51
|
Koenigs A, Zipfel PF, Kraiczy P. Translation Elongation Factor Tuf of Acinetobacter baumannii Is a Plasminogen-Binding Protein. PLoS One 2015; 10:e0134418. [PMID: 26230848 PMCID: PMC4521846 DOI: 10.1371/journal.pone.0134418] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/08/2015] [Indexed: 11/19/2022] Open
Abstract
Acinetobacter baumannii is an important nosocomial pathogen, causing a variety of opportunistic infections of the skin, soft tissues and wounds, urinary tract infections, secondary meningitis, pneumonia and bacteremia. Over 63% of A. baumannii infections occurring in the United States are caused by multidrug resistant isolates, and pan-resistant isolates have begun to emerge that are resistant to all clinically relevant antibiotics. The complement system represents the first line of defense against invading pathogens. However, many A. baumannii isolates, especially those causing severe bacteremia are resistant to complement-mediated killing, though the underlying mechanisms remain poorly understood. Here we show for the first time that A. baumannii binds host-derived plasminogen and we identify the translation elongation factor Tuf as a moonlighting plasminogen-binding protein that is exposed on the outer surface of A. baumannii. Binding of plasminogen to Tuf is at least partly dependent on lysine residues and ionic interactions. Plasminogen, once bound to Tuf can be converted to active plasmin and proteolytically degrade fibrinogen as well as the key complement component C3b. Thus, Tuf acts as a multifunctional protein that may contribute to virulence of A. baumannii by aiding in dissemination and evasion of the complement system.
Collapse
Affiliation(s)
- Arno Koenigs
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany
| | - Peter F. Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
- Friedrich Schiller University, Jena, Germany
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany
- * E-mail:
| |
Collapse
|
52
|
Dumpala PR, Peterson BC, Lawrence ML, Karsi A. Identification of Differentially Abundant Proteins of Edwardsiella ictaluri during Iron Restriction. PLoS One 2015; 10:e0132504. [PMID: 26168192 PMCID: PMC4500449 DOI: 10.1371/journal.pone.0132504] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/15/2015] [Indexed: 11/30/2022] Open
Abstract
Edwardsiella ictaluri is a Gram-negative facultative anaerobe intracellular bacterium that causes enteric septicemia in channel catfish. Iron is an essential inorganic nutrient of bacteria and is crucial for bacterial invasion. Reduced availability of iron by the host may cause significant stress for bacterial pathogens and is considered a signal that leads to significant alteration in virulence gene expression. However, the precise effect of iron-restriction on E. ictaluri protein abundance is unknown. The purpose of this study was to identify differentially abundant proteins of E. ictaluri during in vitro iron-restricted conditions. We applied two-dimensional difference in gel electrophoresis (2D-DIGE) for determining differentially abundant proteins and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF/TOF MS) for protein identification. Gene ontology and pathway-based functional modeling of differentially abundant proteins was also conducted. A total of 50 unique differentially abundant proteins at a minimum of 2-fold (p ≤ 0.05) difference in abundance due to iron-restriction were detected. The numbers of up- and down-regulated proteins were 37 and 13, respectively. We noted several proteins, including EsrB, LamB, MalM, MalE, FdaA, and TonB-dependent heme/hemoglobin receptor family proteins responded to iron restriction in E. ictaluri.
Collapse
Affiliation(s)
- Pradeep R. Dumpala
- The Rogosin Institute, Xenia Division, Xenia, Ohio, United States of America
| | - Brian C. Peterson
- USDA ARS Warmwater Aquaculture Research Unit, Thad Cochran National Warmwater Aquaculture Center, Stoneville, Mississippi, United States of America
| | - Mark L. Lawrence
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Attila Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
- * E-mail:
| |
Collapse
|
53
|
Panda B, Basu B, Rajaram H, Apte SK. Comparative proteomics of oxidative stress response in three cyanobacterial strains native to Indian paddy fields. J Proteomics 2015; 127:152-60. [PMID: 26013413 DOI: 10.1016/j.jprot.2015.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/05/2015] [Accepted: 05/20/2015] [Indexed: 11/26/2022]
Abstract
Three strains of photoautotrophic, heterocystous, nitrogen-fixing cyanobacterium Anabaena, native to Indian paddy fields, were examined for their tolerance and proteomic response to the frequently used weedicide paraquat (methyl viologen). Anabaena 7120 (LD50 dose: 2μM for 6h) and Anabaena L-31 (LD50 dose: 2μM for 5h) showed distinctly better tolerance than Anabaena doliolum (LD50 dose: 2μM for 3h), to methyl viologen induced oxidative stress. The proteomic response, at respective LD50 dose, was mapped by 2D gel protein electrophoresis followed by protein identification by MALDI-ToF mass spectrometry. About 92 and 41 oxidative stress-responsive proteins were identified from Anabaena L-31 and A. doliolum, respectively, and compared with methyl viologen responsive proteins reported from Anabaena 7120 earlier. Upregulation of proteins involved in oxidative stress alleviation and protein homeostasis and downregulation of photosynthesis and carbon metabolism related enzymes appeared to underlie the oxidative stress response in all three Anabaena strains. Reduced photosynthesis and cellular reserves of molecular energy [ATP+NAD(P)H] seemed to overwhelm the cellular machinery to combat oxidative stress and protein denaturation, in preference to other adaptations, while the strain specific differences observed in proteome response appeared to determine the methyl viologen tolerance of individual cyanobacterial strains. This article is part of a Special Issue entitled: Proteomics in India.
Collapse
Affiliation(s)
- Bandita Panda
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Hema Rajaram
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Shree Kumar Apte
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
| |
Collapse
|
54
|
Wang L, Tang W, Wang X, Chen Y, Wu Y, Qiang Y, Feng Y, Ren Z, Chen S, Xu A. PPIase is associated with the diversity of conotoxins from cone snail venom glands. Biochimie 2015; 112:129-38. [DOI: 10.1016/j.biochi.2015.02.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/28/2015] [Indexed: 11/26/2022]
|
55
|
Mohan S, Hertweck C, Dudda A, Hammerschmidt S, Skerka C, Hallström T, Zipfel PF. Tuf of Streptococcus pneumoniae is a surface displayed human complement regulator binding protein. Mol Immunol 2014; 62:249-64. [PMID: 25046156 DOI: 10.1016/j.molimm.2014.06.029] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 11/15/2022]
Abstract
Streptococcus pneumoniae is a Gram-positive bacterium, causing acute sinusitis, otitis media, and severe diseases such as pneumonia, bacteraemia, meningitis and sepsis. Here we identify elongation factor Tu (Tuf) as a new Factor H binding protein of S. pneumoniae. The surface protein PspC which also binds a series of other human immune inhibitors, was the first identified pneumococcal Factor H binding protein of S. pneumoniae. Pneumococcal Tuf, a 55 kDa pneumococcal moonlighting protein which is displayed on the surface of pneumococci, is also located in the cytoplasm and is detected in the culture supernatant. Tuf binds the human complement inhibitors Factor H, FHL-1, CFHR1 and also the proenzyme plasminogen. Factor H and FHL-1 bound to Tuf, retain their complement regulatory activities. Similarly, plasminogen bound to Tuf was accessible for the activator uPA and activated plasmin cleaved the synthetic chromogenic substrate S-2251 as well as the natural substrates fibrinogen and the complement proteins C3 and C3b. Taken together, Tuf of S. pneumoniae is a new multi-functional bacterial virulence factor that helps the pathogen in complement escape and likely also in ECM degradation.
Collapse
Affiliation(s)
- Sarbani Mohan
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Antje Dudda
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Sven Hammerschmidt
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University, Greifswald, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Teresia Hallström
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany; Faculty of Biology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
56
|
Komatsu S, Kamal AHM, Hossain Z. Wheat proteomics: proteome modulation and abiotic stress acclimation. FRONTIERS IN PLANT SCIENCE 2014; 5:684. [PMID: 25538718 PMCID: PMC4259124 DOI: 10.3389/fpls.2014.00684] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 11/18/2014] [Indexed: 05/21/2023]
Abstract
Cellular mechanisms of stress sensing and signaling represent the initial plant responses to adverse conditions. The development of high-throughput "Omics" techniques has initiated a new era of the study of plant molecular strategies for adapting to environmental changes. However, the elucidation of stress adaptation mechanisms in plants requires the accurate isolation and characterization of stress-responsive proteins. Because the functional part of the genome, namely the proteins and their post-translational modifications, are critical for plant stress responses, proteomic studies provide comprehensive information about the fine-tuning of cellular pathways that primarily involved in stress mitigation. This review summarizes the major proteomic findings related to alterations in the wheat proteomic profile in response to abiotic stresses. Moreover, the strengths and weaknesses of different sample preparation techniques, including subcellular protein extraction protocols, are discussed in detail. The continued development of proteomic approaches in combination with rapidly evolving bioinformatics tools and interactive databases will facilitate understanding of the plant mechanisms underlying stress tolerance.
