51
|
Liu XH, Prestwich GD. Didehydrogeranylgeranyl (Delta Delta GG): a fluorescent probe for protein prenylation. J Am Chem Soc 2002; 124:20-1. [PMID: 11772053 DOI: 10.1021/ja0119144] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first intrinsically fluorescent analog of geranylgeraniol, (2E,6E,8E,10E,12E,14E)-geranylgeraniol (all-trans-DeltaDeltaGGOH.1) has been synthesized stereoselectively and shown to substitute for the geranylgeranyl (GG) moiety in prenyl transferase reactions and in protein-ligand binding assays. All-trans-DeltaDeltaGGOH 1 showed blue fluorescence in methanol, with lambdaex = 310 nm and lambdaem = 410 nm (epsilon310 = 2.4 x 104 M-1 cm-1), but was only weakly fluorescent in aqueous solution. The prenyl transferase efficiency for DeltaDeltaGGPP 2 as a substrate for yeast protein geranylgeranyl transferase (PGGTase-I) was 60% relative to that for GGPP. The binding of DeltaDeltaGG-AcCysMe 3 to the recombinant Rho GTPase dissociation inhibitor (RhoGDI) had a KD of 15.1 +/- 1.2 muM, 6-fold lower than the affinity of GG-AcCysMe. Thus, the DeltaDeltaGG moiety is a novel fluorophore suitable for studying the interaction and subcellular localization of prenylated small GTPase proteins in signaling complexes.
Collapse
Affiliation(s)
- Xiao-hui Liu
- Department of Medicinal Chemistry and the Center for Cell Signaling, 30 South 2000 East, Room 201, The University of Utah, Salt Lake City, Utah 84112-5820, USA
| | | |
Collapse
|
52
|
Prenylation of CaaX-type proteins: Basic principles through clinical applications. CURRENT TOPICS IN MEMBRANES 2002. [DOI: 10.1016/s1063-5823(02)52021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
53
|
Caldelari D, Sternberg H, Rodríguez-Concepción M, Gruissem W, Yalovsky S. Efficient prenylation by a plant geranylgeranyltransferase-I requires a functional CaaL box motif and a proximal polybasic domain. PLANT PHYSIOLOGY 2001; 126:1416-29. [PMID: 11500541 PMCID: PMC117142 DOI: 10.1104/pp.126.4.1416] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2000] [Revised: 03/13/2001] [Accepted: 05/02/2001] [Indexed: 05/18/2023]
Abstract
Geranylgeranyltransferase-I (GGT-I) is a heterodimeric enzyme that shares a common alpha-subunit with farnesyltransferase (FTase) and has a distinct beta-subunit. GGT-I preferentially modifies proteins, which terminate in a CaaL box sequence motif. Cloning of Arabidopsis GGT-I beta-subunit (AtGGT-IB) was achieved by a yeast (Saccharomyces cerevisiae) two-hybrid screen, using the tomato (Lycopersicon esculentum) FTase alpha-subunit (FTA) as bait. Sequence and structure analysis revealed that the core active site of GGT-I and FTase are very similar. AtGGT-IA/FTA and AtGGT-IB were co-expressed in baculovirus-infected insect cells to obtain recombinant protein that was used for biochemical and molecular analysis. The recombinant AtGGT-I prenylated efficiently CaaL box fusion proteins in which the a(2) position was occupied by an aliphatic residue, whereas charged or polar residues at the same position greatly reduced the efficiency of prenylation. A polybasic domain proximal to the CaaL box motif induced a 5-fold increase in the maximal reaction rate, and increased the affinity of the enzyme to the protein substrate by an order of magnitude. GGT-I retained high activity in a temperature range between 24 degrees C and 42 degrees C, and showed increased activity rate at relatively basic pH values of 7.9 and 8.5. Reverse transcriptase-polymerase chain reaction, protein immuno-blots, and transient expression assays of green fluorescent protein fusion proteins show that GGT-IB is ubiquitously expressed in a number of tissues, and that expression levels and protein activity were not changed in mutant plants lacking FTase beta-subunit.
Collapse
Affiliation(s)
- D Caldelari
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, USA
| | | | | | | | | |
Collapse
|
54
|
Huber HE, Robinson RG, Watkins A, Nahas DD, Abrams MT, Buser CA, Lobell RB, Patrick D, Anthony NJ, Dinsmore CJ, Graham SL, Hartman GD, Lumma WC, Williams TM, Heimbrook DC. Anions modulate the potency of geranylgeranyl-protein transferase I inhibitors. J Biol Chem 2001; 276:24457-65. [PMID: 11274181 DOI: 10.1074/jbc.m100325200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified and characterized potent and specific inhibitors of geranylgeranyl-protein transferase type I (GGPTase I), as well as dual inhibitors of GGPTase I and farnesyl-protein transferase. Many of these inhibitors require the presence of phosphate anions for maximum activity against GGPTase I in vitro. Inhibitors with a strong anion dependence were competitive with geranylgeranyl pyrophosphate (GGPP), rather than with the peptide substrate, which had served as the original template for inhibitor design. One of the most effective anions was ATP, which at low millimolar concentrations increased the potency of GGPTase I inhibitors up to several hundred-fold. In the case of clinical candidate l-778,123, this increase in potency was shown to result from two major interactions: competitive binding of inhibitor and GGPP, and competitive binding of ATP and GGPP. At 5 mm, ATP caused an increase in the apparent K(d) for the GGPP-GGPTase I interaction from 20 pm to 4 nm, resulting in correspondingly tighter inhibitor binding. A subset of very potent GGPP-competitive inhibitors displayed slow tight binding to GGPTase I with apparent on and off rates on the order of 10(6) m(-)1 s(-)1 and 10(-)3 s(-)1, respectively. Slow binding and the anion requirement suggest that these inhibitors may act as transition state analogs. After accounting for anion requirement, slow binding, and mechanism of competition, the structure-activity relationship determined in vitro correlated well with the inhibition of processing of GGPTase I substrate Rap1a in vivo.
