51
|
Nimmerjahn F, Werner A. Sweet Rules: Linking Glycosylation to Antibody Function. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:365-393. [PMID: 34687017 DOI: 10.1007/978-3-030-76912-3_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antibodies produced upon infections with pathogenic microorganisms are essential for clearing primary infections and for providing the host with long-lasting immunity. Moreover, antibodies have become the most widely used platform for developing novel therapies against cancer and autoimmunity, requiring an in-depth understanding of how antibodies mediate their activity in vivo and which factors modulate pro- or anti-inflammatory antibody activities. Since the discovery that select residues present in the sugar domain attached to the immunoglobulin G (IgG) fragment crystallizable (Fc) region can modulate both, pro- and anti-inflammatory effector functions, a wealth of studies has focused on understanding how IgG glycosylation is regulated and how this knowledge can be used to optimize therapeutic antibody activity. With the introduction of glycoengineered afucosylated antibodies in cancer therapy and the initiation of clinical testing of highly sialylated anti-inflammatory antibodies the proof-of-concept that understanding antibody glycosylation can lead to clinical innovation has been provided. The focus of this review is to summarize recent insights into how antibody glycosylation is regulated in vivo and how select sugar residues impact IgG function.
Collapse
Affiliation(s)
- Falk Nimmerjahn
- Chair of Genetics, Department of Biology, Institute of Genetics, University of Erlangen-Nürnberg, Erlangen, Germany.
- Medical Immunology Campus Erlangen, Erlangen, Germany.
| | - Anja Werner
- Chair of Genetics, Department of Biology, Institute of Genetics, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
52
|
Cajic S, Hennig R, Burock R, Rapp E. Capillary (Gel) Electrophoresis-Based Methods for Immunoglobulin (G) Glycosylation Analysis. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:137-172. [PMID: 34687009 DOI: 10.1007/978-3-030-76912-3_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The in-depth characterization of protein glycosylation has become indispensable in many research fields and in the biopharmaceutical industry. Especially knowledge about modulations in immunoglobulin G (IgG) N-glycosylation and their effect on immunity enabled a better understanding of human diseases and the development of new, more effective drugs for their treatment. This chapter provides a deeper insight into capillary (gel) electrophoresis-based (C(G)E) glycan analysis, addressing its impressive performance and possibilities, its great potential regarding real high-throughput for large cohort studies, as well as its challenges and limitations. We focus on the latest developments with respect to miniaturization and mass spectrometry coupling, as well as data analysis and interpretation. The use of exoglycosidase sequencing in combination with current C(G)E technology is discussed, highlighting possible difficulties and pitfalls. The application section describes the detailed characterization of N-glycosylation, utilizing multiplexed CGE with laser-induced fluorescence detection (xCGE-LIF). Besides a comprehensive overview on antibody glycosylation by comparing species-specific IgGs and human immunoglobulins A, D, E, G, and M, the chapter comprises a comparison of therapeutic monoclonal antibodies from different production cell lines, as well as a detailed characterization of Fab and Fc glycosylation. These examples illustrate the full potential of C(G)E, resolving the smallest differences in sugar composition and structure.
Collapse
Affiliation(s)
- Samanta Cajic
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - René Hennig
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
- glyXera GmbH, Magdeburg, Germany.
| | | | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- glyXera GmbH, Magdeburg, Germany
| |
Collapse
|
53
|
Fc Engineering Strategies to Advance IgA Antibodies as Therapeutic Agents. Antibodies (Basel) 2020; 9:antib9040070. [PMID: 33333967 PMCID: PMC7768499 DOI: 10.3390/antib9040070] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
In the past three decades, a great interest has arisen in the use of immunoglobulins as therapeutic agents. In particular, since the approval of the first monoclonal antibody Rituximab for B cell malignancies, the progress in the antibody-related therapeutic agents has been incremental. Therapeutic antibodies can be applied in a variety of diseases, ranging from cancer to autoimmunity and allergy. All current therapeutic monoclonal antibodies used in the clinic are of the IgG isotype. IgG antibodies can induce the killing of cancer cells by growth inhibition, apoptosis induction, complement activation (CDC) or antibody-dependent cellular cytotoxicity (ADCC) by NK cells, antibody-dependent cellular phagocytosis (ADCP) by monocytes/macrophages, or trogoptosis by granulocytes. To enhance these effector mechanisms of IgG, protein and glyco-engineering has been successfully applied. As an alternative to IgG, antibodies of the IgA isotype have been shown to be very effective in tumor eradication. Using the IgA-specific receptor FcαRI expressed on myeloid cells, IgA antibodies show superior tumor-killing compared to IgG when granulocytes are employed. However, reasons why IgA has not been introduced in the clinic yet can be found in the intrinsic properties of IgA posing several technical limitations: (1) IgA is challenging to produce and purify, (2) IgA shows a very heterogeneous glycosylation profile, and (3) IgA has a relatively short serum half-life. Next to the technical challenges, pre-clinical evaluation of IgA efficacy in vivo is not straightforward as mice do not naturally express the FcαR. Here, we provide a concise overview of the latest insights in these engineering strategies overcoming technical limitations of IgA as a therapeutic antibody: developability, heterogeneity, and short half-life. In addition, alternative approaches using IgA/IgG hybrid and FcαR-engagers and the impact of engineering on the clinical application of IgA will be discussed.
Collapse
|
54
|
Ustyanovska Avtenyuk N, Visser N, Bremer E, Wiersma VR. The Neutrophil: The Underdog That Packs a Punch in the Fight against Cancer. Int J Mol Sci 2020; 21:E7820. [PMID: 33105656 PMCID: PMC7659937 DOI: 10.3390/ijms21217820] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
The advent of immunotherapy has had a major impact on the outcome and overall survival in many types of cancer. Current immunotherapeutic strategies typically aim to (re)activate anticancer T cell immunity, although the targeting of macrophage-mediated anticancer innate immunity has also emerged in recent years. Neutrophils, although comprising ≈ 60% of all white blood cells in the circulation, are still largely overlooked in this respect. Nevertheless, neutrophils have evident anticancer activity and can induce phagocytosis, trogocytosis, as well as the direct cytotoxic elimination of cancer cells. Furthermore, therapeutic tumor-targeting monoclonal antibodies trigger anticancer immune responses through all innate Fc-receptor expressing cells, including neutrophils. Indeed, the depletion of neutrophils strongly reduced the efficacy of monoclonal antibody treatment and increased tumor progression in various preclinical studies. In addition, the infusion of neutrophils in murine cancer models reduced tumor progression. However, evidence on the anticancer effects of neutrophils is fragmentary and mostly obtained in in vitro assays or murine models with reports on anticancer neutrophil activity in humans lagging behind. In this review, we aim to give an overview of the available knowledge of anticancer activity by neutrophils. Furthermore, we will describe strategies being explored for the therapeutic activation of anticancer neutrophil activity.
Collapse
Affiliation(s)
| | | | - Edwin Bremer
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1/DA13, 9713 GZ Groningen, The Netherlands; (N.U.A.); (N.V.)
| | - Valerie R. Wiersma
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1/DA13, 9713 GZ Groningen, The Netherlands; (N.U.A.); (N.V.)
| |
Collapse
|
55
|
Ugonotti J, Chatterjee S, Thaysen-Andersen M. Structural and functional diversity of neutrophil glycosylation in innate immunity and related disorders. Mol Aspects Med 2020; 79:100882. [PMID: 32847678 DOI: 10.1016/j.mam.2020.100882] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
The granulated neutrophils are abundant innate immune cells that utilize bioactive glycoproteins packed in cytosolic granules to fight pathogenic infections, but the neutrophil glycobiology remains poorly understood. Facilitated by technological advances in glycoimmunology, systems glycobiology and glycoanalytics, a considerable body of literature reporting on novel aspects of neutrophil glycosylation has accumulated. Herein, we summarize the building knowledge of the structural and functional diversity displayed by N- and O-linked glycoproteins spatiotemporally expressed and sequentially brought-into-action across the diverse neutrophil life stages during bone marrow maturation, movements to, from and within the blood circulation and microbicidal processes at the inflammatory sites in peripheral tissues. It transpires that neutrophils abundantly decorate their granule glycoproteins including neutrophil elastase, myeloperoxidase and cathepsin G with peculiar glyco-signatures not commonly reported in other areas of human glycobiology such as hyper-truncated chitobiose core- and paucimannosidic-type N-glycans and monoantennary complex-type N-glycans. Sialyl Lewisx, Lewisx, poly-N-acetyllactosamine extensions and core 1-/2-type O-glycans are also common neutrophil glyco-signatures. Granule-specific glycosylation is another fascinating yet not fully understood feature of neutrophils. Recent literature suggests that unconventional biosynthetic pathways and functions underpin these prominent neutrophil-associated glyco-phenotypes. The impact of glycosylation on key neutrophil effector functions including extravasation, degranulation, phagocytosis and formation of neutrophil extracellular traps during normal physiological conditions and in innate immune-related diseases is discussed. We also highlight new technologies that are expected to further advance neutrophil glycobiology and briefly discuss the untapped diagnostic and therapeutic potential of neutrophil glycosylation that could open avenues to combat the increasingly prevalent innate immune disorders.
Collapse
Affiliation(s)
- Julian Ugonotti
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| | - Sayantani Chatterjee
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
56
|
Saso A, Kampmann B. Maternal Immunization: Nature Meets Nurture. Front Microbiol 2020; 11:1499. [PMID: 32849319 PMCID: PMC7396522 DOI: 10.3389/fmicb.2020.01499] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022] Open
Abstract
Vaccinating women in pregnancy (i.e., maternal immunization) has emerged as a promising tool to tackle infant morbidity and mortality worldwide. This approach nurtures a 'gift of nature,' whereby antibody is transferred from mother to fetus transplacentally during pregnancy, or postnatally in breast milk, thereby providing passive, antigen-specific protection against infections in the first few months of life, a period of increased immune vulnerability for the infant. In this review, we briefly summarize the rationale for maternal immunization programs and the landscape of vaccines currently in use or in the pipeline. We then direct the focus to the underlying biological phenomena, including the main mechanisms by which maternally derived antibody is transferred efficiently to the infant, at the placental interface or in breast milk; important research models and methodological approaches to interrogate these processes, particularly in the context of recent advances in systems vaccinology; the potential biological and clinical impact of high maternal antibody titres on neonatal ontogeny and subsequent infant vaccine responses; and key vaccine- and host-related factors influencing the maternal-infant dyad across different environments. Finally, we outline important gaps in knowledge and suggest future avenues of research on this topic, proposing potential strategies to ensure optimal testing, delivery and implementation of maternal vaccination programs worldwide.
Collapse
Affiliation(s)
- Anja Saso
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Vaccines and Immunity Theme, MRC Unit The Gambia at LSHTM, Banjul, Gambia
| | - Beate Kampmann
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Vaccines and Immunity Theme, MRC Unit The Gambia at LSHTM, Banjul, Gambia
| |
Collapse
|
57
|
Pietrzyk-Brzezinska AJ, Bujacz A. H-type lectins - Structural characteristics and their applications in diagnostics, analytics and drug delivery. Int J Biol Macromol 2020; 152:735-747. [PMID: 32119947 DOI: 10.1016/j.ijbiomac.2020.02.320] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022]
Abstract
Lectins are ubiquitous carbohydrate-binding proteins that interact with sugar moieties in a highly specific manner. H-type lectins represent a new group of lectins that were identified in invertebrates. These lectins share structural homology and bind mainly to N-acetylgalactosamine (GalNAc). Recent structural studies on the H-type lectins provided a detailed description of the GalNAc-lectin interaction that is already exploited in a number of biomedical applications. Two members of the H-type lectin family, Helix pomatia agglutinin (HPA) and Helix aspersa agglutinin (HAA), have already been extensively used in many diagnostic tests due their ability to specifically recognize GalNAc. This ability is especially important because aberrant glycosylation patterns of proteins expressed by cancer cells contain GalNAc. In addition, H-type lectins were utilized in diagnostics of other non-cancer diseases and represent great potential as components of drug delivery systems. Here, we present an overview of the H-type lectins and their applications in diagnostics, analytics and drug delivery.