Collapse
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research OrganizationTsukuba, Japan
| | - Abu H. M. Kamal
- National Institute of Crop Science, National Agriculture and Food Research OrganizationTsukuba, Japan
| | - Zahed Hossain
- Plant Stress Biology Lab, Department of Botany, West Bengal State UniversityKolkata, India
| |
Collapse
|
57
|
Guan N, Shin HD, Chen RR, Li J, Liu L, Du G, Chen J. Understanding of how Propionibacterium acidipropionici respond to propionic acid stress at the level of proteomics. Sci Rep 2014; 4:6951. [PMID: 25377721 PMCID: PMC4223659 DOI: 10.1038/srep06951] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/10/2014] [Indexed: 11/29/2022] Open
Abstract
Propionic acid (PA) is an important platform chemical in the food, agriculture, and pharmaceutical industries and is mainly biosynthesized by propionibacteria. Acid tolerance in PA-producing strains is crucial. In previous work, we investigated the acid tolerance mechanism of Propionibacterium acidipropionici at microenvironmental levels by analyzing physiological changes in the parental strain and three PA-tolerant mutants obtained by genome shuffling. However, the molecular mechanism of PA tolerance in P. acidipropionici remained unclear. Here, we performed a comparative proteomics study of P. acidipropionici CGMCC 1.2230 and the acid-tolerant mutant P. acidipropionici WSH1105; MALDI-TOF/MS identified 24 proteins that significantly differed between the parental and shuffled strains. The differentially expressed proteins were mainly categorized as key components of crucial biological processes and the acid stress response. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was used to confirm differential expression of nine key proteins. Overexpression of the secretory protein glyceraldehyde-3-phosphate dehydrogenase and ATP synthase subunit α in Escherichia coli BL21 improved PA and acetic acid tolerance; overexpression of NADH dehydrogenase and methylmalonyl-CoA epimerase improved PA tolerance. These results provide new insights into the acid tolerance of P. acidipropionici and will facilitate the development of PA production through fermentation by propionibacteria.
Collapse
Affiliation(s)
- Ningzi Guan
- 1] Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China [2] Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Hyun-dong Shin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta 30332, USA
| | - Rachel R Chen
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta 30332, USA
| | - Jianghua Li
- 1] Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China [2] Synergetic Innovation Center Of Food Safety and Nutrition, Wuxi 214122, China
| | - Long Liu
- 1] Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China [2] Synergetic Innovation Center Of Food Safety and Nutrition, Wuxi 214122, China
| | - Guocheng Du
- Synergetic Innovation Center Of Food Safety and Nutrition, Wuxi 214122, China
| | - Jian Chen
- Synergetic Innovation Center Of Food Safety and Nutrition, Wuxi 214122, China
| |
Collapse
|
58
|
Structures and functions of Qβ replicase: translation factors beyond protein synthesis. Int J Mol Sci 2014; 15:15552-70. [PMID: 25184952 PMCID: PMC4200798 DOI: 10.3390/ijms150915552] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 11/19/2022] Open
Abstract
Qβ replicase is a unique RNA polymerase complex, comprising Qβ virus-encoded RNA-dependent RNA polymerase (the catalytic β-subunit) and three host-derived factors: translational elongation factor (EF) -Tu, EF-Ts and ribosomal protein S1. For almost fifty years, since the isolation of Qβ replicase, there have been several unsolved, important questions about the mechanism of RNA polymerization by Qβ replicase. Especially, the detailed functions of the host factors, EF-Tu, EF-Ts, and S1, in Qβ replicase, which are all essential in the Escherichia coli (E. coli) host for protein synthesis, had remained enigmatic, due to the absence of structural information about Qβ replicase. In the last five years, the crystal structures of the core Qβ replicase, consisting of the β-subunit, EF-Tu and Ts, and those of the core Qβ replicase representing RNA polymerization, have been reported. Recently, the structure of Qβ replicase comprising the β-subunit, EF-Tu, EF-Ts and the N-terminal half of S1, which is capable of initiating Qβ RNA replication, has also been reported. In this review, based on the structures of Qβ replicase, we describe our current understanding of the alternative functions of the host translational elongation factors and ribosomal protein S1 in Qβ replicase as replication factors, beyond their established functions in protein synthesis.
Collapse
|
59
|
Gomes DF, da Silva Batista JS, Rolla AAP, da Silva LP, Bloch C, Galli-Terasawa LV, Hungria M. Proteomic analysis of free-living Bradyrhizobium diazoefficiens: highlighting potential determinants of a successful symbiosis. BMC Genomics 2014; 15:643. [PMID: 25086822 PMCID: PMC4287336 DOI: 10.1186/1471-2164-15-643] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/25/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Strain CPAC 7 (=SEMIA 5080) was recently reclassified into the new species Bradyrhizobium diazoefficiens; due to its outstanding efficiency in fixing nitrogen, it has been used in commercial inoculants for application to crops of soybean [Glycine max (L.) Merr.] in Brazil and other South American countries. Although the efficiency of B. diazoefficiens inoculant strains is well recognized, few data on their protein expression are available. RESULTS We provided a two-dimensional proteomic reference map of CPAC 7 obtained under free-living conditions, with the successful identification of 115 spots, representing 95 different proteins. The results highlighted the expression of molecular determinants potentially related to symbiosis establishment (e.g. inositol monophosphatase, IMPase), fixation of atmospheric nitrogen (N2) (e.g. NifH) and defenses against stresses (e.g. chaperones). By using bioinformatic tools, it was possible to attribute probable functions to ten hypothetical proteins. For another ten proteins classified as "NO related COG" group, we analyzed by RT-qPCR the relative expression of their coding-genes in response to the nodulation-gene inducer genistein. Six of these genes were up-regulated, including blr0227, which may be related to polyhydroxybutyrate (PHB) biosynthesis and competitiveness for nodulation. CONCLUSIONS The proteomic map contributed to the identification of several proteins of B. diazoefficiens under free-living conditions and our approach-combining bioinformatics and gene-expression assays-resulted in new information about unknown genes that might play important roles in the establishment of the symbiosis with soybean.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mariangela Hungria
- Embrapa Soja, Embrapa Soja, C,P, 231, 86001-970 Londrina, Paraná, Brazil.
| |
Collapse
|
60
|
Pan Y, Jin JH, Yu Y, Wang J. Significant enhancement of hPrx1 chaperone activity through lysine acetylation. Chembiochem 2014; 15:1773-6. [PMID: 25082442 DOI: 10.1002/cbic.201402164] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Indexed: 11/07/2022]
Abstract
The reversible acetylation of proteins plays a key role in regulating biological processes, including chromatin remodeling, progression of the cell cycle, and actin nucleation. Human peroxiredoxin 1(hPrx1), one of the most abundant proteins in the cytoplasm, has been shown to be acetylated in human liver-carcinoma tissues. However, little is known about what function(s) the acetylation serves for hPrx1. Herein, using the method of genetic code expansion, we incorporated N(ε)-acetyllysine (AcK) site-specifically into hPrx1. Our data showed that acetylation the K(27) residue promotes oligomerization of hPrx1 at low concentrations. In addition, K(27)-acetylated hPrx1(hPrx1-AcK27) exhibited greatly enhanced chaperone activity (e.g. protecting the protein malate dehydrogenase (MDH) from thermally induced aggregation and assisting the refolding of denatured citrate synthase (CS)). These findings suggest that the site-specific acetylation of hPrx1 may change its biological role in response to environmental changes.
Collapse
Affiliation(s)
- Yanchao Pan
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101 (P.R. China)
| | | | | | | |
Collapse
|
61
|
Panda B, Basu B, Rajaram H, Kumar Apte S. Methyl viologen responsive proteome dynamics ofAnabaenasp. strain PCC7120. Proteomics 2014; 14:1895-904. [DOI: 10.1002/pmic.201300522] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 05/16/2014] [Accepted: 06/11/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Bandita Panda
- Molecular Biology Division; Bhabha Atomic Research Centre; Mumbai India
| | - Bhakti Basu
- Molecular Biology Division; Bhabha Atomic Research Centre; Mumbai India
| | - Hema Rajaram
- Molecular Biology Division; Bhabha Atomic Research Centre; Mumbai India
| | - Shree Kumar Apte
- Molecular Biology Division; Bhabha Atomic Research Centre; Mumbai India
| |
Collapse
|
62
|
Proteomics analysis of Bacillus licheniformis in response to oligosaccharides elicitors. Enzyme Microb Technol 2014; 61-62:61-6. [PMID: 24910338 DOI: 10.1016/j.enzmictec.2014.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/27/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
Abstract
The role of oligosaccharides as biotic elicitors has been recognised in the enhanced production of antibiotics from fungal and bacterial cultures. The yield of bacitracin A in cultures of Bacillus licheniformis was increased after supplementation with oligoguluronate (OG), and mannan oligosaccharides (MO) and its mechanism at transcription level been established already. However, the elicitation mechanism at post transcriptional level has not been reported so far. In this paper we investigate changes in proteomics of B. licheniformis in presence of the oligosaccharide elicitors OG and MO. Differentially expressed proteins were examined using 2D-PAGE stained with colloidal Coomassie and were further identified by LC-MS/MS. We identified 19 differentially expressed proteins including those involved in carbon metabolism, energy generation, amino acid biosynthesis, oxidative and general stress response. The novel findings of this work, together with previous reports, contribute to the unravelling of the overall mechanism of elicitation in B. licheniformis cultures and reliability of the use of these elicitors for potential industrial application.
Collapse
|
63
|
Yi L, Wang Y, Ma Z, Zhang H, Li Y, Zheng JX, Yang YC, Fan HJ, Lu CP. Biofilm Formation of Streptococcus equi ssp. zooepidemicus and Comparative Proteomic Analysis of Biofilm and Planktonic Cells. Curr Microbiol 2014; 69:227-33. [DOI: 10.1007/s00284-014-0574-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 02/08/2014] [Indexed: 10/25/2022]
|
64
|
Pittman JR, Buntyn JO, Posadas G, Nanduri B, Pendarvis K, Donaldson JR. Proteomic analysis of cross protection provided between cold and osmotic stress in Listeria monocytogenes. J Proteome Res 2014; 13:1896-904. [PMID: 24564473 DOI: 10.1021/pr401004a] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Listeria monocytogenes is a Gram-positive, foodborne pathogen responsible for approximately 28% of all food-related deaths each year in the United States. L. monocytogenes infections are linked to the consumption of minimally processed ready-to-eat (RTE) products such as cheese, deli meats, and cold-smoked finfish products. L. monocytogenes is resistant to stresses commonly encountered in the food-processing environment, including low pH, high salinity, oxygen content, and various temperatures. The purpose of this study was to determine if cells habituated at low temperatures would result in cross-protective effects against osmotic stress. We found that cells exposed to refrigerated temperatures prior to a mild salt stress treatment had increased survival in NaCl concentrations of 3%. Additionally, the longer the cells were pre-exposed to cold temperatures, the greater the increase in survival in 3% NaCl. A proteomics analysis was performed in triplicate in order to elucidate mechanisms involved in cold-stress induced cross protection against osmotic stress. Proteins involved in maintenance of the cell wall and cellular processes, such as penicillin binding proteins and osmolyte transporters, and processes involving amino acid metabolism, such as osmolyte synthesis, transport, and lipid biosynthesis, had the greatest increase in expression when cells were exposed to cold temperatures prior to salt. By gaining a better understanding of how this pathogen adapts physiologically to various environmental conditions, improvements can be made in detection and mitigation strategies.
