51
|
Siehler SY, Schrauder M, Gerischer U, Cantor S, Marra G, Wiesmüller L. Human MutL-complexes monitor homologous recombination independently of mismatch repair. DNA Repair (Amst) 2008; 8:242-52. [PMID: 19022408 DOI: 10.1016/j.dnarep.2008.10.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 09/10/2008] [Accepted: 10/21/2008] [Indexed: 12/19/2022]
Abstract
The role of mismatch repair proteins has been well studied in the context of DNA repair following DNA polymerase errors. Particularly in yeast, MSH2 and MSH6 have also been implicated in the regulation of genetic recombination, whereas MutL homologs appeared to be less important. So far, little is known about the role of the human MutL homolog hMLH1 in recombination, but recently described molecular interactions suggest an involvement. To identify activities of hMLH1 in this process, we applied an EGFP-based assay for the analysis of different mechanisms of DNA repair, initiated by a targeted double-stranded DNA break. We analysed 12 human cellular systems, differing in the hMLH1 and concomitantly in the hPMS1 and hPMS2 status via inducible protein expression, genetic reconstitution, or RNA interference. We demonstrate that hMLH1 and its complex partners hPMS1 and hPMS2 downregulate conservative homologous recombination (HR), particularly when involving DNA sequences with only short stretches of uninterrupted homology. Unexpectedly, hMSH2 is dispensable for this effect. Moreover, the damage-signaling kinase ATM and its substrates BLM and BACH1 are not strictly required, but the combined effect of ATM/ATR-signaling components may mediate the anti-recombinogenic effect. Our data indicate a protective role of hMutL-complexes in a process which may lead to detrimental genome rearrangements, in a manner which does not depend on mismatch repair.
Collapse
|
52
|
Kosinski J, Plotz G, Guarné A, Bujnicki JM, Friedhoff P. The PMS2 subunit of human MutLalpha contains a metal ion binding domain of the iron-dependent repressor protein family. J Mol Biol 2008; 382:610-27. [PMID: 18619468 DOI: 10.1016/j.jmb.2008.06.056] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 06/13/2008] [Accepted: 06/23/2008] [Indexed: 12/22/2022]
Abstract
DNA mismatch repair (MMR) is responsible for correcting replication errors. MutLalpha, one of the main players in MMR, has been recently shown to harbor an endonuclease/metal-binding activity, which is important for its function in vivo. This endonuclease activity has been confined to the C-terminal domain of the hPMS2 subunit of the MutLalpha heterodimer. In this work, we identify a striking sequence-structure similarity of hPMS2 to the metal-binding/dimerization domain of the iron-dependent repressor protein family and present a structural model of the metal-binding domain of MutLalpha. According to our model, this domain of MutLalpha comprises at least three highly conserved sequence motifs, which are also present in most MutL homologs from bacteria that do not rely on the endonuclease activity of MutH for strand discrimination. Furthermore, based on our structural model, we predict that MutLalpha is a zinc ion binding protein and confirm this prediction by way of biochemical analysis of zinc ion binding using the full-length and C-terminal domain of MutLalpha. Finally, we demonstrate that the conserved residues of the metal ion binding domain are crucial for MMR activity of MutLalpha in vitro.