Collapse
Affiliation(s)
- Agnieszka J Pietrzyk-Brzezinska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, Lodz 90-924, Poland.
| | - Anna Bujacz
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, Lodz 90-924, Poland
| |
Collapse
|
58
|
Ohyama Y, Nakajima K, Renfrow MB, Novak J, Takahashi K. Mass spectrometry for the identification and analysis of highly complex glycosylation of therapeutic or pathogenic proteins. Expert Rev Proteomics 2020; 17:275-296. [PMID: 32406805 DOI: 10.1080/14789450.2020.1769479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Protein glycosylation influences characteristics such as folding, stability, protein interactions, and solubility. Therefore, glycan moieties of therapeutic proteins and proteins that are likely associated with disease pathogenesis should be analyzed in-depth, including glycan heterogeneity and modification sites. Recent advances in analytical methods and instrumentation have enabled comprehensive characterization of highly complex glycosylated proteins. AREA COVERED The following aspects should be considered when analyzing glycosylated proteins: sample preparation, chromatographic separation, mass spectrometry (MS) and fragmentation methods, and bioinformatics, such as software solutions for data analyses. Notably, analysis of glycoproteins with heavily sialylated glycans or multiple glycosylation sites requires special considerations. Here, we discuss recent methodological advances in MS that provide detailed characterization of heterogeneous glycoproteins. EXPERT OPINION As characterization of complex glycosylated proteins is still analytically challenging, the function or pathophysiological significance of these proteins is not fully understood. To reproducibly produce desired forms of therapeutic glycoproteins or to fully elucidate disease-specific patterns of protein glycosylation, a highly reproducible and robust analytical platform(s) should be established. In addition to advances in MS instrumentation, optimization of analytical and bioinformatics methods and utilization of glycoprotein/glycopeptide standards is desirable. Ultimately, we envision that an automated high-throughput MS analysis will provide additional power to clinical studies and precision medicine.
Collapse
Affiliation(s)
- Yukako Ohyama
- Department of Nephrology, Fujita Health University School of Medicine , Toyoake, Japan.,Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine , Toyoake, Japan
| | - Kazuki Nakajima
- Center for Research Promotion and Support, Fujita Health University , Toyoake, Japan
| | - Matthew B Renfrow
- Departments of Biochemistry and Molecular Genetics and Microbiology, University of Alabama at Birmingham , Birmingham, AL, USA
| | - Jan Novak
- Departments of Biochemistry and Molecular Genetics and Microbiology, University of Alabama at Birmingham , Birmingham, AL, USA
| | - Kazuo Takahashi
- Department of Nephrology, Fujita Health University School of Medicine , Toyoake, Japan.,Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine , Toyoake, Japan.,Departments of Biochemistry and Molecular Genetics and Microbiology, University of Alabama at Birmingham , Birmingham, AL, USA
| |
Collapse
|
59
|
Pažitná L, Nemčovič M, Pakanová Z, Baráth P, Aliev T, Dolgikh D, Argentova V, Katrlík J. Influence of media composition on recombinant monoclonal IgA1 glycosylation analysed by lectin-based protein microarray and MALDI-MS. J Biotechnol 2020; 314-315:34-40. [PMID: 32298669 PMCID: PMC7194684 DOI: 10.1016/j.jbiotec.2020.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 01/06/2023]
Abstract
Glycosylation of therapeutic glycoproteins significantly affects their physico-chemical properties, bioactivity and immunogenicity. The determination of glycan composition is highly important regarding their development and production. Therefore, there is a demand for analytical techniques enabling rapid and reliable glycoprofiling of therapeutic proteins. For the investigation of changes in glycan structures, we have employed two platforms: lectin-based protein microarray, and MALDI-MS. In lectin-based microarray analysis, the samples of IgA were printed on the microarray slide, incubated with the set of lectins with various specificity and evaluation of changes in glycosylation was based on differences in reactivity of samples with lectins. MALDI-MS was used for N-glycan analysis of IgA1 samples. IgAs are effective as therapeutic agents in defense against viruses that use sialic acid as a receptor. Dimeric IgA1 antibodies were produced by stable cell line IgA1/2G9 on the basal medium at different conditions (different supplementation and feeding) and we also evaluated the effect of different conditions on lactate production, which correlates with IgA productivity. Decrease of lactate levels was observed during supplementation with succinic acid, asparagine, or with mannose feeding. We found by lectin-based microarray analysis that the metabolic shift from glutamine to asparagine or feeding with glucose caused increase of high mannose type glycans what was confirmed also by MALDI-MS. Among other changes in IgA glycosylation determined by lectin-based protein microarray were, for example, reduced galactosylation after supplementation with succinic acid and increase of both sialylation and galactosylation after supplementation with glutamine and feeding with mannose. The elucidation of mechanism of determined changes requires further investigation, but the described analytical approach represent effective platform for determination, screening and evaluation of glycosylation of therapeutic proteins.
Collapse
Affiliation(s)
- Lucia Pažitná
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marek Nemčovič
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Pakanová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Baráth
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Teimur Aliev
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry Dolgikh
- Department of Bioengineering, School of Biology, Lomonosov Moscow State University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Victoria Argentova
- Department of Bioengineering, School of Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Jaroslav Katrlík
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
60
|
Langel SN, Otero CE, Martinez DR, Permar SR. Maternal gatekeepers: How maternal antibody Fc characteristics influence passive transfer and infant protection. PLoS Pathog 2020; 16:e1008303. [PMID: 32214394 PMCID: PMC7098569 DOI: 10.1371/journal.ppat.1008303] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Stephanie N. Langel
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (SNL); (SRR)
| | - Claire E. Otero
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David R. Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill School of Public Health, Chapel Hill, North Carolina, United States of America
| | - Sallie R. Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (SNL); (SRR)
| |
Collapse
|
61
|
Analysis of O-glycoforms of the IgA1 hinge region by sequential deglycosylation. Sci Rep 2020; 10:671. [PMID: 31959827 PMCID: PMC6971281 DOI: 10.1038/s41598-020-57510-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022] Open
Abstract
A common renal disease, immunoglobulin A (IgA) nephropathy (IgAN), is associated with glomerular deposition of IgA1-containing immune complexes. IgA1 hinge region (HR) has up to six clustered O-glycans consisting of Ser/Thr-linked N-acetylgalactosamine with β1,3-linked galactose and variable sialylation. IgA1 glycoforms with some galactose-deficient (Gd) HR O-glycans play a key role in IgAN pathogenesis. The clustered and variable O-glycans make the IgA1 glycomic analysis challenging and better approaches are needed. Here, we report a comprehensive analytical workflow for IgA1 HR O-glycoform analysis. We combined an automated quantitative analysis of the HR O-glycopeptide profiles with sequential deglycosylation to remove all but Gd O-glycans from the HR. The workflow was tested using serum IgA1 from healthy subjects. Twelve variants of glycopeptides corresponding to the HR with three to six O-glycans were detected; nine glycopeptides carried up to three Gd O-glycans. Sites with Gd O-glycans were unambiguously identified by electron-transfer/higher-energy collision dissociation tandem mass spectrometry. Extracted ion chromatograms of isomeric glycoforms enabled quantitative assignment of Gd sites. The most frequent Gd site was T236, followed by S230, T233, T228, and S232. The new workflow for quantitative profiling of IgA1 HR O-glycoforms with site-specific resolution will enable identification of pathogenic IgA1 HR O-glycoforms in IgAN.
Collapse
|
62
|
IgA subclasses have different effector functions associated with distinct glycosylation profiles. Nat Commun 2020; 11:120. [PMID: 31913287 PMCID: PMC6949214 DOI: 10.1038/s41467-019-13992-8] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022] Open
Abstract
Monomeric serum immunoglobulin A (IgA) can contribute to the development of various autoimmune diseases, but the regulation of serum IgA effector functions is not well defined. Here, we show that the two IgA subclasses (IgA1 and IgA2) differ in their effect on immune cells due to distinct binding and signaling properties. Whereas IgA2 acts pro-inflammatory on neutrophils and macrophages, IgA1 does not have pronounced effects. Moreover, IgA1 and IgA2 have different glycosylation profiles, with IgA1 possessing more sialic acid than IgA2. Removal of sialic acid increases the pro-inflammatory capacity of IgA1, making it comparable to IgA2. Of note, disease-specific autoantibodies in patients with rheumatoid arthritis display a shift toward the pro-inflammatory IgA2 subclass, which is associated with higher disease activity. Taken together, these data demonstrate that IgA effector functions depend on subclass and glycosylation, and that disturbances in subclass balance are associated with autoimmune disease. Immunoglobulin A (IgA) has two subclasses, IgA1 and IgA2, but differential effects on inflammation are unclear. Here the authors show that IgA2, when compared with IgA1, has stronger pro-inflammatory functions associated with changed glycosylation and higher disease scores in patients with rheumatoid arthritis.
Collapse
|
63
|
de Sousa-Pereira P, Woof JM. IgA: Structure, Function, and Developability. Antibodies (Basel) 2019; 8:antib8040057. [PMID: 31817406 PMCID: PMC6963396 DOI: 10.3390/antib8040057] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/24/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023] Open
Abstract
Immunoglobulin A (IgA) plays a key role in defending mucosal surfaces against attack by infectious microorganisms. Such sites present a major site of susceptibility due to their vast surface area and their constant exposure to ingested and inhaled material. The importance of IgA to effective immune defence is signalled by the fact that more IgA is produced than all the other immunoglobulin classes combined. Indeed, IgA is not just the most prevalent antibody class at mucosal sites, but is also present at significant concentrations in serum. The unique structural features of the IgA heavy chain allow IgA to polymerise, resulting in mainly dimeric forms, along with some higher polymers, in secretions. Both serum IgA, which is principally monomeric, and secretory forms of IgA are capable of neutralising and removing pathogens through a range of mechanisms, including triggering the IgA Fc receptor known as FcαRI or CD89 on phagocytes. The effectiveness of these elimination processes is highlighted by the fact that various pathogens have evolved mechanisms to thwart such IgA-mediated clearance. As the structure–function relationships governing the varied capabilities of this immunoglobulin class come into increasingly clear focus, and means to circumvent any inherent limitations are developed, IgA-based monoclonal antibodies are set to emerge as new and potent options in the therapeutic arena.
Collapse
Affiliation(s)
- Patrícia de Sousa-Pereira
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- CIBIO-InBIO, Campus Agrário de Vairão, University of Porto, 4485-661 Vairão, Portugal
| | - Jenny M. Woof
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Correspondence: ; Tel.: +44-1382-383389
| |
Collapse
|
64
|
O'Flaherty R, Muniyappa M, Walsh I, Stöckmann H, Hilliard M, Hutson R, Saldova R, Rudd PM. A Robust and Versatile Automated Glycoanalytical Technology for Serum Antibodies and Acute Phase Proteins: Ovarian Cancer Case Study. Mol Cell Proteomics 2019; 18:2191-2206. [PMID: 31471495 PMCID: PMC6823853 DOI: 10.1074/mcp.ra119.001531] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/11/2019] [Indexed: 11/06/2022] Open
Abstract
The direct association of the genome, transcriptome, metabolome, lipidome and proteome with the serum glycome has revealed systems of interconnected cellular pathways. The exact roles of individual glycoproteomes in the context of disease have yet to be elucidated. In a move toward personalized medicine, it is now becoming critical to understand disease pathogenesis, and the traits, stages, phenotypes and molecular features that accompany it, as the disruption of a whole system. To this end, we have developed an innovative technology on an automated platform, "GlycoSeqCap," which combines N-glycosylation data from six glycoproteins using a single source of human serum. Specifically, we multiplexed and optimized a successive serial capture and glycoanalysis of six purified glycoproteins, immunoglobulin G (IgG), immunoglobulin M (IgM), immunoglobulin A (IgA), transferrin (Trf), haptoglobin (Hpt) and alpha-1-antitrypsin (A1AT), from 50 μl of human serum. We provide the most comprehensive and in-depth glycan analysis of individual glycoproteins in a single source of human serum to date. To demonstrate the technological application in the context of a disease model, we performed a pilot study in an ovarian cancer cohort (n = 34) using discrimination and classification analyses to identify aberrant glycosylation. In our sample cohort, we exhibit improved selectivity and specificity over the currently used biomarker for ovarian cancer, CA125, for early stage ovarian cancer. This technology will establish a new state-of-the-art strategy for the characterization of individual serum glycoproteomes as a diagnostic and monitoring tool which represents a major step toward understanding the changes that take place during disease.