Collapse
Affiliation(s)
- Joseph R Pittman
- Department of Biological Sciences and §Department of Basic Sciences, Mississippi State University , Mississippi State, Mississippi 39762, United States
| | | | | | | | | | | |
Collapse
|
65
|
Li K, Jiang T, Yu B, Wang L, Gao C, Ma C, Xu P, Ma Y. Escherichia coli transcription termination factor NusA: heat-induced oligomerization and chaperone activity. Sci Rep 2014; 3:2347. [PMID: 23907089 PMCID: PMC3731644 DOI: 10.1038/srep02347] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/17/2013] [Indexed: 01/02/2023] Open
Abstract
Escherichia coli NusA, an essential component of the RNA polymerase elongation complex, is involved in transcriptional elongation, termination, anti-termination, cold shock and stress-induced mutagenesis. In this study, we demonstrated that NusA can self-assemble into oligomers under heat shock conditions and that this property is largely determined by the C-terminal domain. In parallel with the self-assembly process, NusA also acquires chaperone activity. Furthermore, NusA overexpression results in the enhanced heat shock resistance of host cells, which may be due to the chaperone activity of NusA. Our results suggest that E. coli NusA can act as a protector to prevent protein aggregation under heat stress conditions in vitro and in the NusA-overexpressing strain. We propose a new hypothesis that NusA could serve as a molecular chaperone in addition to its functions as a transcription factor. However, it remains to be further investigated whether NusA has the same function under normal physiological conditions.
Collapse
Affiliation(s)
- Kun Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Science, Beijing 100101, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Proteomic approach to reveal the regulatory function of aconitase AcnA in oxidative stress response in the antibiotic producer Streptomyces viridochromogenes Tü494. PLoS One 2014; 9:e87905. [PMID: 24498397 PMCID: PMC3912134 DOI: 10.1371/journal.pone.0087905] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/30/2013] [Indexed: 01/16/2023] Open
Abstract
The aconitase AcnA from the phosphinothricin tripeptide producing strain Streptomyces viridochromogenes Tü494 is a bifunctional protein: under iron-sufficiency conditions AcnA functions as an enzyme of the tricarboxylic acid cycle, whereas under iron depletion it is a regulator of iron metabolism and oxidative stress response. As a member of the family of iron regulatory proteins (IRP), AcnA binds to characteristic iron responsive element (IRE) binding motifs and post-transcriptionally controls the expression of respective target genes. A S. viridochromogenes aconitase mutant (MacnA) has previously been shown to be highly sensitive to oxidative stress. In the present paper, we performed a comparative proteomic approach with the S. viridochromogenes wild-type and the MacnA mutant strain under oxidative stress conditions to identify proteins that are under control of the AcnA-mediated regulation. We identified up to 90 differentially expressed proteins in both strains. In silico analysis of the corresponding gene sequences revealed the presence of IRE motifs on some of the respective target mRNAs. From this proteome study we have in vivo evidences for a direct AcnA-mediated regulation upon oxidative stress.
Collapse
|
67
|
Guo H, Chen C, Lee DJ, Wang A, Ren N. Proteomic analysis of sulfur-nitrogen-carbon removal by Pseudomonas sp. C27 under micro-aeration condition. Enzyme Microb Technol 2013; 56:20-7. [PMID: 24564898 DOI: 10.1016/j.enzmictec.2013.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/21/2013] [Accepted: 12/16/2013] [Indexed: 11/29/2022]
Abstract
Pseudomonas sp. C27 is a facultative autotrophic bacterium (FAB) that can effectively conduct mixotrophic and heterotrophic denitrifying sulfide removal (DSR) reactions under anaerobic condition using organic matters and sulfide as electron donors. Micro-aeration was proposed to enhance DSR reaction by FAB; however, there is no experimental proof on the effects of micro-aeration on capacity of denitrifying sulfide removal of FAB on proteomic levels. The proteome in total C27 cell extracts was observed by two-dimensional gel electrophoresis. Differentially expressed protein spots and specifically expressed protein spots were identified by MALDI TOF/TOF MS. We identified 55 microaerobic-responsive protein spots, representing 55 unique proteins. Hierarchical clustering analysis revealed that 75% of the proteins were up-regulated, and 5% of the proteins were specifically expressed under micro-aerobic conditions. These enzymes were mainly involved in membrane transport, protein folding and metabolism. The noted expression changes of the microaerobic-responsive proteins suggests that C27 strain has a highly efficient enzyme system to conduct DSR reactions under micro-aerobic condition. Additionally, micro-aeration can increase the rates of protein synthesis and cell growth, and enhance cell defensive system of the strain.
Collapse
Affiliation(s)
- Hongliang Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Duu-Jong Lee
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
68
|
Wolff DG, Castiblanco-Valencia MM, Abe CM, Monaris D, Morais ZM, Souza GO, Vasconcellos SA, Isaac L, Abreu PAE, Barbosa AS. Interaction of Leptospira elongation factor Tu with plasminogen and complement factor H: a metabolic leptospiral protein with moonlighting activities. PLoS One 2013; 8:e81818. [PMID: 24312361 PMCID: PMC3842364 DOI: 10.1371/journal.pone.0081818] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 10/17/2013] [Indexed: 11/18/2022] Open
Abstract
The elongation factor Tu (EF-Tu), an abundant bacterial protein involved in protein synthesis, has been shown to display moonlighting activities. Known to perform more than one function at different times or in different places, it is found in several subcellular locations in a single organism, and may serve as a virulence factor in a range of important human pathogens. Here we demonstrate that Leptospira EF-Tu is surface-exposed and performs additional roles as a cell-surface receptor for host plasma proteins. It binds plasminogen in a dose-dependent manner, and lysine residues are critical for this interaction. Bound plasminogen is converted to active plasmin, which, in turn, is able to cleave the natural substrates C3b and fibrinogen. Leptospira EF-Tu also acquires the complement regulator Factor H (FH). FH bound to immobilized EF-Tu displays cofactor activity, mediating C3b degradation by Factor I (FI). In this manner, EF-Tu may contribute to leptospiral tissue invasion and complement inactivation. To our knowledge, this is the first description of a leptospiral protein exhibiting moonlighting activities.
Collapse
Affiliation(s)
| | | | - Cecília M. Abe
- Laboratório de Biologia Celular, Instituto Butantan, São Paulo, Brasil
| | - Denize Monaris
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brasil
| | - Zenaide M. Morais
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brasil
| | - Gisele O. Souza
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brasil
| | - Sílvio A. Vasconcellos
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brasil
| | - Lourdes Isaac
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
| | | | - Angela S. Barbosa
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brasil
- * E-mail:
| |
Collapse
|
69
|
Aradská J, Šmidák R, Turkovičová L, Turňa J, Lubec G. Proteomic differences between tellurite-sensitive and tellurite-resistant E.coli. PLoS One 2013; 8:e78010. [PMID: 24244285 PMCID: PMC3823874 DOI: 10.1371/journal.pone.0078010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/11/2013] [Indexed: 01/20/2023] Open
Abstract
Tellurite containing compounds are in use for industrial processes and increasing delivery into the environment generates specific pollution that may well result in contamination and subsequent potential adverse effects on public health. It was the aim of the current study to reveal mechanism of toxicity in tellurite-sensitive and tellurite-resistant E. coli at the protein level. In this work an approach using gel-based mass spectrometrical analysis to identify a differential protein profile related to tellurite toxicity was used and the mechanism of ter operon-mediated tellurite resistance was addressed. E. coli BL21 was genetically manipulated for tellurite-resistance by the introduction of the resistance-conferring ter genes on the pLK18 plasmid. Potassium tellurite was added to cultures in order to obtain a final 3.9 micromolar concentration. Proteins from tellurite-sensitive and tellurite-resistant E. coli were run on 2-D gel electrophoresis, spots of interest were picked, in-gel digested and subsequently analysed by nano-LC-MS/MS (ion trap). In addition, Western blotting and measurement of enzymatic activity were performed to verify the expression of certain candidate proteins. Following exposure to tellurite, in contrast to tellurite-resistant bacteria, sensitive cells exhibited increased levels of antioxidant enzymes superoxide dismutases, catalase and oxidoreductase YqhD. Cysteine desulfurase, known to be related to tellurite toxicity as well as proteins involved in protein folding: GroEL, DnaK and EF-Tu were upregulated in sensitive cells. In resistant bacteria, several isoforms of four essential Ter proteins were observed and following tellurite treatment the abovementioned protein levels did not show any significant proteome changes as compared to the sensitive control. The absence of general defense mechanisms against tellurite toxicity in resistant bacteria thus provides further evidence that the four proteins of the ter operon function by a specific mode of action in the mechanism of tellurite resistance probably involving protein cascades from antioxidant and protein folding pathways.