Collapse
Affiliation(s)
- H E Huber
- Department of Cancer Research, Merck Research Laboratories, 770 Sumneytown Pike, West Point, PA 19486, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Saderholm MJ, Hightower KE, Fierke CA. Role of metals in the reaction catalyzed by protein farnesyltransferase. Biochemistry 2000; 39:12398-405. [PMID: 11015220 DOI: 10.1021/bi0011781] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein farnesyltransferase catalyzes the posttranslational farnesylation of several proteins involved in signal transduction, including Ras, and is a target enzyme for antitumor therapies. Efficient product formation catalyzed by protein farnesyltransferase requires an enzyme-bound zinc cation and high concentrations of magnesium ions. In this work, we have measured the pH dependence of the chemical step of product formation, determined under single-turnover conditions, and have demonstrated that the prenylation rate constant is enhanced by two deprotonations. Substitution of the active site zinc by cadmium demonstrated that one of the ionizations reflects deprotonation of the metal-coordinated thiol of the peptide "CaaX" motif, pK(a1) = 6.0. These data provide additional evidence for the direct involvement of a metal-coordinated sulfur nucleophile in catalysis. The second ionization was assigned to a hydroxyl on the pyrophosphate moiety of farnesyl pyrophosphate, pK(a2) = 7.4. Deprotonation of this group is important for binding of magnesium. This second ionization is not observed for catalysis in the absence of magnesium or when the substrate is farnesyl monophosphate. These data indicate that the maximal rate constant for prenylation requires formation of a zinc-coordinated thiolate nucleophile and enhancement of the electrophilic character at C1 of the farnesyl chain by magnesium ion coordination of the pyrophosphate leaving group.
Collapse
Affiliation(s)
- M J Saderholm
- Department of Biochemistry, Box 3711, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
56
|
Buckner FS, Yokoyama K, Nguyen L, Grewal A, Erdjument-Bromage H, Tempst P, Strickland CL, Xiao L, Van Voorhis WC, Gelb MH. Cloning, heterologous expression, and distinct substrate specificity of protein farnesyltransferase from Trypanosoma brucei. J Biol Chem 2000; 275:21870-6. [PMID: 10749864 PMCID: PMC2913713 DOI: 10.1074/jbc.m000975200] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein prenylation occurs in the protozoan that causes African sleeping sickness (Trypanosoma brucei), and the protein farnesyltransferase appears to be a good target for developing drugs. We have cloned the alpha- and beta-subunits of T. brucei protein farnesyltransferase (TB-PFT) using nucleic acid probes designed from partial amino acid sequences obtained from the enzyme purified from insect stage parasites. TB-PFT is expressed in both bloodstream and insect stage parasites. Enzymatically active TB-PFT was produced by heterologous expression in Escherichia coli. Compared with mammalian protein farnesyltransferases, TB-PFT contains a number of inserts of >25 residues in both subunits that reside on the surface of the enzyme in turns linking adjacent alpha-helices. Substrate specificity studies with a series of 20 peptides SSCALX (where X indicates a naturally occurring amino acid) show that the recombinant enzyme behaves identically to the native enzyme and displays distinct specificity compared with mammalian protein farnesyltransferase. TB-PFT prefers Gln and Met at the X position but not Ser, Thr, or Cys, which are good substrates for mammalian protein farnesyltransferase. A structural homology model of the active site of TB-PFT provides a basis for understanding structure-activity relations among substrates and CAAX mimetic inhibitors.
Collapse
Affiliation(s)
- F S Buckner
- Departments of Medicine and Chemistry and Biochemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Smalera I, Williamson JM, Baginsky W, Leiting B, Mazur P. Expression and characterization of protein geranylgeranyltransferase type I from the pathogenic yeast Candida albicans and identification of yeast selective enzyme inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1480:132-44. [PMID: 10899615 DOI: 10.1016/s0167-4838(00)00067-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protein geranylgeranyltransferase type I (GGTase I) is a heterodimeric zinc metalloenzyme catalyzing protein geranylgeranylation at cysteine residues present in C-terminal signature sequences referred to as CaaX (X=Leu) motifs. We have studied GGTase I as a potential antifungal target and recently reported its purification and cloning from the yeast Candida albicans (Ca GGTase I), an important human pathogen. Here, we report the high yield bacterial expression of Ca GGTase I by coexpression of maltose binding protein fusion proteins of both the alpha (Ram2p) and beta (Cdc43p) subunits. The cleaved and purified recombinant Ca GGTase I was demonstrated to be functional and structurally intact as judged by the presence of one equivalent of a tightly bound zinc atom and the near stoichiometric formation, isolation and catalytic turnover of a geranylgeranyl pyrophosphate-GGTase I complex. Kinetic analysis was performed with a native substrate protein, Candida Cdc42p, which exhibited significant pH dependent substrate inhibition, a feature not observed with other Ca GGTase I substrates. Prenyl acceptor substrate specificity was studied with a series of peptides in which both the CaaX motif, and the sequence preceding it, were varied. The prenyl acceptor K(M)s were found to vary nearly 100-fold, with biotinyl-TRERKKKKKCVIL, modeled after a presumably geranylgeranylated Candida protein, Crl1p (Rho4p), being the optimal substrate. A screen for inhibitors of Ca GGTase I identified compounds showing selectivity for the Candida versus human GGTase I. The most potent and selective compound, L-689230, had an IC(50) of 20 nM and >12,500-fold selectivity for Ca GGTase I. The lack of significant anti-Candida activity for any of these inhibitors is consistent with the recent finding that GGTase I is not required for C. albicans viability [R. Kelly et al., J. Bacteriol. 182 (2000) 704-713].