Collapse
Affiliation(s)
- Róisín O'Flaherty
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin 4, Ireland, A94X099
| | - Mohankumar Muniyappa
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin 4, Ireland, A94X099
| | - Ian Walsh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Henning Stöckmann
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin 4, Ireland, A94X099
| | - Mark Hilliard
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin 4, Ireland, A94X099
| | - Richard Hutson
- Cancer Research UK Clinical Centre at Leeds, St James' University Hospital, Leeds LS9 7TF, UK.
| | - Radka Saldova
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin 4, Ireland, A94X099; UCD School of Medicine, College of Health and Agricultural Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Pauline M Rudd
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin 4, Ireland, A94X099
| |
Collapse
|
65
|
Jamaleddine M, Harris MS, Liyanage L, Cook GA. Expression, purification, and structural analysis of the full-length human integral membrane protein γ-sarcoglycan. Protein Expr Purif 2019; 167:105525. [PMID: 31682967 DOI: 10.1016/j.pep.2019.105525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 11/26/2022]
Abstract
Mutation of the gene encoding γ-sarcoglycan (SGCG), an integral membrane protein responsible for maintaining the integrity of the muscle cell sarcolemma, results in Limb-Girdle Muscular Dystrophy (LGMD), a congenital disease with no current treatment options. This member of the sarcoglycan glycoprotein family is a vital component of the Dystrophin Complex, which together facilitate normal muscle function. However, very little is known about the structure and dynamics of these proteins, and of membrane glycoproteins in general. This is due to a number of factors, including their complexity, heterogeneity and highly-specific native environments. The expression, purification, and structural study of membrane proteins is further impeded by their hydrophobic nature and consequent propensity to aggregate in aqueous solutions. Here, we report the first successful expression and purification of milligram quantities of full-length recombinant SGCG, utilizing fusion protein-guided overexpression to inclusion bodies in Escherichia coli. Purification of SGCG from the fusion protein, TrpΔLE, was facilitated using chemical cleavage. Cleavage products were then isolated by size-exclusion chromatography. Successful purification of the protein was confirmed using SDS-PAGE and mass spectroscopy. Finally, solution nuclear magnetic resonance spectroscopy of uniformly 15N-labeled SGCG in detergent environments was performed, yielding the first spectra of the full-length membrane glycoprotein, SGCG. These results represent the initial structural studies of SGCG, laying the foundation for further investigation on the interaction and dynamics of other integral membrane proteins. More specifically, this data allows for opportunities in the future for enhanced treatment modalities and cures for LGMD.
Collapse
Affiliation(s)
- Michael Jamaleddine
- Oklahoma State University, Department of Chemistry, 107 Physical Science, Stillwater, OK, 74074, USA
| | - Michael S Harris
- Oklahoma State University, Department of Chemistry, 107 Physical Science, Stillwater, OK, 74074, USA
| | - Leshani Liyanage
- Oklahoma State University, Department of Chemistry, 107 Physical Science, Stillwater, OK, 74074, USA
| | - Gabriel A Cook
- Oklahoma State University, Department of Chemistry, 107 Physical Science, Stillwater, OK, 74074, USA.
| |
Collapse
|
66
|
Göritzer K, Turupcu A, Maresch D, Novak J, Altmann F, Oostenbrink C, Obinger C, Strasser R. Distinct Fcα receptor N-glycans modulate the binding affinity to immunoglobulin A (IgA) antibodies. J Biol Chem 2019; 294:13995-14008. [PMID: 31362986 PMCID: PMC6755811 DOI: 10.1074/jbc.ra119.009954] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/23/2019] [Indexed: 01/10/2023] Open
Abstract
Human immunoglobulin A (IgA) is the most prevalent antibody class at mucosal sites with an important role in mucosal defense. Little is known about the impact of N-glycan modifications of IgA1 and IgA2 on binding to the Fcα receptor (FcαRI), which is also heavily glycosylated at its extracellular domain. Here, we transiently expressed human epidermal growth factor receptor 2 (HER2)-binding monomeric IgA1, IgA2m(1), and IgA2m(2) variants in Nicotiana benthamiana ΔXT/FT plants lacking the enzymes responsible for generating nonhuman N-glycan structures. By coinfiltrating IgA with the respective glycan-modifying enzymes, we generated IgA carrying distinct homogenous N-glycans. We demonstrate that distinctly different N-glycan profiles did not influence antigen binding or the overall structure and integrity of the IgA antibodies but did affect their thermal stability. Using size-exclusion chromatography, differential scanning and isothermal titration calorimetry, surface plasmon resonance spectroscopy, and molecular modeling, we probed distinct IgA1 and IgA2 glycoforms for binding to four different FcαRI glycoforms and investigated the thermodynamics and kinetics of complex formation. Our results suggest that different N-glycans on the receptor significantly contribute to binding affinities for its cognate ligand. We also noted that full-length IgA and FcαRI form a mixture of 1:1 and 1:2 complexes tending toward a 1:1 stoichiometry due to different IgA tailpiece conformations that make it less likely that both binding sites are simultaneously occupied. In conclusion, N-glycans of human IgA do not affect its structure and integrity but its thermal stability, and FcαRI N-glycans significantly modulate binding affinity to IgA.
Collapse
Affiliation(s)
- Kathrin Göritzer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Aysegül Turupcu
- Department of Material Sciences and Process Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Daniel Maresch
- Department of Chemistry, Division of Biochemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Jan Novak
- Department of Microbiology, University of Alabama, Birmingham, Alabama 35294
| | - Friedrich Altmann
- Department of Chemistry, Division of Biochemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Chris Oostenbrink
- Department of Material Sciences and Process Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, Division of Biochemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
67
|
Maurer MA, Meyer L, Bianchi M, Turner HL, Le NPL, Steck M, Wyrzucki A, Orlowski V, Ward AB, Crispin M, Hangartner L. Glycosylation of Human IgA Directly Inhibits Influenza A and Other Sialic-Acid-Binding Viruses. Cell Rep 2019; 23:90-99. [PMID: 29617676 PMCID: PMC5905402 DOI: 10.1016/j.celrep.2018.03.027] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 02/02/2018] [Accepted: 03/07/2018] [Indexed: 11/24/2022] Open
Abstract
Immunoglobulin A (IgA) plays an important role in protecting our mucosal surfaces from viral infection, in maintaining a balance with the commensal bacterial flora, and in extending maternal immunity via breast feeding. Here, we report an additional innate immune effector function of human IgA molecules in that we demonstrate that the C-terminal tail unique to IgA molecules interferes with cell-surface attachment of influenza A and other enveloped viruses that use sialic acid as a receptor. This antiviral activity is mediated by sialic acid found in the complex N-linked glycans at position 459. Antiviral activity was observed even in the absence of classical antibody binding via the antigen binding sites. Our data, therefore, show that the C-terminal tail of IgA subtypes provides an innate line of defense against viruses that use sialic acid as a receptor and the role of neuraminidases present on these virions. Heterosubtypic IgA1 or IgA2 antibodies neutralize virus much more potently than IgG1 Sialic acid in IgA’s C-terminal tail competes with viral receptor binding This may represent an innate line of defense against viral pathogens
Collapse
Affiliation(s)
- Michael A Maurer
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Larissa Meyer
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Matteo Bianchi
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, U.S.A
| | - Ngoc P L Le
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Marco Steck
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Arkadiusz Wyrzucki
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Vanessa Orlowski
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, U.S.A
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Center for Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK; Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Lars Hangartner
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
68
|
Stewart TJ, Takahashi K, Whitaker RH, Raska M, Placzek WJ, Novak J, Renfrow MB. IgA1 hinge-region clustered glycan fidelity is established early during semi-ordered glycosylation by GalNAc-T2. Glycobiology 2019; 29:543-556. [PMID: 30759204 PMCID: PMC6583770 DOI: 10.1093/glycob/cwz007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 01/13/2019] [Accepted: 02/04/2019] [Indexed: 01/03/2023] Open
Abstract
GalNAc-type O-glycans are often added to proteins post-translationally in a clustered manner in repeat regions of proteins, such as mucins and IgA1. Observed IgA1 glycosylation patterns show that glycans occur at similar sites with similar structures. It is not clear how the sites and number of glycans added to IgA1, or other proteins, can follow a conservative process. GalNAc-transferases initiate GalNAc-type glycosylation. In IgA nephropathy, an autoimmune disease, the sites and O-glycan structures of IgA1 hinge-region are altered, giving rise to a glycan autoantigen. To better understand how GalNAc-transferases determine sites and densities of clustered O-glycans, we used IgA1 hinge-region (HR) segment as a probe. Using LC-MS, we demonstrated a semi-ordered process of glycosylation by GalNAc-T2 towards the IgA1 HR. The catalytic domain was responsible for selection of four initial sites based on amino-acid sequence recognition. Both catalytic and lectin domains were involved in multiple second site-selections, each dependent on initial site-selection. Our data demonstrated that multiple start-sites and follow-up pathways were key to increasing the number of glycans added. The lectin domain predominately enhanced IgA1 HR glycan density by increasing synthesis pathway exploration by GalNAc-T2. Our data indicated a link between site-specific glycan addition and clustered glycan density that defines a mechanism of how conserved clustered O-glycosylation patterns and glycoform populations of IgA1 can be controlled by GalNAc-T2. Together, these findings characterized a correlation between glycosylation pathway diversity and glycosylation density, revealing mechanisms by which a single GalNAc-T isozyme can limit and define glycan heterogeneity in a disease-relevant context.
Collapse
Affiliation(s)
- Tyler J Stewart
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kazuo Takahashi
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Nephrology, Fujita Health University, Toyoake, Japan
| | - Robert H Whitaker
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Milan Raska
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Immunology, Palacky University and University Hospital, Olomouc, Czech Republic
| | - William J Placzek
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
69
|
Nossent JC, Raymond W, Keen H, Preen DB, Inderjeeth CA. Infection Rates Before and After Diagnosis of IgA Vasculitis in Childhood: A Population-wide Study Using Non-exposed Matched Controls. J Rheumatol 2019; 47:424-430. [PMID: 31203216 DOI: 10.3899/jrheum.190110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Clinical data suggest that infections can trigger IgA vasculitis (IgAV), but longterm observations are lacking. We compared rates, types, and microorganisms for serious infection before and after diagnosis for children with IgAV and non-exposed controls. METHODS Using population-based administrative linked health datasets we estimated incidence rates (IR) for serious infection per 1000 person-months for patients with IgAV (n = 504, age 5 yrs, 59.1% males) and controls matched for age, sex, and year of presentation (n = 1281, age 6 yrs, 66% males). Time zero (T0) was the date of IgAV diagnosis or equivalent date in controls, lookback (median 38 mos) was the period prior to T0, and followup (median 239 mos) was the period after T0. RESULTS During lookback, prevalence of serious infection was similar in patients with IgAV and controls (11.5% vs 9.5%, respectively), but patients with IgAV had a higher rate of upper respiratory tract infections [incidence rate ratio (IRR) 1.79; 95% CI 1.39-2.31] with shorter time between first serious infection and T0 (27 vs 43 mos; p = 0.02). During followup, patients were at a constant increased risk for serious infections (IRR 1.46, 95% CI 1.35-1.58). These rates were higher during followup: sepsis (IRR 12.6), pneumonia (IRR 6.19), upper respiratory tract infections (IRR 2.36), and skin infections (IRR 1.85). There was little overlap between patients with serious infections in the lookback and followup periods. CONCLUSION In patients with childhood IgAV there is an increased longterm risk for a broader spectrum of infections, which is unrelated to serious infections prior to diagnosis or treatment. This suggests disease-specific factors may have a lasting effect on immune competence in childhood IgAV.
