51
|
Süß P, Schlachetzki JCM. Microglia in Alzheimer's Disease. Curr Alzheimer Res 2021; 17:29-43. [PMID: 32048973 DOI: 10.2174/1567205017666200212155234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 12/31/2019] [Accepted: 01/20/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's Disease (AD) is the most frequent neurodegenerative disorder. Although proteinaceous aggregates of extracellular Amyloid-β (Aβ) and intracellular hyperphosphorylated microtubule- associated tau have long been identified as characteristic neuropathological hallmarks of AD, a disease- modifying therapy against these targets has not been successful. An emerging concept is that microglia, the innate immune cells of the brain, are major players in AD pathogenesis. Microglia are longlived tissue-resident professional phagocytes that survey and rapidly respond to changes in their microenvironment. Subpopulations of microglia cluster around Aβ plaques and adopt a transcriptomic signature specifically linked to neurodegeneration. A plethora of molecules and pathways associated with microglia function and dysfunction has been identified as important players in mediating neurodegeneration. However, whether microglia exert either beneficial or detrimental effects in AD pathology may depend on the disease stage. In this review, we summarize the current knowledge about the stage-dependent role of microglia in AD, including recent insights from genetic and gene expression profiling studies as well as novel imaging techniques focusing on microglia in human AD pathology and AD mouse models.
Collapse
Affiliation(s)
- Patrick Süß
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universitat, Erlangen- Nürnberg, Germany
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, United States
| |
Collapse
|
52
|
Alves SS, Silva-Junior RMPD, Servilha-Menezes G, Homolak J, Šalković-Petrišić M, Garcia-Cairasco N. Insulin Resistance as a Common Link Between Current Alzheimer's Disease Hypotheses. J Alzheimers Dis 2021; 82:71-105. [PMID: 34024838 DOI: 10.3233/jad-210234] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Almost 115 years ago, Alois Alzheimer described Alzheimer's disease (AD) for the first time. Since then, many hypotheses have been proposed. However, AD remains a severe health public problem. The current medical approaches for AD are limited to symptomatic interventions and the complexity of this disease has led to a failure rate of approximately 99.6%in AD clinical trials. In fact, no new drug has been approved for AD treatment since 2003. These failures indicate that we are failing in mimicking this disease in experimental models. Although most studies have focused on the amyloid cascade hypothesis of AD, the literature has made clear that AD is rather a multifactorial disorder. Therefore, the persistence in a single theory has resulted in lost opportunities. In this review, we aim to present the striking points of the long scientific path followed since the description of the first AD case and the main AD hypotheses discussed over the last decades. We also propose insulin resistance as a common link between many other hypotheses.
Collapse
Affiliation(s)
- Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Rui Milton Patrício da Silva-Junior
- Department of Internal Medicine, Ribeirão Preto Medical School -University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Gabriel Servilha-Menezes
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Melita Šalković-Petrišić
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
53
|
Pyun JM, Kang MJ, Ryoo N, Suh J, Youn YC, Park YH, Kim S. Amyloid Metabolism and Amyloid-Targeting Blood-Based Biomarkers of Alzheimer's Disease. J Alzheimers Dis 2021; 75:685-696. [PMID: 32390633 DOI: 10.3233/jad-200104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Amyloid-β (Aβ) is a key protein in Alzheimer's disease (AD) in that its accumulation induces complex pathological changes. Although there has been extensive research on the metabolism of Aβ in AD, new compelling results have recently emerged. Historically, the production and clearance of Aβ have been thought to originate in the central nervous system (CNS). However, recent evidence suggests that the production and clearance of Aβ can also occur in the peripheral system, and that the peripherally driven Aβ migrates to the CNS and induces amyloidopathy with subsequent AD pathologic changes in the brain. This concept implies that AD is not restricted to the CNS but is a systemic disease instead. As such, the development of blood-based biomarkers targeting Aβ is of great interest. Central and peripheral Aβ are both active contributors to the pathology of AD and interact bidirectionally. Measuring peripheral Aβ is not just observing the reflection of the residual Aβ removed from the CNS but also tracking the ongoing process of AD pathology. Additionally, blood-based biomarkers could be a more accessible tool in clinical and research settings. Through arduous research, several blood-based biomarker assays have demonstrated notable results. In this review, we describe the metabolism of Aβ and the amyloid-targeting blood-based biomarkers of AD.
Collapse
Affiliation(s)
- Jung-Min Pyun
- Department of Neurology, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Min Ju Kang
- Department of Neurology, Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Nayoung Ryoo
- Department of Neurology, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Jeewon Suh
- Department of Neurology, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Young Chul Youn
- Department of Neurology, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Young Ho Park
- Department of Neurology, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| |
Collapse
|
54
|
Obesity and aging: Molecular mechanisms and therapeutic approaches. Ageing Res Rev 2021; 67:101268. [PMID: 33556548 DOI: 10.1016/j.arr.2021.101268] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023]
Abstract
The epidemic of obesity is a major challenge for health policymakers due to its far-reaching effects on population health and potentially overwhelming financial burden on healthcare systems. Obesity is associated with an increased risk of developing acute and chronic diseases, including hypertension, stroke, myocardial infarction, cardiovascular disease, diabetes, and cancer. Interestingly, the metabolic dysregulation associated with obesity is similar to that observed in normal aging, and substantial evidence suggests the potential of obesity to accelerate aging. Therefore, understanding the mechanism of fat tissue dysfunction in obesity could provide insights into the processes that contribute to the metabolic dysfunction associated with the aging process. Here, we review the molecular and cellular mechanisms underlying both obesity and aging, and how obesity and aging can predispose individuals to chronic health complications. The potential of lifestyle and pharmacological interventions to counter obesity and obesity-related pathologies, as well as aging, is also addressed.
Collapse
|
55
|
das Neves SP, Delivanoglou N, Da Mesquita S. CNS-Draining Meningeal Lymphatic Vasculature: Roles, Conundrums and Future Challenges. Front Pharmacol 2021; 12:655052. [PMID: 33995074 PMCID: PMC8113819 DOI: 10.3389/fphar.2021.655052] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
A genuine and functional lymphatic vascular system is found in the meninges that sheath the central nervous system (CNS). This unexpected (re)discovery led to a reevaluation of CNS fluid and solute drainage mechanisms, neuroimmune interactions and the involvement of meningeal lymphatics in the initiation and progression of neurological disorders. In this manuscript, we provide an overview of the development, morphology and unique functional features of meningeal lymphatics. An outline of the different factors that affect meningeal lymphatic function, such as growth factor signaling and aging, and their impact on the continuous drainage of brain-derived molecules and meningeal immune cells into the cervical lymph nodes is also provided. We also highlight the most recent discoveries about the roles of the CNS-draining lymphatic vasculature in different pathologies that have a strong neuroinflammatory component, including brain trauma, tumors, and aging-associated neurodegenerative diseases like Alzheimer's and Parkinson's. Lastly, we provide a critical appraisal of the conundrums, challenges and exciting questions involving the meningeal lymphatic system that ought to be investigated in years to come.
Collapse
Affiliation(s)
| | | | - Sandro Da Mesquita
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
56
|
Precision Nutrition for Alzheimer's Prevention in ApoE4 Carriers. Nutrients 2021; 13:nu13041362. [PMID: 33921683 PMCID: PMC8073598 DOI: 10.3390/nu13041362] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
The ApoE4 allele is the most well-studied genetic risk factor for Alzheimer’s disease, a condition that is increasing in prevalence and remains without a cure. Precision nutrition targeting metabolic pathways altered by ApoE4 provides a tool for the potential prevention of disease. However, no long-term human studies have been conducted to determine effective nutritional protocols for the prevention of Alzheimer’s disease in ApoE4 carriers. This may be because relatively little is yet known about the precise mechanisms by which the genetic variant confers an increased risk of dementia. Fortunately, recent research is beginning to shine a spotlight on these mechanisms. These new data open up the opportunity for speculation as to how carriers might ameliorate risk through lifestyle and nutrition. Herein, we review recent discoveries about how ApoE4 differentially impacts microglia and inflammatory pathways, astrocytes and lipid metabolism, pericytes and blood–brain barrier integrity, and insulin resistance and glucose metabolism. We use these data as a basis to speculate a precision nutrition approach for ApoE4 carriers, including a low-glycemic index diet with a ketogenic option, specific Mediterranean-style food choices, and a panel of seven nutritional supplements. Where possible, we integrate basic scientific mechanisms with human observational studies to create a more complete and convincing rationale for this precision nutrition approach. Until recent research discoveries can be translated into long-term human studies, a mechanism-informed practical clinical approach may be useful for clinicians and patients with ApoE4 to adopt a lifestyle and nutrition plan geared towards Alzheimer’s risk reduction.
Collapse
|
57
|
Leissring MA, González-Casimiro CM, Merino B, Suire CN, Perdomo G. Targeting Insulin-Degrading Enzyme in Insulin Clearance. Int J Mol Sci 2021; 22:ijms22052235. [PMID: 33668109 PMCID: PMC7956289 DOI: 10.3390/ijms22052235] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatic insulin clearance, a physiological process that in response to nutritional cues clears ~50–80% of circulating insulin, is emerging as an important factor in our understanding of the pathogenesis of type 2 diabetes mellitus (T2DM). Insulin-degrading enzyme (IDE) is a highly conserved Zn2+-metalloprotease that degrades insulin and several other intermediate-size peptides. Both, insulin clearance and IDE activity are reduced in diabetic patients, albeit the cause-effect relationship in humans remains unproven. Because historically IDE has been proposed as the main enzyme involved in insulin degradation, efforts in the development of IDE inhibitors as therapeutics in diabetic patients has attracted attention during the last decades. In this review, we retrace the path from Mirsky’s seminal discovery of IDE to the present, highlighting the pros and cons of the development of IDE inhibitors as a pharmacological approach to treating diabetic patients.
Collapse
Affiliation(s)
- Malcolm A. Leissring
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine (UCI MIND), Irvine, CA 92697-4545, USA
- Correspondence: (M.A.L.); (G.P.); Tel.: +1-904-254-3050 (M.A.L.); +34-983-184-805 (G.P.)
| | - Carlos M. González-Casimiro
- Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), 47003 Valladolid, Spain; (C.M.G.-C.); (B.M.)
| | - Beatriz Merino
- Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), 47003 Valladolid, Spain; (C.M.G.-C.); (B.M.)
| | - Caitlin N. Suire
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-4300, USA;
| | - Germán Perdomo
- Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), 47003 Valladolid, Spain; (C.M.G.-C.); (B.M.)