Collapse
Affiliation(s)
- I Smalera
- Department of Biochemistry, Merck Research Laboratories, P.O. Box 2000, RY80M-136, Rahway, NJ 07065, USA
| | | | | | | | | |
Collapse
|
58
|
Zahn TJ, Eilers M, Guo Z, Ksebati MB, Simon M, Scholten JD, Smith SO, Gibbs RA. Evaluation of Isoprenoid Conformation in Solution and in the Active Site of Protein-Farnesyl Transferase Using Carbon-13 Labeling in Conjunction with Solution- and Solid-State NMR. J Am Chem Soc 2000. [DOI: 10.1021/ja000860f] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Todd J. Zahn
- Contribution from the Department of Pharmaceutical Sciences, 528 Shapero Hall, Wayne State University, Detroit, Michigan 48202, Department of Chemistry, Wayne State University, Detroit, Michigan 48202, Department of Biochemistry, Parke-Davis Pharmaceutical Research, 2800 Plymouth Road, Ann Arbor, Michigan 48105, and Department of Biochemistry and Cell Biology, SUNY Stony Brook, 312 Life Sciences Building, Stony Brook, New York 11794
| | - Markus Eilers
- Contribution from the Department of Pharmaceutical Sciences, 528 Shapero Hall, Wayne State University, Detroit, Michigan 48202, Department of Chemistry, Wayne State University, Detroit, Michigan 48202, Department of Biochemistry, Parke-Davis Pharmaceutical Research, 2800 Plymouth Road, Ann Arbor, Michigan 48105, and Department of Biochemistry and Cell Biology, SUNY Stony Brook, 312 Life Sciences Building, Stony Brook, New York 11794
| | - Zhengmao Guo
- Contribution from the Department of Pharmaceutical Sciences, 528 Shapero Hall, Wayne State University, Detroit, Michigan 48202, Department of Chemistry, Wayne State University, Detroit, Michigan 48202, Department of Biochemistry, Parke-Davis Pharmaceutical Research, 2800 Plymouth Road, Ann Arbor, Michigan 48105, and Department of Biochemistry and Cell Biology, SUNY Stony Brook, 312 Life Sciences Building, Stony Brook, New York 11794
| | - Mohamad B. Ksebati
- Contribution from the Department of Pharmaceutical Sciences, 528 Shapero Hall, Wayne State University, Detroit, Michigan 48202, Department of Chemistry, Wayne State University, Detroit, Michigan 48202, Department of Biochemistry, Parke-Davis Pharmaceutical Research, 2800 Plymouth Road, Ann Arbor, Michigan 48105, and Department of Biochemistry and Cell Biology, SUNY Stony Brook, 312 Life Sciences Building, Stony Brook, New York 11794
| | - Matthew Simon
- Contribution from the Department of Pharmaceutical Sciences, 528 Shapero Hall, Wayne State University, Detroit, Michigan 48202, Department of Chemistry, Wayne State University, Detroit, Michigan 48202, Department of Biochemistry, Parke-Davis Pharmaceutical Research, 2800 Plymouth Road, Ann Arbor, Michigan 48105, and Department of Biochemistry and Cell Biology, SUNY Stony Brook, 312 Life Sciences Building, Stony Brook, New York 11794
| | - Jeffrey D. Scholten
- Contribution from the Department of Pharmaceutical Sciences, 528 Shapero Hall, Wayne State University, Detroit, Michigan 48202, Department of Chemistry, Wayne State University, Detroit, Michigan 48202, Department of Biochemistry, Parke-Davis Pharmaceutical Research, 2800 Plymouth Road, Ann Arbor, Michigan 48105, and Department of Biochemistry and Cell Biology, SUNY Stony Brook, 312 Life Sciences Building, Stony Brook, New York 11794
| | - Steven O. Smith
- Contribution from the Department of Pharmaceutical Sciences, 528 Shapero Hall, Wayne State University, Detroit, Michigan 48202, Department of Chemistry, Wayne State University, Detroit, Michigan 48202, Department of Biochemistry, Parke-Davis Pharmaceutical Research, 2800 Plymouth Road, Ann Arbor, Michigan 48105, and Department of Biochemistry and Cell Biology, SUNY Stony Brook, 312 Life Sciences Building, Stony Brook, New York 11794
| | - Richard A. Gibbs
- Contribution from the Department of Pharmaceutical Sciences, 528 Shapero Hall, Wayne State University, Detroit, Michigan 48202, Department of Chemistry, Wayne State University, Detroit, Michigan 48202, Department of Biochemistry, Parke-Davis Pharmaceutical Research, 2800 Plymouth Road, Ann Arbor, Michigan 48105, and Department of Biochemistry and Cell Biology, SUNY Stony Brook, 312 Life Sciences Building, Stony Brook, New York 11794
| |
Collapse
|
59
|
Rowinsky EK, Windle JJ, Von Hoff DD. Ras protein farnesyltransferase: A strategic target for anticancer therapeutic development. J Clin Oncol 1999; 17:3631-52. [PMID: 10550163 DOI: 10.1200/jco.1999.17.11.3631] [Citation(s) in RCA: 411] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ras proteins are guanine nucleotide-binding proteins that play pivotal roles in the control of normal and transformed cell growth and are among the most intensively studied proteins of the past decade. After stimulation by various growth factors and cytokines, Ras activates several downstream effectors, including the Raf-1/mitogen-activated protein kinase pathway and the Rac/Rho pathway. In approximately 30% of human cancers, including a substantial proportion of pancreatic and colon adenocarcinomas, mutated ras genes produce mutated proteins that remain locked in an active state, thereby relaying uncontrolled proliferative signals. Ras undergoes several posttranslational modifications that facilitate its attachment to the inner surface of the plasma membrane. The first-and most critical-modification is the addition of a farnesyl isoprenoid moiety in a reaction catalyzed by the enzyme protein farnesyltransferase (FTase). It follows that inhibiting FTase would prevent Ras from maturing into its biologically active form, and FTase is of considerable interest as a potential therapeutic target. Different classes of FTase inhibitors have been identified that block farnesylation of Ras, reverse Ras-mediated cell transformation in human cell lines, and inhibit the growth of human tumor cells in nude mice. In transgenic mice with established tumors, FTase inhibitors cause regression in some tumors, which appears to be mediated through both apoptosis and cell cycle regulation. FTase inhibitors have been well tolerated in animal studies and do not produce the generalized cytotoxic effects in normal tissues that are a major limitation of most conventional anticancer agents. There are ongoing clinical evaluations of FTase inhibitors to determine the feasibility of administering them on dose schedules like those that portend optimal therapeutic indices in preclinical studies. Because of the unique biologic aspects of FTase, designing disease-directed phase II and III evaluations of their effectiveness presents formidable challenges.
