51
|
Abstract
Somatostatin, and the recently discovered neuropeptide cortistatin, exert their physiological actions via a family of six G protein-coupled receptors (sst1, sst2A, sst2B, sst3, sst4, sst5). Following the cloning of somatostatin receptors significant advances have been made in our understanding of their molecular, pharmacological and signaling properties although much progress remains to be done to define their physiological role in vivo. In this review, the present knowledge regarding neuroanatomical localization, signal transduction pathways, desensitization and internalization properties of somatostatin receptors is summarized. Evidence that somatostatin receptors can form homo- and heterodimers and can physically interact with members of the SSTRIP/Shank/ProSAP1/CortBP1 family is also discussed.
Collapse
Affiliation(s)
- Z Csaba
- Inserm U549, IFR Broca-Sainte Anne, Centre Paul Broca, Paris, France
| | | |
Collapse
|
52
|
Law PY, Kouhen OM, Solberg J, Wang W, Erickson LJ, Loh HH. Deltorphin II-induced rapid desensitization of delta-opioid receptor requires both phosphorylation and internalization of the receptor. J Biol Chem 2000; 275:32057-65. [PMID: 10893226 DOI: 10.1074/jbc.m002395200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Similar to other G protein-coupled receptors, rapid phosphorylation of the delta-opioid receptor in the presence of agonist has been reported. Hence, agonist-induced desensitization of the delta-opioid receptor has been suggested to be via the receptor phosphorylation, arrestin-mediated pathway. However, due to the highly efficient coupling between the delta-opioid receptor and the adenylyl cyclase, the direct correlation between the rates of receptor phosphorylation and receptor desensitization as measured by the adenylyl cyclase activity could not be established. In the current studies, using an ecdysone-inducible expression system to control the delta-opioid receptor levels in HEK293 cells, we could demonstrate that the rate of deltorphin II-induced receptor desensitization is dependent on the receptor level. Only at receptor concentrations </=90 fmol/mg of protein were rapid desensitizations (t(12) <10 min) observed. Apparently, deltorphin II-induced receptor desensitization involves cellular events in addition to receptor phosphorylation. Mutation of Ser(363) in the carboxyl tail of the delta-opioid receptor to Ala completely abolished the deltorphin II-induced receptor phosphorylation but not the desensitization response. Although the magnitude of desensitization was attenuated, the rate of deltorphin II-induced receptor desensitization remained the same in the S363A mutant as compared with wild type. Also, the S363A mutant could internalize in the presence of deltorphin II. Only when the agonist-induced clathrin-coated pit-mediated receptor internalization was blocked by 0.4 m sucrose that the deltorphin II-induced receptor desensitization was abolished in the S363A mutant. Similarly, 0.4 m sucrose could partially block the agonist-induced rapid desensitization in HEK293 cells expressing the wild type delta-opioid receptor. Taken together, these data supported the hypothesis that rapid desensitization of the delta-opioid receptor involves both the phosphorylation and the internalization of the receptor.
Collapse
Affiliation(s)
- P Y Law
- Department of Pharmacology, the University of Minnesota Medical School, Minneapolis, Minnesota 55455-0217, USA
| | | | | | | | | | | |
Collapse
|
53
|
Law PY, Erickson LJ, El-Kouhen R, Dicker L, Solberg J, Wang W, Miller E, Burd AL, Loh HH. Receptor density and recycling affect the rate of agonist-induced desensitization of mu-opioid receptor. Mol Pharmacol 2000; 58:388-98. [PMID: 10908307 DOI: 10.1124/mol.58.2.388] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously, we reported that the time course for the rapid phosphorylation rate of mu-opioid receptor expressed in human embryonic kidney (HEK)293 cells did not correlate with the slow receptor desensitization rate induced by [D-Ala(2),N-MePhe(4), Gly-ol(5)]-enkephalin (DAMGO). However, others have suggested that receptor phosphorylation is the trigger for mu-opioid receptor desensitization. In this study, we demonstrated the relatively slow rate of receptor desensitization could be attributed partially to the recycling of internalized receptor as determined by fluorescence-activated cell-sorting analysis. However, the blockade of the endocytic and Golgi transport events in HEK293 cells with monensin and brefeldin A did not increase the initial rate of receptor desensitization. But the desensitization rate was increased by reduction of the mu-opioid receptor level with beta-furnaltrexamine (betaFNA). The reduction of the receptor level with 1 microM betaFNA significantly increased the rate of etorphine-induced receptor desensitization. By blocking the ability of receptor to internalize with 0.4 M sucrose, a significant degree of receptor being rapidly desensitized was observed in HEK293 cells pretreated with betaFNA. Hence, mu-opioid receptor is being resensitized during chronic agonist treatment. The significance of resensitization of the internalized receptor in affecting receptor desensitization was demonstrated further with human neuroblastoma SHSY5Y cells that expressed a low level of mu-opioid receptor. Although DAMGO could not induce a rapid desensitization in these cells, in the presence of monensin and brefeldin A, DAMGO desensitized the mu-opioid receptor's ability to regulate adenylyl cyclase with a t(1/2) = 9.9 +/- 2.1 min and a maximal desensitized level at 70 +/- 4.7%. Furthermore, blockade of receptor internalization with 0.4 M sucrose enhanced the DAMGO-induced receptor desensitization, and the inclusion of monensin prevented the resensitization of the mu-opioid receptor after chronic agonist treatment in SHSY5Y cells. Thus, the ability of the mu-opioid receptor to resensitize and to recycle, and the relative efficiency of the receptor to regulate adenylyl cyclase activity, contributed to the observed slow rate of mu-opioid receptor desensitization in HEK293 cells.
