide. In addition, the cell cycle regulator p27(kip1) and the transcription factor Sox10 were also significantly reduced. Most significantly, p38 inhibitors completely and irreversibly blocked myelination of dorsal root ganglion neurons by oligodendrocytes and prevented the axolemmal organization of the axo-glial adhesion molecule Caspr. Our results suggest a role(s) for this kinase in key regulatory steps in the maturation of OLGs and initiation of myelination.
Collapse
Affiliation(s)
- Gabriela Fragoso
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
96
|
Clark JE, Sarafraz N, Marber MS. Potential of p38-MAPK inhibitors in the treatment of ischaemic heart disease. Pharmacol Ther 2007; 116:192-206. [PMID: 17765316 DOI: 10.1016/j.pharmthera.2007.06.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 06/14/2007] [Indexed: 11/25/2022]
Abstract
Chronic heart failure is debilitating, often fatal, expensive to treat and common. In most patients it is a late consequence of myocardial infarction (MI). The intracellular signals following infarction that lead to diminished contractility, apoptosis, fibrosis and ultimately heart failure are not fully understood but probably involve p38-mitogen activated protein kinases (p38), a family of serine/threonine kinases which, when activated, cause cardiomyocyte contractile dysfunction and death. Pharmacological inhibitors of p38 suppress inflammation and are undergoing clinical trials in rheumatoid arthritis, Chrohn's disease, psoriasis and surgery-induced tissue injury. In this review, we discuss the mechanisms, circumstances and consequences of p38 activation in the heart. The purpose is to evaluate p38 inhibition as a potential therapy for ischaemic heart disease.
Collapse
Affiliation(s)
- James E Clark
- The Cardiovascular Division, King's College London, The Rayne Institute, St Thomas' Hospital, London, SE1 7EH, United Kingdom
| | | | | |
Collapse
|
97
|
Schindler JF, Monahan JB, Smith WG. p38 pathway kinases as anti-inflammatory drug targets. J Dent Res 2007; 86:800-11. [PMID: 17720847 DOI: 10.1177/154405910708600902] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mitogen-activated protein kinases (MAPK) are intracellular signaling molecules involved in cytokine synthesis. Several classes of mammalian MAPK have been identified, including extracellular signal-regulated kinase, c-jun N-terminal kinase, and p38 MAP kinase. p38alpha is a key MAPK involved in tumor necrosis factor alpha and other cytokine production, as well as enzyme induction (cyclooxygenase-2, inducible nitric oxide synthase, and matrix metalloproteinases) and adhesion molecule expression. An understanding of the broad biologic and pathophysiological roles of p38 MAPK family members has grown significantly over the past decade, as has the complexity of the signaling network leading to their activation. Downstream substrates of MAPK include other kinases (e.g., mitogen-activated protein-kinase-activated protein kinase 2) and factors that regulate transcription, nuclear export, and mRNA stability and translation. The high-resolution crystal structure of p38alpha has led to the design of selective inhibitors that have good pharmacological activity. Despite the strong rationale for MAPK inhibitors in human disease, direct proof of concept in the clinic has yet to be demonstrated, with most compounds demonstrating dose-limiting adverse effects. The role of MAPK in inflammation makes them attractive targets for new therapies, and efforts are continuing to identify newer, more selective inhibitors for inflammatory diseases.
Collapse
Affiliation(s)
- J F Schindler
- Pfizer Global Research and Development, Chesterfield, MO 63017, USA
| | | | | |
Collapse
|
98
|
Brikos C, Wait R, Begum S, O'Neill LAJ, Saklatvala J. Mass spectrometric analysis of the endogenous type I interleukin-1 (IL-1) receptor signaling complex formed after IL-1 binding identifies IL-1RAcP, MyD88, and IRAK-4 as the stable components. Mol Cell Proteomics 2007; 6:1551-9. [PMID: 17507369 DOI: 10.1074/mcp.m600455-mcp200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We investigated the composition of the endogenous ligand-bound type I interleukin-1 (IL-1) receptor (IL-1RI) signaling complex using immunoprecipitation and tandem mass spectrometry. Three proteins with approximate molecular masses of 60 (p60), 36 (p36), and 90 kDa (p90) became phosphorylated after treatment with IL-1. Phosphorylation in vitro of p60 has been reported previously, but its identity was unknown. We showed using tandem mass spectrometry that p60 is identical to interleukin-1 receptor-associated kinase (IRAK)-4. MS also enabled detection of IL-1, IL-1RI, IL-1 receptor accessory protein (IL-1RAcP), and myeloid differentiation primary response protein 88 (MyD88) in the complex. The p60 protein (IRAK-4) was the earliest component of the complex to be phosphorylated. Phosphorylated IRAK-4 from the receptor complex migrated more slowly in SDS-PAGE than its unphosphorylated form as did recombinant IRAK-4 autophosphorylated in vitro. Phosphorylation was restricted to serine and threonine residues. IRAK-4, p36, IL-1RAcP, and MyD88 bound to the liganded receptor within 15 s of activation by IL-1 and remained associated upon prolonged activation, suggesting that the signaling complex is very stable. The p90 phosphoprotein was only transiently associated with the receptor. This behavior and its size were consistent with it being IRAK-1. Our work revealed that liganding of IL-1RI causes its strong and stable association with IL-1RAcP, MyD88, and the previously unidentified protein p60 (IRAK-4). The only component of the IL-1RI signaling complex that dissociated is IRAK-1. Our study is therefore the first detailed description of the endogenous IL-1RI complex.
Collapse
Affiliation(s)
- Constantinos Brikos
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College London, London, UK.
| | | | | | | | | |
Collapse
|
99
|
Henry N, Robertson MN, Marquez R. Fast and efficient synthesis of the complete LL-Z1640-2 framework. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2007.06.151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
100
|
Natarajan P, Narayanan S. Mycobacterium tuberculosisH37Rv induces monocytic release of interleukin-6 via activation of mitogen-activated protein kinases: inhibition byN-acetyl-l-cysteine. ACTA ACUST UNITED AC 2007; 50:309-18. [PMID: 17521393 DOI: 10.1111/j.1574-695x.2007.00256.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The release of proinflammatory cytokines after mycobacterial infection is a host immune response that may be propitious or deleterious to the host. Elevated levels of interleukin (IL)-6 are present in plasma of patients with active tuberculosis infection. The aim of this study was to investigate the role of mitogen-activated protein kinases in the secretion of interleukin-6 in THP-1 cells and human primary monocytes that were infected with Mycobacterium tuberculosis H37Rv, and its regulation by N-acetyl-L-cysteine, a potential antimycobacterial agent. Exposure of THP-1 human monocytes to M. tuberculosis H37Rv induced rapidly, in a time-dependent manner, the phosphorylation of mitogen-activated protein kinase kinase 3/6 and p38 mitogen-activated protein kinase, accompanied by an upregulation of interleukin-6. Using highly specific inhibitors of mitogen-activated protein kinase kinase-1, p38 mitogen-activated protein kinase and nuclear factor-kappaB, we found that extracellular-signal regulated kinase 1/2, p38 mitogen-activated protein kinase and nuclear factor-kappaB were essential for M. tuberculosis H37Rv-induced interleukin-6 production in human primary monocytes. Pretreatment with N-acetyl-L-cysteine reduced, in a dose-dependent manner, M. tuberculosis H37Rv-induced activation of mitogen-activated protein kinase kinase 3/6 and interleukin-6 production in THP-1 cells.
Collapse
|