- Correspondence: (M.A.L.); (G.P.); Tel.: +1-904-254-3050 (M.A.L.); +34-983-184-805 (G.P.)
| |
Collapse
|
58
|
Modulation of Insulin Sensitivity by Insulin-Degrading Enzyme. Biomedicines 2021; 9:biomedicines9010086. [PMID: 33477364 PMCID: PMC7830943 DOI: 10.3390/biomedicines9010086] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
Insulin-degrading enzyme (IDE) is a highly conserved and ubiquitously expressed metalloprotease that degrades insulin and several other intermediate-size peptides. For many decades, IDE had been assumed to be involved primarily in hepatic insulin clearance, a key process that regulates availability of circulating insulin levels for peripheral tissues. Emerging evidence, however, suggests that IDE has several other important physiological functions relevant to glucose and insulin homeostasis, including the regulation of insulin secretion from pancreatic β-cells. Investigation of mice with tissue-specific genetic deletion of Ide in the liver and pancreatic β-cells (L-IDE-KO and B-IDE-KO mice, respectively) has revealed additional roles for IDE in the regulation of hepatic insulin action and sensitivity. In this review, we discuss current knowledge about IDE’s function as a regulator of insulin secretion and hepatic insulin sensitivity, both evaluating the classical view of IDE as an insulin protease and also exploring evidence for several non-proteolytic functions. Insulin proteostasis and insulin sensitivity have both been highlighted as targets controlling blood sugar levels in type 2 diabetes, so a clearer understanding the physiological functions of IDE in pancreas and liver could led to the development of novel therapeutics for the treatment of this disease.
Collapse
|
59
|
Oberstein TJ, Utz J, Spitzer P, Klafki HW, Wiltfang J, Lewczuk P, Kornhuber J, Maler JM. The Role of Cathepsin B in the Degradation of Aβ and in the Production of Aβ Peptides Starting With Ala2 in Cultured Astrocytes. Front Mol Neurosci 2021; 13:615740. [PMID: 33510618 PMCID: PMC7836726 DOI: 10.3389/fnmol.2020.615740] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
Astrocytes may not only be involved in the clearance of Amyloid beta peptides (Aβ) in Alzheimer's disease (AD), but appear to produce N-terminally truncated Aβ (Aβn−x) independently of BACE1, which generates the N-Terminus of Aβ starting with Asp1 (Aβ1−x). A candidate protease for the generation of Aβn−x is cathepsin B (CatB), especially since CatB has also been reported to degrade Aβ, which could explain the opposite roles of astrocytes in AD. In this study, we investigated the influence of CatB inhibitors and the deletion of the gene encoding CatB (CTSB) using CRISPR/Cas9 technology on Aβ2−x and Aβ1−x levels in cell culture supernatants by one- and two-dimensional Urea-SDS-PAGE followed by immunoblot. While the cell-permeant inhibitors E64d and CA-074 Me did not significantly affect the Aβ1−x levels in supernatants of cultured chicken and human astrocytes, they did reduce the Aβ2−x levels. In the glioma-derived cell line H4, the Aβ2−x levels were likewise decreased in supernatants by treatment with the more specific, but cell-impermeant CatB-inhibitor CA-074, by CA-074 Me treatment, and by CTSB gene deletion. Additionally, a more than 2-fold increase in secreted Aβ1−x was observed under the latter two conditions. The CA-074 Me-mediated increase of Aβ1−x, but not the decrease of Aβ2−x, was influenced by concomitant treatment with the vacuolar H+-ATPase inhibitor Bafilomycin A1. This indicated that non-lysosomal CatB mediated the production of Aβ2−x in astrocytes, while the degradation of Aβ1−x seemed to be dependent on lysosomal CatB in H4 cells, but not in primary astrocytes. These findings highlight the importance of considering organelle targeting in drug development to promote Aβ degradation.
Collapse
Affiliation(s)
- Timo Jan Oberstein
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Janine Utz
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Philipp Spitzer
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Hans Wolfgang Klafki
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Göttingen, Germany.,German Center for Neurodegenerative Diseases, Göttingen, Germany.,Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany.,Department of Neurodegeneration Diagnostics and Department of Biochemical Diagnostics, University Hospital of Bialystok, Bialystok, Poland
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Juan Manuel Maler
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
60
|
Wang H, Xu X, Pan YC, Yan Y, Hu XY, Chen R, Ravoo BJ, Guo DS, Zhang T. Recognition and Removal of Amyloid-β by a Heteromultivalent Macrocyclic Coassembly: A Potential Strategy for the Treatment of Alzheimer's Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006483. [PMID: 33325586 DOI: 10.1002/adma.202006483] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/20/2020] [Indexed: 06/12/2023]
Abstract
The imbalance of amyloid-β (Aβ) production and clearance causes aggregation of Aβ1-42 monomers to form fibrils and amyloid plaques, which is an indispensable process in the pathogenesis of Alzheimer's disease (AD), and eventually leads to pathological changes and cognitive impairment. Consequently, Aβ1-42 is the most important target for the treatment of AD. However, developing a single treatment method that can recognize Aβ1-42 , inhibit Aβ1-42 fibrillation, eliminate amyloid plaques, improve cognitive impairments, and alleviate AD-like pathology is challenging. Here, a coassembly composed of cyclodextrin (CD) and calixarene (CA) is designed, and it is used as an anti-Aβ therapy agent. The CD-CA coassembly is based on the previously reported heteromultivalent recognition strategy and is able to successfully eliminate amyloid plaques and degrade Aβ1-42 monomers in 5xFAD mice. More importantly, the coassembly improves recognition and spatial cognition deficits, and synaptic plasticity impairment in the 5xFAD mice. In addition, the coassembly ameliorates AD-like pathology including prevention of neuronal apoptosis and oxidant stress, and alteration of M1/M2 microglial polarization states. This supramolecular approach makes full use of both molecular recognition and self-assembly of macrocyclic amphiphiles, and is a promising novel strategy for AD treatment.
Collapse
Affiliation(s)
- Hui Wang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - XinXin Xu
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Yu-Chen Pan
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin, 300071, P. R. China
| | - YuXing Yan
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Xin-Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin, 300071, P. R. China
| | - RunWen Chen
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, Münster, 48149, Germany
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin, 300071, P. R. China
| | - Tao Zhang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
61
|
Engin AB, Engin A. Alzheimer's Disease and Protein Kinases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:285-321. [PMID: 33539020 DOI: 10.1007/978-3-030-49844-3_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and accounts for more than 60-80% of all cases of dementia. Loss of pyramidal neurons, extracellular amyloid beta (Abeta) accumulated senile plaques, and neurofibrillary tangles that contain hyperphosphorylated tau constitute the main pathological alterations in AD.Synaptic dysfunction and extrasynaptic N-methyl-D-aspartate receptor (NMDAR) hyperactivation contributes to excitotoxicity in patients with AD. Amyloid precursor protein (APP) and Abeta promoted neurodegeneration develop through the activation of protein kinase signaling cascade in AD. Furthermore, ultimate neuronal death in AD is under control of protein kinases-related signaling pathways. In this chapter, critical check-points within the cross-talk between neuron and protein kinases have been defined regarding the initiation and progression of AD. In this context, amyloid cascade hypothesis, neuroinflammation, oxidative stress, granulovacuolar degeneration, loss of Wnt signaling, Abeta-related synaptic alterations, prolonged calcium ions overload and NMDAR-related synaptotoxicity, damage signals hypothesis and type-3 diabetes are discussed briefly.In addition to clinical perspective of AD pathology, recommendations that might be effective in the treatment of AD patients have been reviewed.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| | - Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
62
|
Thelen M, Brown-Borg HM. Does Diet Have a Role in the Treatment of Alzheimer's Disease? Front Aging Neurosci 2020; 12:617071. [PMID: 33424583 PMCID: PMC7785773 DOI: 10.3389/fnagi.2020.617071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022] Open
Abstract
The aging process causes many changes to the brain and is a major risk factor for the development of neurodegenerative diseases such as Alzheimer's Disease (AD). Despite an already vast amount of research on AD, a greater understanding of the disease's pathology and therapeutic options are desperately needed. One important distinction that is also in need of further study is the ability to distinguish changes to the brain observed in early stages of AD vs. changes that occur with normal aging. Current FDA-approved therapeutic options for AD patients have proven to be ineffective and indicate the need for alternative therapies. Aging interventions including alterations in diet (such as caloric restriction, fasting, or methionine restriction) have been shown to be effective in mediating increased health and lifespan in mice and other model organisms. Because aging is the greatest risk factor for the development of neurodegenerative diseases, certain dietary interventions should be explored as they have the potential to act as a future treatment option for AD patients.
Collapse
Affiliation(s)
- Mitchell Thelen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Holly M Brown-Borg
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| |
Collapse
|
63
|
Brown MR, Radford SE, Hewitt EW. Modulation of β-Amyloid Fibril Formation in Alzheimer's Disease by Microglia and Infection. Front Mol Neurosci 2020; 13:609073. [PMID: 33324164 PMCID: PMC7725705 DOI: 10.3389/fnmol.2020.609073] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/03/2020] [Indexed: 01/06/2023] Open
Abstract
Amyloid plaques are a pathological hallmark of Alzheimer's disease. The major component of these plaques are highly ordered amyloid fibrils formed by amyloid-β (Aβ) peptides. However, whilst Aβ amyloid fibril assembly has been subjected to detailed and extensive analysis in vitro, these studies may not reproduce how Aβ fibrils assemble in the brain. This is because the brain represents a highly complex and dynamic environment, and in Alzheimer's disease multiple cofactors may affect the assembly of Aβ fibrils. Moreover, in vivo amyloid plaque formation will reflect the balance between the assembly of Aβ fibrils and their degradation. This review explores the roles of microglia as cofactors in Aβ aggregation and in the clearance of amyloid deposits. In addition, we discuss how infection may be an additional cofactor in Aβ fibril assembly by virtue of the antimicrobial properties of Aβ peptides. Crucially, by understanding the roles of microglia and infection in Aβ amyloid fibril assembly it may be possible to identify new therapeutic targets for Alzheimer's disease.
Collapse
Affiliation(s)
- Madeleine R Brown
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Eric W Hewitt
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
64
|
Tang XH, Luo RC, Ye MS, Tang HY, Ma YL, Chen YN, Wang XM, Lu QY, Liu S, Li XN, Yan Y, Yang J, Ran XQ, Fang X, Zhou Y, Yao YG, Di YT, Hao XJ. Harpertrioate A, an A,B,D- seco-Limonoid with Promising Biological Activity against Alzheimer's Disease from Twigs of Harrisonia perforata (Blanco) Merr. Org Lett 2020; 23:262-267. [PMID: 33284631 DOI: 10.1021/acs.orglett.0c03460] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Harpertrioate A (1), an A,B,D-seco-limonoid with a rearranged ring B incorporating exocyclic C-30, was isolated from the EtOAc extract of Harrisonia perforata twigs. Its structure, including absolute configurations, was determined on the basis of spectroscopic data and X-ray crystallography. This compound exhibited biological activities against Alzheimer's disease by reducing Aβ42 and Aβ40 production and shifting APP processing toward nonamyloidogenic pathway. The effect of 1 on the Aβ production was comparable to that of gemfibrozil.