Collapse
Affiliation(s)
- P Y Law
- Department of Pharmacology, 6-120 Jackson Hall, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
Somatostatin mediates its diverse physiological effects through a family of five G-protein-coupled receptors (sst(1)-sst(5)); however, knowledge about the distribution of individual somatostatin receptor proteins in mammalian brain is incomplete. In the present study, we have examined the regional and subcellular distribution of the somatostatin receptor sst(4) in the rat CNS by raising anti-peptide antisera to the C-terminal tail of sst(4). The specificity of affinity-purified antibodies was demonstrated using immunofluorescent staining of HEK 293 cells stably transfected with an epitope-tagged sst(4) receptor. In Western blotting, the antiserum reacted specifically with a broad band in rat brain, which migrated at approximately 70 kDa before and approximately 50 kDa after enzymatic deglycosylation. sst(4)-Like immunoreactivity was most prominent in many forebrain regions, including the cerebral cortex, hippocampus, striatum, amygdala, and hypothalamus. Analysis at the electron microscopic level revealed that sst(4)-expressing neurons target this receptor preferentially to their somatodendritic domain. Like the sst(2A) receptor, sst(4)-immunoreactive dendrites were often closely apposed by somatostatin-14-containing fibers and terminals. However, unlike the sst(2A) receptor, sst(4) was not internalized in response to intracerebroventricular administration of somatostatin-14. After percussion trauma of the cortex, neuronal sst(4) receptors progressively declined at the sites of damage. This decline coincided with an induction of sst(4) expression in cells with a glial-like morphology. Together, this study provides the first description of the distribution of immunoreactive sst(4) receptor proteins in rat brain. We show that sst(4) is strictly somatodendritic and most likely functions in a postsynaptic manner. In addition, the sst(4) receptor may have a previously unappreciated function during the neuronal degeneration-regeneration process.
Collapse
|
55
|
Whitman SC, Daugherty A, Post SR. Regulation of acetylated low density lipoprotein uptake in macrophages by pertussis toxin-sensitive G proteins. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)32389-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
56
|
Kreienkamp HJ, Zitzer H, Richter D. Identification of proteins interacting with the rat somatostatin receptor subtype 2. JOURNAL OF PHYSIOLOGY, PARIS 2000; 94:193-8. [PMID: 11087996 DOI: 10.1016/s0928-4257(00)00204-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using the yeast two hybrid system we have identified a novel protein termed somatostatin receptor interacting protein (SSTRIP) from human brain which interacts with the rat somatostatin receptor subtype 2. Interaction with the receptor C-terminus is mediated by a PSD-95/discs large/ZO-1 (PDZ) domain which exhibits high similarity to the PDZ domain of cortactin binding protein 1 (CortBP1). SSTRIP and CortBP1 define a novel family of multidomain proteins containing ankyrin repeats, SH3- and SH3 binding regions and a sterile alpha motif (SAM domain) in addition to the PDZ domain. Both SSTRIP and CortBP1 can be co-immunoprecipitated with the somatostatin receptor when co-expressed in HEK cells. Interestingly, co-localization of SSTR2 and CortBP1 at the plasma membrane is increased when SSTR2 is stimulated by agonists.
Collapse
Affiliation(s)
- H J Kreienkamp
- Institut für Zellbiochemie und klinische Neurobiologie, Universität Hamburg, Germany
| | | | | |
Collapse
|
57
|
Mundell SJ, Benovic JL. Selective regulation of endogenous G protein-coupled receptors by arrestins in HEK293 cells. J Biol Chem 2000; 275:12900-8. [PMID: 10777589 DOI: 10.1074/jbc.275.17.12900] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arrestins play an important role in regulating desensitization and trafficking of G protein-coupled receptors (GPCRs). However, limited insight into the specificity of arrestin-mediated regulation of GPCRs is currently available. Recently, we used an antisense strategy to reduce arrestin levels in HEK293 cells and characterize the role of arrestins on endogenous G(s)-coupled receptors (Mundell, S. J., Loudon, R. B., and Benovic, J. L. (1999) Biochemistry 38, 8723-8732). Here, we characterized GPCRs coupled to either G(q) (M(1) muscarinic acetylcholine receptor (M(1)AchR) and P2y(1) and P2y(2) purinergic receptors) or G(i) (somatostatin and AT1 angiotensin receptors) in wild type and arrestin antisense HEK293 cells. The agonist-specific desensitization of the M(1)Ach and somatostatin receptors was significantly attenuated in antisense-expressing cells, whereas desensitization of P2y(1) and P2y(2) purinergic and AT1 angiotensin receptors was unaffected by reduced arrestin levels. To further examine arrestin/GPCR specificity, we studied the effects of endogenous GPCR activation on the redistribution of arrestin-2 epitope tagged with the green fluorescent protein (arrestin-2-GFP). These studies revealed a receptor-specific movement of arrestin-2-GFP that mirrored the arrestin-receptor specificity observed in the antisense cells. Thus, agonist-induced activation of endogenous beta(2)-adrenergic, prostaglandin E(2), M(1)Ach, and somatostatin receptors induced arrestin-2-GFP redistribution to early endosomes, whereas P2y(1) and P2y(2) purinergic and AT1 angiotensin receptor activation did not. Thus, endogenous arrestins mediate the regulation of selective G(q)- and G(i)-coupled receptors in HEK293 cells.