Collapse
Affiliation(s)
- Jana Aradská
- Department of Molecular Biology, Faculty of Natural Science, Comenius University, Bratislava, Slovakia
| | - Roman Šmidák
- Department of Molecular Biology, Faculty of Natural Science, Comenius University, Bratislava, Slovakia
| | - Lenka Turkovičová
- Department of Molecular Biology, Faculty of Natural Science, Comenius University, Bratislava, Slovakia
| | - Ján Turňa
- Department of Molecular Biology, Faculty of Natural Science, Comenius University, Bratislava, Slovakia
| | - Gert Lubec
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
70
|
Metaproteomics analysis reveals the adaptation process for the chicken gut microbiota. Appl Environ Microbiol 2013; 80:478-85. [PMID: 24212578 DOI: 10.1128/aem.02472-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The animal gastrointestinal tract houses a large microbial community, the gut microbiota, that confers many benefits to its host, such as protection from pathogens and provision of essential metabolites. Metagenomic approaches have defined the chicken fecal microbiota in other studies, but here, we wished to assess the correlation between the metagenome and the bacterial proteome in order to better understand the healthy chicken gut microbiota. Here, we performed high-throughput sequencing of 16S rRNA gene amplicons and metaproteomics analysis of fecal samples to determine microbial gut composition and protein expression. 16 rRNA gene sequencing analysis identified Clostridiales, Bacteroidaceae, and Lactobacillaceae species as the most abundant species in the gut. For metaproteomics analysis, peptides were generated by using the Fasp method and subsequently fractionated by strong anion exchanges. Metaproteomics analysis identified 3,673 proteins. Among the most frequently identified proteins, 380 proteins belonged to Lactobacillus spp., 155 belonged to Clostridium spp., and 66 belonged to Streptococcus spp. The most frequently identified proteins were heat shock chaperones, including 349 GroEL proteins, from many bacterial species, whereas the most abundant enzymes were pyruvate kinases, as judged by the number of peptides identified per protein (spectral counting). Gene ontology and KEGG pathway analyses revealed the functions and locations of the identified proteins. The findings of both metaproteomics and 16S rRNA sequencing analyses are discussed.
Collapse
|
71
|
Yin Y, Damron FH, Withers TR, Pritchett CL, Wang X, Schurr MJ, Yu HD. Expression of mucoid induction factor MucE is dependent upon the alternate sigma factor AlgU in Pseudomonas aeruginosa. BMC Microbiol 2013; 13:232. [PMID: 24138584 PMCID: PMC3819740 DOI: 10.1186/1471-2180-13-232] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 10/09/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alginate overproduction in P. aeruginosa, also referred to as mucoidy, is a poor prognostic marker for patients with cystic fibrosis (CF). We previously reported the construction of a unique mucoid strain which overexpresses a small envelope protein MucE leading to activation of the protease AlgW. AlgW then degrades the anti-sigma factor MucA thus releasing the alternative sigma factor AlgU/T (σ(22)) to initiate transcription of the alginate biosynthetic operon. RESULTS In the current study, we mapped the mucE transcriptional start site, and determined that P(mucE) activity was dependent on AlgU. Additionally, the presence of triclosan and sodium dodecyl sulfate was shown to cause an increase in P(mucE) activity. It was observed that mucE-mediated mucoidy in CF isolates was dependent on both the size of MucA and the genotype of algU. We also performed shotgun proteomic analysis with cell lysates from the strains PAO1, VE2 (PAO1 with constitutive expression of mucE) and VE2ΔalgU (VE2 with in-frame deletion of algU). As a result, we identified nine algU-dependent and two algU-independent proteins that were affected by overexpression of MucE. CONCLUSIONS Our data indicates there is a positive feedback regulation between MucE and AlgU. Furthermore, it seems likely that MucE may be part of the signal transduction system that senses certain types of cell wall stress to P. aeruginosa.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongwei D Yu
- Department of Biochemistry and Microbiology, Joan C, Edwards School of Medicine at Marshall University, Huntington, WV 25755, USA.
| |
Collapse
|
72
|
Zhai Z, Douillard FP, An H, Wang G, Guo X, Luo Y, Hao Y. Proteomic characterization of the acid tolerance response inLactobacillus delbrueckiisubsp.bulgaricus CAUH1 and functional identification of a novel acid stress-related transcriptional regulator Ldb0677. Environ Microbiol 2013; 16:1524-37. [DOI: 10.1111/1462-2920.12280] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 09/06/2013] [Indexed: 12/01/2022]
Affiliation(s)
- Zhengyuan Zhai
- Key Laboratory of Functional Dairy; Co-constructed by Ministry of Education and Beijing Municipality; College of Food Science and Nutritional Engineering; China Agricultural University; Beijing 100083 China
| | | | - Haoran An
- Key Laboratory of Functional Dairy; Co-constructed by Ministry of Education and Beijing Municipality; College of Food Science and Nutritional Engineering; China Agricultural University; Beijing 100083 China
| | - Guohong Wang
- Key Laboratory of Functional Dairy; Co-constructed by Ministry of Education and Beijing Municipality; College of Food Science and Nutritional Engineering; China Agricultural University; Beijing 100083 China
| | - Xinghua Guo
- Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
| | - Yunbo Luo
- Key Laboratory of Functional Dairy; Co-constructed by Ministry of Education and Beijing Municipality; College of Food Science and Nutritional Engineering; China Agricultural University; Beijing 100083 China
| | - Yanling Hao
- Key Laboratory of Functional Dairy; Co-constructed by Ministry of Education and Beijing Municipality; College of Food Science and Nutritional Engineering; China Agricultural University; Beijing 100083 China
| |
Collapse
|
73
|
Caballero Gómez N, Abriouel H, Ennahar S, Gálvez A. Comparative proteomic analysis of Listeria monocytogenes exposed to enterocin AS-48 in planktonic and sessile states. Int J Food Microbiol 2013; 167:202-7. [PMID: 24135676 DOI: 10.1016/j.ijfoodmicro.2013.08.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/25/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
Abstract
Enterocin AS-48 is a cyclic peptide of great interest for application in food preservation and sanitation. In the present study, the proteome response of Listeria monocytogenes to purified enterocin AS-48 was studied under two different conditions: planktonic cells and sessile cells grown on polystyrene plates. Ten different proteins were differentially expressed in planktonic L. monocytogenes cells treated with 0.1 μg/ml enterocin AS-48 compared to the untreated controls. Overexpressed proteins were related to stress response (DnaK) or carbohydrate transport and metabolism, while underexpressed and unexpressed proteins were related to metabolism (such as glyceraldehyde-3-phosphate dehydrogenase, pyruvate oxidase, glutamate dehydrogenase or glutamate decarboxylase) or stress (GroEL). In the sessile state, L. monocytogenes cells tolerated up to 10 μg/ml bacteriocin, and the treated biofilm cells overexpressed a set of 11 proteins, some of which could be related to stress response (DnaK, GroEL), protein synthesis and carbohydrate metabolism, while glyceraldehyde-3-phosphate dehydrogenase was the only unexpressed protein. Some of the overexpressed proteins (such as elongation factor Tu and GroEL) could also be implicated in cell adhesion. These results suggest different cell responses of L. monocytogenes to enterocin AS-48 in the planktonic and in the sessile state, including stress response and cell metabolism proteins. While in the planktonic state the bacterium may tend to compensate for the cytoplasmic cell permeability changes induced by AS-48 by reinforcing carbohydrate transport and metabolism, sessile cells seem to respond by shifting carbohydrate metabolism and reinforcing protein synthesis. Stress response proteins also seem to be important in the response to AS-48, but the stress response seems to be different in planktonic and in sessile cells.
Collapse
Affiliation(s)
- Natacha Caballero Gómez
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain
| | | | | | | |
Collapse
|
74
|
Zimaro T, Thomas L, Marondedze C, Garavaglia BS, Gehring C, Ottado J, Gottig N. Insights into xanthomonas axonopodis pv. citri biofilm through proteomics. BMC Microbiol 2013; 13:186. [PMID: 23924281 PMCID: PMC3750573 DOI: 10.1186/1471-2180-13-186] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 08/02/2013] [Indexed: 11/28/2022] Open
Abstract
Background Xanthomonas axonopodis pv. citri (X. a. pv. citri) causes citrus canker that can result in defoliation and premature fruit drop with significant production losses worldwide. Biofilm formation is an important process in bacterial pathogens and several lines of evidence suggest that in X. a. pv. citri this process is a requirement to achieve maximal virulence since it has a major role in host interactions. In this study, proteomics was used to gain further insights into the functions of biofilms. Results In order to identify differentially expressed proteins, a comparative proteomic study using 2D difference gel electrophoresis was carried out on X. a. pv. citri mature biofilm and planktonic cells. The biofilm proteome showed major variations in the composition of outer membrane proteins and receptor or transport proteins. Among them, several porins and TonB-dependent receptor were differentially regulated in the biofilm compared to the planktonic cells, indicating that these proteins may serve in maintaining specific membrane-associated functions including signaling and cellular homeostasis. In biofilms, UDP-glucose dehydrogenase with a major role in exopolysaccharide production and the non-fimbrial adhesin YapH involved in adherence were over-expressed, while a polynucleotide phosphorylase that was demonstrated to negatively control biofilm formation in E. coli was down-regulated. In addition, several proteins involved in protein synthesis, folding and stabilization were up-regulated in biofilms. Interestingly, some proteins related to energy production, such as ATP-synthase were down-regulated in biofilms. Moreover, a number of enzymes of the tricarboxylic acid cycle were differentially expressed. In addition, X. a. pv. citri biofilms also showed down-regulation of several antioxidant enzymes. The respective gene expression patterns of several identified proteins in both X. a. pv. citri mature biofilm and planktonic cells were evaluated by quantitative real-time PCR and shown to consistently correlate with those deduced from the proteomic study. Conclusions Differentially expressed proteins are enriched in functional categories. Firstly, proteins that are down-regulated in X. a. pv. citri biofilms are enriched for the gene ontology (GO) terms ‘generation of precursor metabolites and energy’ and secondly, the biofilm proteome mainly changes in ‘outer membrane and receptor or transport’. We argue that the differentially expressed proteins have a critical role in maintaining a functional external structure as well as enabling appropriate flow of nutrients and signals specific to the biofilm lifestyle.