Collapse
Affiliation(s)
- E K Rowinsky
- Institute for Drug Development, Cancer Therapy and Research Center, San Antonio, TX 78229-3272, USA.
| | | | | |
Collapse
|
60
|
Mazet JL, Padieu M, Osman H, Maume G, Mailliet P, Dereu N, Hamilton AD, Lavelle F, Sebti SM, Maume BF. Combination of the novel farnesyltransferase inhibitor RPR130401 and the geranylgeranyltransferase-1 inhibitor GGTI-298 disrupts MAP kinase activation and G(1)-S transition in Ki-Ras-overexpressing transformed adrenocortical cells. FEBS Lett 1999; 460:235-40. [PMID: 10544242 DOI: 10.1016/s0014-5793(99)01355-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
To test the Kirsten-Ras (Ki-Ras) alternative prenylation hypothesis in malignant transformation, we used a novel farnesyltransferase inhibitor competitive to farnesyl-pyrophosphate, RPR130401, and a CaaX peptidomimetic geranylgeranyltransferase-1 inhibitor GGTI-298. In Ki-Ras-overexpressing transformed adrenocortical cells, RPR130401 at 1-10 microM inhibited very efficiently the [(3)H]farnesyl but not [(3)H]geranylgeranyl transfer to Ras. However, proliferation of these cells was only slightly sensitive to RPR130401 (IC(50)=30 microM). GGTI-298 inhibited the growth of these cells with an IC(50) of 11 microM but cell lysis was observed at 15 microM. The combination of 10 microM RPR130401 and 10 microM GGTI-298 inhibited efficiently (80%) cell proliferation. These combined inhibitors but not each inhibitor alone blocked the cell cycle in G(0)/G(1) and disrupted MAP kinase activation. Thus, combination of two inhibitors, at non-cytotoxic concentrations, acting on the farnesyl-pyrophosphate binding site of the farnesyltransferase and the CaaX binding site of the geranylgeranyltransferase-1 respectively is an efficient strategy for disrupting Ki-Ras tumorigenic cell proliferation.
Collapse
Affiliation(s)
- J L Mazet
- Unité Mixte de Recherche INRA-Université de Bourgogne, Phytopharmacie et Biochimie des Interactions Cellulaires, INRA, BV 1540, 21034, Dijon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Gibbs BS, Zahn TJ, Mu Y, Sebolt-Leopold JS, Gibbs RA. Novel farnesol and geranylgeraniol analogues: A potential new class of anticancer agents directed against protein prenylation. J Med Chem 1999; 42:3800-8. [PMID: 10508429 DOI: 10.1021/jm9902786] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein farnesyltransferase (FTase), the enzyme responsible for protein farnesylation, has become a key target for the rational design of cancer chemotherapeutic agents. Herein it is shown that certain novel prenyl diphosphate analogues are potent inhibitors of mammalian FTase. Furthermore, the alcohol precursors of two of these compounds are able to block anchorage-independent growth of ras-transformed cells. While 3-allylfarnesol inhibits protein farnesylation, 3-vinylfarnesol instead leads to abnormal prenylation of proteins with the 3-vinylfarnesyl group. In a similar manner, 3-allylgeranylgeraniol acts as a highly specific inhibitor of protein geranylgeranylation, while 3-vinylgeranylgeraniol restores protein geranylgeranylation in cells. This study indicates that certain prenyl alcohol analogues can act as prenyltransferase inhibitors in situ, via a novel prodrug mechanism. These analogues may prove to be valuable tools for investigating the therapeutic consequences of inhibiting geranylgeranylation relative to farnesylation. Furthermore, the 3-vinyl alcohol analogues can inhibit transformed cell growth through a mechanism not involving prenyltransferase inhibition.