Collapse
Affiliation(s)
- Xiao-Han Tang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.,School of Chemical Science and Engineering, Yunnan University, Kunming 650091, P. R. China
| | - Rong-Can Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Mao-Sen Ye
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Hong-Yu Tang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.,School of Chemical Science and Engineering, Yunnan University, Kunming 650091, P. R. China
| | - Yuan-Liang Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yan-Ni Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xin-Meng Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Qing-Yun Lu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Shuai Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ying Yan
- Guizhou Chemical Drug Research and Development Engineering Technical Center, Guizhou Medicinal University, Guiyang 550004, China
| | - Jing Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Xiao-Qian Ran
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Xin Fang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yan Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ying-Tong Di
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiao-Jiang Hao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.,Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, Yunnan 650201, China
| |
Collapse
|
65
|
Huang CN, Wang CJ, Lin CL, Li HH, Yen AT, Peng CH. Abelmoschus esculentus subfractions attenuate Aβ and tau by regulating DPP-4 and insulin resistance signals. BMC Complement Med Ther 2020; 20:370. [PMID: 33267804 PMCID: PMC7709418 DOI: 10.1186/s12906-020-03163-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/23/2020] [Indexed: 11/17/2022] Open
Abstract
Background Insulin resistance could be associated with the development of Alzheimer disease (AD). The neuropathological hallmarks of AD are beta amyloid (Aβ) produced from sequential cleavage initiated by β-secretase and degraded by insulin degradation enzyme (IDE), as well as hyperphosphorylation of tau (p-tau). Insulin action involves the cascades of insulin receptor substrates (IRS) and phosphatidylinositol 3-kinase (PI3K), while phosphorylation of IRS-1 at ser307 (p-ser307IRS-1) hinders the response. Our previous report suggested dipeptidyl peptidase-4 (DPP-4) is crucial to insulin resistance, and the subfractions of Abelmoschus esculentus (AE), F1 and F2, attenuate the signaling. Here we aim to investigate whether AE works to reduce Aβ generation via regulating DPP4 and insulin resistance. Methods The subfractions F1 and F2 were prepared according to a succession of procedures. F1 was composed by quercetin glycosides and triterpene ester, and F2 contained a large amount of polysaccharides. The in vitro insulin resistance model was established by SK-N-MC cell line treated with palmitate. MTT was used to define the dose range, and thereby Western blot, ELISA, and the activity assay were used to detect the putative markers. One-way ANOVA was performed for the statistical analysis. Results Treatment of palmitate induced the level of p-ser307IRS-1. Both F1 and F2 effectively decrease p-ser307IRS-1, and recover the expression of p-PI3K. However, the expression of total IRS plunged with 25 μg/mL of F1, while descended steadily with 5 μg/mL of F2. As palmitate increased the levels of Aβ40 and Aβ42, both AE subfractions were effective to reduce Aβ generation of and β-secretase activity, but IDE was not altered in any treatment conditions. The expression of DPP4 was also accompanied with insulin resistance signals. Inhibition of DPP4 attenuated the activity of β-secretase and production of Aβ. Moreover, the present data revealed that both AE subfractions significantly decrease the level of p-Tau. Conclusions In conclusion, we demonstrated that AE would be a potential adjuvant to prevent insulin resistance and the associated pathogenesis of AD, and F2 seems more feasible to be developed.
Collapse
Affiliation(s)
- Chien-Ning Huang
- Department of Internal Medicine, Chung-Shan Medical University Hospital, Taichung, Taiwan.,Institute of Medicine, Chung-Shan Medical University, Taichung, Taiwan
| | - Chau-Jong Wang
- Institute of Biochemistry, Microbiology and Immunology, Chung-Shan Medical University, Taichung, Taiwan
| | - Chih-Li Lin
- Institute of Medicine, Chung-Shan Medical University, Taichung, Taiwan
| | - Hsin-Hua Li
- Institute of Medicine, Chung-Shan Medical University, Taichung, Taiwan
| | - An-Ting Yen
- Institute of Biochemistry, Microbiology and Immunology, Chung-Shan Medical University, Taichung, Taiwan
| | - Chiung-Huei Peng
- Division of Basic Medical Science, Hungkuang University, Taichung City, Taiwan.
| |
Collapse
|
66
|
Target Enzymes Considered for the Treatment of Alzheimer's Disease and Parkinson's Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2010728. [PMID: 33224974 PMCID: PMC7669341 DOI: 10.1155/2020/2010728] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/15/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022]
Abstract
Various amyloidogenic proteins have been suggested to be involved in the onset and progression of neurodegenerative diseases (ND) such as Alzheimer's disease (AD) and Parkinson's disease (PD). Particularly, the aggregation of misfolded amyloid-β and hyperphosphorylated tau and α-synuclein are linked to the pathogenesis of AD and PD, respectively. In order to care the diseases, multiple small molecules have been developed to regulate the aggregation pathways of these amyloid proteins. In addition to controlling the aggregation of amyloidogenic proteins, maintaining the levels of the proteins in the brain by amyloid degrading enzymes (ADE; neprilysin (NEP), insulin-degrading enzyme (IDE), asparagine endopeptidase (AEP), and ADAM10) is also essential to cure AD and PD. Therefore, numerous biological molecules and chemical agents have been investigated as either inducer or inhibitor against the levels and activities of ADE. Although the side effect of enhancing the activity of ADE could occur, the removal of amyloidogenic proteins could result in a relatively good strategy to treat AD and PD. Furthermore, since the causes of ND are diverse, various multifunctional (multitarget) chemical agents have been designed to control the actions of multiple risk factors of ND, including amyloidogenic proteins, metal ions, and reactive oxygen species. Many of them, however, were invented without considerations of regulating ADE levels and actions. Incorporation of previously created molecules with the chemical agents handling ADE could be a promising way to treat AD and PD. This review introduces the ADE and molecules capable of modulating the activity and expression of ADE.
Collapse
|
67
|
Servizi S, Corrigan RR, Casadesus G. The Importance of Understanding Amylin Signaling Mechanisms for Therapeutic Development in the Treatment of Alzheimer's Disease. Curr Pharm Des 2020; 26:1345-1355. [PMID: 32188374 PMCID: PMC10088426 DOI: 10.2174/1381612826666200318151146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/04/2020] [Indexed: 12/12/2022]
Abstract
Type II Diabetes (T2D) is a major risk factor for Alzheimer's Disease (AD). These two diseases share several pathological features, including amyloid accumulation, inflammation, oxidative stress, cell death and cognitive decline. The metabolic hormone amylin and amyloid-beta are both amyloids known to self-aggregate in T2D and AD, respectively, and are thought to be the main pathogenic entities in their respective diseases. Furthermore, studies suggest amylin's ability to seed amyloid-beta aggregation, the activation of common signaling cascades in the pancreas and the brain, and the ability of amyloid beta to signal through amylin receptors (AMYR), at least in vitro. However, paradoxically, non-aggregating forms of amylin such as pramlintide are given to treat T2D and functional and neuroprotective benefits of amylin and pramlintide administration have been reported in AD transgenic mice. These paradoxical results beget a deeper study of the complex nature of amylin's signaling through the several AMYR subtypes and other receptors associated with amylin effects to be able to fully understand its potential role in mediating AD development and/or prevention. The goal of this review is to provide such critical insight to begin to elucidate how the complex nature of this hormone's signaling may explain its equally complex relationship with T2D and mechanisms of AD pathogenesis.
Collapse
Affiliation(s)
- Spencer Servizi
- School of Biomedical Sciences, Kent State University, Ohio, United States
| | - Rachel R Corrigan
- School of Biomedical Sciences, Kent State University, Ohio, United States
| | - Gemma Casadesus
- School of Biomedical Sciences, Kent State University, Ohio, United States.,Department of Biological Sciences, Kent State University, Ohio, United States
| |
Collapse
|
68
|
Bradley D. Clusterin as a Potential Biomarker of Obesity-Related Alzheimer's Disease Risk. Biomark Insights 2020; 15:1177271920964108. [PMID: 33110346 PMCID: PMC7555556 DOI: 10.1177/1177271920964108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/14/2020] [Indexed: 02/03/2023] Open
Abstract
Over 35% of the adult US population is obese. In turn, excess adiposity increases the risk of multiple complications including type 2 diabetes (T2D), insulin resistance, and cardiovascular disease; yet, obesity also independently heightens risk of Alzheimer's Disease (AD), even after adjusting for other important confounding risk factors including blood pressure, sociodemographics, cholesterol levels, smoking status, and Apolipoprotein E (ApoE) genotype. Among patients over the age of 65 with dementia, 37% have coexisting diabetes, and an estimated 7.3% of cases of AD are directly attributable to midlife obesity. Clusterin, also known as apolipoprotein J (ApoJ), is a multifunctional glycoprotein that acts as a molecular chaperone, assisting folding of secreted proteins. Clusterin has been implicated in several physiological and pathological states, including AD, metabolic disease, and cardiovascular disease. Despite long-standing interest in elucidating clusterin's relationship with amyloid beta (Aβ) aggregation/clearance and toxicity, significant knowledge gaps still exist. Altered clusterin expression and protein levels have been linked with cognitive and memory function, disrupted central nervous system lipid flux, as well as pathogenic brain structure; and its role in cardiometabolic disease suggests that it may be a link between insulin resistance, dyslipidemia, and AD. Here, we briefly highlight clusterin's relevance to AD by presenting existing evidence linking clusterin to AD and cardiometabolic disease, and discussing its potential utility as a biomarker for AD in the presence of obesity-related metabolic disease.
Collapse
Affiliation(s)
- David Bradley
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
69
|
Feng W, Zhang Y, Wang Z, Xu H, Wu T, Marshall C, Gao J, Xiao M. Microglia prevent beta-amyloid plaque formation in the early stage of an Alzheimer's disease mouse model with suppression of glymphatic clearance. ALZHEIMERS RESEARCH & THERAPY 2020; 12:125. [PMID: 33008458 PMCID: PMC7532614 DOI: 10.1186/s13195-020-00688-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 09/15/2020] [Indexed: 12/13/2022]
Abstract
Background Soluble beta-amyloid (Aβ) can be cleared from the brain through various mechanisms including enzymatic degradation, glial cell phagocytosis, transport across the blood-brain barrier, and glymphatic clearance. However, the relative contribution of each clearance system and their compensatory effects in delaying the pathological process of Alzheimer’s disease (AD) are currently unknown. Methods Fluorescent trace, immunofluorescence, and Western blot analyses were performed to compare glymphatic clearance ability and Aβ accumulation among 3-month-old APP695/PS1-dE9 transgenic (APP/PS1) mice, wild-type mice, aquaporin 4 knock out (AQP4−/−) mice, and AQP4−/−/APP/PS1 mice. The consequence of selectively eliminating microglial cells, or downregulating apolipoprotein E (apoE) expression, on Aβ burden, was also investigated in the frontal cortex of AQP4−/−/APP/PS1 mice and APP/PS1 mice. Results AQP4 deletion in APP/PS1 mice significantly exaggerated glymphatic clearance dysfunction, and intraneuronal accumulation of Aβ and apoE, although it did not lead to Aβ plaque deposition. Notably, microglia, but not astrocytes, increased activation and phagocytosis of Aβ in the cerebral cortex of AQP4−/−/APP/PS1 mice, compared with APP/PS1 mice. Selectively eliminating microglia in the frontal cortex via local injection of clodronate liposomes resulted in deposition of Aβ plaques in AQP4−/−/APP/PS1 mice, but not APP/PS1 mice. Moreover, knockdown of apoE reduced intraneuronal Aβ levels in both APP/PS1 mice and AQP4−/−/APP/PS1 mice, indicating an inhibitory effect of apoE on Aβ clearance. Conclusion The above results suggest that the glymphatic system mediated Aβ and apoE clearance and microglia mediated Aβ degradation synergistically prevent Aβ plague formation in the early stages of the AD mouse model. Protecting one or both of them might be beneficial to delaying the onset of AD.