Collapse
Affiliation(s)
- Johannes C Nossent
- From the Department of Rheumatology, Sir Charles Gairdner Hospital; the Rheumatology Group, School of Medicine, University of Western Australia; Department of Rheumatology, Fiona Stanley Hospital; and the School of Population and Global Health, University of Western Australia, Perth, Australia. .,J.C. Nossent, MD, PhD, Department of Rheumatology, Sir Charles Gairdner Hospital, and the Rheumatology Group, School of Medicine, University of Western Australia; W. Raymond, BSc, Rheumatology Group, School of Medicine, University of Western Australia; H. Keen, MBBS, PhD, Rheumatology Group, School of Medicine, University of Western Australia, and the Department of Rheumatology, Fiona Stanley Hospital; D.B. Preen, PhD, School of Population and Global Health, University of Western Australia; C.A. Inderjeeth, MBBS, MPH, Department of Rheumatology, Sir Charles Gairdner Hospital, and the Rheumatology Group, School of Medicine, University of Western Australia.
| | - Warren Raymond
- From the Department of Rheumatology, Sir Charles Gairdner Hospital; the Rheumatology Group, School of Medicine, University of Western Australia; Department of Rheumatology, Fiona Stanley Hospital; and the School of Population and Global Health, University of Western Australia, Perth, Australia.,J.C. Nossent, MD, PhD, Department of Rheumatology, Sir Charles Gairdner Hospital, and the Rheumatology Group, School of Medicine, University of Western Australia; W. Raymond, BSc, Rheumatology Group, School of Medicine, University of Western Australia; H. Keen, MBBS, PhD, Rheumatology Group, School of Medicine, University of Western Australia, and the Department of Rheumatology, Fiona Stanley Hospital; D.B. Preen, PhD, School of Population and Global Health, University of Western Australia; C.A. Inderjeeth, MBBS, MPH, Department of Rheumatology, Sir Charles Gairdner Hospital, and the Rheumatology Group, School of Medicine, University of Western Australia
| | - Helen Keen
- From the Department of Rheumatology, Sir Charles Gairdner Hospital; the Rheumatology Group, School of Medicine, University of Western Australia; Department of Rheumatology, Fiona Stanley Hospital; and the School of Population and Global Health, University of Western Australia, Perth, Australia.,J.C. Nossent, MD, PhD, Department of Rheumatology, Sir Charles Gairdner Hospital, and the Rheumatology Group, School of Medicine, University of Western Australia; W. Raymond, BSc, Rheumatology Group, School of Medicine, University of Western Australia; H. Keen, MBBS, PhD, Rheumatology Group, School of Medicine, University of Western Australia, and the Department of Rheumatology, Fiona Stanley Hospital; D.B. Preen, PhD, School of Population and Global Health, University of Western Australia; C.A. Inderjeeth, MBBS, MPH, Department of Rheumatology, Sir Charles Gairdner Hospital, and the Rheumatology Group, School of Medicine, University of Western Australia
| | - David B Preen
- From the Department of Rheumatology, Sir Charles Gairdner Hospital; the Rheumatology Group, School of Medicine, University of Western Australia; Department of Rheumatology, Fiona Stanley Hospital; and the School of Population and Global Health, University of Western Australia, Perth, Australia.,J.C. Nossent, MD, PhD, Department of Rheumatology, Sir Charles Gairdner Hospital, and the Rheumatology Group, School of Medicine, University of Western Australia; W. Raymond, BSc, Rheumatology Group, School of Medicine, University of Western Australia; H. Keen, MBBS, PhD, Rheumatology Group, School of Medicine, University of Western Australia, and the Department of Rheumatology, Fiona Stanley Hospital; D.B. Preen, PhD, School of Population and Global Health, University of Western Australia; C.A. Inderjeeth, MBBS, MPH, Department of Rheumatology, Sir Charles Gairdner Hospital, and the Rheumatology Group, School of Medicine, University of Western Australia
| | - Charles A Inderjeeth
- From the Department of Rheumatology, Sir Charles Gairdner Hospital; the Rheumatology Group, School of Medicine, University of Western Australia; Department of Rheumatology, Fiona Stanley Hospital; and the School of Population and Global Health, University of Western Australia, Perth, Australia.,J.C. Nossent, MD, PhD, Department of Rheumatology, Sir Charles Gairdner Hospital, and the Rheumatology Group, School of Medicine, University of Western Australia; W. Raymond, BSc, Rheumatology Group, School of Medicine, University of Western Australia; H. Keen, MBBS, PhD, Rheumatology Group, School of Medicine, University of Western Australia, and the Department of Rheumatology, Fiona Stanley Hospital; D.B. Preen, PhD, School of Population and Global Health, University of Western Australia; C.A. Inderjeeth, MBBS, MPH, Department of Rheumatology, Sir Charles Gairdner Hospital, and the Rheumatology Group, School of Medicine, University of Western Australia
| |
Collapse
|
70
|
Nakazawa S, Imamura R, Kawamura M, Kato T, Abe T, Iwatani H, Yamanaka K, Uemura M, Kishikawa H, Nishimura K, Tajiri M, Wada Y, Nonomura N. Evaluation of IgA1 O-glycosylation in Henoch-Schönlein Purpura Nephritis Using Mass Spectrometry. Transplant Proc 2019; 51:1481-1487. [DOI: 10.1016/j.transproceed.2019.01.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/28/2019] [Indexed: 01/25/2023]
|
71
|
Bratanis E, Lood R. A Novel Broad-Spectrum Elastase-Like Serine Protease From the Predatory Bacterium Bdellovibrio bacteriovorus Facilitates Elucidation of Site-Specific IgA Glycosylation Pattern. Front Microbiol 2019; 10:971. [PMID: 31130941 PMCID: PMC6510308 DOI: 10.3389/fmicb.2019.00971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022] Open
Abstract
The increased interest in predatory bacteria due to their ability to kill antibiotic resistant bacteria has also highlighted their inherent plethora of hydrolytic enzymes, and their potential as natural sources of novel therapeutic agents and biotechnological tools. Here, we have identified and characterized a novel protease from the predatory bacterium Bdellovibrio bacteriovorus: BspE (Bdellovibrio elastase-like serine protease). Mapping preferential sites of proteolytic activity showed a single proteolytic cleavage site of native plasma IgA (pIgA) in the Fc-tail; as well as in the secretory component (SC) of secretory IgA (SIgA). Proteolysis of other native immunoglobulins and plasma proteins was either absent (IgG1 and 2, IgM, albumin and orosomucoid) or unspecific with multiple cleavage sites (IgG3 and 4, IgE, IgD). BspE displayed a broad activity against most amino acid bonds in shorter peptides and denatured proteins, with a slight preference for hydrolysis C-terminal of Y, V, F, S, L, R, P, E, and K. BspE autoproteolysis results in numerous cleavage products sustaining activity for more than 6 h. The enzymatic activity remained stable at pH 5.0-9.0 but was drastically reduced in the presence of MnCl2 and completely inhibited by ZnCl2. The hydrolysis of pIgA was subsequently utilized for the specific glycan characterization of the released pIgA Fc-tail (Asn459). Besides contributing to the basic knowledge of Bdellovibrio biology and proteases, we propose that BspE could be used as a potential tool to investigate the importance, and biological function of the pIgA Fc-tail. IMPORTANCE Antibodies are well-established as key components of the immune system, and the importance of antibody glycosylation is steadily gaining recognition. Modifications of antibodies by glycosylation creates a vast repertoire of antibody glycovariants with distinctive and diverse functions in the immune system. Most of the available information regarding antibody glycosylation is based on studies with IgG, which have contributed greatly to the advance of therapeutic antibody treatments. However, much is still unknown regarding the importance of glycosylation and the Fc-structure for the remaining antibody classes. Such research has proven to be technically challenging and demonstrates a need for novel tools to facilitate such investigations. Here we have identified and characterized a novel protease from B. bacteriovorus, facilitating the study of plasma IgA by cleaving the Fc-tail, including the Asn459 N-glycan. This further highlights the potential of B. bacteriovorus as a source to identify potential novel biotechnological tools.
Collapse
Affiliation(s)
- Eleni Bratanis
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Rolf Lood
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
72
|
Chandler KB, Mehta N, Leon DR, Suscovich TJ, Alter G, Costello CE. Multi-isotype Glycoproteomic Characterization of Serum Antibody Heavy Chains Reveals Isotype- and Subclass-Specific N-Glycosylation Profiles. Mol Cell Proteomics 2019; 18:686-703. [PMID: 30659065 PMCID: PMC6442369 DOI: 10.1074/mcp.ra118.001185] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/16/2019] [Indexed: 01/16/2023] Open
Abstract
Antibodies are critical glycoproteins that bridge the innate and adaptive immune systems to provide protection against infection. The isotype/subclass of the antibody, the co-translational N-glycosylation on the CH2 domain, and the remodeling of the N-linked glycans during passage through the ER and Golgi are the known variables within the Fc domain that program antibody effector function. Through investigations of monoclonal therapeutics, it has been observed that addition or removal of specific monosaccharide residues from antibody N-glycans can influence the potency of antibodies, highlighting the importance of thoroughly characterizing antibody N-glycosylation. Although IgGs usually have a single N-glycosylation site and are well studied, other antibody isotypes, e.g. IgA and IgM, that are the first responders in certain diseases, have two to five sites/monomer of antibody, and little is known about their N-glycosylation. Here we employ a nLC-MS/MS method using stepped-energy higher energy collisional dissociation to characterize the N-glycan repertoire and site occupancy of circulating serum antibodies. We simultaneously determined the site-specific N-linked glycan repertoire for IgG1, IgG4, IgA1, IgA2, and IgM in individual healthy donors. Compared with IgG1, IgG4 displayed a higher relative abundance of G1S1F and a lower relative abundance of G1FB. IgA1 and IgA2 displayed mostly biantennary N-glycans. IgA2 variants with the either serine (S93) or proline (P93) were detected. In digests of the sera from a subset of donors, we detected an unmodified peptide containing a proline residue at position 93; this substitution would strongly disfavor N-glycosylation at N92. IgM sites N46, N209, and N272 displayed mostly complex glycans, whereas sites N279 and N439 displayed higher relative abundances of high-mannose glycoforms. This multi-isotype approach is a crucial step toward developing a platform to define disease-specific N-glycan signatures for different isotypes to help tune antibodies to induce protection. Data are available via ProteomeXchange with identifier PXD010911.
Collapse
Affiliation(s)
- Kevin Brown Chandler
- From the ‡Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts
| | - Nickita Mehta
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
| | - Deborah R Leon
- From the ‡Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts
| | - Todd J Suscovich
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
| | - Catherine E Costello
- From the ‡Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts;.
| |
Collapse
|
73
|
Bakshi S, Depicker A, Schepens B, Saelens X, Juarez P. A two-amino acid mutation in murine IgA enables downstream processing and purification on staphylococcal superantigen-like protein 7. J Biotechnol 2019; 294:26-29. [PMID: 30771443 DOI: 10.1016/j.jbiotec.2019.01.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 11/20/2022]
Abstract
With few exceptions, all currently marketed antibody therapeutics are IgG molecules. One of the reasons that other antibody isotypes are less developed are the difficulties associated with their purification. While commercial chromatography affinity resins, like staphylococcal superantigen-like 7 (SSL7) protein-containing resin, allow purification of IgAs from many animal species, these are not useful for murine IgAs. Because the mouse model is predominantly used for preclinical evaluation of IgA-based therapeutics, there is a need to develop an effective purification method for mouse IgA. Here, we adapted the sequence of a mouse IgA by mutating two amino acid residues in the fragment crystallizable (Fc) sequence to facilitate its purification on SSL7 resin. The mutated IgA Fc (hereafter referred to as IgA*) was then genetically fused to the variable domain of a llama heavy chain-only antibody (VHH) directed against the fusion protein of human respiratory syncytial virus (HRSV), resulting in VHH-IgA*, and transiently produced in infiltrated Nicotiana benthamiana leaves. These plant-produced mouse VHH-IgA* fusions were enriched by SSL7 affinity chromatography and were found to be functional in ELISA and could neutralize RSV in vitro, suggesting no detrimental effect of the mutation on their antigen-binding properties. This approach for the purification of murine IgA will facilitate downstream processing steps when designing innovative murine IgA-based fusions.
Collapse
Affiliation(s)
- Shruti Bakshi
- Ghent University, Department of Plant Biotechnology and Bioinformatics, and VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Ann Depicker
- Ghent University, Department of Plant Biotechnology and Bioinformatics, and VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Bert Schepens
- Ghent University, Department of Biomedical Molecular Biology, and VIB Center for Medical Biotechnology, 9052, Ghent, Belgium
| | - Xavier Saelens
- Ghent University, Department of Biomedical Molecular Biology, and VIB Center for Medical Biotechnology, 9052, Ghent, Belgium; Ghent University, Department of Biochemistry and Microbiology, 9052 Ghent, Belgium
| | - Paloma Juarez
- Ghent University, Department of Plant Biotechnology and Bioinformatics, and VIB Center for Plant Systems Biology, 9052 Ghent, Belgium; Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain.
| |
Collapse
|
74
|
Lomax-Browne HJ, Robertson C, Antonopoulos A, Leathem AJC, Haslam SM, Dell A, Dwek MV. Serum IgA1 shows increased levels of α2,6-linked sialic acid in breast cancer. Interface Focus 2019; 9:20180079. [PMID: 30842877 DOI: 10.1098/rsfs.2018.0079] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2019] [Indexed: 12/12/2022] Open
Abstract
The lectin Helix pomatia agglutinin (HPA) recognizes altered glycosylation in solid cancers and the identification of HPA binding partners in tumour tissue and serum is an important aim. Among the many HPA binding proteins, IgA1 has been reported to be the most abundant in liver metastases. In this study, the glycosylation of IgA1 was evaluated using serum samples from patients with breast cancer (BCa) and the utility of IgA1 glycosylation as a biomarker was assessed. Detailed mass spectrometric structural analysis showed an increase in disialo-biantennary N-linked glycans on IgA1 from BCa patients (p < 0.0001: non-core fucosylated; p = 0.0345: core fucosylated) and increased asialo-Thomsen-Friedenreich antigen (TF) and disialo-TF antigens in the O-linked glycan preparations from IgA1 of cancer patients compared with healthy control individuals. An increase in Sambucus nigra binding was observed, suggestive of increased α2,6-linked sialic acid on IgA1 in BCa. Logistic regression analysis showed HPA binding to IgA1 and tumour size to be significant independent predictors of distant metastases (χ 2 13.359; n = 114; p = 0.020) with positive and negative predictive values of 65.7% and 64.6%, respectively. Immunohistochemical analysis of tumour tissue samples showed IgA1 to be detectable in BCa tissue. This report provides a detailed analysis of serum IgA1 glycosylation in BCa and illustrates the potential utility of IgA1 glycosylation as a biomarker for BCa prognostication.