Collapse
Affiliation(s)
- B S Gibbs
- Department of Cell Biology, Parke-Davis Pharmaceutical Research, 2800 Plymouth Road, Ann Arbor, Michigan 48105, USA
| | | | | | | | | |
Collapse
|
62
|
Zhao X, Yokoyama K, Whitten ME, Huang J, Gelb MH, Palczewski K. A novel form of rhodopsin kinase from chicken retina and pineal gland. FEBS Lett 1999; 454:115-21. [PMID: 10413107 DOI: 10.1016/s0014-5793(99)00764-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The G protein-coupled receptor kinases (GRKs) are important enzymes in the desensitization of activated G protein-coupled receptors (GPCR). Seven members of the GRK family have been identified to date. Among these enzymes, GRK1 is involved in phototransduction and is the most specialized kinase of the family. GRK1 phosphorylates photoactivated rhodopsin (Rho*), initiating steps in its deactivation. In this study, we found that chicken retina and pineal gland express a novel form of GRK that has sequence features characteristic of GRK1. However, unlike bovine GRK1 which is farnesylated, chicken GRK1 contains a consensus sequence for geranylgeranylation. Peptides corresponding to the C-terminal sequence of chicken GRK1 are geranylgeranylated by a cytosolic extract of chicken liver. Based on results of molecular cloning and immunolocalization, it appears that both rod and cone photoreceptors express this novel GRK1. These data indicate a larger sequence diversity of photoreceptor GRKs than anticipated previously.
Collapse
Affiliation(s)
- X Zhao
- Department of Ophthalmology, University of Washington, Seattle 98195, USA
| | | | | | | | | | | |
Collapse
|
63
|
Loirand G, Cario-Toumaniantz C, Chardin P, Pacaud P. The Rho-related protein Rnd1 inhibits Ca2+ sensitization of rat smooth muscle. J Physiol 1999; 516 ( Pt 3):825-34. [PMID: 10200428 PMCID: PMC2269299 DOI: 10.1111/j.1469-7793.1999.0825u.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. The small GTP-binding Rho proteins are involved in the agonist-induced Ca2+ sensitization of smooth muscle. The action and the expression of Rnd1, a new member of the Rho protein family constitutively bound to GTP, has been studied in rat smooth muscle. 2. Recombinant prenylated Rnd1 (0.01-0.1 mg ml-1) dose dependently inhibited carbachol- and GTPgammaS-induced Ca2+ sensitization in beta-escin-permeabilized ileal smooth muscle strips but had no effect on the tension at submaximal [Ca2+] (pCa 6.3). Rnd1 inhibited GTPgammaS-induced tension without shifting the dose-response curves to GTPgammaS. 3. pCa-tension relationships were not modified by Rnd1 and the rise in tension induced through the inhibition of myosin light chain phosphatase by calyculin A was not affected by Rnd1. 4. The Ca2+ sensitization induced by recombinant RhoA was completely abolished when RhoA and Rnd1 were applied together. 5. Rnd1 was expressed at a low level in membrane fractions prepared from intestinal or arterial smooth muscles. The expression of Rnd1 was strongly increased in ileal and aortic smooth muscle from rats treated with progesterone or oestrogen. Progesterone-treated ileal muscle strips showed a decrease in agonist-induced Ca2+ sensitization. 6. The present study shows that (i) Rnd1 inhibits agonist- and GTPgammaS-induced Ca2+ sensitization of smooth muscle by specifically interfering with a RhoA-dependent mechanism and (ii) an increase in Rnd1 expression may account, at least in part, for the steroid-induced decrease in agonist-induced Ca2+ sensitization.
Collapse
Affiliation(s)
- G Loirand
- Institut de Pharmacologie Moleculaire et Cellulaire, CNRS UPR 411, 660 route des lucioles, Sophia Antipolis, 06560 Valbonne, France
| | | | | | | |
Collapse
|
64
|
Eummer JT, Gibbs BS, Zahn TJ, Sebolt-Leopold JS, Gibbs RA. Novel limonene phosphonate and farnesyl diphosphate analogues: design, synthesis, and evaluation as potential protein-farnesyl transferase inhibitors. Bioorg Med Chem 1999; 7:241-50. [PMID: 10218815 DOI: 10.1016/s0968-0896(98)00202-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Limonene and its metabolite perillyl alcohol are naturally-occurring isoprenoids that block the growth of cancer cells both in vitro and in vivo. This cytostatic effect appears to be due, at least in part, to the fact that these compounds are weak yet selective and non-toxic inhibitors of protein prenylation. Protein-farnesyl transferase (FTase), the enzyme responsible for protein farnesylation, has become a key target for the rational design of cancer chemotherapeutic agents. Therefore, several alpha-hydroxyphosphonate derivatives of limonene were designed and synthesized as potentially more potent FTase inhibitors. A noteworthy feature of the synthesis was the use of trimethylsilyl triflate as a mild, neutral deprotection method for the preparation of sensitive phosphonates from the corresponding tert-butyl phosphonate esters. Evaluation of these compounds demonstrates that they are exceptionally poor FTase inhibitors in vitro (IC50 > or = 3 mM) and they have no effect on protein farnesylation in cells. In contrast, farnesyl phosphonyl(methyl)phosphinate, a diphosphate-modified derivative of the natural substrate farnesyl diphosphate, is a very potent FTase inhibitor in vitro (Ki=23 nM).