Collapse
Affiliation(s)
- Tamara Zimaro
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET), Ocampo y Esmeralda, Rosario, Santa Fe, Argentina
| | | | | | | | | | | | | |
Collapse
|
75
|
Jia J, Li Z, Cao J, Jiang Y, Liang C, Liu M. Proteomic analysis of protein expression in the induction of the viable but Nonculturable State of Vibrio harveyi SF1. Curr Microbiol 2013; 67:442-7. [PMID: 23689940 DOI: 10.1007/s00284-013-0383-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 04/11/2013] [Indexed: 11/30/2022]
Abstract
Vibrio harveyi has been reported to enter into a viable but nonculturable (VBNC) state. One marine V. harveyi strain, SF1 became nonculturable when incubated in seawater microcosm at 4 °C within 60 days. We investigated protein expression in the exponential phase of V. harveyi SF1 and compared it to the VBNC state. Cytosolic proteins were resolved by two-dimensional polyacrylamide gel electrophoresis using pH 4-7 linear gradients. Among these proteins, sixteen proteins which were strongly downregulated or upregulated in the VBNC cells were identified by MALDI-TOF-TOF mass spectrometry. The results indicated that the differentially expressed proteins were mainly focused on stress response proteins and key components of central and intermediary metabolism, like carbohydrate metabolism, transport, and translation. This study provided clues for understanding the mechanism of adaptation to the VBNC state.
Collapse
Affiliation(s)
- Juntao Jia
- The Food and Agricultural Products Testing Agency, Shandong Entry-exit Inspection and Quarantine Bureau of China, Qingdao 266002, China
| | | | | | | | | | | |
Collapse
|
76
|
Abstract
AIMS Mitochondrial Tu translation elongation factor (TUFM) is a nuclear encoded protein that participates in mitochondrial polypeptide translation. TUFM has been reported to be over-expressed in many tumour types including colorectal carcinoma (CRC) by proteomics. The present study aims to examine the prognostic implication of TUFM in CRC. METHODS Immunohistochemical staining was performed in tissue microarrays composed of 123 cases of CRC using a polyclonal anti-TUFM antibody. Immunoreactivity was quantified using Image-Pro plus software, and analysed in association with patients' clinicopathological parameters and survival time. RESULTS The immunoreactivity of TUFM was negative in 25%, weak in 50% and strong in 25% of CRC cases. TUFM immunoreactivity had no significant association with the clinicopathological parameters examined including TNM stage and grade. However, strong TUFM expression significantly correlated with a higher 5-year recurrence rate (p = 0.024). Kaplan-Meier analysis revealed that patients with strong TUFM expression had significantly shorter cancer-specific survival than patients with negative TUFM (log-rank test, p = 0.038). In multivariate analysis, strong TUFM expression remained a stage-independent unfavourable prognostic indicator (p = 0.024). CONCLUSIONS Increased expression of TUFM is a promising new prognostic indicator for CRC. Selective inhibition of TUFM in tumour cells may present a new avenue for the targeted therapy of this cancer.
Collapse
|
77
|
Defining the Escherichia coli SecA dimer interface residues through in vivo site-specific photo-cross-linking. J Bacteriol 2013; 195:2817-25. [PMID: 23585536 DOI: 10.1128/jb.02269-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The motor protein SecA is a core component of the bacterial general secretory (Sec) pathway and is essential for cell viability. Despite evidence showing that SecA exists in a dynamic monomer-dimer equilibrium favoring the dimeric form in solution and in the cytoplasm, there is considerable debate as to the quaternary structural organization of the SecA dimer. Here, a site-directed photo-cross-linking technique was utilized to identify residues on the Escherichia coli SecA (ecSecA) dimer interface in the cytosol of intact cells. The feasibility of this method was demonstrated with residue Leu6, which is essential for ecSecA dimerization based on our analytical ultracentrifugation studies of SecA L6A and shown to form the cross-linked SecA dimer in vivo with p-benzoyl-phenylalanine (pBpa) substituted at position 6. Subsequently, the amino terminus (residues 2 to 11) in the nucleotide binding domain (NBD), Phe263 in the preprotein binding domain (PBD), and Tyr794 and Arg805 in the intramolecular regulator of the ATPase 1 domain (IRA1) were identified to be involved in ecSecA dimerization. Furthermore, the incorporation of pBpa at position 805 did not form a cross-linked dimer in the SecA Δ2-11 context, indicating the possibility that the amino terminus may directly contact Arg805 or that the deletion of residues 2 to 11 alters the topology of the naturally occurring ecSecA dimer.
Collapse
|
78
|
Chi BK, Roberts AA, Huyen TTT, Bäsell K, Becher D, Albrecht D, Hamilton CJ, Antelmann H. S-bacillithiolation protects conserved and essential proteins against hypochlorite stress in firmicutes bacteria. Antioxid Redox Signal 2013; 18:1273-95. [PMID: 22938038 PMCID: PMC3584511 DOI: 10.1089/ars.2012.4686] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
AIMS Protein S-bacillithiolations are mixed disulfides between protein thiols and the bacillithiol (BSH) redox buffer that occur in response to NaOCl in Bacillus subtilis. We used BSH-specific immunoblots, shotgun liquid chromatography (LC)-tandem mass spectrometry (MS/MS) analysis and redox proteomics to characterize the S-bacillithiolomes of B. subtilis, B. megaterium, B. pumilus, B. amyloliquefaciens, and Staphylococcus carnosus and also measured the BSH/oxidized bacillithiol disulfide (BSSB) redox ratio after NaOCl stress. RESULTS In total, 54 proteins with characteristic S-bacillithiolation (SSB) sites were identified, including 29 unique proteins and eight proteins conserved in two or more of these bacteria. The methionine synthase MetE is the most abundant S-bacillithiolated protein in Bacillus species after NaOCl exposure. Further, S-bacillithiolated proteins include the translation elongation factor EF-Tu and aminoacyl-tRNA synthetases (ThrS), the DnaK and GrpE chaperones, the two-Cys peroxiredoxin YkuU, the ferredoxin-NADP(+) oxidoreductase YumC, the inorganic pyrophosphatase PpaC, the inosine-5'-monophosphate dehydrogenase GuaB, proteins involved in thiamine biosynthesis (ThiG and ThiM), queuosine biosynthesis (QueF), biosynthesis of aromatic amino acids (AroA and AroE), serine (SerA), branched-chain amino acids (YwaA), and homocysteine (LuxS and MetI). The thioredoxin-like proteins, YphP and YtxJ, are S-bacillithiolated at their active sites, suggesting a function in the de-bacillithiolation process. S-bacillithiolation is accompanied by a two-fold increase in the BSSB level and a decrease in the BSH/BSSB redox ratio in B. subtilis. INNOVATION Many essential and conserved proteins, including the dominant MetE, were identified in the S-bacillithiolome of different Bacillus species and S. carnosus using shotgun-LC-MS/MS analyses. CONCLUSION S-bacillithiolation is a widespread redox control mechanism among Firmicutes bacteria that protects conserved metabolic enzymes and essential proteins against overoxidation.
Collapse
Affiliation(s)
- Bui Khanh Chi
- Institute for Microbiology, Ernst-Moritz-Arndt-University of Greifswald, Greifswald, Germany
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Kamal AHM, Cho K, Choi JS, Bae KH, Komatsu S, Uozumi N, Woo SH. The wheat chloroplastic proteome. J Proteomics 2013; 93:326-42. [PMID: 23563086 DOI: 10.1016/j.jprot.2013.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 11/18/2022]
Abstract
UNLABELLED With the availability of plant genome sequencing, analysis of plant proteins with mass spectrometry has become promising and admired. Determining the proteome of a cell is still a challenging assignment, which is convoluted by proteome dynamics and convolution. Chloroplast is fastidious curiosity for plant biologists due to their intricate biochemical pathways for indispensable metabolite functions. In this review, an overview on proteomic studies conducted in wheat with a special focus on subcellular proteomics of chloroplast, salt and water stress. In recent years, we and other groups have attempted to understand the photosynthesis in wheat and abiotic stress under salt imposed and water deficit during vegetative stage. Those studies provide interesting results leading to better understanding of the photosynthesis and identifying the stress-responsive proteins. Indeed, recent studies aimed at resolving the photosynthesis pathway in wheat. Proteomic analysis combining two complementary approaches such as 2-DE and shotgun methods couple to high through put mass spectrometry (LTQ-FTICR and MALDI-TOF/TOF) in order to better understand the responsible proteins in photosynthesis and abiotic stress (salt and water) in wheat chloroplast will be focused. BIOLOGICAL SIGNIFICANCE In this review we discussed the identification of the most abundant protein in wheat chloroplast and stress-responsive under salt and water stress in chloroplast of wheat seedlings, thus providing the proteomic view of the events during the development of this seedling under stress conditions. Chloroplast is fastidious curiosity for plant biologists due to their intricate biochemical pathways for indispensable metabolite functions. An overview on proteomic studies conducted in wheat with a special focus on subcellular proteomics of chloroplast, salt and water stress. We have attempted to understand the photosynthesis in wheat and abiotic stress under salt imposed and water deficit during seedling stage. Those studies provide interesting results leading to a better understanding of the photosynthesis and identifying the stress-responsive proteins. In reality, our studies aspired at resolving the photosynthesis pathway in wheat. Proteomic analysis united two complementary approaches such as Tricine SDS-PAGE and 2-DE methods couple to high through put mass spectrometry (LTQ-FTICR and MALDI-TOF/TOF) in order to better understand the responsible proteins in photosynthesis and abiotic stress (salt and water) in wheat chloroplast will be highlighted. This article is part of a Special Issue entitled: Translational Plant Proteomics.