Collapse
Affiliation(s)
- Hannah J Lomax-Browne
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| | - Claire Robertson
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| | - Aristotelis Antonopoulos
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Anthony J C Leathem
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Anne Dell
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Miriam V Dwek
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| |
Collapse
|
75
|
Nakazawa S, Imamura R, Kawamura M, Kato T, Abe T, Namba T, Iwatani H, Yamanaka K, Uemura M, Kishikawa H, Nishimura K, Oka K, Tajiri M, Wada Y, Nonomura N. Difference in IgA1 O-glycosylation between IgA deposition donors and IgA nephropathy recipients. Biochem Biophys Res Commun 2019; 508:1106-1112. [PMID: 30553446 DOI: 10.1016/j.bbrc.2018.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 12/03/2018] [Indexed: 01/18/2023]
Abstract
IgA nephropathy (IgAN) is the most common form of primary glomerulonephritis, and disease recurrence often occurs after transplantation. On the other hands, Asymptomatic IgA deposition (IgAD) is occasionally observed in donated kidney. It is recognized that IgAD does not progress to IgAN, but the mechanism has not demonstrated yet. In IgAN, aberrant IgA1 O-glycan structure in the hinge region (HR) of serum IgA is suggested as one of the most convincing key mediators. However, little is known about IgA1 O-glycan structure in IgAD patients. Herein, we investigated the prevalence of IgAD in living renal transplant donors in our cohort. IgAD was observed in 21(13.0%) among 161 renal transplant donors and have statistically significant blood relationship with IgAN recipients (28.6% in relatives vs. 9.8% in non-relatives, respectively; p = 0.0073). Next, we evaluated the IgA1 O-glycan structure of serum IgA from IgAN recipients (n = 26), IgAD donors (n = 17), and non-IgAD helthy donors (n = 27) using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). The numbers of GalNAc and Gal and the Gal/GalNAc ratio in the HR of the IgAN recipients had significantly lower comparing to the IgAD and non-IgAD healthy donors. The decreased Gal/GalNAc ratio in IgAN recipients means the increased ratio of galactose-deficient IgA1. To the best of our knowledge, this is the first report to compare the O-glycan structures in IgAN recipients and IgAD donors using MALDI-TOF MS. We concluded that IgAD was more common in IgAN related donors. Overall, decreased GalNAc and Gal contents in HR could play a material pathogenic role in IgAN.
Collapse
Affiliation(s)
- Shigeaki Nakazawa
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryoichi Imamura
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Masataka Kawamura
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Taigo Kato
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toyofumi Abe
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomoko Namba
- Department of Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hirotsugu Iwatani
- Department of Nephrology, National Hospital Organization, Osaka National Hospital, 2-1-14 Chuo-ku, Osaka, Osaka, 540-0006, Japan
| | - Kazuaki Yamanaka
- Department of Urology, Hyogo Prefectural Nishinomiya Hospital, 13-9 Rokutanji-cho, Nishinomiya, Hyogo, 662-0918, Japan
| | - Motohide Uemura
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hidefumi Kishikawa
- Department of Urology, Hyogo Prefectural Nishinomiya Hospital, 13-9 Rokutanji-cho, Nishinomiya, Hyogo, 662-0918, Japan
| | - Kenji Nishimura
- Department of Urology, Hyogo Prefectural Nishinomiya Hospital, 13-9 Rokutanji-cho, Nishinomiya, Hyogo, 662-0918, Japan
| | - Kazumasa Oka
- Department of Pathology, Hyogo Prefectural Nishinomiya Hospital, 13-9 Rokutanji-cho, Nishinomiya, Hyogo, 662-0918, Japan
| | - Michiko Tajiri
- Osaka Women's and Children's Hospital, Japan, 840 Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Yoshinao Wada
- Osaka Women's and Children's Hospital, Japan, 840 Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
76
|
Plomp R, de Haan N, Bondt A, Murli J, Dotz V, Wuhrer M. Comparative Glycomics of Immunoglobulin A and G From Saliva and Plasma Reveals Biomarker Potential. Front Immunol 2018; 9:2436. [PMID: 30405629 PMCID: PMC6206042 DOI: 10.3389/fimmu.2018.02436] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/02/2018] [Indexed: 12/19/2022] Open
Abstract
The N-glycosylation of immunoglobulin (Ig) G, the major antibody in the circulation of human adults, is well known for its influence on antibody effector functions and its alterations with various diseases. In contrast, knowledge on the role of glycans attached to IgA, which is a key immune defense agent in secretions, is very scarce. In this study we aimed to characterize the glycosylation of salivary (secretory) IgA, including the IgA joining chain (JC), and secretory component (SC) and to compare IgA and IgG glycosylation between human plasma and saliva samples to gain a first insight into oral cavity-specific antibody glycosylation. Plasma and whole saliva were collected from 19 healthy volunteers within a 2-h time window. IgG and IgA were affinity-purified from the two biofluids, followed by tryptic digestion and nanoLC-ESI-QTOF-MS(/MS) analysis. Saliva-derived IgG exhibited a slightly lower galactosylation and sialylation as compared to plasma-derived IgG. Glycosylation of IgA1, IgA2, and the JC showed substantial differences between the biofluids, with salivary proteins exhibiting a higher bisection, and lower galactosylation and sialylation as compared to plasma-derived IgA and JC. Additionally, all seven N-glycosylation sites, characterized on the SC of secretory IgA in saliva, carried highly fucosylated and fully galactosylated diantennary N-glycans. This study lays the basis for future research into the functional role of salivary Ig glycosylation as well as its biomarker potential.
Collapse
Affiliation(s)
- Rosina Plomp
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Noortje de Haan
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Albert Bondt
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Jayshri Murli
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Viktoria Dotz
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
77
|
Vanderschaeghe D, Meuris L, Raes T, Grootaert H, Van Hecke A, Verhelst X, Van de Velde F, Lapauw B, Van Vlierberghe H, Callewaert N. Endoglycosidase S Enables a Highly Simplified Clinical Chemistry Procedure for Direct Assessment of Serum IgG Undergalactosylation in Chronic Inflammatory Disease. Mol Cell Proteomics 2018; 17:2508-2517. [PMID: 30190373 DOI: 10.1074/mcp.tir118.000740] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/03/2018] [Indexed: 12/19/2022] Open
Abstract
Over the past 30 years, it has been firmly established that a wide spectrum of (autoimmune) diseases such as rheumatoid arthritis, Crohn's and lupus, but also other pathologies like alcoholic and non-alcoholic steatohepatitis (ASH and NASH) are driven by chronic inflammation and are hallmarked by a reduced level of serum IgG galactosylation. IgG (under)galactosylation is a promising biomarker to assess disease severity, and monitor and adjust therapy. However, this biomarker has not been implemented in routine clinical chemistry because of a complex analytical procedure that necessitates IgG purification, which is difficult to perform and validate at high throughput. We addressed this issue by using endo-β-N-acetylglucosaminidase from Streptococcus pyogenes (endoS) to specifically release Fc N-glycans in whole serum. The entire assay can be completed in a few hours and only entails adding endoS and labeling the glycans with APTS. Glycans are then readily analyzed through capillary electrophoresis. We demonstrate in two independent patient cohorts that IgG undergalactosylation levels obtained with this assay correlate very well with scores calculated from PNGaseF-released glycans of purified antibodies. Our new assay allows to directly and specifically measure the degree of IgG galactosylation in serum through a fast and completely liquid phase protocol, without the requirement for antibody purification. This should help advancing this biomarker toward clinical implementation.
Collapse
Affiliation(s)
- Dieter Vanderschaeghe
- VIB Center for Medical Biotechnology, Technologiepark 927, B-9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Leander Meuris
- VIB Center for Medical Biotechnology, Technologiepark 927, B-9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Tom Raes
- VIB Center for Medical Biotechnology, Technologiepark 927, B-9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Hendrik Grootaert
- VIB Center for Medical Biotechnology, Technologiepark 927, B-9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Annelies Van Hecke
- VIB Center for Medical Biotechnology, Technologiepark 927, B-9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Xavier Verhelst
- Laboratory of Hepatology, Department of Hepatology and Gastroenterology, Ghent University Hospital, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
| | - Frederique Van de Velde
- Department of Endocrinology, Ghent University Hospital, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
| | - Bruno Lapauw
- Department of Endocrinology, Ghent University Hospital, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
| | - Hans Van Vlierberghe
- Laboratory of Hepatology, Department of Hepatology and Gastroenterology, Ghent University Hospital, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
| | - Nico Callewaert
- VIB Center for Medical Biotechnology, Technologiepark 927, B-9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium.
| |
Collapse
|
78
|
FcαRI binding at the IgA1 C H2-C H3 interface induces long-range conformational changes that are transmitted to the hinge region. Proc Natl Acad Sci U S A 2018; 115:E8882-E8891. [PMID: 30181292 DOI: 10.1073/pnas.1807478115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
IgA effector functions include proinflammatory immune responses triggered upon clustering of the IgA-specific receptor, FcαRI, by IgA immune complexes. FcαRI binds to the IgA1-Fc domain (Fcα) at the CH2-CH3 junction and, except for CH2 L257 and L258, all side-chain contacts are contributed by the CH3 domain. In this study, we used experimental and computational approaches to elucidate energetic and conformational aspects of FcαRI binding to IgA. The energetic contribution of each IgA residue in the binding interface was assessed by alanine-scanning mutagenesis and equilibrium surface plasmon resonance (SPR). As expected, hydrophobic residues central to the binding site have strong energetic contributions to the FcαRI:Fcα interaction. Surprisingly, individual mutation of CH2 residues L257 and L258, found at the periphery of the FcαRI binding site, dramatically reduced binding affinity. Comparison of antibody:receptor complexes involving IgA or its precursor IgY revealed a conserved receptor binding site at the CH2-CH3 junction (or its equivalent). Given the importance of residues near the CH2-CH3 junction, we used coarse-grained Langevin dynamics simulations to understand the functional dynamics in Fcα. Our simulations indicate that FcαRI binding, either in an asymmetric (1:1) or symmetric (2:1) complex with Fcα, propagated long-range conformational changes across the Fc domains, potentially impacting the hinge and Fab regions. Subsequent SPR experiments confirmed that FcαRI binding to the Fcα CH2-CH3 junction altered the kinetics of HAA lectin binding at the IgA1 hinge. Receptor-induced long-distance conformational transitions have important implications for the interaction of aberrantly glycosylated IgA1 with anti-glycan autoantibodies in IgA nephropathy.
Collapse
|
79
|
Abstract
IgA nephropathy, the most common primary glomerulonephritis in the world and a frequent cause of end-stage renal disease, is characterized by typical mesangial deposits of IgA1, as described by Berger and Hinglaise in 1968. Since then, it has been discovered that aberrant IgA1 O-glycosylation is involved in disease pathogenesis. Progress in glycomic, genomic, clinical, analytical, and biochemical studies has shown autoimmune features of IgA nephropathy. The autoimmune character of the disease is explained by a multihit pathogenesis model, wherein overproduction of aberrantly glycosylated IgA1, galactose-deficient in some O-glycans, by IgA1-secreting cells leads to increased levels of circulatory galactose-deficient IgA1. These glycoforms induce production of autoantibodies that subsequently bind hinge-region of galactose-deficient IgA1 molecules, resulting in the formation of nephritogenic immune complexes. Some of these complexes deposit in the kidney, activate mesangial cells, and incite glomerular injury. Thus, galactose-deficient IgA1 is central to the disease process. In this article, we review studies concerning IgA1 O-glycosylation that have contributed to the current understanding of the role of IgA1 in the pathogenesis of IgA nephropathy.