Collapse
Affiliation(s)
- S J Mundell
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
58
|
Schwärzler A, Kreienkamp HJ, Richter D. Interaction of the somatostatin receptor subtype 1 with the human homolog of the Shk1 kinase-binding protein from yeast. J Biol Chem 2000; 275:9557-62. [PMID: 10734105 DOI: 10.1074/jbc.275.13.9557] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interaction between the C terminus of a G-protein-coupled receptor and intracellular constituents may represent a crucial step in regulating signal transduction. To identify potential interacting candidates the C terminus of the somatostatin receptor subtype 1 was used as bait in a yeast two hybrid screen of a human brain cDNA library. We identified the human Skb1 sequence (Skb1Hs) as interacting protein, which is homologous to the yeast protein known Skb1 to down-regulate mitosis in Schizosaccharomyces pombe via binding to the Shk1 protein kinase; the latter is a homolog to the mammalian p21(cdc42/Rac)-activated protein kinases. Interaction required almost the entire C terminus of the somatostatin receptor subtype 1 including the conserved NPXXY motif of transmembrane region seven; in the case of the Skb1Hs most of the N terminus and an S-adenosylmethionine binding domain were mandatory, whereas the C terminus was not essential. Interaction was verified by coexpression experiments in human embryonic kidney cells. As revealed by immunocytochemical analysis Skb1Hs expressed alone aggregates in large cytosolic clusters. When coexpressed, receptor subtype 1 and Skb1Hs were colocalized at the cell surface; these cells showed a strong increase in somatostatin binding compared with cells expressing the receptor only. This may suggest that Skb1Hs acts like a chaperone by correctly targeting the receptor to the cell surface.
Collapse
Affiliation(s)
- A Schwärzler
- Institut für Zellbiochemie und klinische Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Universität Hamburg, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | |
Collapse
|
59
|
Petrucci C, Cervia D, Buzzi M, Biondi C, Bagnoli P. Somatostatin-induced control of cytosolic free calcium in pituitary tumour cells. Br J Pharmacol 2000; 129:471-84. [PMID: 10711345 PMCID: PMC1571859 DOI: 10.1038/sj.bjp.0703075] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
1. In rat pituitary tumour cells (GC cells), spontaneous oscillations of the intracellular concentration of Ca2+ ([Ca2+]i) induce growth hormone (GH) secretion that is inhibited by octreotide, a somatostatin (SRIF) agonist which binds to SRIF subtype (sst) receptor 2. The effects of its functional activation on the control of [Ca2+]i were investigated using fluorimetric measurements of [Ca2+]i. 2. SRIF decreases the basal [Ca2+]i and the [Ca2+]i rise in response to forskolin (FSK) through the inhibition of L-type voltage-dependent Ca2+ channels. 3. Pretreatment with octreotide or with L-Tyr8++ Cyanamid 154806, a sst2 receptor antagonist, abolishes the SRIF-induced inhibition of [Ca2+]i. Octreotide is known to operate through agonist-induced desensitization, while the antagonist operates through receptor blockade. 4. sst1 and sst2 receptor-immunoreactivities (-IRs) are localized to cell membranes. sst2, but not sst1 receptor-IR, internalizes after cell exposure to octreotide. 5. SRIF-induced inhibition of basal [Ca2+]i or FSK-induced Ca2+ entry is blocked by pertussis toxin (PTX). 6. FSK-induced cyclic AMP accumulation is only partially decreased by SRIF or octreotide, indicating that sst2 receptors are coupled to intracellular pathways other than adenylyl cyclase (AC) inhibition. 7. In the presence of H-89, an inhibitor of cyclic AMP-dependent protein kinase (PKA), SRIF-induced inhibition of basal [Ca2+]i is still present, although reduced in amplitude. 8. SRIF inhibits [Ca2+]i by activating sst2 receptors. Inhibition of AC activity is only partly responsible for this effect, and other transduction pathways may be involved.
Collapse
Affiliation(s)
- Cristina Petrucci
- Department of Physiology and Biochemistry ‘G. Moruzzi', University of Pisa, Via S. Zeno, 31-56127 Pisa, Italy
| | - Davide Cervia
- Department of Physiology and Biochemistry ‘G. Moruzzi', University of Pisa, Via S. Zeno, 31-56127 Pisa, Italy
| | - Marco Buzzi
- Department of Biology, University of Ferrara, 44100 Ferrara, Italy
| | - Carla Biondi
- Department of Biology, University of Ferrara, 44100 Ferrara, Italy
| | - Paola Bagnoli
- Department of Physiology and Biochemistry ‘G. Moruzzi', University of Pisa, Via S. Zeno, 31-56127 Pisa, Italy
- Author for correspondence:
| |
Collapse
|
60
|
Zitzer H, Hönck HH, Bächner D, Richter D, Kreienkamp HJ. Somatostatin receptor interacting protein defines a novel family of multidomain proteins present in human and rodent brain. J Biol Chem 1999; 274:32997-3001. [PMID: 10551867 DOI: 10.1074/jbc.274.46.32997] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
By using the yeast two-hybrid system we identified a novel protein from the human brain interacting with the C terminus of somatostatin receptor subtype 2. This protein termed somatostatin receptor interacting protein is characterized by a novel domain structure, consisting of six N-terminal ankyrin repeats followed by SH3 and PDZ domains, several proline-rich regions, and a C-terminal sterile alpha motif. It consists of 2185 amino acid residues encoded by a 9-kilobase pair mRNA; several splice variants have been detected in human and rat cDNA libraries. Sequence comparison suggests that the novel multidomain protein, together with cortactin-binding protein, forms a family of cytoskeletal anchoring proteins. Fractionation of rat brain membranes indicated that somatostatin receptor interacting protein is enriched in the postsynaptic density fraction. The interaction of somatostatin receptor subtype 2 with its interacting protein was verified by overlay assays and coimmunoprecipitation experiments from transfected human embryonic kidney cells. Somatostatin receptor subtype 2 and the interacting protein display a striking overlap of their expression patterns in the rat brain. Interestingly, in the hippocampus the mRNA for somatostatin receptor interacting protein was not confined to the cell bodies but was also observed in the molecular layer, suggesting a dendritic localization of this mRNA.