Collapse
Affiliation(s)
- Weixi Feng
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China.,Brain Institute, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yanli Zhang
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China.,Brain Institute, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Ze Wang
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China.,Brain Institute, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hanrong Xu
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China.,Brain Institute, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Wu
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Charles Marshall
- Department of Physical Therapy, University of Kentucky Center of Excellence in Rural Health, Hazard, KY, USA
| | - Junying Gao
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China. .,Brain Institute, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Ming Xiao
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China. .,Brain Institute, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
70
|
Shippy DC, Ulland TK. Microglial Immunometabolism in Alzheimer's Disease. Front Cell Neurosci 2020; 14:563446. [PMID: 33192310 PMCID: PMC7531234 DOI: 10.3389/fncel.2020.563446] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by amyloid-β (Aβ) plaques and the formation of neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau. In response to Aβ and tau aggregates, microglia, the primary innate immune cells of the central nervous system (CNS), facilitate Aβ and tau clearance and contribute to neuroinflammation that damages neurons. Microglia also perform a wide range of other functions, e.g., synaptic pruning, within the CNS that require a large amount of energy. Glucose appears to be the primary energy source, but microglia can utilize several other substrates for energy production including other sugars and ketone bodies. Recent studies have demonstrated that changes in the metabolic profiles of immune cells, including macrophages, are important in controlling their activation and effector functions. Additional studies have focused on the role of metabolism in neuron and astrocyte function while until recently microglia metabolism has been considerably less well understood. Considering many neurological disorders, such as neurodegeneration associated with AD, are associated with chronic inflammation and alterations in brain energy metabolism, it is hypothesized that microglial metabolism plays a significant role in the inflammatory responses of microglia during neurodegeneration. Here, we review the role of microglial immunometabolism in AD.
Collapse
Affiliation(s)
- Daniel C Shippy
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, United States
| | - Tyler K Ulland
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
71
|
Sharma VK, Singh TG. Insulin resistance and bioenergetic manifestations: Targets and approaches in Alzheimer's disease. Life Sci 2020; 262:118401. [PMID: 32926928 DOI: 10.1016/j.lfs.2020.118401] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/15/2022]
Abstract
AIM Insulin has a well-established role in cognition, neuronal detoxification and synaptic plasticity. Insulin transduction affect neurotransmitter functions, influence bioenergetics and regulate neuronal survival through regulating glucose energy metabolism and downward pathways. METHODS A systematic literature review of PubMed, Medline, Bentham, Scopus and EMBASE (Elsevier) databases was carried out with the help of the keywords like "Alzheimer's disease; Hypometabolism; Oxidative stress; energy failure in AD, Insulin; Insulin resistance; Bioenergetics" till June 2020. The review was conducted using the above keywords to collect the latest articles and to understand the nature of the extensive work carried out on insulin resistance and bioenergetic manifestations in Alzheimer's disease. KEY FINDINGS The article sheds light on insulin resistance mediated hypometabolic state on pathological progression of AD. The disrupted insulin signaling has pathological outcome in form of disturbed glucose homeostasis, altered bioenergetic state which increases build-up of senile plaques (Aβ), neurofibrillary tangles (τ), decline in transportation of glucose and activation of inflammatory pathways. The mechanistic link of insulin resistant state with therapeutically explorable potential transduction pathways is the focus of the reviewed work. SIGNIFICANCE The present work opines that the mechanism by which the insulin resistance mediates dysregulation of bioenergetics and progresses to neurodegenerative state holds the tangible potential to succeed in the development of novel dementia therapies. Further, hypometabolic complications and altered insulin signaling may be explored as a mechanistic relation between bioenergetic deficits and AD.
Collapse
Affiliation(s)
- Vivek Kumar Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; Govt. College of Pharmacy, Rohru, District Shimla, Himachal Pradesh 171207, India
| | | |
Collapse
|
72
|
McGurran H, Glenn JM, Madero EN, Bott NT. Prevention and Treatment of Alzheimer's Disease: Biological Mechanisms of Exercise. J Alzheimers Dis 2020; 69:311-338. [PMID: 31104021 DOI: 10.3233/jad-180958] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. With an aging population and no disease modifying treatments available, AD is quickly becoming a global pandemic. A substantial body of research indicates that lifestyle behaviors contribute to the development of AD, and that it may be worthwhile to approach AD like other chronic diseases such as cardiovascular disease, in which prevention is paramount. Exercise is an important lifestyle behavior that may influence the course and pathology of AD, but the biological mechanisms underpinning these effects remain unclear. This review focuses on how exercise can modify four possible mechanisms which are involved with the pathology of AD: oxidative stress, inflammation, peripheral organ and metabolic health, and direct interaction with AD pathology. Exercise is just one of many lifestyle behaviors that may assist in preventing AD, but understanding the systemic and neurobiological mechanisms by which exercise affects AD could help guide the development of novel pharmaceutical agents and non-pharmacological personalized lifestyle interventions for at-risk populations.
Collapse
Affiliation(s)
- Hugo McGurran
- Research Master's Programme Brain and Cognitive Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Nicholas T Bott
- Neurotrack Technologies Inc., Redwood City, CA, USA.,Clinical Excellence Research Center, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Department of Psychology, PGSP-Stanford Consortium, Palo Alto University, Palo Alto, CA, USA
| |
Collapse
|
73
|
Relationship Between Cognitive Functions and Insulin-degrading Enzyme in Individuals With Prediabetes. Cogn Behav Neurol 2020; 33:218-225. [PMID: 32889954 DOI: 10.1097/wnn.0000000000000241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Individuals with diabetes can develop cognitive impairment due to dysfunction of glucose metabolism; however, it remains unclear whether cognition becomes altered in the prediabetic stage. Substantial evidence links cognitive impairment in diabetes to aberrant serum insulin-degrading enzyme (s[IDE]) levels. This relationship remains to be investigated in individuals with prediabetes. OBJECTIVE To investigate the relationship between cognitive function and s[IDE] levels in individuals with prediabetes. METHOD The study group consisted of 47 individuals who had been diagnosed with prediabetes and 41 healthy controls. Cognitive functions were evaluated using the Montreal Cognitive Assessment (MoCA), and s[IDE] levels were measured using enzyme-linked immunosorbent assay. RESULTS The MoCA total scores and s[IDE] levels of the individuals with prediabetes were significantly lower (P = 0.001, 0.006) than those of the controls, and the MoCA Attention measure of the individuals with prediabetes was also very low (P = 0.001). To determine cognitive impairment, we divided the prediabetics into two subgroups according to the MoCA cutoff value. Scores on all of the MoCA tests were significantly lower in the group with mild cognitive impairment (P < 0.05). There was no correlation between MoCA scores and s[IDE] levels (P > 0.05), but serum-fasting glucose levels showed a negative correlation with MoCA scores (P < 0.05, ρ = -0.287). CONCLUSION Evidence of mild cognitive impairment was high in the individuals with prediabetes and showed a negative correlation with serum-fasting glucose levels but not with s[IDE] levels.
Collapse
|
74
|
Akhtar A, Bishnoi M, Sah SP. Sodium orthovanadate improves learning and memory in intracerebroventricular-streptozotocin rat model of Alzheimer's disease through modulation of brain insulin resistance induced tau pathology. Brain Res Bull 2020; 164:83-97. [PMID: 32784004 DOI: 10.1016/j.brainresbull.2020.08.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022]
Abstract
Sporadic Alzheimer's disease (sAD) is the most common type of dementia and progressive neurodegenerative disease. To establish the sAD model, intracerebroventricular (ICV) streptozotocin (STZ) at a dose of 3 mg/kg was administered bilaterally in rats on a stereotaxic apparatus. Behavioral tests such as Morris water maze (MWM), novel object recognition (NOR) and open field test were performed to evaluate cognitive and locomotor functions. Two treatment doses (5 mg/kg and 10 mg/kg) of sodium orthovanadate (SOV) and rivastigmine (2 mg/kg) were given orally to ICV-STZ induced rats for 21 days. Cortical and hippocampal tissues were dissected. Estimation of oxidative stress, mitochondrial dysfunction as complex I, II, III, IV activity, cholinergic function as acetylcholinesterase activity, ELISA for phosphorylated tau protein and insulin degrading enzyme (IDE), neuroinflammation as NF-κB gene expression and insulin signaling functioning as Q-RT-PCR for IR, IRS-1, PI3K, AKT, GSK-3β gene expression were performed. Behavioral results with SOV and rivastigmine treatment revealed decreased escape latency and increased discrimination index in MWM and NOR respectively. Treatment results with SOV also demonstrated attenuation of oxidative imbalance, improved mitochondrial activity, and reversed IDE and tau pathology. SOV treatment upregulated gene expression of IR, IRS-1, PI3K, and AKT, and downregulated that of GSK-3β. SOV results were compared with standard drug rivastigmine. Conclusively, the memory enhancement by SOV was mediated through oxidative balance, mitochondrial enzyme complex activation, and improved insulin signaling regulation. However, the primary mechanism of SOV remained attenuation of tau pathology by the upregulation of IRS-1/PI3K/AKT/GSK-3β pathway and reversal of insulin resistance in terms of IDE. Hence, in sAD paradigm, SOV contributed to memory improvement evident with the findings of behavioral studies, which can further potentially have clinical significance in AD.
Collapse
Affiliation(s)
- Ansab Akhtar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Mahendra Bishnoi
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali 140306, Punjab, India
| | - Sangeeta Pilkhwal Sah
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
75
|
The Role of Neurovascular System in Neurodegenerative Diseases. Mol Neurobiol 2020; 57:4373-4393. [PMID: 32725516 DOI: 10.1007/s12035-020-02023-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022]
Abstract
The neurovascular system (NVS), which consisted of neurons, glia, and vascular cells, is a functional and structural unit of the brain. The NVS regulates blood-brain barrier (BBB) permeability and cerebral blood flow (CBF), thereby maintaining the brain's microenvironment for normal functioning, neuronal survival, and information processing. Recent studies have highlighted the role of vascular dysfunction in several neurodegenerative diseases. This is not unexpected since both nervous and vascular systems are functionally interdependent and show close anatomical apposition, as well as similar molecular pathways. However, despite extensive research, the precise mechanism by which neurovascular dysfunction contributes to neurodegeneration remains incomplete. Therefore, understanding the mechanisms of neurovascular dysfunction in disease conditions may allow us to develop potent and effective therapies for prevention and treatment of neurodegenerative diseases. This review article summarizes the current research in the context of neurovascular signaling associated with neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). We also discuss the potential implication of neurovascular factor as a novel therapeutic target and prognostic marker in patients with neurodegenerative conditions. Graphical Abstract.