Collapse
Affiliation(s)
- Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL..
| | - Jonathan Barratt
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Bruce A Julian
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL.; Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
80
|
Pinheiro A, de Sousa-Pereira P, Strive T, Knight KL, Woof JM, Esteves PJ, Abrantes J. Identification of a new European rabbit IgA with a serine-rich hinge region. PLoS One 2018; 13:e0201567. [PMID: 30089177 PMCID: PMC6082545 DOI: 10.1371/journal.pone.0201567] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022] Open
Abstract
In mammals, the most striking IgA system belongs to Lagomorpha. Indeed, 14 IgA subclasses have been identified in European rabbits, 11 of which are expressed. In contrast, most other mammals have only one IgA, or in the case of hominoids, two IgA subclasses. Characteristic features of the mammalian IgA subclasses are the length and amino acid sequence of their hinge regions, which are often rich in Pro, Ser and Thr residues and may also carry Cys residues. Here, we describe a new IgA that was expressed in New Zealand White domestic rabbits of IGHVa1 allotype. This IgA has an extended hinge region containing an intriguing stretch of nine consecutive Ser residues and no Pro or Thr residues, a motif exclusive to this new rabbit IgA. Considering the amino acid properties, this hinge motif may present some advantage over the common IgA hinge by affording novel functional capabilities. We also sequenced for the first time the IgA14 CH2 and CH3 domains and showed that IgA14 and IgA3 are expressed.
Collapse
Affiliation(s)
- Ana Pinheiro
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
- * E-mail:
| | - Patricia de Sousa-Pereira
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tanja Strive
- Commonwealth Scientific and Industrial Research Organization, Canberra, ACT, Australia
| | - Katherine L. Knight
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Jenny M. Woof
- Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Pedro J. Esteves
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Centro de Investigação em Tecnologias da Saúde, IPSN, CESPU, Gandra, Portugal
| | - Joana Abrantes
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| |
Collapse
|
81
|
Suzuki H. Biomarkers for IgA nephropathy on the basis of multi-hit pathogenesis. Clin Exp Nephrol 2018; 23:26-31. [PMID: 29740706 PMCID: PMC6344607 DOI: 10.1007/s10157-018-1582-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/26/2018] [Indexed: 01/06/2023]
Abstract
IgA nephropathy (IgAN) is the most prevalent glomerular disease worldwide and is associated with a poor prognosis. Development of curative treatment strategies and approaches for early diagnosis is necessary. Renal biopsy is the gold standard for the diagnosis and assessment of disease activity. However, reliable biomarkers are needed for the noninvasive diagnosis of this disease and to more fully delineate the risk of progression. With regard to the pathogenesis of IgAN, the multi-hit hypothesis, including production of galactose-deficient IgA1 (Gd-IgA1; Hit 1), IgG or IgA autoantibodies that recognize Gd-IgA1 (Hit 2), and their subsequent immune complexes formation (Hit 3) and glomerular deposition (Hit 4), has been widely supported by many studies. Although the prognostic values of several biomarkers have been discussed, we recently developed a highly sensitive and specific diagnostic method by measuring serum levels of Gd-IgA1 and Gd-IgA1-containing immune complexes. In addition, urinary Gd-IgA1 may represent a disease-specific biomarker for IgAN. We also confirmed that there is a significant correlation between serum levels of these effector molecules and disease activity, suggesting that each can be considered a practical surrogate marker of therapeutic response. Thus, these disease-oriented specific serum and urine biomarkers may be useful for screening of potential IgAN with isolated hematuria, earlier diagnosis, disease activity, and eventually, response to treatment. In this review, we discuss these concepts, with a focus on potential clinical applications of these biomarkers.
Collapse
Affiliation(s)
- Hitoshi Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan.
| |
Collapse
|
82
|
Jacobino SR, Nederend M, Reijneveld JF, Augustijn D, Jansen JHM, Meeldijk J, Reiding KR, Wuhrer M, Coenjaerts FEJ, Hack CE, Bont LJ, Leusen JHW. Reformatting palivizumab and motavizumab from IgG to human IgA impairs their efficacy against RSV infection in vitro and in vivo. MAbs 2018; 10:453-462. [PMID: 29553863 PMCID: PMC5939987 DOI: 10.1080/19420862.2018.1433974] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/21/2018] [Accepted: 01/22/2018] [Indexed: 12/21/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection is a leading cause of hospitalization and mortality in young children. Protective therapy options are limited. Currently, palivizumab, a monoclonal IgG1 antibody, is the only licensed drug for RSV prophylaxis, although other IgG antibody candidates are being evaluated. However, at the respiratory mucosa, IgA antibodies are most abundant and act as the first line of defense against invading pathogens. Therefore, it would be logical to explore the potential of recombinant human IgA antibodies to protect against viral respiratory infection, but very little research on the topic has been published. Moreover, it is unknown whether human antibodies of the IgA isotype are better suited than those of the IgG isotype as antiviral drugs to combat respiratory infections. To address this, we generated various human IgA antibody formats of palivizumab and motavizumab, two well-characterized human IgG1 anti-RSV antibodies. We evaluated their efficacy to prevent RSV infection in vitro and in vivo and found similar, but somewhat decreased efficacy for different IgA subclasses and formats. Thus, reformatting palivizumab or motavizumab into IgA reduces the antiviral potency of either antibody. Moreover, our results indicate that the efficacy of intranasal IgA prophylaxis against RSV infection in human FcαRI transgenic mice is independent of Fc receptor expression.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/genetics
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/pharmacology
- Cell Line
- Humans
- Immunoglobulin A/genetics
- Immunoglobulin A/immunology
- Immunoglobulin A/pharmacology
- Immunoglobulin G/genetics
- Immunoglobulin G/immunology
- Immunoglobulin G/pharmacology
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Palivizumab/genetics
- Palivizumab/immunology
- Palivizumab/pharmacology
- Protein Engineering
- Respiratory Syncytial Virus Infections/drug therapy
- Respiratory Syncytial Virus Infections/genetics
- Respiratory Syncytial Virus Infections/immunology
- Respiratory Syncytial Viruses/immunology
Collapse
Affiliation(s)
- Shamir R. Jacobino
- Laboratory of Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Maaike Nederend
- Laboratory of Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | | | - Daan Augustijn
- Laboratory of Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - J. H. Marco Jansen
- Laboratory of Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Jan Meeldijk
- Laboratory of Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Karli R. Reiding
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - C. Erik Hack
- Laboratory of Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Louis J. Bont
- Laboratory of Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Medical Microbiology, UMC Utrecht, Utrecht, The Netherlands
- Department of Pediatrics, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | | |
Collapse
|
83
|
Everest-Dass AV, Moh ESX, Ashwood C, Shathili AMM, Packer NH. Human disease glycomics: technology advances enabling protein glycosylation analysis - part 2. Expert Rev Proteomics 2018. [PMID: 29521143 DOI: 10.1080/14789450.2018.1448710] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The changes in glycan structures have been attributed to disease states for several decades. The surface glycosylation pattern is a signature of physiological state of a cell. In this review we provide a link between observed substructural glycan changes and a range of diseases. Areas covered: We highlight biologically relevant glycan substructure expression in cancer, inflammation, neuronal diseases and diabetes. Furthermore, the alterations in antibody glycosylation in a disease context are described. Expert commentary: Advances in technologies, as described in Part 1 of this review have now enabled the characterization of specific glycan structural markers of a range of disease states. The requirement of including glycomics in cross-disciplinary omics studies, such as genomics, proteomics, epigenomics, transcriptomics and metabolomics towards a systems glycobiology approach to understanding disease mechanisms and management are highlighted.
Collapse
Affiliation(s)
- Arun V Everest-Dass
- a Faculty of Science and Engineering, Biomolecular Discovery and Design Research Centre , Macquarie University , Sydney , Australia.,b ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia.,c Institute for Glycomics , Griffith University , Gold Coast , Australia
| | - Edward S X Moh
- a Faculty of Science and Engineering, Biomolecular Discovery and Design Research Centre , Macquarie University , Sydney , Australia.,b ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Christopher Ashwood
- a Faculty of Science and Engineering, Biomolecular Discovery and Design Research Centre , Macquarie University , Sydney , Australia.,b ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Abdulrahman M M Shathili
- a Faculty of Science and Engineering, Biomolecular Discovery and Design Research Centre , Macquarie University , Sydney , Australia.,b ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Nicolle H Packer
- a Faculty of Science and Engineering, Biomolecular Discovery and Design Research Centre , Macquarie University , Sydney , Australia.,b ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia.,c Institute for Glycomics , Griffith University , Gold Coast , Australia
| |
Collapse
|
84
|
Argentova VV, Aliev TK, Zarubaev VV, Klotchenko SA, Shtro AA, Sergeeva MV, Toporova VA, Dolgikh DA, Sveshnikov PG, Vasin VA, Kirpichnikov MP. In vitro Antiviral Activity of Recombinant Antibodies of IgG and IgA Isotypes to Hemagglutinin of the Influenza A Virus. Mol Biol 2017. [DOI: 10.1134/s0026893317060024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
85
|
Domagalski MJ, Alocci D, Almeida A, Kolarich D, Lisacek F. PepSweetener: A Web-Based Tool to Support Manual Annotation of Intact Glycopeptide MS Spectra. Proteomics Clin Appl 2017; 12:e1700069. [DOI: 10.1002/prca.201700069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/18/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Marcin Jakub Domagalski
- Proteome Informatics Group; SIB Swiss Institute of Bioinformatics; Geneva Switzerland
- Computer Science Department CUI; University of Geneva; Geneva Switzerland
| | - Davide Alocci
- Proteome Informatics Group; SIB Swiss Institute of Bioinformatics; Geneva Switzerland
- Computer Science Department CUI; University of Geneva; Geneva Switzerland
| | - Andreia Almeida
- Institute for Glycomics; Gold Coast Campus; Griffith University; Southport QLD Australia
| | - Daniel Kolarich
- Institute for Glycomics; Gold Coast Campus; Griffith University; Southport QLD Australia
| | - Frédérique Lisacek
- Proteome Informatics Group; SIB Swiss Institute of Bioinformatics; Geneva Switzerland
- Computer Science Department CUI; University of Geneva; Geneva Switzerland
- Section of Biology; University of Geneva; Geneva Switzerland
| |
Collapse
|
86
|
Beulin DSJ, Radhakrishnan D, Suresh SC, Sadasivan C, Yamaguchi M, Kawabata S, Ponnuraj K. Streptococcus pneumoniae
surface protein PfbA is a versatile multidomain and multiligand-binding adhesin employing different binding mechanisms. FEBS J 2017; 284:3404-3421. [DOI: 10.1111/febs.14200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/31/2017] [Accepted: 08/11/2017] [Indexed: 02/05/2023]
Affiliation(s)
| | - Deepthi Radhakrishnan
- Centre of Advanced Study in Crystallography and Biophysics; University of Madras; Chennai India
| | - Sharanya C. Suresh
- Department of Biotechnology & Microbiology; School of Life Sciences; Kannur University; Palayad India
| | - Chittalakottu Sadasivan
- Department of Biotechnology & Microbiology; School of Life Sciences; Kannur University; Palayad India
| | - Masaya Yamaguchi
- Department of Oral and Molecular Microbiology; Osaka University Graduate School of Dentistry; Suita Osaka Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology; Osaka University Graduate School of Dentistry; Suita Osaka Japan
| | - Karthe Ponnuraj
- Centre of Advanced Study in Crystallography and Biophysics; University of Madras; Chennai India
| |
Collapse
|
87
|
Molyneux K, Wimbury D, Pawluczyk I, Muto M, Bhachu J, Mertens PR, Feehally J, Barratt J. β1,4-galactosyltransferase 1 is a novel receptor for IgA in human mesangial cells. Kidney Int 2017; 92:1458-1468. [PMID: 28750925 DOI: 10.1016/j.kint.2017.05.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 04/23/2017] [Accepted: 05/11/2017] [Indexed: 12/29/2022]
Abstract
IgA nephropathy is characterized by mesangial deposition of IgA, mesangial cell proliferation, and extracellular matrix production. Mesangial cells bind IgA, but the identity of all potential receptors involved remains incomplete. The transferrin receptor (CD71) acts as a mesangial cell IgA receptor and its expression is upregulated in many forms of glomerulonephritis, including IgA nephropathy. CD71 is not expressed in healthy glomeruli and blocking CD71 does not completely abrogate mesangial cell IgA binding. Previously we showed that mesangial cells express a receptor that binds the Fc portion of IgA and now report that this receptor is an isoform of β-1,4-galactosyltransferase. A human mesangial cell cDNA library was screened for IgA binding proteins and β-1,4-galactosyltransferase identified. Cell surface expression of the long isoform of β-1,4-galactosyltransferase was shown by flow cytometry and confocal microscopy and confirmed by immunoblotting. Glomerular β-1,4-galactosyltransferase expression was increased in IgA nephropathy. IgA binding and IgA-induced mesangial cell phosphorylation of spleen tyrosine kinase and IL-6 synthesis were inhibited by a panel of β-1,4-galactosyltransferase-specific antibodies, suggesting IgA binds to the catalytic domain of β-1,4-galactosyltransferase. Thus, β-1,4-galactosyltransferase is a constitutively expressed mesangial cell IgA receptor with an important role in both mesangial IgA clearance and the initial response to IgA deposition.