Collapse
Affiliation(s)
- H Zitzer
- Institut für Zellbiochemie und Klinische Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Universität Hamburg, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | | | |
Collapse
|
61
|
Zupanc GK, Siehler S, Jones EM, Seuwen K, Furuta H, Hoyer D, Yano H. Molecular cloning and pharmacological characterization of a somatostatin receptor subtype in the gymnotiform fish Apteronotus albifrons. Gen Comp Endocrinol 1999; 115:333-45. [PMID: 10480984 DOI: 10.1006/gcen.1999.7316] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The actions of the various forms of somatostatin (SRIF), including those of the tetradecapeptide SRIF(14), are mediated by specific receptors. In mammals, five subtypes of SRIF receptors, termed sst(1-5), have been cloned. Using a combination of reverse transcriptase-polymerase chain reaction and genomic library screening in the gymnotiform fish Apteronotus albifrons, a gene encoding the first-known nonmammalian SRIF receptor has been isolated. The deduced amino acid sequence displays 59% identity with the human sst(3) receptor protein; hence, the gene is termed "Apteronotus sst(3)." The predicted protein consists of 494 amino acid residues exhibiting a putative seven-transmembrane domain topology typical of G protein-coupled receptors. A signal corresponding to the Apteronotus sst(3) receptor was detected in brain after amplification of poly(A)(+)-RNA by reverse transcriptase-polymerase chain reaction, but not by Northern blot analysis or in situ hybridization, suggesting a low level of expression. Membranes prepared from CCL39 cells stably expressing the Apteronotus sst(3) receptor gene bound [(125)I][Leu(8),d-Trp(22), (125) I-Tyr(25)]SRIF(28) with high affinity and in a saturable manner (B(max) = 4470 fmol/mg protein; pK(D) = 10.5). SRIF(14) and various synthetic SRIF receptor agonists produced a dose-dependent inhibition of radioligand binding, with the following rank order of potency: SRIF(14) approximately SRIF(28) > BIM 23052 > octreotide > BIM 23056. Under low stringency conditions, an Apteronotus sst(3) probe hybridized to multiple DNA fragments in HindIII or EcoRI digests of A. albifrons DNA, indicating that the Apteronotus sst(3) receptor is a member of a larger family of Apteronotus SRIF receptors.
Collapse
Affiliation(s)
- G K Zupanc
- Department of Biochemistry, The University of Chicago, Chicago, Illinois, 60637, USA.
| | | | | | | | | | | | | |
Collapse
|
62
|
Hukovic N, Rocheville M, Kumar U, Sasi R, Khare S, Patel YC. Agonist-dependent up-regulation of human somatostatin receptor type 1 requires molecular signals in the cytoplasmic C-tail. J Biol Chem 1999; 274:24550-8. [PMID: 10455118 DOI: 10.1074/jbc.274.35.24550] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously reported that the human somatostatin receptor type 1 (hSSTR1) stably expressed in Chinese hamster ovary-K1 cells does not internalize but instead up-regulates at the membrane during continued agonist treatment (1 microM somatostatin (SST)-14 x 22 h). Here we have investigated the molecular basis of hSSTR1 up-regulation. hSSTR1 was up-regulated by SST in a time-, temperature-, and dose-dependent manner to saturable levels, in intact cells but not in membrane preparations. Although hSSTR1 was acutely desensitized to adenylyl cyclase coupling after 1 h SST-14 treatment, continued agonist exposure (22 h) restored functional effector coupling. Up-regulation was unaffected by cycloheximide but blocked by okadaic acid. Confocal fluorescence immunocytochemistry of intact and permeabilized cells showed progressive, time-dependent increase in surface hSSTR1 labeling, associated with depletion of intracellular SSTR1 immunofluorescent vesicles. To investigate the structural domains of hSSTR1 responsible for up-regulation, we constructed C-tail deletion (Delta) mutants and chimeric hSSTR1-hSSTR5 receptors. Human SSTR5 was chosen because it internalizes readily, displays potent C-tail internalization signals, and does not up-regulate. Like wild type hSSTR1, Delta C-tail hSSTR1 did not internalize and additionally lost the ability to up-regulate. Swapping the C-tail of hSSTR1 with that of hSSTR5 induced internalization (27%) but not up-regulation. Substitution of hSSTR5 C-tail with that of hSSTR1 converted the chimeric receptor to one resembling wild type hSSTR1 (poor internalization, 71% up-regulation). These results show that ligand-induced up-regulation of hSSTR1 occurs by a temperature-dependent active process of receptor recruitment from a pre-existing cytoplasmic pool to the plasma membrane. It does not require new protein synthesis or signal transduction, is sensitive to dephosphorylation events, and critically dependent on molecular signals in the receptor C-tail.
Collapse
Affiliation(s)
- N Hukovic
- Fraser Laboratories, Department of Medicine, McGill University, Montreal, Quebec H3A 1A1, Canada
| | | | | | | | | | | |
Collapse
|
63
|
Kreienkamp HJ. Molecular biology of the receptors for somatostatin and cortistatin. Results Probl Cell Differ 1999; 26:215-37. [PMID: 10453466 DOI: 10.1007/978-3-540-49421-8_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- H J Kreienkamp
- Institut für Zellbiochemie und klinische Neurobiologie, Universitätskrankenhaus Eppendorf, Universität Hamburg, Germany
| |
Collapse
|
64
|
Abstract
Tolerance develops rapidly to cannabis, cannabinoids, and related drugs acting at the CB1 cannabinoid receptor. However, little is known about what happens to the receptor as tolerance is developing. In this study, we have found that CB1 receptors are rapidly internalized following agonist binding and receptor activation. Efficacious cannabinoid agonists (WIN 55,212-2, CP 55,940, and HU 210) caused rapid internalization. Methanandamide (an analogue of an endogenous cannabinoid, anandamide) was less effective, causing internalization only at high concentration, whereas delta9-tetrahydrocannabinol caused little internalization, even at 3 microM. CB1 internalized via clathrin-coated pits as sequestration was inhibited by hypertonic sucrose. Internalization did not require activated G protein alpha(i), alpha(o), or alpha(s) subunits. A region of the extreme carboxy terminus of the receptor was necessary for internalization, as a mutant CB1 receptor lacking the last 14 residues did not internalize, whereas a mutant lacking the last 10 residues did. Steps involved in the recycling of sequestered receptor were also investigated. Recovery of CB1 to the cell surface after short (20 min) but not long (90 min) agonist treatment was independent of new protein synthesis. Recycling also required endosomal acidification and dephosphorylation. These results show that CB1 receptor trafficking is dynamically regulated by cannabimimetic drugs.