Collapse
Affiliation(s)
- Abu Hena Mostafa Kamal
- Research Center for Integrative Cellulomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
80
|
Belfiore C, Ordoñez OF, Farías ME. Proteomic approach of adaptive response to arsenic stress in Exiguobacterium sp. S17, an extremophile strain isolated from a high-altitude Andean Lake stromatolite. Extremophiles 2013; 17:421-31. [PMID: 23525943 DOI: 10.1007/s00792-013-0523-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 02/07/2013] [Indexed: 01/13/2023]
Abstract
The North-Western part of Argentina is particularly rich in wetlands located in the Puna in an altitude between 3,600 and 4,600 m above sea level. Most of these high-altitude Andean lakes are inhospitable areas due to extreme habitat conditions such as high contents of toxic elements, particularly arsenic. Exiguobacterium sp. S17, isolated from stromatolites in Laguna Socompa, exhibited remarkable tolerance to high arsenic concentration, i.e., it tolerated arsenic concentration such as 10 mM of As(III) and 150 mM of As(V). A proteomics approach was conducted to reveal the mechanisms that provide the observed outstanding resistance of Exiguobacterium sp. S17 against arsenic. A comparative analysis of S17, exposed and unexposed to arsenic revealed 25 differentially expressed proteins. Identification of these proteins was performed by MALDI-TOF/MS revealing upregulation of proteins involved in energy metabolism, stress, transport, and in protein synthesis being expressed under arsenic stress. To our knowledge, this work represents the first proteomic study of arsenic tolerance in an Exiguobacterium strain.
Collapse
Affiliation(s)
- Carolina Belfiore
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pje Caseros, 4000 San Miguel de Tucumán, Argentina.
| | | | | |
Collapse
|
81
|
Identification of up-regulated proteins potentially involved in the antagonism mechanism of Bacillus amyloliquefaciens G1. Antonie van Leeuwenhoek 2013; 103:1395-404. [DOI: 10.1007/s10482-013-9902-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 03/05/2013] [Indexed: 10/27/2022]
|
82
|
Proteome Analysis of Rice (Oryza sativa L.) Mutants Reveals Differentially Induced Proteins during Brown Planthopper (Nilaparvata lugens) Infestation. Int J Mol Sci 2013; 14:3921-45. [PMID: 23434671 PMCID: PMC3588078 DOI: 10.3390/ijms14023921] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 01/20/2013] [Accepted: 01/22/2013] [Indexed: 01/02/2023] Open
Abstract
Although rice resistance plays an important role in controlling the brown planthopper (BPH), Nilaparvata lugens, not all varieties have the same level of protection against BPH infestation. Understanding the molecular interactions in rice defense response is an important tool to help to reveal unexplained processes that underlie rice resistance to BPH. A proteomics approach was used to explore how wild type IR64 and near-isogenic rice mutants with gain and loss of resistance to BPH respond during infestation. A total of 65 proteins were found markedly altered in wild type IR64 during BPH infestation. Fifty-two proteins associated with 11 functional categories were identified using mass spectrometry. Protein abundance was less altered at 2 and 14 days after infestation (DAI) (T1, T2, respectively), whereas higher protein levels were observed at 28 DAI (T3). This trend diminished at 34 DAI (T4). Comparative analysis of IR64 with mutants showed 22 proteins that may be potentially associated with rice resistance to the brown planthopper (BPH). Ten proteins were altered in susceptible mutant (D1131) whereas abundance of 12 proteins including S-like RNase, Glyoxalase I, EFTu1 and Salt stress root protein “RS1” was differentially changed in resistant mutant (D518). S-like RNase was found in greater quantities in D518 after BPH infestation but remained unchanged in IR64 and decreased in D1131. Taken together, this study shows a noticeable level of protein abundance in the resistant mutant D518 compared to the susceptible mutant D1131 that may be involved in rendering enhanced level of resistance against BPH.
Collapse
|
83
|
Qi J, Du Y, Bai H, Zhu X, Hu M, Luo Y, Liu Y. Global Protein Expression Profile Response ofEscherichia coliATCC 25922 Exposed to Enrofloxacin. Microb Drug Resist 2013; 19:6-14. [DOI: 10.1089/mdr.2012.0097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jing Qi
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yijun Du
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hua Bai
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiaoling Zhu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ming Hu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yanbo Luo
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuqing Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
84
|
Kravchik M, Bernstein N. Effects of salinity on the transcriptome of growing maize leaf cells point at cell-age specificity in the involvement of the antioxidative response in cell growth restriction. BMC Genomics 2013; 14:24. [PMID: 23324477 PMCID: PMC3599246 DOI: 10.1186/1471-2164-14-24] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 12/18/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Salinity inhibits growth and development of most plants. The response to salinity is complex and varies between plant organs and stages of development. It involves challenges of ion toxicities and deficiencies as well as osmotic and oxidative stresses. The range of functions affected by the stress is reflected in elaborate changes to the transcriptome. The mechanisms involved in the developmental-stage specificity of the inhibitory responses are not fully understood. The present study took advantage of the well characterized developmental progression that exists along the maize leaf, for identification of salinity induced, developmentally-associated changes to the transcriptome. Differential subtraction screening was conducted for cells of two developmental stages: from the center of the growth zone where the expansion rate is highest, and from older cells at a more distal location of the growing zone where the expansion rate is lower and the salinity restrictive effects are more pronounced. Real-Time PCR analysis was used for validation of the expression of selected genes. RESULTS The salinity-induced changes demonstrated an age-related response of the growing tissue, with elevation of salinity-damages with increased age. Growth reduction, similar to the elevation of percentage dry matter (%DM), and Na and Cl concentrations were more pronounced in the older cells. The differential subtraction screening identified genes encoding to proteins involved in antioxidant defense, electron transfer and energy, structural proteins, transcription factors and photosynthesis proteins. Of special interest is the higher induced expression of genes involved in antioxidant protection in the young compared to older cells, which was accompanied by suppressed levels of reactive oxygen species (H2O2 and O2-). This was coupled with heightened expression in the older cells of genes that enhance cell-wall rigidity, which points at reduced potential for cell expansion. CONCLUSIONS The results demonstrate a cell-age specificity in the salinity response of growing cells, and point at involvement of the antioxidative response in cell growth restriction. Processes involved in reactive oxygen species (ROS) scavenging are more pronounced in the young cells, while the higher growth sensitivity of older cells is suggested to involve effects on cell-wall rigidity and lower protein protection.
Collapse
Affiliation(s)
- Michael Kravchik
- Institute of Soil Water and Environmental Sciences, Volcani Center, POB 6, 50-250, Bet-Dagan, Israel
| | - Nirit Bernstein
- Institute of Soil Water and Environmental Sciences, Volcani Center, POB 6, 50-250, Bet-Dagan, Israel
| |
Collapse
|
85
|
Fan L, Liu M, Simister R, Webster NS, Thomas T. Marine microbial symbiosis heats up: the phylogenetic and functional response of a sponge holobiont to thermal stress. ISME JOURNAL 2013; 7:991-1002. [PMID: 23283017 DOI: 10.1038/ismej.2012.165] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Large-scale mortality of marine invertebrates is a major global concern for ocean ecosystems and many sessile, reef-building animals, such as sponges and corals, are experiencing significant declines through temperature-induced disease and bleaching. The health and survival of marine invertebrates is often dependent on intimate symbiotic associations with complex microbial communities, yet we have a very limited understanding of the detailed biology and ecology of both the host and the symbiont community in response to environmental stressors, such as elevated seawater temperatures. Here, we use the ecologically important sponge Rhopaloeides odorabile as a model to explore the changes in symbiosis during the development of temperature-induced necrosis. Expression profiling of the sponge host was examined in conjunction with the phylogenetic and functional structure and the expression profile of the symbiont community. Elevated temperature causes an immediate stress response in both the host and symbiont community, including reduced expression of functions that mediate their partnership. Disruption to nutritional interdependence and molecular interactions during early heat stress further destabilizes the holobiont, ultimately leading to the loss of archetypal sponge symbionts and the introduction of new microorganisms that have functional and expression profiles consistent with a scavenging lifestyle, a lack virulence functions and a high growth rate. Previous models have postulated various mechanisms of mortality and disease in marine invertebrates. Our study suggests that interruption of symbiotic interactions is a major determinant for mortality in marine sessile invertebrates. High symbiont specialization and low functional redundancy, thus make these holobionts extremely vulnerable to environmental perturbations, including climate change.
Collapse
Affiliation(s)
- Lu Fan
- Centre for Marine Bio-Innovation and School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|
86
|
Gunasekaran K, Bergquist PL, Sunna A. Facile production and rapid purification of functional recombinant Qβ replicase heterotetramer complex. Appl Biochem Biotechnol 2012; 169:651-9. [PMID: 23269632 DOI: 10.1007/s12010-012-0018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 12/04/2012] [Indexed: 11/25/2022]
Abstract
We describe an improved method for the production of recombinant Qβ replicase heterotetramer. The successful expression of the soluble Qβ RNA polymerase complex depends on the EF-Ts and EF-Tu subunits being co-expressed prior to β-subunit expression. Efficient co-expression requires two different inducible operons to co-ordinate the expression of the heterotrimer. The complete heterotetramer enzyme complex is achieved by production of the recombinant S1-subunit of Qβ replicase in a separate host. This approach represents a facile way for producing and purifying large amounts of soluble and active recombinant Qβ replicase tetramer without the necessity of a His-tag for purification.