Collapse
Affiliation(s)
- Karen Molyneux
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - David Wimbury
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Izabella Pawluczyk
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Masahiro Muto
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Jasraj Bhachu
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Peter R Mertens
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - John Feehally
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Jonathan Barratt
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK.
| |
Collapse
|
88
|
Abstract
PURPOSE OF REVIEW Although approximately 90% of all HIV transmissions in humans occur through mucosal contact, the induction of mucosal anti-HIV immune responses has remained understudied. Here we summarize data demonstrating the powerful protection that is achievable at mucosal frontlines through virus-specific mucosal IgA alone or combined with IgG. RECENT FINDINGS Passive immunization with different monoclonal antibody subclasses but identical epitope specificity (the conserved V3-loop crown of HIV gp120) has revealed that the dimeric IgA1 (dIgA1) form with its open hinge can prevent simian-human immunodeficiency virus (SHIV) acquisition in rhesus macaques at a higher rate than dIgA2. Both dIgAs neutralized the challenge SHIV equally well. Protection was linked to better virion capture and inhibition of cell-free virus transcytosis by dIgA1. Synergistic interactions at the mucosal level between the IgG1 and dIgA2 versions of this monoclonal antibody yielded complete protection. Active vaccine strategies designed to induce mucosal IgA and systemic/mucosal IgG have given promising data. SUMMARY This review seeks to highlight the importance of mucosal IgAs in preventing virus acquisition. Passive immunization gave proof-of-concept for immune exclusion by mucosally administered monoclonal dIgAs. Unanswered questions remain regarding the interplay between mucosal IgA and other host immune defenses, including their induction with active immunization.
Collapse
|
89
|
Yamada K, Huang ZQ, Raska M, Reily C, Anderson JC, Suzuki H, Ueda H, Moldoveanu Z, Kiryluk K, Suzuki Y, Wyatt RJ, Tomino Y, Gharavi AG, Weinmann A, Julian BA, Willey CD, Novak J. Inhibition of STAT3 Signaling Reduces IgA1 Autoantigen Production in IgA Nephropathy. Kidney Int Rep 2017; 2:1194-1207. [PMID: 29270528 PMCID: PMC5733772 DOI: 10.1016/j.ekir.2017.07.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022] Open
Abstract
Introduction IgA nephropathy is a chronic renal disease characterized by mesangial immunodeposits that contain autoantigen, which is aberrantly glycosylated IgA1 with some hinge-region O-glycans deficient in galactose. Macroscopic hematuria during an upper respiratory tract infection is common among patients with IgA nephropathy, which suggests a connection between inflammation and disease activity. Interleukin-6 (IL-6) is an inflammatory cytokine involved in IgA immune response. We previously showed that IL-6 selectively increases production of galactose-deficient IgA1 in IgA1-secreting cells from patients with IgA nephropathy. Methods We characterized IL-6 signaling pathways involved in the overproduction of galactose-deficient IgA1. To understand molecular mechanisms, IL-6 signaling was analyzed by kinomic activity profiling and Western blotting, followed by confirmation assays using siRNA knock-down and small-molecule inhibitors. Results STAT3 was differentially activated by IL-6 in IgA1-secreting cells from patients with IgA nephropathy compared with those from healthy control subjects. Specifically, IL-6 induced enhanced and prolonged phosphorylation of STAT3 in the cells from patients with IgA nephropathy, which resulted in overproduction of galactose-deficient IgA1. This IL-6−mediated overproduction of galactose-deficient IgA1 could be blocked by small molecule inhibitors of JAK/STAT signaling. Discussion Our results revealed that IL-6−induced aberrant activation of STAT3-mediated overproduction of galactose-deficient IgA1. STAT3 signaling pathway may thus represent a new target for disease-specific therapy of IgA nephropathy.
Collapse
Affiliation(s)
- Koshi Yamada
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Zhi-Qiang Huang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Milan Raska
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Colin Reily
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Joshua C. Anderson
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hitoshi Suzuki
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Hiroyuki Ueda
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zina Moldoveanu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Krzysztof Kiryluk
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, USA
| | - Yusuke Suzuki
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Robert J. Wyatt
- Department of Pediatrics, University of Tennessee Health Center, Memphis, Tennessee, USA
| | - Yasuhiko Tomino
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
- Medical Corporation Showakai, Tokyo, Japan
| | - Ali G. Gharavi
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, USA
| | - Amy Weinmann
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bruce A. Julian
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Christopher D. Willey
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Correspondence: Jan Novak, Department of Microbiology, University of Alabama at Birmingham, 845 19 Street South, BBRB 761A, Birmingham, Alabama 35294, USA.Department of MicrobiologyUniversity of Alabama at Birmingham845 19 Street South, BBRB 761ABirminghamAlabama35294USA
| |
Collapse
|
90
|
Epp A, Sullivan KC, Herr AB, Strait RT. Immunoglobulin Glycosylation Effects in Allergy and Immunity. Curr Allergy Asthma Rep 2017; 16:79. [PMID: 27796794 DOI: 10.1007/s11882-016-0658-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The aim of this review will be to familiarize the reader with the general area of antibody (Ab) glycosylation and to summarize the known functional roles of glycosylation and how glycan structure can contribute to various disease states with emphasis on allergic disease. RECENT FINDINGS Both immunoglobulin (Ig) isotype and conserved Fc glycosylation sites often dictate the downstream activity of an Ab where complexity and degree of glycosylation contribute to its ability to bind Fc receptors (FcRs) and activate complement. Most information on the effects of glycosylation center on IgG in cancer therapy and autoimmunity. In cancer therapy, glycosylation modifications that enhance affinity for activating FcRs are utilized to facilitate immune-mediated tumor cell killing. In autoimmunity, disease severity has been linked to alterations in the presence, location, and composition of Fc glycans. Significantly less is understood about the role of glycosylation in the setting of allergy and asthma. However, recent data demonstrate that glycosylation of IgE at the asparagine-394 site of Cε3 is necessary for IgE interaction with the high affinity IgE receptor but, surprisingly, glycosylation has no effect on IgE interaction with its low-affinity lectin receptor, CD23. Variations in the specific glycoform may modulate the interaction of an Ig with its receptors. Significantly more is known about the functional effects of glycosylation of IgG than for other Ig isotypes. Thus, the role of glycosylation is much better understood in the areas of autoimmunity and cancer therapy, where IgG is the dominant isotype, than in the field of allergy, where IgE predominates. Further work is needed to fully understand the role of glycan variation in IgE and other Ig isotypes with regard to the inhibition or mediation of allergic disease.
Collapse
Affiliation(s)
- Alexandra Epp
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Kathryn C Sullivan
- Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Andrew B Herr
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Richard T Strait
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA. .,Division of Emergency Medicine, Cincinnati Children's Hospital, 3333 Burnet Ave, ML 2008, Cincinnati, OH, 45229, USA.
| |
Collapse
|
91
|
Göritzer K, Maresch D, Altmann F, Obinger C, Strasser R. Exploring Site-Specific N-Glycosylation of HEK293 and Plant-Produced Human IgA Isotypes. J Proteome Res 2017; 16:2560-2570. [PMID: 28516782 PMCID: PMC5504489 DOI: 10.1021/acs.jproteome.7b00121] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Indexed: 01/08/2023]
Abstract
The full potential of recombinant Immunoglobulin A as therapeutic antibody is not fully explored, owing to the fact that structure-function relationships of these extensively glycosylated proteins are not well understood. Here monomeric IgA1, IgA2m(1), and IgA2m(2) variants of the anti-HER2 antibody (IgG1) trastuzumab were expressed in glyco-engineered Nicotiana benthamiana plants and in human HEK293-6E cells. All three IgA isotypes were purified and subjected to biophysical and biochemical characterization. While no differences in assembly, antigen binding, and glycosylation occupancy were observed, both systems vary tremendously in terms of glycan structures and heterogeneity of glycosylation. Mass-spectrometric analysis of site-specific glycosylation revealed that plant-produced IgAs carry mainly complex-type biantennary N-glycans. HEK293-6E-produced IgAs, on the contrary, showed very heterogeneous N-glycans with high levels of sialylation, core-fucose, and the presence of branched structures. The site-specific analysis revealed major differences between the individual N-glycosylation sites of each IgA subtype. Moreover, the proline-rich hinge region from HEK293-6E cell-derived IgA1 was occupied with mucin-type O-glycans, whereas IgA1 from N. benthamiana displayed numerous plant-specific modifications. Interestingly, a shift in unfolding of the CH2 domain of plant-produced IgA toward lower temperatures can be observed with differential scanning calorimetry, suggesting that distinct glycoforms affect the thermal stability of IgAs.
Collapse
Affiliation(s)
- Kathrin Göritzer
- Department
of Applied Genetics and Cell Biology, University
of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Daniel Maresch
- Department
of Chemistry, Division of Biochemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Friedrich Altmann
- Department
of Chemistry, Division of Biochemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Christian Obinger
- Department
of Chemistry, Division of Biochemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Richard Strasser
- Department
of Applied Genetics and Cell Biology, University
of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
92
|
IgA N- and O-glycosylation profiling reveals no association with the pregnancy-related improvement in rheumatoid arthritis. Arthritis Res Ther 2017; 19:160. [PMID: 28679431 PMCID: PMC5498977 DOI: 10.1186/s13075-017-1367-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/09/2017] [Indexed: 02/01/2023] Open
Abstract
Background The Fc glycosylation of immunoglobulin G (IgG) is well known to associate with rheumatoid arthritis (RA) disease activity. The same may be true for other classes of Igs. In the present study, we sought to determine whether the glycosylation of IgA was different between healthy subjects and patients with RA, as well as whether it was associated with RA disease activity, in particular with the pregnancy-associated improvement thereof or the flare after delivery. Methods A recently developed high-throughput method for glycoprofiling of IgA1 was applied to affinity-captured IgA from sera of patients with RA (n = 252) and healthy control subjects (n = 32) collected before, during and after pregnancy. Results IgA1 O-glycans bore more sialic acids in patients with RA than in control subjects. In addition, levels of bisecting N-acetylglucosamine of the N-glycans at asparagine 144 were higher in the patients with RA. The levels of several N-glycosylation traits were shown to change with pregnancy, similar to what has been shown before for IgG. However, the changes in IgA glycosylation were not associated with improvement or a flare of disease activity. Conclusions The glycosylation of IgA differs between patients with RA and healthy control subjects. However, our data suggest only a minor, if any, association of IgA glycosylation with RA disease activity. Electronic supplementary material The online version of this article (doi:10.1186/s13075-017-1367-0) contains supplementary material, which is available to authorized users.
Collapse
|
93
|
Nie R, Cheng G, Zhang J, Dong Y, Wang C, Liu J, Qin X. The Association of rs1047763 and rs1008898 of C1GALT1 with IgA Nephropathy Risk: A Global Meta-Analysis. Monoclon Antib Immunodiagn Immunother 2017. [PMID: 28636500 DOI: 10.1089/mab.2016.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
IgA nephropathy (IgAN) is a globally common primary glomerulonephritis characterized by an elevated level of serum IgA and immune complex deposition in the mesangial area. In the serum of patients with IgAN, the hinge region of IgA1 immunoglobulin contains aberrantly glycosylated O-glycans deficient in galactose, which is normally added to the core 1 O-glycan structure by core 1 synthase, glycoprotein-N-acetylgalactosamine 3-beta-galactosyltransferase 1 (C1GALT1), the key enzyme in the process of glycosylation. It is unknown if single-nucleotide polymorphisms rs1047763 and rs1008898 of C1GALT1 increase the risk of IgAN. We enrolled 5 subjects in this meta-analysis, including a total of 1693 IgAN patients and 1864 control subjects. We performed meta-analysis on associations between rs1047763, rs1008898, and IgAN using the allele model, dominant model, recessive model, and additive model. We found that there was no relationship between rs1047763 and rs1008898 in C1GALT1 and susceptibility to IgAN.