Collapse
Affiliation(s)
- Jan Kosinski
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | | | | | | | | |
Collapse
|
53
|
Novel roles for MLH3 deficiency and TLE6-like amplification in DNA mismatch repair-deficient gastrointestinal tumorigenesis and progression. PLoS Genet 2008; 4:e1000092. [PMID: 18551179 PMCID: PMC2410297 DOI: 10.1371/journal.pgen.1000092] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 05/12/2008] [Indexed: 02/08/2023] Open
Abstract
DNA mismatch repair suppresses gastrointestinal tumorgenesis. Four mammalian E. coli MutL homologues heterodimerize to form three distinct complexes: MLH1/PMS2, MLH1/MLH3, and MLH1/PMS1. To understand the mechanistic contributions of MLH3 and PMS2 in gastrointestinal tumor suppression, we generated Mlh3−/−;Apc1638N and Mlh3−/−;Pms2−/−;Apc1638N (MPA) mice. Mlh3 nullizygosity significantly increased Apc frameshift mutations and tumor multiplicity. Combined Mlh3;Pms2 nullizygosity further increased Apc base-substitution mutations. The spectrum of MPA tumor mutations was distinct from that observed in Mlh1−/−;Apc1638N mice, implicating the first potential role for MLH1/PMS1 in tumor suppression. Because Mlh3;Pms2 deficiency also increased gastrointestinal tumor progression, we used array-CGH to identify a recurrent tumor amplicon. This amplicon contained a previously uncharacterized Transducin enhancer of Split (Tle) family gene, Tle6-like. Expression of Tle6-like, or the similar human TLE6D splice isoform in colon cancer cells increased cell proliferation, colony-formation, cell migration, and xenograft tumorgenicity. Tle6-like;TLE6D directly interact with the gastrointestinal tumor suppressor RUNX3 and antagonize RUNX3 target transactivation. TLE6D is recurrently overexpressed in human colorectal cancers and TLE6D expression correlates with RUNX3 expression. Collectively, these findings provide important insights into the molecular mechanisms of individual MutL homologue tumor suppression and demonstrate an association between TLE mediated antagonism of RUNX3 and accelerated human colorectal cancer progression. Approximately one million people every year are diagnosed with colorectal cancer worldwide, and about five hundred thousand of these people subsequently perish from the disease. Colorectal cancer is thought to develop through a series of early and later stages (called cancer initiation and progression, respectively). Deaths from colorectal cancer are particularly tragic because the disease can usually be cured if discovered before full-blown progression. However, our knowledge of how these tumors progress remains very limited. DNA mismatch repair is known to be an important process in preventing ∼15% of colorectal cancer initiation. In this study we describe how two of these genes (Mlh3 and Pms2) that have partial functional redundancy and therefore individually are rarely mutated are also important in preventing colorectal cancer progression. Additionally, we describe a new gene (Tle6-like) that, when overactive, makes these cancers progress more rapidly. The overall goal of this study is to understand colorectal cancer progression better so that we can come up with new ways to block it at the later stage.
Collapse
|
54
|
Altieri F, Grillo C, Maceroni M, Chichiarelli S. DNA damage and repair: from molecular mechanisms to health implications. Antioxid Redox Signal 2008; 10:891-937. [PMID: 18205545 DOI: 10.1089/ars.2007.1830] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
DNA is subjected to several modifications, resulting from endogenous and exogenous sources. The cell has developed a network of complementary DNA-repair mechanisms, and in the human genome, >130 genes have been found to be involved. Knowledge about the basic mechanisms for DNA repair has revealed an unexpected complexity, with overlapping specificity within the same pathway, as well as extensive functional interactions between proteins involved in repair pathways. Unrepaired or improperly repaired DNA lesions have serious potential consequences for the cell, leading to genomic instability and deregulation of cellular functions. A number of disorders or syndromes, including several cancer predispositions and accelerated aging, are linked to an inherited defect in one of the DNA-repair pathways. Genomic instability, a characteristic of most human malignancies, can also arise from acquired defects in DNA repair, and the specific pathway affected is predictive of types of mutations, tumor drug sensitivity, and treatment outcome. Although DNA repair has received little attention as a determinant of drug sensitivity, emerging knowledge of mutations and polymorphisms in key human DNA-repair genes may provide a rational basis for improved strategies for therapeutic interventions on a number of tumors and degenerative disorders.