Collapse
|
76
|
Microglia Do Not Take Up Soluble Amyloid-beta Peptides, But Partially Degrade Them by Secreting Insulin-degrading Enzyme. Neuroscience 2020; 443:30-43. [PMID: 32697980 DOI: 10.1016/j.neuroscience.2020.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
Abstract
Microglia play important roles in the pathogenesis of Alzheimer's disease (AD), in part, by affecting the clearance of amyloid-β (Aβ) peptides. Most studies, however, used synthetic soluble Aβ (sAβ) at higher concentrations. The exact mechanisms underlying microglia-mediated clearance of physiological sAβ at very low concentrations remain unclear. Here we reported that there were much more Iba-1- and CD68-positive microglia and significantly less sAβ left in the brain of adult mice 5 days after the surgery of sAβ microinjection compared to 2 h after the surgery (p < 0.05). However, very few Iba-1- and CD68-positive microglia co-localized with microinjected fluorescently labeled sAβ (FLsAβ42) 5 days after the surgery. Also, there was no co-localization of FLsAβ42 with a lysosomal marker (LAMP-1) 5 days after the surgery. There was no significant difference in the percentage of Aβ+/PE-CD11b+/APC-CD45low microglia between the control group and the group microinjected with TBS-soluble Aβ extracted from the brains of AD patients (p > 0.05). The degradation of physiological sAβ was prevented by a highly selective insulin-degrading enzyme inhibitor (Ii1) but not by a phagocytosis inhibitor (polyinosinic acid) or pinocytosis inhibitor (cytochalasin B) in vitro. Furthermore, the reduction of synthetic and physiological sAβ in the brain was partially prevented by the co-injection of Ii1 in vivo (p < 0.05). Our results demonstrate that microglia do not take up synthetic or physiological sAβ, but partially degrade it via the secretion of insulin-degrading enzyme, which will be beneficial for understanding how sAβ is removed from the brain by microglia.
Collapse
|
77
|
Gupta S, Singhal NK, Ganesh S, Sandhir R. Extending Arms of Insulin Resistance from Diabetes to Alzheimer's Disease: Identification of Potential Therapeutic Targets. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:172-184. [PMID: 30430949 DOI: 10.2174/1871527317666181114163515] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/08/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND & OBJECTIVE Type 3 diabetes (T3D) is chronic insulin resistant state of brain which shares pathology with sporadic Alzheimer's disease (sAD). Insulin signaling is a highly conserved pathway in the living systems that orchestrate cell growth, repair, maintenance, energy homeostasis and reproduction. Although insulin is primarily studied as a key molecule in diabetes mellitus, its role has recently been implicated in the development of Alzheimer's disease (AD). Severe complications in brain of diabetic patients and metabolically compromised status is evident in brain of AD patients. Underlying shared pathology of two disorders draws a trajectory from peripheral insulin resistance to insulin unresponsiveness in the central nervous system (CNS). As insulin has a pivotal role in AD, it is not an overreach to address diabetic condition in AD brain as T3D. Insulin signaling is indispensable to nervous system and it is vital for neuronal growth, repair, and maintenance of chemical milieu at synapses. Downstream mediators of insulin signaling pathway work as a regulatory hub for aggregation and clearance of unfolded proteins like Aβ and tau. CONCLUSION In this review, we discuss the regulatory roles of insulin as a pivotal molecule in brain with the understanding of defective insulin signaling as a key pathological mechanism in sAD. This article also highlights ongoing trials of targeting insulin signaling as a therapeutic manifestation to treat diabetic condition in brain.
Collapse
Affiliation(s)
- Smriti Gupta
- Department of Biochemistry, Basic Medical Science Block II, Sector 25, Panjab University, Chandigarh 160014, India
| | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute, Sector 81, S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Science Block II, Sector 25, Panjab University, Chandigarh 160014, India
| |
Collapse
|
78
|
Watanabe-Nakayama T, Sahoo BR, Ramamoorthy A, Ono K. High-Speed Atomic Force Microscopy Reveals the Structural Dynamics of the Amyloid-β and Amylin Aggregation Pathways. Int J Mol Sci 2020; 21:E4287. [PMID: 32560229 PMCID: PMC7352471 DOI: 10.3390/ijms21124287] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 12/18/2022] Open
Abstract
Individual Alzheimer's disease (AD) patients have been shown to have structurally distinct amyloid-β (Aβ) aggregates, including fibrils, in their brain. These findings suggest the possibility of a relationship between AD progression and Aβ fibril structures. Thus, the characterization of the structural dynamics of Aβ could aid the development of novel therapeutic strategies and diagnosis. Protein structure and dynamics have typically been studied separately. Most of the commonly used biophysical approaches are limited in providing substantial details regarding the combination of both structure and dynamics. On the other hand, high-speed atomic force microscopy (HS-AFM), which simultaneously visualizes an individual protein structure and its dynamics in liquid in real time, can uniquely link the structure and the kinetic details, and it can also unveil novel insights. Although amyloidogenic proteins generate heterogeneously aggregated species, including transient unstable states during the aggregation process, HS-AFM elucidated the structural dynamics of individual aggregates in real time in liquid without purification and isolation. Here, we review and discuss the HS-AFM imaging of amyloid aggregation and strategies to optimize the experiments showing findings from Aβ and amylin, which is associated with type II diabetes, shares some common biological features with Aβ, and is reported to be involved in AD.
Collapse
Affiliation(s)
| | - Bikash R. Sahoo
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, and Biomedical Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA;
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA;
| | - Kenjiro Ono
- Division of Neurology, Department of Internal Medicine, School of Medicine, Showa University, Hatanodai, Shinagawa district, Tokyo 142-8666, Japan;
| |
Collapse
|
79
|
Dhanavade MJ, Sonawane KD. Amyloid beta peptide-degrading microbial enzymes and its implication in drug design. 3 Biotech 2020; 10:247. [PMID: 32411571 PMCID: PMC7214582 DOI: 10.1007/s13205-020-02240-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic and progressive neurological brain disorder. AD pathophysiology is mainly represented by formation of neuritic plaques and neurofibrillary tangles (NFTs). Neuritic plaques are made up of amyloid beta (Aβ) peptides, which play a central role in AD pathogenesis. In AD brain, Aβ peptide accumulates due to overproduction, insufficient clearance and defective proteolytic degradation. The degradation and cleavage mechanism of Aβ peptides by several human enzymes have been discussed previously. In the mean time, numerous experimental and bioinformatics reports indicated the significance of microbial enzymes having potential to degrade Aβ peptides. Thus, there is a need to shift the focus toward the substrate specificity and structure-function relationship of Aβ peptide-degrading microbial enzymes. Hence, in this review, we discussed in vitro and in silico studies of microbial enzymes viz. cysteine protease and zinc metallopeptidases having ability to degrade Aβ peptides. In silico study showed that cysteine protease can cleave Aβ peptide between Lys16-Cys17; similarly, several other enzymes also showed capability to degrade Aβ peptide at different sites. Thus, this review paves the way to explore the role of microbial enzymes in Aβ peptide degradation and to design new lead compounds for AD treatment.
Collapse
Affiliation(s)
- Maruti J. Dhanavade
- Department of Microbiology, Shivaji University, Kolhapur, Maharashtra 416004 India
| | - Kailas D. Sonawane
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur, Maharashtra 416004 India
- Department of Microbiology, Shivaji University, Kolhapur, Maharashtra 416004 India
| |
Collapse
|
80
|
Bellia F, Lanza V, Ahmed IMM, Garcia-Vinuales S, Veiss E, Arizzi M, Calcagno D, Milardi D, Grasso G. Site directed mutagenesis of insulin-degrading enzyme allows singling out the molecular basis of peptidase versus E1-like activity: the role of metal ions. Metallomics 2020; 11:278-281. [PMID: 30627720 DOI: 10.1039/c8mt00288f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Four specifically designed IDE mutants have been used to unveil the molecular basis of peptidase versus E1-like activity of the enzyme. We have found that physiological concentrations of copper(ii) ions inhibit the proteolytic activity of the enzyme towards small and large substrates but have no effect on the E1-like activity of the enzyme.
Collapse
Affiliation(s)
- Francesco Bellia
- Institute of Biostructures and Bioimaging, National Research Council, Catania, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Alam J, Sharma L. Potential Enzymatic Targets in Alzheimer's: A Comprehensive Review. Curr Drug Targets 2020; 20:316-339. [PMID: 30124150 DOI: 10.2174/1389450119666180820104723] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/23/2018] [Accepted: 08/15/2018] [Indexed: 12/13/2022]
Abstract
Alzheimer's, a degenerative cause of the brain cells, is called as a progressive neurodegenerative disease and appears to have a heterogeneous etiology with main emphasis on amyloid-cascade and hyperphosphorylated tau-cascade hypotheses, that are directly linked with macromolecules called enzymes such as β- & γ-secretases, colinesterases, transglutaminases, and glycogen synthase kinase (GSK-3), cyclin-dependent kinase (cdk-5), microtubule affinity-regulating kinase (MARK). The catalytic activity of the above enzymes is the result of cognitive deficits, memory impairment and synaptic dysfunction and loss, and ultimately neuronal death. However, some other enzymes also lead to these dysfunctional events when reduced to their normal activities and levels in the brain, such as α- secretase, protein kinase C, phosphatases etc; metabolized to neurotransmitters, enzymes like monoamine oxidase (MAO), catechol-O-methyltransferase (COMT) etc. or these abnormalities can occur when enzymes act by other mechanisms such as phosphodiesterase reduces brain nucleotides (cGMP and cAMP) levels, phospholipase A2: PLA2 is associated with reactive oxygen species (ROS) production etc. On therapeutic fronts, several significant clinical trials are underway by targeting different enzymes for development of new therapeutics to treat Alzheimer's, such as inhibitors for β-secretase, GSK-3, MAO, phosphodiesterase, PLA2, cholinesterases etc, modulators of α- & γ-secretase activities and activators for protein kinase C, sirtuins etc. The last decades have perceived an increasing focus on findings and search for new putative and novel enzymatic targets for Alzheimer's. Here, we review the functions, pathological roles, and worth of almost all the Alzheimer's associated enzymes that address to therapeutic strategies and preventive approaches for treatment of Alzheimer's.