Collapse
Affiliation(s)
- Karthikeyan Gunasekaran
- Department of Chemistry and Biomolecular Sciences, and Environmental Biotechnology CRC, Macquarie University, North Ryde, 2109 Sydney, NSW, Australia
| | | | | |
Collapse
|
87
|
Transcription elongation factor GreA has functional chaperone activity. PLoS One 2012; 7:e47521. [PMID: 23251328 PMCID: PMC3521015 DOI: 10.1371/journal.pone.0047521] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/12/2012] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Bacterial GreA is an indispensable factor in the RNA polymerase elongation complex. It plays multiple roles in transcriptional elongation, and may be implicated in resistance to various stresses. METHODOLOGY/PRINCIPAL FINDINGS In this study, we show that Escherichia coli GreA inhibits aggregation of several substrate proteins under heat shock condition. GreA can also effectively promote the refolding of denatured proteins. These facts reveal that GreA has chaperone activity. Distinct from many molecular chaperones, GreA does not form stable complexes with unfolded substrates. GreA overexpression confers the host cells with enhanced resistance to heat shock and oxidative stress. Moreover, GreA expression in the greA/greB double mutant could suppress the temperature-sensitive phenotype, and dramatically alleviate the in vivo protein aggregation. The results suggest that bacterial GreA may act as chaperone in vivo. CONCLUSIONS/SIGNIFICANCE These results suggest that GreA, in addition to its function as a transcription factor, is involved in protection of cellular proteins against aggregation.
Collapse
|
88
|
Bruel N, Castanié-Cornet MP, Cirinesi AM, Koningstein G, Georgopoulos C, Luirink J, Genevaux P. Hsp33 controls elongation factor-Tu stability and allows Escherichia coli growth in the absence of the major DnaK and trigger factor chaperones. J Biol Chem 2012; 287:44435-46. [PMID: 23148222 DOI: 10.1074/jbc.m112.418525] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Intracellular de novo protein folding is assisted by cellular networks of molecular chaperones. In Escherichia coli, cooperation between the chaperones trigger factor (TF) and DnaK is central to this process. Accordingly, the simultaneous deletion of both chaperone-encoding genes leads to severe growth and protein folding defects. Herein, we took advantage of such defective phenotypes to further elucidate the interactions of chaperone networks in vivo. We show that disruption of the TF/DnaK chaperone pathway is efficiently rescued by overexpression of the redox-regulated chaperone Hsp33. Consistent with this observation, the deletion of hslO, the Hsp33 structural gene, is no longer tolerated in the absence of the TF/DnaK pathway. However, in contrast with other chaperones like GroEL or SecB, suppression by Hsp33 was not attributed to its potential overlapping general chaperone function(s). Instead, we show that overexpressed Hsp33 specifically binds to elongation factor-Tu (EF-Tu) and targets it for degradation by the protease Lon. This synergistic action of Hsp33 and Lon was responsible for the rescue of bacterial growth in the absence of TF and DnaK, by presumably restoring the coupling between translation and the downstream folding capacity of the cell. In support of this hypothesis, we show that overexpression of the stress-responsive toxin HipA, which inhibits EF-Tu, also rescues bacterial growth and protein folding in the absence of TF and DnaK. The relevance for such a convergence of networks of chaperones and proteases acting directly on EF-Tu to modulate the intracellular rate of protein synthesis in response to protein aggregation is discussed.
Collapse
Affiliation(s)
- Nicolas Bruel
- Laboratoire de Microbiologie et Génétique Moléculaire (LMGM), Centre National de la Recherche Scientifique (CNRS) and Université Paul Sabatier, 31062 Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
89
|
Zhang D, Liu G, Xue J, Lou J, Nierhaus KH, Gong W, Qin Y. Common chaperone activity in the G-domain of trGTPase protects L11-L12 interaction on the ribosome. Nucleic Acids Res 2012; 40:10851-65. [PMID: 22965132 PMCID: PMC3505967 DOI: 10.1093/nar/gks833] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Translational GTPases (trGTPases) regulate all phases of protein synthesis. An early event in the interaction of a trGTPase with the ribosome is the contact of the G-domain with the C-terminal domain (CTD) of ribosomal protein L12 (L12-CTD) and subsequently interacts with the N-terminal domain of L11 (L11-NTD). However, the structural and functional relationships between L12-CTD and L11-NTD remain unclear. Here, we performed mutagenesis, biochemical and structural studies to identify the interactions between L11-NTD and L12-CTD. Mutagenesis of conserved residues in the interaction site revealed their role in the docking of trGTPases. During docking, loop62 of L11-NTD protrudes into a cleft in L12-CTD, leading to an open conformation of this domain and exposure of hydrophobic core. This unfavorable situation for L12-CTD stability is resolved by a chaperone-like activity of the contacting G-domain. Our results suggest that all trGTPases-regardless of their different specific functions-use a common mechanism for stabilizing the L11-NTD•L12-CTD interactions.
Collapse
Affiliation(s)
- Dandan Zhang
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
90
|
A proteomic investigation of Fusobacterium nucleatum alkaline-induced biofilms. BMC Microbiol 2012; 12:189. [PMID: 22943491 PMCID: PMC3478200 DOI: 10.1186/1471-2180-12-189] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/21/2012] [Indexed: 02/08/2023] Open
Abstract
Background The Gram negative anaerobe Fusobacterium nucleatum has been implicated in the aetiology of periodontal diseases. Although frequently isolated from healthy dental plaque, its numbers and proportion increase in plaque associated with disease. One of the significant physico-chemical changes in the diseased gingival sulcus is increased environmental pH. When grown under controlled conditions in our laboratory, F. nucleatum subspecies polymorphum formed mono-culture biofilms when cultured at pH 8.2. Biofilm formation is a survival strategy for bacteria, often associated with altered physiology and increased virulence. A proteomic approach was used to understand the phenotypic changes in F. nucleatum cells associated with alkaline induced biofilms. The proteomic based identification of significantly altered proteins was verified where possible using additional methods including quantitative real-time PCR (qRT-PCR), enzyme assay, acidic end-product analysis, intracellular polyglucose assay and Western blotting. Results Of 421 proteins detected on two-dimensional electrophoresis gels, spot densities of 54 proteins varied significantly (p < 0.05) in F. nucleatum cultured at pH 8.2 compared to growth at pH 7.4. Proteins that were differentially produced in biofilm cells were associated with the functional classes; metabolic enzymes, transport, stress response and hypothetical proteins. Our results suggest that biofilm cells were more metabolically efficient than planktonic cells as changes to amino acid and glucose metabolism generated additional energy needed for survival in a sub-optimal environment. The intracellular concentration of stress response proteins including heat shock protein GroEL and recombinational protein RecA increased markedly in the alkaline environment. A significant finding was the increased abundance of an adhesin, Fusobacterial outer membrane protein A (FomA). This surface protein is known for its capacity to bind to a vast number of bacterial species and human epithelial cells and its increased abundance was associated with biofilm formation. Conclusion This investigation identified a number of proteins that were significantly altered by F. nucleatum in response to alkaline conditions similar to those reported in diseased periodontal pockets. The results provide insight into the adaptive mechanisms used by F. nucleatum biofilms in response to pH increase in the host environment.
Collapse
|
91
|
Ceylan S, Yilan G, Akbulut BS, Poli A, Kazan D. Interplay of adaptive capabilities of Halomonas sp. AAD12 under salt stress. J Biosci Bioeng 2012; 114:45-52. [DOI: 10.1016/j.jbiosc.2012.02.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 02/28/2012] [Accepted: 02/29/2012] [Indexed: 10/28/2022]
|
92
|
Gliniewicz K, Plant KP, LaPatra SE, LaFrentz BR, Cain K, Snekvik KR, Call DR. Comparative proteomic analysis of virulent and rifampicin-attenuated Flavobacterium psychrophilum. JOURNAL OF FISH DISEASES 2012; 35:529-539. [PMID: 22607560 DOI: 10.1111/j.1365-2761.2012.01378.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Flavobacterium psychrophilum is the aetiologic agent of bacterial coldwater disease and rainbow trout fry syndrome. In this study, we compared a wild-type strain (CSF 259-93) with a rifampicin-resistant strain and virulence-attenuated strain of F. psychrophilum (CSF 259-93B.17). The attenuated strain harboured a mutation in the rpoB gene consistent with resistance to rifampicin. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry demonstrated an altered proteome with eight proteins characteristic for the parent strain and six that were unique to the attenuated strain. Immunoblotting with a diagnostic monoclonal antibody (FL-43) identified a putative antigen (FP1493) that was subsequently cloned, expressed as a recombinant protein and confirmed as recognized by FL-43. 2D-PAGE, immunoblotting with rainbow trout, Oncorhynchus mykiss (Walbaum), convalescent antisera and mass spectrometry of bacterial whole-cell lysates revealed several uniquely expressed immunoreactive proteins including FP1493. An FP1493 recombinant subunit vaccine was tested, but did not provide protection against challenge with the CSF259-93 strain. While the exact mechanism responsible for altered protein synthesis and attenuation of CSF 259-93B.17 is still unknown, the differentially expressed immunoreactive proteins are a valuable resource to develop subunit vaccines and to identify proteins that are potentially involved in disease.
Collapse
Affiliation(s)
- K Gliniewicz
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA
| | | | | | | | | | | | | |
Collapse
|
93
|
Kamal AHM, Cho K, Kim DE, Uozumi N, Chung KY, Lee SY, Choi JS, Cho SW, Shin CS, Woo SH. Changes in physiology and protein abundance in salt-stressed wheat chloroplasts. Mol Biol Rep 2012; 39:9059-74. [DOI: 10.1007/s11033-012-1777-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 06/09/2012] [Indexed: 01/27/2023]
|
94
|
Abstract
EF-Tu proteins of plastids, mitochondria, and the cytosolic counterpart EF-1α in plants, as well as EF-Tu proteins of bacteria, are highly conserved and multifunctional. The functions of EF-Tu include transporting the aminoacyl-tRNA complex to the A site of the ribosome during protein biosynthesis; chaperone activity in protecting other proteins from aggregation caused by environmental stresses, facilitating renaturation of proteins when conditions return to normal; displaying a protein disulfide isomerase activity; participating in the degradation of N-terminally blocked proteins by the proteasome; eliciting innate immunity and triggering resistance to pathogenic bacteria in plants; participating in transcription when an E. coli host is infected with phages. EF-Tu genes are upregulated by abiotic stresses in plants, and EF-Tu plays important role in stress responses. Expression of a plant EF-Tu gene confers heat tolerance in E. coli, maize knock-out EF-Tu null mutants are heat susceptible, and over-expression of an EF-Tu gene improves heat tolerance in crop plants. This review paper summarizes the current knowledge of EF-Tu proteins in stress responses in plants and progress on application of EF-Tu for developing crop varieties tolerant to abiotic stresses, such as high temperatures.