Collapse
Affiliation(s)
- C Hsieh
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle 98195-6540, USA
| | | | | | | |
Collapse
|
65
|
Sarret P, Nouel D, Dal Farra C, Vincent JP, Beaudet A, Mazella J. Receptor-mediated internalization is critical for the inhibition of the expression of growth hormone by somatostatin in the pituitary cell line AtT-20. J Biol Chem 1999; 274:19294-300. [PMID: 10383439 DOI: 10.1074/jbc.274.27.19294] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The inhibitory effect of the neuropeptide somatostatin on the expression of growth hormone was measured by quantitative polymerase chain reaction in the pituitary cell line AtT-20. We demonstrate that this effect is dependent on the internalization of somatostatin-receptor complexes and that it is totally independent from the peptide-induced inhibition of adenylate cyclase. Indeed, the inhibitory effect of the peptide on growth hormone mRNA levels was totally insensitive to pertussis toxin treatment but was totally abolished under conditions which block somatostatin receptor internalization. Comparative confocal microscopic imaging of fluorescent somatostatin sequestration and fluorescence immunolabeling of sst1, sst2A, and sst5 receptors suggests that sst2A is most probably responsible of the inhibitory effect of somatostatin on growth hormone expression.
Collapse
Affiliation(s)
- P Sarret
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, UPR 411, 660 Route des Lucioles, 06560 Valbonne, France
| | | | | | | | | | | |
Collapse
|
66
|
Abstract
Somatostatin (SST), a regulatory peptide, is produced by neuroendocrine, inflammatory, and immune cells in response to ions, nutrients, neuropeptides, neurotransmitters, thyroid and steroid hormones, growth factors, and cytokines. The peptide is released in large amounts from storage pools of secretory cells, or in small amounts from activated immune and inflammatory cells, and acts as an endogenous inhibitory regulator of the secretory and proliferative responses of target cells that are widely distributed in the brain and periphery. These actions are mediated by a family of seven transmembrane (TM) domain G-protein-coupled receptors that comprise five distinct subtypes (termed SSTR1-5) that are endoded by separate genes segregated on different chromosomes. The five receptor subtypes bind the natural SST peptides, SST-14 and SST-28, with low nanomolar affinity. Short synthetic octapeptide and hexapeptide analogs bind well to only three of the subtypes, 2, 3, and 5. Selective nonpeptide agonists with nanomolar affinity have been developed for four of the subtypes (SSTR1, 2, 3, and 4) and putative peptide antagonists for SSTR2 and SSTR5 have been identified. The ligand binding domain for SST ligands is made up of residues in TMs III-VII with a potential contribution by the second extracellular loop. SSTRs are widely expressed in many tissues, frequently as multiple subtypes that coexist in the same cell. The five receptors share common signaling pathways such as the inhibition of adenylyl cyclase, activation of phosphotyrosine phosphatase (PTP), and modulation of mitogen-activated protein kinase (MAPK) through G-protein-dependent mechanisms. Some of the subtypes are also coupled to inward rectifying K(+) channels (SSTR2, 3, 4, 5), to voltage-dependent Ca(2+) channels (SSTR1, 2), a Na(+)/H(+) exchanger (SSTR1), AMPA/kainate glutamate channels (SSTR1, 2), phospholipase C (SSTR2, 5), and phospholipase A(2) (SSTR4). SSTRs block cell secretion by inhibiting intracellular cAMP and Ca(2+) and by a receptor-linked distal effect on exocytosis. Four of the receptors (SSTR1, 2, 4, and 5) induce cell cycle arrest via PTP-dependent modulation of MAPK, associated with induction of the retinoblastoma tumor suppressor protein and p21. In contrast, SSTR3 uniquely triggers PTP-dependent apoptosis accompanied by activation of p53 and the pro-apoptotic protein Bax. SSTR1, 2, 3, and 5 display acute desensitization of adenylyl cyclase coupling. Four of the subtypes (SSTR2, 3, 4, and 5) undergo rapid agonist-dependent endocytosis. SSTR1 fails to be internalized but is instead upregulated at the membrane in response to continued agonist exposure. Among the wide spectrum of SST effects, several biological responses have been identified that display absolute or relative subtype selectivity. These include GH secretion (SSTR2 and 5), insulin secretion (SSTR5), glucagon secretion (SSTR2), and immune responses (SSTR2).
Collapse
Affiliation(s)
- Y C Patel
- Department of Medicine, Royal Victoria Hospital, Montreal, Quebec, H3A 1A1, Canada
| |
Collapse
|
67
|
Zitzer H, Richter D, Kreienkamp HJ. Agonist-dependent interaction of the rat somatostatin receptor subtype 2 with cortactin-binding protein 1. J Biol Chem 1999; 274:18153-6. [PMID: 10373412 DOI: 10.1074/jbc.274.26.18153] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report here an interaction between the C terminus of the rat somatostatin receptor subtype 2 (SSTR2) and a protein that has recently been identified as cortactin-binding protein 1 (CortBP1). Interaction is mediated by the PDZ (PSD-95/discs large/ZO-1) domain of CortBP1. As shown by in situ hybridization, SSTR2 and cortactin-binding protein are coexpressed in the rat brain. The association between SSTR2 and the PDZ-domain of CortBP1 was verified by overlay assays and by coprecipitation after transfection in human embryonic kidney (HEK) cells. Analysis by confocal microscopy indicates that CortBP1 is distributed diffusely throughout the cytosol in transfected cells and that it becomes concentrated at the plasma membrane when SSTR2 is present. This process is largely increased when the receptor is stimulated by somatostatin; as CortBP1 interacts with the C terminus of SSTR2, our data suggest that the binding of agonist to the receptor increase the accessibility of the receptor C terminus to the PDZ domain of CortBP1. Our data for the first time establish a link between a G-protein coupled receptor and constituents of the cytoskeleton.