Collapse
Affiliation(s)
- Jahangir Alam
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P., Pin 173229, India
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P., Pin 173229, India
| |
Collapse
|
82
|
Jash K, Gondaliya P, Kirave P, Kulkarni B, Sunkaria A, Kalia K. Cognitive dysfunction: A growing link between diabetes and Alzheimer's disease. Drug Dev Res 2020; 81:144-164. [DOI: 10.1002/ddr.21579] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/12/2019] [Accepted: 06/30/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Kavya Jash
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gandhinagar Gujarat India
| | - Piyush Gondaliya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gandhinagar Gujarat India
| | - Prathibha Kirave
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gandhinagar Gujarat India
| | - Bhagyashri Kulkarni
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gandhinagar Gujarat India
| | - Aditya Sunkaria
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gandhinagar Gujarat India
| | - Kiran Kalia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gandhinagar Gujarat India
| |
Collapse
|
83
|
Xie Y, Yan L, Zeng H, Chen W, Lu JH, Wan JB, Su H, Yao X. Fish oil protects the blood-brain barrier integrity in a mouse model of Alzheimer's disease. Chin Med 2020; 15:29. [PMID: 32256685 PMCID: PMC7106819 DOI: 10.1186/s13020-020-00314-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/19/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is ranked as the most prevalent neurodegenerative disease. However, the exact molecular mechanisms underlying pathophysiological alterations in AD remain unclear, especially at the prodromal stage. The decreased proteolytic degradation of Aβ, blood-brain barrier (BBB) disruption, and neuroinflammation are considered to play key roles in the course of AD. METHODS Male APPswe/PS1dE9 C57BL/6 J double-transgenic (APP/PS1) mice in the age range from 1 month to 6 months and age-matched wild type mice were used in this study, intending to investigate the expression profiles of Aβ-degrading enzymes for Aβ degradation activities and zonula occludens-1 (zo-1) for BBB integrity at the prodromal stage. RESULTS Our results showed that there were no significant genotype-related alterations in mRNA expression levels of 4 well-characterized Aβ-degrading enzymes in APP/PS1 mice within the ages of 6 months. Interestingly, a significant decrease in zo-1 expression was observed in APP/PS1 mice starting from the age of 5 months, suggesting that BBB disrupt occurs at an early stage. Moreover, treatment of fish oil (FO) for 4 weeks remarkably increased zo-1 expression and significantly inhibited the glial activation and NF-κB activation in APP/PS1 mice. CONCLUSION The results of our study suggest that FO supplement could be a potential therapeutic early intervention for AD through protecting the BBB integrity and suppressing glial and NF-κB activation.
Collapse
Affiliation(s)
- Youna Xie
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical, Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080 China
| | - Lingli Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Haitao Zeng
- Center for Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Weineng Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical, Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080 China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiaoli Yao
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical, Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080 China
| |
Collapse
|
84
|
Raimundo AF, Ferreira S, Martins IC, Menezes R. Islet Amyloid Polypeptide: A Partner in Crime With Aβ in the Pathology of Alzheimer's Disease. Front Mol Neurosci 2020; 13:35. [PMID: 32265649 PMCID: PMC7103646 DOI: 10.3389/fnmol.2020.00035] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes affects hundreds of millions of patients worldwide. Despite the advances in understanding the disease and therapeutic options, it remains a leading cause of death and of comorbidities globally. Islet amyloid polypeptide (IAPP), or amylin, is a hormone produced by pancreatic β-cells. It contributes to the maintenance of glucose physiological levels namely by inhibiting insulin and glucagon secretion as well as controlling adiposity and satiation. IAPP is a highly amyloidogenic polypeptide forming intracellular aggregates and amyloid structures that are associated with β-cell death. Data also suggest the relevance of unprocessed IAPP forms as seeding for amyloid buildup. Besides the known consequences of hyperamylinemia in the pancreas, evidence has also pointed out that IAPP has a pathological role in cognitive function. More specifically, IAPP was shown to impair the blood–brain barrier; it was also seen to interact and co-deposit with amyloid beta peptide (Aß), and possibly with Tau, within the brain of Alzheimer's disease (AD) patients, thereby contributing to diabetes-associated dementia. In fact, it has been suggested that AD results from a metabolic dysfunction in the brain, leading to its proposed designation as type 3 diabetes. Here, we have first provided a brief perspective on the IAPP amyloidogenic process and its role in diabetes and AD. We have then discussed the potential interventions for modulating IAPP proteotoxicity that can be explored for therapeutics. Finally, we have proposed the concept of a “diabetes brain phenotype” hypothesis in AD, which may help design future IAPP-centered drug developmentstrategies against AD.
Collapse
Affiliation(s)
- Ana F Raimundo
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,CEDOC - Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.,ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sofia Ferreira
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,CEDOC - Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ivo C Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Regina Menezes
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,CEDOC - Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.,ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
85
|
Jung S, Hyun J, Nah J, Han J, Kim SH, Park J, Oh Y, Gwon Y, Moon S, Jo DG, Jung YK. SERP1 is an assembly regulator of γ-secretase in metabolic stress conditions. Sci Signal 2020; 13:13/623/eaax8949. [PMID: 32184288 DOI: 10.1126/scisignal.aax8949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The enzyme γ-secretase generates β-amyloid (Aβ) peptides by cleaving amyloid protein precursor (APP); the aggregation of these peptides is associated with Alzheimer's disease (AD). Despite the development of various γ-secretase regulators, their clinical use is limited by coincident disruption of other γ-secretase-regulated substrates, such as Notch. Using a genome-wide functional screen of γ-secretase activity in cells and a complementary DNA expression library, we found that SERP1 is a previously unknown γ-secretase activator that stimulates Aβ generation in cells experiencing endoplasmic reticulum (ER) stress, such as is seen with diabetes. SERP1 interacted with a subcomplex of γ-secretase (APH1A/NCT) through its carboxyl terminus to enhance the assembly and, consequently, the activity of the γ-secretase holoenzyme complex. In response to ER stress, SERP1 preferentially recruited APP rather than Notch into the γ-secretase complex and enhanced the subcellular localization of the complex into lipid rafts, increasing Aβ production. Moreover, SERP1 abundance, γ-secretase assembly, and Aβ production were increased both in cells exposed to high amounts of glucose and in diabetic AD model mice. Conversely, Aβ production was decreased by knocking down SERP1 in cells or in the hippocampi of mice. Compared to postmortem samples from control individuals, those from patients with AD showed increased SERP1 expression in the hippocampus and parietal lobe. Together, our findings suggest that SERP1 is an APP-biased regulator of γ-secretase function in the context of cell stress, providing a possible molecular explanation for the link between diabetes and sporadic AD.
Collapse
Affiliation(s)
- Sunmin Jung
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Junho Hyun
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Jihoon Nah
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Jonghee Han
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Seo-Hyun Kim
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Jaesang Park
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Yoonseo Oh
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Youngdae Gwon
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Seowon Moon
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Yong-Keun Jung
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| |
Collapse
|
86
|
Mousa YM, Abdallah IM, Hwang M, Martin DR, Kaddoumi A. Amylin and pramlintide modulate γ-secretase level and APP processing in lipid rafts. Sci Rep 2020; 10:3751. [PMID: 32111883 PMCID: PMC7048857 DOI: 10.1038/s41598-020-60664-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
A major characteristic of Alzheimer's disease (AD) is the accumulation of misfolded amyloid-β (Aβ) peptide. Several studies linked AD with type 2 diabetes due to similarities between Aβ and human amylin. This study investigates the effect of amylin and pramlintide on Aβ pathogenesis and the predisposing molecular mechanism(s) behind the observed effects in TgSwDI mouse, a cerebral amyloid angiopathy (CAA) and AD model. Our findings showed that thirty days of intraperitoneal injection with amylin or pramlintide increased Aβ burden in mice brains. Mechanistic studies revealed both peptides altered the amyloidogenic pathway and increased Aβ production by modulating amyloid precursor protein (APP) and γ-secretase levels in lipid rafts. In addition, both peptides increased levels of B4GALNT1 enzyme and GM1 ganglioside, and only pramlintide increased the level of GM2 ganglioside. Increased levels of GM1 and GM2 gangliosides play an important role in regulating amyloidogenic pathway proteins in lipid rafts. Increased brain Aβ burden by amylin and pramlintide was associated with synaptic loss, apoptosis, and microglia activation. In conclusion, our findings showed amylin or pramlintide increase Aβ levels and related pathology in TgSwDI mice brains, and suggest that increased amylin levels or the therapeutic use of pramlintide could increase the risk of AD.
Collapse
Affiliation(s)
- Youssef M Mousa
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, USA
| | - Ihab M Abdallah
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, USA
| | - Misako Hwang
- Scott-Ritchey Research Center, Auburn University, Auburn, USA
| | - Douglas R Martin
- Scott-Ritchey Research Center, Auburn University, Auburn, USA.,Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, USA.,Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA
| | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, USA. .,Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA.
| |
Collapse
|
87
|
Lauretti E, Dincer O, Praticò D. Glycogen synthase kinase-3 signaling in Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118664. [PMID: 32006534 DOI: 10.1016/j.bbamcr.2020.118664] [Citation(s) in RCA: 333] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 01/19/2023]
Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative disorder with dementia, accounting for approximately 70% of the all cases. Currently, 5.8 million people in the U.S. are living with AD and by 2050 this number is expected to double resulting in a significant socio-economic burden. Despite intensive research, the exact mechanisms that trigger AD are still not known and at the present there is no cure for it. In recent years, many signaling pathways associated with AD neuropathology have been explored as possible candidate targets for the treatment of this condition including glycogen synthase kinase-3β (GSK3-β). GSK3-β is considered a key player in AD pathophysiology since dysregulation of this kinase influences all the major hallmarks of the disease including: tau phosphorylation, amyloid-β production, memory, neurogenesis and synaptic function. The present review summarizes the current understanding of the GSK3-β neurobiology with particular emphasis on its effects on specific signaling pathways associated with AD pathophysiology. Moreover, it discusses the feasibility of targeting GSK3-β for AD treatment and provides a summary of the current research effort to develop GSK3-β inhibitors in preclinical and clinical studies.
Collapse
Affiliation(s)
- Elisabetta Lauretti
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, United States of America
| | - Ozlem Dincer
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, United States of America
| | - Domenico Praticò
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, United States of America.
| |
Collapse
|
88
|
Genetic Dissection of Alzheimer's Disease Using Drosophila Models. Int J Mol Sci 2020; 21:ijms21030884. [PMID: 32019113 PMCID: PMC7037931 DOI: 10.3390/ijms21030884] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/26/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD), a main cause of dementia, is the most common neurodegenerative disease that is related to abnormal accumulation of the amyloid β (Aβ) protein. Despite decades of intensive research, the mechanisms underlying AD remain elusive, and the only available treatment remains symptomatic. Molecular understanding of the pathogenesis and progression of AD is necessary to develop disease-modifying treatment. Drosophila, as the most advanced genetic model, has been used to explore the molecular mechanisms of AD in the last few decades. Here, we introduce Drosophila AD models based on human Aβ and summarize the results of their genetic dissection. We also discuss the utility of functional genomics using the Drosophila system in the search for AD-associated molecular mechanisms in the post-genomic era.