Collapse
Affiliation(s)
- Ruili Nie
- Department of Medical Laboratory, Shengjing Hospital of China Medical University , Shenyang, China
| | - Guixue Cheng
- Department of Medical Laboratory, Shengjing Hospital of China Medical University , Shenyang, China
| | - Jin Zhang
- Department of Medical Laboratory, Shengjing Hospital of China Medical University , Shenyang, China
| | - Yu Dong
- Department of Medical Laboratory, Shengjing Hospital of China Medical University , Shenyang, China
| | - Chen Wang
- Department of Medical Laboratory, Shengjing Hospital of China Medical University , Shenyang, China
| | - Jianhua Liu
- Department of Medical Laboratory, Shengjing Hospital of China Medical University , Shenyang, China
| | - Xiaosong Qin
- Department of Medical Laboratory, Shengjing Hospital of China Medical University , Shenyang, China
| |
Collapse
|
94
|
Hart F, Danielczyk A, Goletz S. Human Cell Line-Derived Monoclonal IgA Antibodies for Cancer Immunotherapy. Bioengineering (Basel) 2017; 4:bioengineering4020042. [PMID: 28952521 PMCID: PMC5590476 DOI: 10.3390/bioengineering4020042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/30/2017] [Accepted: 05/02/2017] [Indexed: 12/17/2022] Open
Abstract
IgA antibodies have great potential to improve the functional diversity of current IgG antibody-based cancer immunotherapy options. However, IgA production and purification is not well established, which can at least in part be attributed to the more complex glycosylation as compared to IgG antibodies. IgA antibodies possess up to five N-glycosylation sites within their constant region of the heavy chain as compared to one site for IgG antibodies. The human GlycoExpress expression system was developed to produce biotherapeutics with optimized glycosylation and used here to generate a panel of IgA isotype antibodies directed against targets for solid (TA-mucin 1, Her2, EGFR, Thomsen–Friedenreich) and hematological (CD20) cancer indications. The feasibility of good manufacturing practice was shown by the production of 11 g IgA within 35 days in a one liter perfusion bioreactor, and IgA antibodies in high purity were obtained after purification. The monoclonal IgA antibodies possessed a high sialylation degree, and no non-human glycan structures were detected. Kinetic analysis revealed increased avidity antigen binding for IgA dimers as compared to monomeric antibodies. The IgA antibodies exhibited potent Fab- and Fc-mediated functionalities against cancer cell lines, whereby especially granulocytes are recruited. Therefore, for patients who do not sufficiently benefit from therapeutic IgG antibodies, IgA antibodies may complement current regiment options and represent a promising strategy for cancer immunotherapy. In conclusion, a panel of novel biofunctional IgA antibodies with human glycosylation was successfully generated.
Collapse
Affiliation(s)
- Felix Hart
- Glycotope GmbH, Robert-Roessle-Street 10, 13125 Berlin, Germany.
| | - Antje Danielczyk
- Glycotope GmbH, Robert-Roessle-Street 10, 13125 Berlin, Germany.
| | - Steffen Goletz
- Glycotope GmbH, Robert-Roessle-Street 10, 13125 Berlin, Germany.
| |
Collapse
|
95
|
Saha C, Das M, Patil V, Stephen-Victor E, Sharma M, Wymann S, Jordi M, Vonarburg C, Kaveri SV, Bayry J. Monomeric Immunoglobulin A from Plasma Inhibits Human Th17 Responses In Vitro Independent of FcαRI and DC-SIGN. Front Immunol 2017; 8:275. [PMID: 28352269 PMCID: PMC5349300 DOI: 10.3389/fimmu.2017.00275] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/24/2017] [Indexed: 12/27/2022] Open
Abstract
Circulating immunoglobulins including immunoglobulin G (IgG) and IgM play a critical role in the immune homeostasis by modulating functions of immune cells. These functions are mediated in part by natural antibodies. However, despite being second most abundant antibody in the circulation, the immunoregulatory function of IgA is relatively unexplored. As Th17 cells are the key mediators of a variety of autoimmune, inflammatory, and allergic diseases, we investigated the ability of monomeric IgA (mIgA) isolated from pooled plasma of healthy donors to modulate human Th17 cells. We show that mIgA inhibits differentiation and amplification of human Th17 cells and the production of their effector cytokine IL-17A. mIgA also suppresses IFN-γ responses under these experimental conditions. Suppressive effect of mIgA on Th17 responses is associated with reciprocal expansion of FoxP3-positive regulatory T cells. The effect of mIgA on Th17 cells is dependent on F(ab′)2 fragments and independent of FcαRI (CD89) and DC-SIGN. Mechanistically, the modulatory effect of mIgA on Th17 cells implicates suppression of phosphorylation of signal transducer and activator of transcription 3. Furthermore, mIgA binds to CD4+ T cells and recognizes in a dose-dependent manner the receptors for cytokines (IL-6Rα and IL-1RI) that mediate Th17 responses. Our findings thus reveal novel anti-inflammatory functions of IgA and suggest potential therapeutic utility of mIgA in autoimmune and inflammatory diseases that implicate Th17 cells.
Collapse
Affiliation(s)
- Chaitrali Saha
- Institut National de la Santé et de la Recherche Médicale , Paris , France
| | - Mrinmoy Das
- Institut National de la Santé et de la Recherche Médicale, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche des Cordeliers, Paris, France
| | | | - Emmanuel Stephen-Victor
- Institut National de la Santé et de la Recherche Médicale, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche des Cordeliers, Paris, France
| | - Meenu Sharma
- Institut National de la Santé et de la Recherche Médicale , Paris , France
| | - Sandra Wymann
- Research Department, CSL Behring AG , Bern , Switzerland
| | - Monika Jordi
- Research Department, CSL Behring AG , Bern , Switzerland
| | | | - Srini V Kaveri
- Institut National de la Santé et de la Recherche Médicale, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
96
|
Glycan-independent binding and internalization of human IgM to FCMR, its cognate cellular receptor. Sci Rep 2017; 7:42989. [PMID: 28230186 PMCID: PMC5322398 DOI: 10.1038/srep42989] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 01/17/2017] [Indexed: 12/17/2022] Open
Abstract
IgM is the first antibody to be produced in immune responses and plays an important role in the neutralization of bacteria and viruses. Human IgM is heavily glycosylated, featuring five N-linked glycan sites on the μ chain and one on the J-chain. Glycosylation of IgG is known to modulate the effector functions of Fcγ receptors. In contrast, little is known about the effect of glycosylation on IgM binding to the human Fcμ receptor (hFCMR). In this study, we identify the Cμ4 domain of IgM as the target of hFCMR, and show that binding and internalization of IgM by hFCMR is glycan-independent. We generated a homology-based structure for hFCMR and used molecular dynamic simulations to show how this interaction with IgM may occur. Finally, we reveal an inhibitory function for IgM in the proliferation of T cells.
Collapse
|
97
|
Lehoux S, Ju T. Separation of Two Distinct O-Glycoforms of Human IgA1 by Serial Lectin Chromatography Followed by Mass Spectrometry O-Glycan Analysis. Methods Enzymol 2016; 585:61-75. [PMID: 28109443 DOI: 10.1016/bs.mie.2016.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Human immunoglobulin A1 (IgA1), which carries four to six mucin-type O-glycans (O-glycans) on its hinge region (HR), is the most abundant O-glycoprotein in plasma or serum. While normal O-glycans from hematopoietic-originated cells are core 1-based complex structures, many reports showed that the IgA1 from patients with IgA nephropathy (IgAN) carries undergalactosylated or truncated O-glycans such as the Tn antigen and its sialylated version the SialylTn (STn) antigen on the HR. Yet, there is still a debate whether Tn/STn on the HR of IgA1 is specific to the IgA1 from patients with IgAN since these antigens have also been seen in serum IgA1 of healthy individuals. An additional question is whether the O-glycans at all sites on the two HRs of one IgA1 molecule are homogeneous (either all normal or all Tn/STn) or heterogeneous (both normal and Tn/STn O-glycans). To address these questions, we conducted a systematic study on the O-glycans of plasma IgA1 from both IgAN patients and healthy controls using serial HPA and PNA lectin chromatography followed by western blotting and further analysis of O-glycans from HPA-bound and PNA-bound IgA1 fractions by mass spectrometry. Unexpectedly, we found that a variable minor fraction of IgA1 from both IgAN patients and healthy controls had Tn/STn antigens, and that the O-glycoprotein IgA1 molecules from most samples had only two distinct O-glycoforms: one major glycoform with homogeneous normal core 1-based O-glycans and one minor glycoform with homogeneous Tn/STn antigens. These results raised a serious question about the role of Tn/STn antigens on IgA1 in pathogenesis of IgAN, and there is a demand for a practical methodology that any laboratory can utilize to analyze the O-glycans of IgA1. Herein, we describe the methodology we developed in more detail. The method could also be applied to the analysis of any other O-glycosylated proteins.
Collapse
Affiliation(s)
- S Lehoux
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| | - T Ju
- Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
98
|
Courtois F, Agrawal NJ, Lauer TM, Trout BL. Rational design of therapeutic mAbs against aggregation through protein engineering and incorporation of glycosylation motifs applied to bevacizumab. MAbs 2016; 8:99-112. [PMID: 26514585 DOI: 10.1080/19420862.2015.1112477] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The aggregation of biotherapeutics is a major hindrance to the development of successful drug candidates; however, the propensity to aggregate is often identified too late in the development phase to permit modification to the protein's sequence. Incorporating rational design for the stability of proteins in early discovery has numerous benefits. We engineered out aggregation-prone regions on the Fab domain of a therapeutic monoclonal antibody, bevacizumab, to rationally design a biobetter drug candidate. With the purpose of stabilizing bevacizumab with respect to aggregation, 2 strategies were undertaken: single point mutations of aggregation-prone residues and engineering a glycosylation site near aggregation-prone residues to mask these residues with a carbohydrate moiety. Both of these approaches lead to comparable decreases in aggregation, with an up to 4-fold reduction in monomer loss. These single mutations and the new glycosylation pattern of the Fab domain do not modify binding to the target. Biobetters with increased stability against aggregation can therefore be generated in a rational manner, by either removing or masking the aggregation-prone region or crowding out protein-protein interactions.
Collapse
Affiliation(s)
- Fabienne Courtois
- a Chemical Engineering ; Massachusetts Institute of Technology ; Cambridge , Massachusetts 02139
| | - Neeraj J Agrawal
- a Chemical Engineering ; Massachusetts Institute of Technology ; Cambridge , Massachusetts 02139
| | - Timothy M Lauer
- a Chemical Engineering ; Massachusetts Institute of Technology ; Cambridge , Massachusetts 02139
| | - Bernhardt L Trout
- a Chemical Engineering ; Massachusetts Institute of Technology ; Cambridge , Massachusetts 02139
| |
Collapse
|
99
|
Quantitative profiling of O-glycans by electrospray ionization- and matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry after in-gel derivatization with isotope-coded 1-phenyl-3-methyl-5-pyrazolone. Anal Chim Acta 2016; 935:187-96. [DOI: 10.1016/j.aca.2016.06.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/02/2016] [Accepted: 06/16/2016] [Indexed: 11/19/2022]
|
100
|
Elevated Plasma α-Defensins (HNP1-3) Levels Correlated with IgA1 Glycosylation and Susceptibility to IgA Nephropathy. DISEASE MARKERS 2016; 2016:8123138. [PMID: 27563166 PMCID: PMC4985581 DOI: 10.1155/2016/8123138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/11/2016] [Accepted: 06/22/2016] [Indexed: 11/27/2022]
Abstract
Aim. IgA nephropathy (IgAN) is the most common form of glomerulonephritis. Recent genome-wide association study (GWAS) suggested that DEFA locus (which encodes α-defensins) may play a key role in IgAN. Methods. The levels of α-defensins in 169 IgAN patients and 83 healthy controls were tested by ELISA. Results. We observed that α-defensins human neutrophil peptides 1–3 (HNP1–3) in IgAN patients were elevated compared with healthy controls. The mean levels of α-defensins of 83 healthy controls and 169 IgAN patients were 50 ng/mL and 78.42 ng/mL. When the results were adjusted to the mean levels of α-defensins of IgAN patients, the percentage of individuals with high levels of α-defensins increased in IgAN patients (22.5%) compared to healthy controls (9.6%) (p = 0.013). The elevation of α-defensins in IgAN patients was independent of renal function or neutrophil count, which were major sources of α-defensins in circulation. More importantly, negative correlation was observed between galactose-deficient IgA1and α-defensins. Conclusion. As α-defensin is a lectin-like peptide, we speculated that it might be involved in IgA galactose deficiency. The data implied that patients with IgAN had higher plasma α-defensins levels and high α-defensins correlated with IgA galactose deficiency, further suggesting a pathogenic role of α-defensins in IgAN.
Collapse
|