Collapse
Affiliation(s)
- H Zitzer
- Institut für Zellbiochemie und klinische Neurobiologie, Universität Hamburg, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | |
Collapse
|
68
|
Bünemann M, Lee KB, Pals-Rylaarsdam R, Roseberry AG, Hosey MM. Desensitization of G-protein-coupled receptors in the cardiovascular system. Annu Rev Physiol 1999; 61:169-92. [PMID: 10099686 DOI: 10.1146/annurev.physiol.61.1.169] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Multiple mechanisms exist to control the signaling and density of G-protein-coupled receptors (GPRs). Upon agonist binding and receptor activation, a series of reactions participate in the turn off or desensitization of GPRs. Many GPRs are phosphorylated by protein kinases and consequently uncoupled from G proteins. In addition, many GPRs are sequestered from the cell surface and become inaccessible to their activating ligands. Both receptor:G protein uncoupling and receptor sequestration may involve the participation of arrestins or other proteins. A model for receptor regulation has been developed from studies of the beta-adrenergic receptor. However, recent studies suggest that other GPRs important in the cardiovascular system, such as the muscarinic cholinergic receptors that regulate heart rate, might be regulated by mechanisms other than those that regulate the beta-adrenergic receptors. This review summarizes our current understanding of the processes involved in the desensitization of GPRs.
Collapse
Affiliation(s)
- M Bünemann
- Department of Molecular Pharmacology & Biological Chemistry, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
69
|
Schwartkop CP, Kreienkamp HJ, Richter D. Agonist-independent internalization and activity of a C-terminally truncated somatostatin receptor subtype 2 (delta349). J Neurochem 1999; 72:1275-82. [PMID: 10037501 DOI: 10.1046/j.1471-4159.1999.0721275.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The rat somatostatin receptor subtype 2 (SSTR2) is rapidly internalized and phosphorylated in the presence of somatostatin 14 (SST14). Several C-terminal deletion constructs of SSTR2 have been investigated for their ability to undergo agonist-dependent internalization by using biochemical ligand binding assays and confocal microscopic analysis. Whereas mutant receptors lacking either 10 (delta359), 30 (delta339), or 44 (delta325) amino acid residues at the C terminus required SST14 for internalization, a construct lacking the last 20 amino acids (delta349) was detected mostly intracellularly and independently of the presence of the agonist. When internalization was blocked by sucrose, the delta349 receptor remained at the cell surface, strongly indicating that this mutant is internalized in an agonist-independent fashion. An increased affinity for agonists as measured in membrane binding assays and a reduced level of forskolin-stimulated cyclic AMP accumulation in human embryonic kidney cells expressing delta349 are properties that are characteristic of agonist-independent receptor activity. Delta349 is not phosphorylated detectably in the absence of agonist, demonstrating that phosphorylation per se is not a prerequisite for internalization of SSTR2. This observation is in line with data obtained for the delta325 mutant, which was internalized in an agonist-dependent manner, but not phosphorylated in either the presence or absence of SST14. We conclude that truncation of the SSTR2 C terminus at position 349 leads to agonist-independent, constitutive activity and internalization.
Collapse
Affiliation(s)
- C P Schwartkop
- Institut für Zellbiochemie und klinische Neurobiologie, UKE, Universität Hamburg, Germany
| | | | | |
Collapse
|
70
|
Händel M, Schulz S, Stanarius A, Schreff M, Erdtmann-Vourliotis M, Schmidt H, Wolf G, Höllt V. Selective targeting of somatostatin receptor 3 to neuronal cilia. Neuroscience 1999; 89:909-26. [PMID: 10199624 DOI: 10.1016/s0306-4522(98)00354-6] [Citation(s) in RCA: 298] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recently, five members of the somatostatin receptor family have been cloned. However, little is known about their cellular and subcellular localization in the central nervous system. Using specific anti-peptide antisera, we observed somatostatin receptor 3-like immunoreactivity in many brain regions, including the cerebral cortex, hippocampus, hypothalamus, amygdala and cerebellum. In all of these regions (except for the cerebellar cortex), somatostatin receptor 3-like immunoreactivity was selectively targeted to 4-8-microm-long rod-shaped profiles which did not co-localize with axonal or dendritic markers. One immunoreactive profile was always associated with one neuronal cell body. This staining pattern was resistant to colchicine treatment and showed a closely overlapping distribution with somatostatin receptor 3 messenger RNA, suggesting that the receptor protein is not transported over long distances. Electron microscopic analysis revealed that somatostatin receptor 3-like immunoreactivity is localized to the plasma membrane of neuronal cilia which extended into an intercellular pocket and showed a 9+0 filament pattern in their basal body and proximal segments. Thus, somatostatin receptor 3 demonstrates a unique example of a G-protein-coupled receptor not localized to "classical" pre- or postsynaptic sites, but selectively targeted to neuronal cilia. The presence of the somatostatin receptor 3 receptor on neuronal cilia suggests that these presumably non-motile cilia may not merely represent developmental remnants, but rather function as chemical sensors of the immediate milieu.