Collapse
|
89
|
Cavalli G, Cenci S. Autophagy and Protein Secretion. J Mol Biol 2020; 432:2525-2545. [PMID: 31972172 DOI: 10.1016/j.jmb.2020.01.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/08/2020] [Accepted: 01/12/2020] [Indexed: 12/13/2022]
Abstract
Autophagy - conventional for macroautophagy - is a major recycling strategy that ensures cellular homeostasis through the selective engulfment of cytoplasmic supramolecular cargos in double membrane vesicles and their rapid dispatch to the lysosome for digestion. As autophagy operates in the cytoplasm, its interference with secretory proteins, that is, proteins destined to the plasma membrane or the extracellular space, generally synthesized and routed within the endoplasmic reticulum (ER), has been relatively overlooked in the past. However, mounting evidence reveals that autophagy in fact heavily regulates protein secretion through diverse mechanisms. First, autophagy is closely involved in the unconventional secretion of leaderless proteins, a pool of proteins destined extracellularly, but lacking an ER-targeted leader sequence, and thus manufactured in the cytosol. Autophagy-related (ATG) genes now appear instrumental to the underlying pathways, hence the recently coined concept of secretory autophagy, or better ATG gene-dependent secretion. Indeed, ATG genes regulate unconventional protein secretion at multiple levels, ranging from intracellular inflammatory signaling, for example, through the control of mitochondrial health and inflammasome activity, to trafficking of leaderless proteins. Moreover, perhaps less expectedly, autophagy also participates in the control of conventional secretion, intersecting the secretory apparatus at multiple points, though with surprising differences among professional secretory cell types that disclose remarkable and unpredicted specificity. This review synopsizes the multiple mechanisms whereby autophagy interfaces with conventional and unconventional protein secretory pathways and discusses the relative teleology. Altogether, the diverse controls exerted on protein secretion broaden and deepen the homeostatic significance of autophagy within the cell.
Collapse
Affiliation(s)
- Giulio Cavalli
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Ospedale San Raffaele, Milano, Italy; Vita-Salute San Raffaele University, Milano, Italy
| | - Simone Cenci
- Vita-Salute San Raffaele University, Milano, Italy; Unit of Age Related Diseases, Division of Genetics and Cell Biology, Ospedale San Raffaele, Milano, Italy.
| |
Collapse
|
90
|
Hoskin JL, Al-Hasan Y, Sabbagh MN. Nicotinic Acetylcholine Receptor Agonists for the Treatment of Alzheimer's Dementia: An Update. Nicotine Tob Res 2019; 21:370-376. [PMID: 30137524 DOI: 10.1093/ntr/nty116] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 08/18/2018] [Indexed: 01/08/2023]
Abstract
A significant portion of the clinical phenotype observed in Alzheimer's disease (AD) occurs through nicotinic acetylcholine receptors (nAChRs). Degeneration of cholinergic neurons, combined with aberrant nAChR expression and activation partially through amyloid-beta peptide (Aβ)-nAChR leads to upregulation of pro-inflammatory pathways and subsequently the progressive cognitive decline of AD. Interestingly, the cholinergic anti-inflammatory pathway is also mediated through nAChR particularly α7 nAChR. Thus, agonists of these receptors will likely exert pro-cognitive benefits through multiple mechanisms including stimulating the cholinergic pathway, modulating inflammation, and buffering the effects of amyloid. Despite this promising theoretical use, trials thus far have been complicated by adverse effects or minimal improvement. This review will provide an update on several pharmacological nAChR agonists tested in clinical trials and reasons that further investigation of nAChR agonists is merited. IMPLICATIONS nAChRs have consistently presented a promising theoretical use in the treatment of AD; however, trials thus far have been complicated by adverse effects or minimal improvement. This review will provide an update on several pharmacological nAChR agonists trialed and reasons that further investigation of nAChR agonists is merited.
Collapse
Affiliation(s)
| | | | - Marwan Noel Sabbagh
- Barrow Neurological Institute, Phoenix, AZ.,Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV
| |
Collapse
|
91
|
Developing Trojan horses to induce, diagnose and suppress Alzheimer’s pathology. Pharmacol Res 2019; 149:104471. [DOI: 10.1016/j.phrs.2019.104471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/17/2019] [Accepted: 09/30/2019] [Indexed: 01/05/2023]
|
92
|
Long K, Williams TL, Urbanc B. Insulin Inhibits Aβ42 Aggregation and Prevents Aβ42-Induced Membrane Disruption. Biochemistry 2019; 58:4519-4529. [DOI: 10.1021/acs.biochem.9b00696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kaho Long
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | | | - Brigita Urbanc
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
93
|
Sandoval K, Umbaugh D, House A, Crider A, Witt K. Somatostatin Receptor Subtype-4 Regulates mRNA Expression of Amyloid-Beta Degrading Enzymes and Microglia Mediators of Phagocytosis in Brains of 3xTg-AD Mice. Neurochem Res 2019; 44:2670-2680. [PMID: 31630317 DOI: 10.1007/s11064-019-02890-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/06/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder resulting in memory and cognitive impairment. The use of somatostatin receptor subtype-4 (SSTR4) agonists have been proposed for AD treatment. This study investigated the effects of selective SSTR4 agonist NNC 26-9100 on mRNA expression of key genes associated with AD pathology (microglia mediators of Aβ phagocytosis, amyloid-beta (Aβ)-degrading enzymes, anti-oxidant enzymes and pro-inflammatory cytokines) in 3xTg-AD mice. Mice were administered NNC 26-9100 (0.2 µg, i.c.v.) or vehicle control, with cortical and subcortical brain tissue collected at 6 h and 24 h post-treatment. At 6 h, NNC 26-9100 treatment decreased cortical expression of cluster of differentiation-33 (Cd33) by 25%, while increasing cortical and subcortical macrophage scavenger receptor-1 (Msr1) by 1.8 and 2.0-fold, respectively. The Cd33 downregulation and Msr1 upregulation support a state of microglia associated Aβ phagocytosis. At 24 h, NNC 26-9100 treatment increased the cortical expression of Sstr4 (4.9-fold), Aβ-degrading enzymes neprilysin (9.3-fold) and insulin degrading enzyme (14.8-fold), and the antioxidant catalase (3.6-fold). Similar effects at 24 h were found in subcortical tissue with NNC 26-9100 treatment, but did not reach statistical significance. No changes in pro-inflammatory cytokine expression were found. These data demonstrated NNC 26-9100 facilitates transcriptional changes in brain tissue identified with Aβ phagocytosis and clearance, further supporting SSTR4 as a treatment target for AD.
Collapse
Affiliation(s)
- Karin Sandoval
- Department of Pharmaceutical Sciences Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, 200 University Park Drive., Building 220, Edwardsville, IL, 62025, USA
| | - David Umbaugh
- Department of Pharmaceutical Sciences Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, 200 University Park Drive., Building 220, Edwardsville, IL, 62025, USA
| | - Austin House
- Department of Pharmaceutical Sciences Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, 200 University Park Drive., Building 220, Edwardsville, IL, 62025, USA
| | - Albert Crider
- Department of Pharmaceutical Sciences Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, 200 University Park Drive., Building 220, Edwardsville, IL, 62025, USA
| | - Ken Witt
- Department of Pharmaceutical Sciences Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, 200 University Park Drive., Building 220, Edwardsville, IL, 62025, USA.
| |
Collapse
|
94
|
Nalivaeva NN, Turner AJ. Targeting amyloid clearance in Alzheimer's disease as a therapeutic strategy. Br J Pharmacol 2019; 176:3447-3463. [PMID: 30710367 PMCID: PMC6715594 DOI: 10.1111/bph.14593] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/08/2018] [Accepted: 01/07/2019] [Indexed: 12/11/2022] Open
Abstract
Targeting the amyloid-β (Aβ) peptide cascade has been at the heart of therapeutic developments in Alzheimer's disease (AD) research for more than 25 years, yet no successful drugs have reached the marketplace based on this hypothesis. Nevertheless, the genetic and other evidence remains strong, if not overwhelming, that Aβ is central to the disease process. Most attention has focused on the biosynthesis of Aβ from its precursor protein through the successive actions of the β- and γ-secretases leading to the development of inhibitors of these membrane proteases. However, the levels of Aβ are maintained through a balance of its biosynthesis and clearance, which occurs both through further proteolysis by a family of amyloid-degrading enzymes (ADEs) and by a variety of transport processes. The development of late-onset AD appears to arise from a failure of these clearance mechanisms rather than by overproduction of the peptide. This review focuses on the nature of these clearance mechanisms, particularly the various proteases known to be involved, and their regulation and potential as therapeutic targets in AD drug development. The majority of the ADEs are zinc metalloproteases [e.g., the neprilysin (NEP) family, insulin-degrading enzyme, and angiotensin converting enzymes (ACE)]. Strategies for up-regulating the expression and activity of these enzymes, such as genetic, epigenetic, stem cell technology, and other pharmacological approaches, will be highlighted. Modifiable physiological mechanisms affecting the efficiency of Aβ clearance, including brain perfusion, obesity, diabetes, and sleep, will also be outlined. These new insights provide optimism for future therapeutic developments in AD research. LINKED ARTICLES: This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc.
Collapse
Affiliation(s)
- Natalia N. Nalivaeva
- School of Biomedical SciencesUniversity of LeedsLeedsUK
- Laboratory of Physiology and Pathology of CNSI.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of RASSt. PetersburgRussia
| | | |
Collapse
|
95
|
Norwitz NG, Mota AS, Norwitz SG, Clarke K. Multi-Loop Model of Alzheimer Disease: An Integrated Perspective on the Wnt/GSK3β, α-Synuclein, and Type 3 Diabetes Hypotheses. Front Aging Neurosci 2019; 11:184. [PMID: 31417394 PMCID: PMC6685392 DOI: 10.3389/fnagi.2019.00184] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 07/05/2019] [Indexed: 12/12/2022] Open
Abstract
As the prevalence of Alzheimer disease (AD) continues to rise unabated, new models have been put forth to improve our understanding of this devastating condition. Although individual models may have their merits, integrated models may prove more valuable. Indeed, the reliable failures of monotherapies for AD, and the ensuing surrender of major drug companies, suggests that an integrated perspective may be necessary if we are to invent multifaceted treatments that could ultimately prove more successful. In this review article, we discuss the Wnt/Glycogen Synthase Kinase 3β (GSK3β), α-synuclein, and type 3 diabetes hypotheses of AD, and their deep interconnection, in order to foster the integrative thinking that may be required to reach a solution for the coming neurological epidemic.