Collapse
Affiliation(s)
- J T Eummer
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, Wayne State University, Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
65
|
Boutin JA, Marande W, Petit L, Loynel A, Desmet C, Canet E, Fauchère JL. Investigation of S-farnesyl transferase substrate specificity with combinatorial tetrapeptide libraries. Cell Signal 1999; 11:59-69. [PMID: 10206346 DOI: 10.1016/s0898-6568(98)00032-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using biased tetrapeptide libraries made up of proteinogenic amino acids of the general formula Cys-O2-X3-X4, we searched for new substrates of partly purified rat brain S-farnesyl transferase (FTase). To achieve this task, an assay was developed in which the consumption of the co-substrate (farnesyl pyrophosphate) was measured. After three steps of deconvolution including each synthesis and enzymatic assay, the most efficient substrates found under these particular conditions were Cys-Lys-Gln-Gln (peptide I) and Cys-Lys-Gln-Met (peptide II). As a control, we used another tetrapeptide library (Cys-Val-O3-X4) in which the valine position was arbitrarily fixed, corresponding to Cys-Val-Ile-Met in the CAAX box of K-RasB, although this sublibrary was only marginally active compared with Cys-Lys-X3-X4 in the first round of deconvolution. The best substrate sublibrary was Cys-Val-Thr-X4, threonine being more favourable than the aliphatic amino acids (Val, Ile, Leu, Ala) in this position. Deconvolution finally led to Cys-Val-Thr-Gln, -Met, -Thr and -Ser as the most efficient substrates of FTase. Those tetrapeptides were not substrates of a partly purified geranylgeranyl transferase 1 (GGTase1). We also investigated the influence of the -1 position (at the N-terminus of cysteine) on the specificity of the enzyme, by using a series of pentapeptides constructed on the basis of the best tetrapeptide core (peptide 1). Among this family of analogues, only His-Cys-Lys-Gln-Gln did not behave as a substrate, whereas all the other pentapeptides were measurable substrates, with Gly-, Asn- and Thr-Cys-Lys-Gln-Gln displaying kinetic constants similar to that of Cys-Lys-Gln-Gln. The present work provides strong evidence that the best tetrapeptide substrates of FTase do not necessarily belong to the classical CAAX box, in which A's are lipophilic residues, but rather contain hydrophilic amino acids in the middle of their sequences. Among them, peptides I and II are potent FTase in vitro substrates that are not recognised by GGTase1 and might be new starting points for the design of FTase inhibitors.
Collapse
Affiliation(s)
- J A Boutin
- Department of Peptides and Combinatorial Chemistry, Institut de Recherches SERVIER, Suresnes, France.
| | | | | | | | | | | | | |
Collapse
|
66
|
Kucich U, Rosenbloom JC, Shen G, Abrams WR, Blaskovich MA, Hamilton AD, Ohkanda J, Sebti SM, Rosenbloom J. Requirement for geranylgeranyl transferase I and acyl transferase in the TGF-beta-stimulated pathway leading to elastin mRNA stabilization. Biochem Biophys Res Commun 1998; 252:111-6. [PMID: 9813154 DOI: 10.1006/bbrc.1998.9544] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The TGF-betas are multipotent in their biological activity, modulating cell growth and differentiation as well as extracellular matrix deposition and degradation. Most of these activities involve modulation of gene transcription. However, TGF-beta1 has been shown previously to substantially increase the expression of elastin by stabilization of tropoelastin mRNA through a signaling pathway which involves a phosphatidylcholine-specific phospholipase and a protein kinase C. The present results, through the use of specific inhibitors of geranylgeranyl transferase I, farnesyl transferase, and acyl transferase, demonstrate that geranylgeranylated and acylated, but not farnesyslated protein(s) is required for this TGF-beta1 effect. In addition, the general tyrosine kinase inhibitor genistein completely blocked this TGF-beta1 effect. The results suggest that the TGF-beta1 signaling pathway requires not only receptor ser/thr kinase activity, but also tyrosine kinase and small GTPase activities.
Collapse
Affiliation(s)
- U Kucich
- Department of Anatomy and Histology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania, 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Inhibitors of Protein:Farnesyl Transferase and Protein:Geranylgeranyl Transferase I: Synthesis of Homologous Diphosphonate Analogs of Isoprenylated Pyrophosphate. Bioorg Chem 1998. [DOI: 10.1006/bioo.1998.1101] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
68
|
Desnoyers L, Seabra MC. Single prenyl-binding site on protein prenyl transferases. Proc Natl Acad Sci U S A 1998; 95:12266-70. [PMID: 9770475 PMCID: PMC22820 DOI: 10.1073/pnas.95.21.12266] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/1998] [Accepted: 08/04/1998] [Indexed: 11/18/2022] Open
Abstract
Three distinct protein prenyl transferases, one protein farnesyl transferase (FTase) and two protein geranylgeranyl transferases (GGTase), catalyze prenylation of many cellular proteins. One group of protein substrates contains a C-terminal CAAX motif (C is Cys, A is aliphatic, and X is a variety of amino acids) in which the single cysteine residue is modified with either farnesyl or geranylgeranyl (GG) by FTase or GGTase type-I (GGTase-I), respectively. Rab proteins constitute a second group of substrates that contain a C-terminal double-cysteine motif (such as XXCC in Rab1a) in which both cysteines are geranylgeranylated by Rab GG transferase (RabGGTase). Previous characterization of CAAX prenyl transferases showed that the enzymes form stable complexes with their prenyl pyrophosphate substrates, acting as prenyl carriers. We developed a prenyl-binding assay and show that RabGGTase has a prenyl carrier function similar to the CAAX prenyl transferases. Stable RabGGTase:GG pyrophosphate (GGPP), FTase:GGPP, and GGTase-I:GGPP complexes show 1:1 (enzyme:GGPP) stoichiometry. Chromatographic analysis of prenylated products after single turnover reactions by using isolated RabGGTase:GGPP complex revealed that Rab is mono-geranylgeranylated. This study establishes that all three protein prenyl transferases contain a single prenyl-binding site and suggests that RabGGTase transfers two GG groups to Rabs in independent and consecutive reactions.