Collapse
Affiliation(s)
- M Händel
- Department of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Burd AL, El-Kouhen R, Erickson LJ, Loh HH, Law PY. Identification of serine 356 and serine 363 as the amino acids involved in etorphine-induced down-regulation of the mu-opioid receptor. J Biol Chem 1998; 273:34488-95. [PMID: 9852117 DOI: 10.1074/jbc.273.51.34488] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Agonist-induced internalization of G protein-coupled receptors is influenced by many structural determinants including the carboxyl tail. To investigate the role of serine and threonine residues within the carboxyl tail, several mutants were constructed by truncating the carboxyl tail of the hemagglutinin-tagged mu-opioid receptor, thereby removing serines and threonines systematically. Neuro2A cells stably expressing the truncated receptors did not exhibit a significant alteration in the affinity of [3H]diprenorphine or etorphine for the receptor or the potency of etorphine to inhibit forskolin-stimulated adenylyl cyclase activity. Chronic etorphine treatment resulted in a time-dependent down-regulation of all the truncated receptors, except MOR1TAG355D, thus revealing the importance of the four amino acids between Ser355 and Glu359 (STIE). Surprisingly, deletion of the STIE sequence resulted in a receptor that down-regulated the same as the wild-type receptor. The involvement of multiple amino acids within the carboxyl tail was demonstrated by combining alanine substitutions of several putative G-protein-coupled receptor kinase phosphorylation sites. Systematic analysis of these receptors indicated that mutation of Ser356 and Ser363 to alanine attenuated agonist-mediated down-regulation. The magnitude of etorphine-induced phosphorylation of this mutant receptor, however, was similar to that of the wild-type mu-opioid receptor. Thus, phosphorylation of the carboxyl tail of the mu-opioid receptor is not an obligatory event for etorphine-induced down-regulation of the receptor.
Collapse
Affiliation(s)
- A L Burd
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
72
|
Beaumont V, Hepworth MB, Luty JS, Kelly E, Henderson G. Somatostatin receptor desensitization in NG108-15 cells. A consequence of receptor sequestration. J Biol Chem 1998; 273:33174-83. [PMID: 9837885 DOI: 10.1074/jbc.273.50.33174] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In NG108-15 cells inhibition of both N-type calcium channel current and adenylyl cyclase by somatostatin (SRIF) was not sustained but rapidly desensitized in the continued presence of the drug. The degree and rate of desensitization were concentration-dependent, and the desensitization was homologous with respect to the delta-opioid receptor. We have been unable to obtain evidence for the involvement of G protein-coupled receptor kinases (GRKs) in this desensitization. SRIF-induced desensitization of N-type calcium channel currents was not reduced in cells stably overexpressing a dominant negative mutant of GRK2 or following intracellular dialysis with GRK2- and GRK3-blocking peptides or with heparin. Inhibitors of protein kinase A, protein kinase C, and protein kinase G were also without effect. In contrast, both the rate and degree of SRIF-induced desensitization were reduced by pretreatment with phenylarsine oxide or concanavalin A, both inhibitors of receptor endocytosis. Furthermore, SRIF-induced desensitization was enhanced by monensin, which prevents receptor recycling back to the plasma membrane. Similarly, SRIF-induced desensitization of adenylyl cyclase inhibition was not reduced in cells stably overexpressing dominant negative mutant GRK2 but was reduced in cells pretreated with the receptor endocytosis inhibitor hyperosmotic sucrose or concanavalin A. These data are consistent with the view that SRIF-induced desensitization in NG108-15 cells results from receptor internalization.
Collapse
Affiliation(s)
- V Beaumont
- Department of Pharmacology, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, United Kingdom
| | | | | | | | | |
Collapse
|
73
|
Kreienkamp HJ, Roth A, Richter D. Rat somatostatin receptor subtype 4 can be made sensitive to agonist-induced internalization by mutation of a single threonine (residue 331). DNA Cell Biol 1998; 17:869-78. [PMID: 9809748 DOI: 10.1089/dna.1998.17.869] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A sequence motif of 20 amino acid residues within the C-terminal portion of the rat somatostatin receptor subtype 4 (SSTR4) has been shown to prevent rapid agonist-dependent receptor internalization in transfected human embryonic kidney (HEK) cells. Molecular dissection of this motif by biochemical ligand-binding assays revealed that the block was released by mutating a single residue (threonine 331) to an alanine. These data are in line with confocal microscopic analysis of cultured primary neurons microinjected with cDNA constructs encoding either SSTR4 or the mutant T331A. Immunocytochemical analysis showed that the mutant receptor, but not SSTR4, was internalized. However, internalized T331A was not recycled to the cell surface, suggesting that it lacks sequence elements that determine intracellular sorting after endocytosis. Neither wildtype SSTR nor the mutant T331A exhibited functional desensitization when assayed for their ability to inhibit adenylate cyclase. In agreement with this, the wt receptor and its mutant were not phosphorylated in response to agonist treatment. Lack of desensitization of SSTR4 has been electrophysiologically verified by coexpressing the receptor with a G-protein-gated, inwardly rectifying potassium channel in Xenopus oocytes. A strong somatostatin 14 (SST14)-activated inward potassium current was observed that was long-lasting and which decayed only slowly after washout of the agonist. This is in contrast to another somatostatin receptor subtype, SSTR3, which mediates rapidly desensitizing currents. Binding experiments on HEK cells transfected with either SSTR3 or 4 indicated that this difference is not attributable to slow dissociation of the agonist from the receptor, suggesting that SSTR4 mediates long-lasting signalling, a property which may be relevant for clinical therapy.