Collapse
|
95
|
Gomes DF, Batista JSDS, Schiavon AL, Andrade DS, Hungria M. Proteomic profiling of Rhizobium tropici PRF 81: identification of conserved and specific responses to heat stress. BMC Microbiol 2012; 12:84. [PMID: 22647150 PMCID: PMC3502158 DOI: 10.1186/1471-2180-12-84] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 05/30/2012] [Indexed: 12/15/2022] Open
Abstract
Background Rhizobium tropici strain PRF 81 (= SEMIA 4080) has been used in commercial inoculants for application to common-bean crops in Brazil since 1998, due to its high efficiency in fixing nitrogen, competitiveness against indigenous rhizobial populations and capacity to adapt to stressful tropical conditions, representing a key alternative to application of N-fertilizers. The objective of our study was to obtain an overview of adaptive responses to heat stress of strain PRF 81, by analyzing differentially expressed proteins when the bacterium is grown at 28°C and 35°C. Results Two-dimensional gel electrophoresis (2DE) revealed up-regulation of fifty-nine spots that were identified by MALDI-TOF/TOF-TOF. Differentially expressed proteins were associated with the functional COG categories of metabolism, cellular processes and signaling, information storage and processing. Among the up-regulated proteins, we found some related to conserved heat responses, such as molecular chaperones DnaK and GroEL, and other related proteins, such as translation factors EF-Tu, EF-G, EF-Ts and IF2. Interestingly, several oxidative stress-responsive proteins were also up-regulated, and these results reveal the diversity of adaptation mechanisms presented by this thermotolerant strain, suggesting a cross-talk between heat and oxidative stresses. Conclusions Our data provide valuable protein-expression information relevant to the ongoing genome sequencing of strain PRF 81, and contributes to our still-poor knowledge of the molecular determinants of the thermotolerance exhibited by R. tropici species.
Collapse
|
96
|
Sasikumar AN, Perez WB, Kinzy TG. The many roles of the eukaryotic elongation factor 1 complex. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:543-55. [PMID: 22555874 DOI: 10.1002/wrna.1118] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The vast majority of proteins are believed to have one specific function. Throughout the course of evolution, however, some proteins have acquired additional functions to meet the demands of a complex cellular milieu. In some cases, changes in RNA or protein processing allow the cell to make the most of what is already encoded in the genome to produce slightly different forms. The eukaryotic elongation factor 1 (eEF1) complex subunits, however, have acquired such moonlighting functions without alternative forms. In this article, we discuss the canonical functions of the components of the eEF1 complex in translation elongation as well as the secondary interactions they have with other cellular factors outside of the translational apparatus. The eEF1 complex itself changes in composition as the complexity of eukaryotic organisms increases. Members of the complex are also subject to phosphorylation, a potential modulator of both canonical and non-canonical functions. Although alternative functions of the eEF1A subunit have been widely reported, recent studies are shedding light on additional functions of the eEF1B subunits. A thorough understanding of these alternate functions of eEF1 is essential for appreciating their biological relevance.
Collapse
Affiliation(s)
- Arjun N Sasikumar
- Department of Molecular Genetics, Microbiology and Immunology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ, USA
| | | | | |
Collapse
|
97
|
Poblete-Castro I, Escapa IF, Jäger C, Puchalka J, Lam CMC, Schomburg D, Prieto MA, Martins dos Santos VAP. The metabolic response of P. putida KT2442 producing high levels of polyhydroxyalkanoate under single- and multiple-nutrient-limited growth: highlights from a multi-level omics approach. Microb Cell Fact 2012; 11:34. [PMID: 22433058 PMCID: PMC3325844 DOI: 10.1186/1475-2859-11-34] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/20/2012] [Indexed: 11/10/2022] Open
Abstract
Background Pseudomonas putida KT2442 is a natural producer of polyhydroxyalkanoates (PHAs), which can substitute petroleum-based non-renewable plastics and form the basis for the production of tailor-made biopolymers. However, despite the substantial body of work on PHA production by P. putida strains, it is not yet clear how the bacterium re-arranges its whole metabolism when it senses the limitation of nitrogen and the excess of fatty acids as carbon source, to result in a large accumulation of PHAs within the cell. In the present study we investigated the metabolic response of KT2442 using a systems biology approach to highlight the differences between single- and multiple-nutrient-limited growth in chemostat cultures. Results We found that 26, 62, and 81% of the cell dry weight consist of PHA under conditions of carbon, dual, and nitrogen limitation, respectively. Under nitrogen limitation a specific PHA production rate of 0.43 (g·(g·h)-1) was obtained. The residual biomass was not constant for dual- and strict nitrogen-limiting growth, showing a different feature in comparison to other P. putida strains. Dual limitation resulted in patterns of gene expression, protein level, and metabolite concentrations that substantially differ from those observed under exclusive carbon or nitrogen limitation. The most pronounced differences were found in the energy metabolism, fatty acid metabolism, as well as stress proteins and enzymes belonging to the transport system. Conclusion This is the first study where the interrelationship between nutrient limitations and PHA synthesis has been investigated under well-controlled conditions using a system level approach. The knowledge generated will be of great assistance for the development of bioprocesses and further metabolic engineering work in this versatile organism to both enhance and diversify the industrial production of PHAs.
Collapse
|
98
|
Wholey WY, Jakob U. Hsp33 confers bleach resistance by protecting elongation factor Tu against oxidative degradation in Vibrio cholerae. Mol Microbiol 2012; 83:981-91. [PMID: 22296329 DOI: 10.1111/j.1365-2958.2012.07982.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The redox-regulated chaperone Hsp33 protects bacteria specifically against stress conditions that cause oxidative protein unfolding, such as treatment with bleach or exposure to peroxide at elevated temperatures. To gain insight into the mechanism by which expression of Hsp33 confers resistance to oxidative protein unfolding conditions, we made use of Vibrio cholerae strain O395 lacking the Hsp33 gene hslO. We found that this strain, which is exquisitely bleach-sensitive, displays a temperature-sensitive (ts) phenotype during aerobic growth, implying that V. cholerae suffers from oxidative heat stress when cultivated at 43°C. We utilized this phenotype to select for Escherichia coli genes that rescue the ts phenotype of V. cholerae ΔhslO when overexpressed. We discovered that expression of a single protein, the elongation factor EF-Tu, was sufficient to rescue both the ts and bleach-sensitive phenotypes of V. cholerae ΔhslO. In vivo studies revealed that V. cholerae EF-Tu is highly sensitive to oxidative protein degradation in the absence of Hsp33, indicating that EF-Tu is a vital chaperone substrate of Hsp33 in V. cholerae. These results suggest an 'essential client protein' model for Hsp33's chaperone action in Vibrio in which stabilization of a single oxidative stress-sensitive protein is sufficient to enhance the oxidative stress resistance of the whole organism.
Collapse
Affiliation(s)
- Wei-Yun Wholey
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
99
|
Molecular basis for RNA polymerization by Qβ replicase. Nat Struct Mol Biol 2012; 19:229-37. [PMID: 22245970 DOI: 10.1038/nsmb.2204] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 11/15/2011] [Indexed: 12/17/2022]
Abstract
Core Qβ replicase comprises the Qβ virus-encoded RNA-dependent RNA polymerase (β-subunit) and the host Escherichia coli translational elongation factors EF-Tu and EF-Ts. The functions of the host proteins in the viral replicase are not clear. Structural analyses of RNA polymerization by core Qβ replicase reveal that at the initiation stage, the 3'-adenine of the template RNA provides a stable platform for de novo initiation. EF-Tu in Qβ replicase forms a template exit channel with the β-subunit. At the elongation stages, the C-terminal region of the β-subunit, assisted by EF-Tu, splits the temporarily double-stranded RNA between the template and nascent RNAs before translocation of the single-stranded template RNA into the exit channel. Therefore, EF-Tu in Qβ replicase modulates RNA elongation processes in a distinct manner from its established function in protein synthesis.
Collapse
|
100
|
Wang X, Xue J, Sun Z, Qin Y, Gong W. Study on the chaperone properties of conserved GTPases. Protein Cell 2012; 3:44-50. [PMID: 22246579 DOI: 10.1007/s13238-011-1133-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Accepted: 11/29/2011] [Indexed: 10/14/2022] Open
Abstract
As a large family of hydrolases, GTPases are widespread in cells and play the very important biological function of hydrolyzing GTP into GDP and inorganic phosphate through binding with it. GTPases are involved in cell cycle regulation, protein synthesis, and protein transportation. Chaperones can facilitate the folding or refolding of nascent peptides and denatured proteins to their native states. However, chaperones do not occur in the native structures in which they can perform their normal biological functions. In the current study, the chaperone activity of the conserved GTPases of Escherichia coli is tested by the chemical denaturation and chaperone-assisted renaturation of citrate synthase and α-glucosidase. The effects of ribosomes and nucleotides on the chaperone activity are also examined. Our data indicate that these conserved GTPases have chaperone properties, and may be ancestral protein folding factors that have appeared before dedicated chaperones.
Collapse
Affiliation(s)
- Xiang Wang
- RNA Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|