Collapse
Affiliation(s)
- L Desnoyers
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | |
Collapse
|
69
|
Chang JH, Pratt JC, Sawasdikosol S, Kapeller R, Burakoff SJ. The small GTP-binding protein Rho potentiates AP-1 transcription in T cells. Mol Cell Biol 1998; 18:4986-93. [PMID: 9710582 PMCID: PMC109083 DOI: 10.1128/mcb.18.9.4986] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rho family of small GTP-binding proteins is involved in the regulation of cytoskeletal structure, gene transcription, specific cell fate development, and transformation. We demonstrate in this report that overexpression of an activated form of Rho enhances AP-1 activity in Jurkat T cells in the presence of phorbol myristate acetate (PMA), but activated Rho (V14Rho) has little or no effect on NFAT, Oct-1, and NF-kappaB enhancer element activities under similar conditions. Overexpression of a V14Rho construct incapable of membrane localization (CAAX deleted) abolishes PMA-induced AP-1 transcriptional activation. The effect of Rho on AP-1 is independent of the mitogen-activated protein kinase pathway, as a dominant-negative MEK and a MEK inhibitor (PD98059) did not affect Rho-induced AP-1 activity. V14Rho binds strongly to protein kinase Calpha (PKCalpha) in vivo; however, deletion of the CAAX site on V14Rho severely diminished this association. Evidence for a role for PKCalpha as an effector of Rho was obtained by the observation that coexpression of the N-terminal domain of PKCalpha blocked the effects of activated Rho plus PMA on AP-1 transcriptional activity. These data suggest that Rho potentiates AP-1 transcription during T-cell activation.
Collapse
Affiliation(s)
- J H Chang
- Division of Pediatric Oncology, Dana-Farber Cancer Institute, and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
70
|
Roskoski R, Ritchie P. Role of the carboxyterminal residue in peptide binding to protein farnesyltransferase and protein geranylgeranyltransferase. Arch Biochem Biophys 1998; 356:167-76. [PMID: 9705207 DOI: 10.1006/abbi.1998.0768] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein farnesyltransferase and protein geranylgeranyltransferase-I catalyze the prenylation of a cysteinyl group located four residues upstream of the carboxyl terminus. The identity of the carboxyterminal residue plays a significant role in determining the ability of compounds to bind to each enzyme and to serve as substrate. We compared the binding and substrate specificities of peptides with carboxyterminal substitutions to determine which residues promote selectivity and which residues promote recognition by both enzymes. Using tetrapeptide inhibitors with the general structure l-penicillamine-valine-isoleucine-X and substrates with the structure Lys-Lys-Ser-Ser-Cys-Val-Ile-X, we measured their respective Ki, Km, and kcat values for both recombinant rat protein farnesyltransferase and recombinant rat protein geranylgeranyltransferase-I. We studied the roles of carboxyterminal branched residues (leucine, isoleucine, valine, and penicillamine) and linear residues (methionine, cysteine, homocysteine, alanine, aminobutyrate, and aminohexanoate) in promoting interaction with the enzymes. For protein geranylgeranyltransferase-I, peptide substrates with carboxyterminal branched or linear residues had Km values that were 5- to 15-fold greater than the Ki values of the corresponding peptide inhibitors. For protein farnesyltransferase, peptide substrates with carboxyterminal branched residues, proline, or homoserine had Km values that were 7- to 200-fold greater than the Ki values of the corresponding peptide inhibitors. For protein farnesyltransferase the Km and Ki values for peptides ending with linear residues were in general agreement. Our studies indicate that the substrate and inhibitor binding specificities of protein geranylgeranyltransferase was much more restricted than those of protein farnesyltransferase.
Collapse
Affiliation(s)
- R Roskoski
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, New Orleans 70119, USA
| | | |
Collapse
|
71
|
Long SB, Casey PJ, Beese LS. Cocrystal structure of protein farnesyltransferase complexed with a farnesyl diphosphate substrate. Biochemistry 1998; 37:9612-8. [PMID: 9657673 DOI: 10.1021/bi980708e] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein farnesyltransferase (FTase) catalyzes the transfer of the hydrophobic farnesyl group from farnesyl diphosphate (FPP) to cellular proteins such as Ras at a cysteine residue near their carboxy-terminus. This process is necessary for the subcellular localization of these proteins to the plasma membrane and is required for the transforming activity of oncogenic variants of Ras, making FTase a prime target for anticancer therapeutics. The high-resolution crystal structure of rat FTase was recently determined, and we present here the X-ray crystal structure of the first complex of FTase with a FPP substrate bound at the active site. The isoprenoid moiety of FPP binds in an extended conformation in a hydrophobic cavity of the beta subunit of the FTase enzyme, and the diphosphate moiety binds to a positively charged cleft at the top of this cavity near the subunit interface. The observed location of the FPP molecule is consistent with mutagenesis data. This binary complex of FTase with FPP leads us to suggest a "molecular ruler" hypothesis for isoprenoid substrate specificity, where the depth of the hydrophobic binding cavity acts as a ruler discriminating between isoprenoids of differing lengths. Although other length isoprenoids may bind in the cavity, only the 15-carbon farnesyl moiety binds with its C1 atom in register with a catalytic zinc ion as required for efficient transfer to the Ras substrate.