Collapse
Affiliation(s)
- H J Kreienkamp
- Institut für Zellbiochemie und klinische Neurobiologie, Universität Hamburg, Germany
| | | | | |
Collapse
|
74
|
Thomas WG, Motel TJ, Kule CE, Karoor V, Baker KM. Phosphorylation of the angiotensin II (AT1A) receptor carboxyl terminus: a role in receptor endocytosis. Mol Endocrinol 1998; 12:1513-24. [PMID: 9773975 DOI: 10.1210/mend.12.10.0179] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The molecular mechanism of angiotensin II type I receptor (AT1) endocytosis is obscure, although the identification of an important serine/threonine rich region (Thr332Lys333Met334Ser335Thr336Leu337 Ser338) within the carboxyl terminus of the AT1A receptor subtype suggests that phosphorylation may be involved. In this study, we examined the phosphorylation and internalization of full-length AT1A receptors and compared this to receptors with truncations and mutations of the carboxyl terminus. Epitope-tagged full-length AT1A receptors, when transiently transfected in Chinese hamster ovary (CHO)-K1 cells, displayed a basal level of phosphorylation that was significantly enhanced by angiotensin II (Ang II) stimulation. Phosphorylation of AT1A receptors was progressively reduced by serial truncation of the carboxyl terminus, and truncation to Lys325, which removed the last 34 amino acids, almost completely inhibited Ang II-stimulated 32P incorporation into the AT1A receptor. To investigate the correlation between receptor phosphorylation and endocytosis, an epitope-tagged mutant receptor was produced, in which the carboxyl-terminal residues, Thr332, Ser335, Thr336, and Ser338, previously identified as important for receptor internalization, were substituted with alanine. Compared with the wild-type receptor, this mutant displayed a clear reduction in Ang II-stimulated phosphorylation. Such a correlation was further strengthened by the novel observation that the Ang II peptide antagonist, Sar(1)Ile8-Ang II, which paradoxically causes internalization of wild-type AT1A receptors, also promoted their phosphorylation. In an attempt to directly relate phosphorylation of the carboxyl terminus to endocytosis, the internalization kinetics of wild-type AT1A receptors and receptors mutated within the Thr332-Ser338 region were compared. The four putative phosphorylation sites (Thr332, Ser335, Thr336, and Ser338) were substituted with either neutral [alanine (A)] or acidic amino acids [glutamic acid (E) and aspartic acid (D)], the former to prevent phosphorylation and the latter to reproduce the acidic charge created by phosphorylation. Wild-type AT1A receptors, expressed in Chinese hamster ovary cells, rapidly internalized after Ang II stimulation [t1/2 2.3 min; maximal level of internalization (Ymax) 78.2%], as did mutant receptors carrying single acidic substitutions (T332E, t1/2 2.7 min, Ymax 76.3%; S335D, t1/2 2.4 min, Ymax 76.7%; T336E, t1/2 2.5 min, Ymax 78.2%; S338D, t1/2 2.6 min, Ymax 78.4%). While acidic amino acid substitutions may simply be not as structurally disruptive as alanine mutations, we interpret the tolerance of a negative charge in this region as suggestive that phosphorylation may permit maximal internalization. Substitution of all four residues to alanine produced a receptor with markedly reduced internalization kinetics (T332A/S335A/T336A/S338A, t1/2 10.1 min, Ymax 47.9%), while endocytosis was significantly rescued in the corresponding quadruple acidic mutant (T332E/S335D/T336E/S338D, t1/2 6.4 min, Ymax 53.4%). Double mutation of S335 and T336 to alanine also diminished the rate and extent of endocytosis (S335A/T336A, 3.9 min, Ymax 69.3%), while the analogous double acidic mutant displayed wild type-like endocytotic parameters (S335D/T336E, t1/2 2.6 min, Ymax 77.5%). Based on the apparent rescue of internalization by acidic amino acid substitutions in a region that we have identified as a site of Ang II-induced phosphorylation, we conclude that maximal endocytosis of the AT1A receptor requires phosphorylation within this serine/threonine-rich segment of the carboxyl terminus.
Collapse
Affiliation(s)
- W G Thomas
- Baker Medical Research Institute, Melbourne, Australia.
| | | | | | | | | |
Collapse
|
75
|
Hukovic N, Panetta R, Kumar U, Rocheville M, Patel YC. The cytoplasmic tail of the human somatostatin receptor type 5 is crucial for interaction with adenylyl cyclase and in mediating desensitization and internalization. J Biol Chem 1998; 273:21416-22. [PMID: 9694905 DOI: 10.1074/jbc.273.33.21416] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the role of the cytoplasmic tail (C-tail) of the human somatostatin receptor type 5 (hSSTR5) in regulating receptor coupling to adenylyl cyclase (AC) and in mediating agonist-dependent desensitization and internalization responses. Mutant receptors with progressive C-tail truncation (Delta347, Delta338, Delta328, Delta318), Cys320 --> Ala substitution (to block palmitoylation), or Tyr304 --> Ala substitution of a putative NPXXY internalization motif were stably expressed in Chinese hamster ovary K1 cells. Except for the Tyr304 --> Ala mutant, which showed no binding, all other mutant receptors exhibited binding characteristics (Kd and Bmax) and G protein coupling comparable with wild type (wt) hSSTR5. The C-tail truncation mutants displayed progressive reduction in coupling to AC, with the Delta318 mutant showing complete loss of effector coupling. Agonist pretreatment of wt hSSTR5 led to uncoupling of AC inhibition, whereas the desensitization response of the C-tail deletion mutants was variably impaired. Compared with internalization (66% at 60 min) of wt hSSTR5, truncation of the C-tail to 318, 328, and 338 residues reduced receptor internalization to 46, 46, and 23%, respectively, whereas truncation to 347 residues slightly improved internalization (72%). Mutation of Cys320 --> Ala induced a reduction in AC coupling, desensitization, and internalization. These studies show that the C-tail of hSSTR5 serves a multifunctional role in mediating effector coupling, desensitization, and internalization. Whereas coupling to AC is dependent on the length of the C-tail, desensitization and internalization require specific structural domains. Furthermore, internalization is regulated through both positive and negative molecular signals in the C-tail and can be dissociated from the signaling and acute desensitization responses of the receptor.
Collapse
Affiliation(s)
- N Hukovic
- Fraser Laboratories, Department of Medicine, McGill University, Royal Victoria Hospital and the Montreal Neurological Institute, Montreal, Quebec H3A 1A1, Canada
| | | | | | | | | |
Collapse
|
76
|
Meyerhof W. The elucidation of somatostatin receptor functions: a current view. Rev Physiol Biochem Pharmacol 1998; 133:55-108. [PMID: 9600011 DOI: 10.1007/bfb0000613] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- W Meyerhof
- Department of Molecular Genetics, German Institute of Human Nutrition, Potsdam-Rehbrücke, Germany
| |
Collapse
|