Collapse
Affiliation(s)
- Nicholas G Norwitz
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Adrian Soto Mota
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Sam G Norwitz
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
| | - Kieran Clarke
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
96
|
de Dios C, Bartolessis I, Roca-Agujetas V, Barbero-Camps E, Mari M, Morales A, Colell A. Oxidative inactivation of amyloid beta-degrading proteases by cholesterol-enhanced mitochondrial stress. Redox Biol 2019; 26:101283. [PMID: 31376793 PMCID: PMC6675974 DOI: 10.1016/j.redox.2019.101283] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/15/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
Familial early-onset forms of Alzheimer's disease (AD) are linked to overproduction of amyloid beta (Aβ) peptides, while decreased clearance of Aβ is the driving force leading to its toxic accumulation in late-onset (sporadic) AD. Oxidative modifications and defective function have been reported in Aβ-degrading proteases such as neprilysin (NEP) and insulin-degrading enzyme (IDE). However, the exact mechanisms that regulate the proteolytic clearance of Aβ and its deficits are largely unknown. We have previously showed that cellular cholesterol loading, by depleting the mitochondrial GSH (mGSH) content, stimulates Αβ-induced mitochondrial oxidative stress and promotes AD-like pathology in APP-PSEN1-SREBF2 mice. Here, using the same AD mouse model we examined whether cholesterol-enhanced mitochondrial oxidative stress affects NEP and IDE function. We found that brain extracts from APP-PSEN1-SREBF2 mice displayed increased presence of oxidatively modified forms of NEP and IDE, associated with impaired enzymatic activities. Both alterations were substantially recovered after an in vivo treatment with the cholesterol-lowering agent 2-hydroxypropyl-β-cyclodextrin. The recovery of the proteolytic activity after treatment was accompanied with a significant reduction of Aβ levels. Supporting these results, cholesterol-enriched SH-SY5Y cells were more sensitive to Aβ-induced impairment of IDE and NEP function in vitro. The rise of cellular cholesterol also stimulated the extracellular release of IDE by an unconventional autophagy-coordinated mechanism. Recovery of depleted pool of mGSH in these cells not only prevented the detrimental effect of Aβ on intracellular AβDPs activities but also had an impact on extracellular IDE levels and function, stimulating the extracellular Aβ degrading activity. Therefore, changes in brain cholesterol levels by modifying the mGSH content would play a key role in IDE and NEP-mediated proteolytic elimination of Aβ peptides and AD progression. Cholesterol regulates IDE and NEP by enhancing the detrimental effect of Aβ on their proteolytic activities. Cholesterol-mediated mitochondrial GSH depletion is responsible for the oxidative impairment of IDE and NEP. High cholesterol levels induce the release of inactive IDE through secretory autophagy. A rise in cellular cholesterol affects the extracellular Aβ degradation, favoring oligomers formation. Cholesterol lowering compounds and antioxidant therapy restore IDE and NEP activity.
Collapse
Affiliation(s)
- Cristina de Dios
- Department of Cell Death and Proliferation, Institut D'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Isabel Bartolessis
- Department of Cell Death and Proliferation, Institut D'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Vicente Roca-Agujetas
- Department of Cell Death and Proliferation, Institut D'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Elisabet Barbero-Camps
- Department of Cell Death and Proliferation, Institut D'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Montserrat Mari
- Department of Cell Death and Proliferation, Institut D'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Albert Morales
- Department of Cell Death and Proliferation, Institut D'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Anna Colell
- Department of Cell Death and Proliferation, Institut D'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.
| |
Collapse
|
97
|
Nakandakari SCBR, Muñoz VR, Kuga GK, Gaspar RC, Sant'Ana MR, Pavan ICB, da Silva LGS, Morelli AP, Simabuco FM, da Silva ASR, de Moura LP, Ropelle ER, Cintra DE, Pauli JR. Short-term high-fat diet modulates several inflammatory, ER stress, and apoptosis markers in the hippocampus of young mice. Brain Behav Immun 2019; 79:284-293. [PMID: 30797044 DOI: 10.1016/j.bbi.2019.02.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 12/22/2022] Open
Abstract
The consumption of saturated fatty acids is one of the leading risk factors for Alzheimer's Disease (AD) development. Indeed, the short-term consumption of a high-fat diet (HFD) is related to increased inflammatory signals in the hippocampus; however, the potential molecular mechanisms linking it to AD pathogenesis are not fully elucidated. In our study, we investigated the effects of short-term HFD feeding (within 3, 7 and 10 days) in AD markers and neuroinflammation in the hippocampus of mice. The short period of HFD increased fasting glucose and HOMA-IR. Also, mice fed HFD increased the protein content of β-Amyloid, pTau, TNFα, IL1β, pJNK, PTP1B, peIF2α, CHOP, Caspase3, Cleaved-Caspase3 and Alzheimer-related genes (Bax, PS1, PEN2, Aph1b). At 10 days, both neuronal (N2a) and microglial (BV2) cells presented higher expression of inflammatory and apoptotic genes when stimulated with palmitate. These findings suggest that a short period of consumption of a diet rich in saturated fat is associated with activation of inflammatory, ER stress and apoptotic signals in the hippocampus of young mice.
Collapse
Affiliation(s)
| | - Vitor Rosetto Muñoz
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - Gabriel Keine Kuga
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - Rafael Calais Gaspar
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - Marcella Ramos Sant'Ana
- Laboratory of Nutritional Genomics (LabGeN), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - Isadora Carolina Betim Pavan
- Multidisciplinary Laboratory of Food and Health (LABMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Luiz Guilherme Salvino da Silva
- Multidisciplinary Laboratory of Food and Health (LABMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Ana Paula Morelli
- Multidisciplinary Laboratory of Food and Health (LABMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health (LABMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Adelino Sanchez Ramos da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, and Postgraduate Program in Physical Education and Sport, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Leandro Pereira de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil; OCRC - Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; CEPECE - Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil; OCRC - Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; CEPECE - Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - Dennys Esper Cintra
- Laboratory of Nutritional Genomics (LabGeN), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil; CEPECE - Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil; OCRC - Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; CEPECE - Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil.
| |
Collapse
|
98
|
Rhea EM, Banks WA. Role of the Blood-Brain Barrier in Central Nervous System Insulin Resistance. Front Neurosci 2019; 13:521. [PMID: 31213970 PMCID: PMC6558081 DOI: 10.3389/fnins.2019.00521] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/06/2019] [Indexed: 01/01/2023] Open
Abstract
The blood-brain barrier (BBB) mediates the communication between the periphery and the central nervous system (CNS). Recently, CNS insulin resistance has been elucidated to play a role in neurodegenerative disease. This has stimulated a wealth of information on the molecular impact of insulin in the brain, particularly in the improvement of cognition. Since the BBB regulates the transport of insulin into the brain and thus, helps to regulate CNS levels, alterations in the BBB response to insulin could impact CNS insulin resistance. In this review, we summarize the effect of insulin on some of the cell types that make up the BBB, including endothelial cells, neurons, astrocytes, and pericytes. We broadly discuss how these changes in specific cell types could ultimately impact the BBB. We also summarize how insulin can regulate levels of the pathological hallmarks of Alzheimer's disease, including amyloid beta (Aβ) and tau within each cell type. Finally, we suggest interventional approaches to overcome detrimental effects on the BBB in regards to changes in insulin transport.
Collapse
Affiliation(s)
- Elizabeth M Rhea
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| | - William A Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
99
|
Delikkaya B, Moriel N, Tong M, Gallucci G, de la Monte SM. Altered expression of insulin-degrading enzyme and regulator of calcineurin in the rat intracerebral streptozotocin model and human apolipoprotein E-ε4-associated Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2019; 11:392-404. [PMID: 31193223 PMCID: PMC6522644 DOI: 10.1016/j.dadm.2019.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION This study assesses insulin-degrading enzyme (IDE) and regulator of calcineurin 1 (RCAN1) as potential mediators of brain insulin deficiency and neurodegeneration in experimental and human Alzheimer's disease (AD). METHODS Temporal lobes from Long Evans rats treated with intracerebral streptozotocin or vehicle and postmortem frontal lobes from humans with normal aging AD (Braak 0-2), moderate (Braak 3-4) AD, or advanced (Braak 5-6) AD were used to measure IDE and RCAN mRNA and protein. RESULTS Intracerebral streptozotocin significantly increased IDE and RCAN mRNA and protein. In humans with apolipoprotein E (ApoE) ε3/ε4 or ε4/ε4 and AD, IDE was elevated at Braak 3-4, but at Braak 5-6, IDE expression was significantly reduced. RCAN1 mRNA was similarly reduced in ApoE ε4+ patients with moderate or severe AD, whereas RCAN1 protein declined with the severity of AD and ApoE ε4 dose. DISCUSSION The findings suggest that IDE and RCAN1 differentially modulate brain insulin signaling in relation to AD severity and ApoE genotype.
Collapse
Affiliation(s)
- Büşra Delikkaya
- Istanbul University-Cerrahpasa Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - Natalia Moriel
- Department of Medicine, Rhode Island Hospital, Providence, RI, USA
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital, Providence, RI, USA,Alpert Medical School of Brown University, Providence, RI, USA
| | - Gina Gallucci
- Department of Medicine, Rhode Island Hospital, Providence, RI, USA
| | - Suzanne M. de la Monte
- Department of Medicine, Rhode Island Hospital, Providence, RI, USA,Alpert Medical School of Brown University, Providence, RI, USA,Departments of Neurology and Neurosurgery, Rhode Island Hospital, Providence, RI, USA,Department of Pathology and Laboratory Medicine, Providence VA Medical Center, Providence, RI, USA,Corresponding author. Tel.: +401-444-7364; Fax: +401-444-2939.
| |
Collapse
|
100
|
Chen J, Long Z, Li Y, Luo M, Luo S, He G. Alteration of the Wnt/GSK3β/β‑catenin signalling pathway by rapamycin ameliorates pathology in an Alzheimer's disease model. Int J Mol Med 2019; 44:313-323. [PMID: 31115485 DOI: 10.3892/ijmm.2019.4198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/12/2019] [Indexed: 11/06/2022] Open
Abstract
The abnormal activation of glycogen synthase kinase 3β (GSK3β) is one of the mechanisms involved in the pathogenesis of Alzheimer's disease (AD), which results in amyloid β‑peptide (Aβ) plaque overproduction, Tau hyperphosphorylation and neuronal loss. A number of studies have reported that the activation of the mammalian target of rapamycin (mTOR) contributes to the generation and deposition of Aβ, as well as to the formation of neurofibrillary tangles (NFTs) by inhibiting autophagy. GSK3β is also involved in the mTOR signalling pathway. However, whether the inhibition of the activation of mTOR via the regulation of the function of GSK3β affects the pathology of AD remains unclear. In this study, we intraperitoneally injected amyloid precursor protein (APP)/presenilin‑1 (PS1) transgenic mice with rapamycin, a known activator of autophagy that inhibits mTOR. Our results revealed that rapamycin treatment decreased senile plaque deposition by reducing APP generation, and downregulating β‑ and γ‑secretase activity. Rapamycin also increased Aβ clearance by promoting autophagy and reduced Tau hyperphosphorylation by upregulating the levels of insulin‑degrading enzyme. Additionally, rapamycin markedly promoted the proliferation of differentiated SH‑SY5Y cells stably transfected with the APPswe gene and prevented neuronal loss in the brains of mice in a model of AD. Moreover, rapamycin induced autophagy and promoted autolysosome degradation. In this study, we provide evidence that rapamycin inhibits GSK3β activation and elevates β‑catenin expression by improving the Wnt3a expression levels, which facilitates the amelioration of AD pathology. On the whole, our findings indicate that rapamycin inhibits the activation of mTOR and alters the Wnt/GSK3β/β‑catenin signalling pathway; thus, it may serve as a therapeutic target in the treatment of AD.
Collapse
Affiliation(s)
- Jingfei Chen
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhimin Long
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yanzhen Li
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Min Luo
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shifang Luo
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Guiqiong He
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|