Collapse
Affiliation(s)
- S B Long
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
72
|
Boutin JA, Marande W, Goussard M, Loynel A, Canet E, Fauchere JL. Chromatographic assay and peptide substrate characterization of partially purified farnesyl- and geranylgeranyltransferases from rat brain cytosol. Arch Biochem Biophys 1998; 354:83-94. [PMID: 9633601 DOI: 10.1006/abbi.1998.0678] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A simple method for partially purifying both farnesyltransferase and geranylgeranyltransferase from rat brain cytosol is presented. Each of the final protein preparations contains one single transferase activity. A common method of measurement of both activities is described. The assay, which follows substrate prenylation, is also convenient for the measurement of the concomitant decrease in cosubstrates during the two transfer reactions. The quantitative HPLC detection of the prenylated substrates and of the cosubstrate consumption is used here to follow the purification processes. The same method is also used for substrate-specificity studies of the two enzymes performed on 18 synthetic hexapeptides derived from the C-terminus of proteins known to be prenylated in vivo. These studies partially confirm the reported differences in the substrate specificities of the two prenyltransferases. However, the observed recognition of overlapping sequences by the two enzymes might have important consequences for the inhibition of either of the enzymes in vivo and for the design of specific inhibitors.
Collapse
Affiliation(s)
- J A Boutin
- Department of Peptide and Combinatorial Chemistry, Institut de Recherches Servier, Suresnes, France.
| | | | | | | | | | | |
Collapse
|
73
|
Gelb MH, Scholten JD, Sebolt-Leopold JS. Protein prenylation: from discovery to prospects for cancer treatment. Curr Opin Chem Biol 1998; 2:40-8. [PMID: 9667914 DOI: 10.1016/s1367-5931(98)80034-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A specific set of proteins in eukaryotic cells contain covalently attached carboxy-terminal prenyl groups (15-carbon farnesyl and 20-carbon geranylgeranyl). Many of them are signaling proteins including Ras, heterotrimeric G proteins and Rab proteins. The protein prenyltransferases which attach prenyl groups to proteins have been well characterized, and an X-ray structure is available for protein farnesyltransferase. Inhibitors of protein farnesyltransferase are showing sufficient promise in preclinical trials as anti-cancer drugs to warrant widespread interest in the pharmaceutical industry.
Collapse
Affiliation(s)
- M H Gelb
- Department of Chemistry, Box 351700, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
74
|
Abstract
Prenyl modification of proteins by farnesyl and geranylgeranyl isoprenoids occurs in a variety of eukaryotic cells. Culturing of Trypanosoma brucei in the presence of [3H]mevalonolactone (which is hydrolyzed in cells to give mevalonic acid, the precursor of protein prenyl groups) and an inhibitor of mevalonic acid biosynthesis leads to the radiolabeling of a specific set of proteins when analyzed by gel electrophoresis. T. brucei proteins were also labeled when cells were cultured in the presence of [3H]farnesol or [3H]geranylgeraniol, and each prenol labels a distinct set of proteins. Unlike mammalian cells, only a few T. brucei proteins of molecular weights similar to those of the mammalian Ras superfamily of GTPase (20-30 kDa) were labeled with [3H]farnesol or [3H]geranylgeraniol. When the 0-55% ammonium sulfate fraction of T. brucei cytosol was fractionated on anion exchange chromatography, protein farnesyltransferase (PFT) and protein geranylgeranyltransferase-I (PGGT-I) activities were detected and elute as two distinct peaks. Partially purified T. brucei PFT and PGGT-I display partly different specificities toward prenyl acceptor substrates from those of mammalian protein prenyltransferases. As shown previously, rat PFT utilizes proteins ending in CVLS and CVIM as efficient prenyl acceptors and rat PGGT-I utilizes proteins ending in CVLL and CVIM in vitro. On the contrary, T. brucei PFT farnesylates a protein ending in CVIM but not CVLS or CVLL, and T. brucei PGGT-I preferentially geranylgeranylates a protein ending in CVLL.
Collapse
Affiliation(s)
- K Yokoyama
- Department of Chemistry, University of Washington, Seattle 98195-1700, USA
| | | | | | | |
Collapse
|
75
|
Lebowitz PF, Casey PJ, Prendergast GC, Thissen JA. Farnesyltransferase inhibitors alter the prenylation and growth-stimulating function of RhoB. J Biol Chem 1997; 272:15591-4. [PMID: 9188444 DOI: 10.1074/jbc.272.25.15591] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Protein farnesyltransferase inhibitors (FTIs) inhibit Ras transformation and Ras-dependent tumor cell growth, but the biological mechanisms underlying these activities is unclear. In previous work, we presented support for the hypothesis that the anti-transforming effects of FTIs depend upon alterations in the function of RhoB, a member of the Rho family of proteins that regulate cytoskeletal actin, cell adhesion, and cell growth. A significant question that needed to be addressed was whether FTIs could directly alter the prenylation as well as the function of RhoB in cells. This issue is complex because farnesylated and geranylgeranylated forms of RhoB (RhoB-F and RhoB-GG) both exist in cells. Here, we show that RhoB farnesylation in vitro can be catalyzed by protein farnesyltransferase and that the peptidomimetic FTI L-739,749 inhibits the farnesylation of RhoB both in vitro and in intact cells. In drug-treated cells, the level of RhoB-GG increased in parallel with the decrease in RhoB-F. In addition to altering RhoB prenylation, L-739,749 suppressed RhoB-dependent cell growth. Taken together, the results suggest that the inhibitory effects of FTIs on RhoB function can be mediated by a relative loss of RhoB-F, a gain of RhoB-GG, or both. Our findings strengthen the causal link between RhoB inhibition and the anti-transforming effects of FTIs and indicate that differently prenylated forms of RhoB may have unique functions.
Collapse
Affiliation(s)
- P F Lebowitz
- Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|