Collapse
Affiliation(s)
- Fabio Altieri
- Department of Biochemical Sciences, A. Rossi Fanelli, University La Sapienza, Rome, Italy.
| | | | | | | |
Collapse
|
55
|
Erdeniz N, Nguyen M, Deschênes SM, Liskay RM. Mutations affecting a putative MutLalpha endonuclease motif impact multiple mismatch repair functions. DNA Repair (Amst) 2007; 6:1463-70. [PMID: 17567544 PMCID: PMC2366940 DOI: 10.1016/j.dnarep.2007.04.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 04/16/2007] [Indexed: 12/11/2022]
Abstract
Mutations in DNA mismatch repair (MMR) lead to increased mutation rates and higher recombination between similar, but not identical sequences, as well as resistance to certain DNA methylating agents. Recently, a component of human MMR machinery, MutLalpha, has been shown to display a latent endonuclease activity. The endonuclease active site appears to include a conserved motif, DQHA(X)(2)E(X)(4)E, within the COOH-terminus of human PMS2. Substitution of the glutamic acid residue (E705) abolished the endonuclease activity and mismatch-dependent excision in vitro. Previously, we showed that the PMS2-E705K mutation and the corresponding mutation in Saccharomyces cerevisiae were both recessive loss of function alleles for mutation avoidance in vivo. Here, we show that mutations impacting this endonuclease motif also significantly affect MMR-dependent suppression of homeologous recombination in yeast and responses to S(n)1-type methylating agents in both yeast and mammalian cells. Thus, our in vivo results suggest that the endonuclease activity of MutLalpha is important not only in MMR-dependent mutation avoidance but also for recombination and damage response functions.
Collapse
Affiliation(s)
- Naz Erdeniz
- Department of Molecular and Medical Genetics, Oregon Health & Science University L103, 3181 SW, Sam Jackson Park Road, Portland, OR 97239-3098, United States
| | - Megan Nguyen
- Department of Molecular and Medical Genetics, Oregon Health & Science University L103, 3181 SW, Sam Jackson Park Road, Portland, OR 97239-3098, United States
| | - Suzanne M. Deschênes
- Department of Biology, Sacred Heart University, 5151 Park Ave., Fairfield, CT 06825, United States
| | - R. Michael Liskay
- Department of Molecular and Medical Genetics, Oregon Health & Science University L103, 3181 SW, Sam Jackson Park Road, Portland, OR 97239-3098, United States
| |
Collapse
|
56
|
Saydam N, Kanagaraj R, Dietschy T, Garcia PL, Peña-Diaz J, Shevelev I, Stagljar I, Janscak P. Physical and functional interactions between Werner syndrome helicase and mismatch-repair initiation factors. Nucleic Acids Res 2007; 35:5706-16. [PMID: 17715146 PMCID: PMC2034464 DOI: 10.1093/nar/gkm500] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Werner syndrome (WS) is a severe recessive disorder characterized by premature aging, cancer predisposition and genomic instability. The gene mutated in WS encodes a bi-functional enzyme called WRN that acts as a RecQ-type DNA helicase and a 3′-5′ exonuclease, but its exact role in DNA metabolism is poorly understood. Here we show that WRN physically interacts with the MSH2/MSH6 (MutSα), MSH2/MSH3 (MutSβ) and MLH1/PMS2 (MutLα) heterodimers that are involved in the initiation of mismatch repair (MMR) and the rejection of homeologous recombination. MutSα and MutSβ can strongly stimulate the helicase activity of WRN specifically on forked DNA structures with a 3′-single-stranded arm. The stimulatory effect of MutSα on WRN-mediated unwinding is enhanced by a G/T mismatch in the DNA duplex ahead of the fork. The MutLα protein known to bind to the MutS α–heteroduplex complexes has no effect on WRN-mediated DNA unwinding stimulated by MutSα, nor does it affect DNA unwinding by WRN alone. Our data are consistent with results of genetic experiments in yeast suggesting that MMR factors act in conjunction with a RecQ-type helicase to reject recombination between divergent sequences.
Collapse
Affiliation(s)
- Nurten Saydam
- Institute of Molecular Cancer Research of the University of Zurich, Switzerland, Department of Biochemistry and Department of Medical Genetics and Microbiology, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
| | - Radhakrishnan Kanagaraj
- Institute of Molecular Cancer Research of the University of Zurich, Switzerland, Department of Biochemistry and Department of Medical Genetics and Microbiology, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
| | - Tobias Dietschy
- Institute of Molecular Cancer Research of the University of Zurich, Switzerland, Department of Biochemistry and Department of Medical Genetics and Microbiology, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
| | - Patrick L. Garcia
- Institute of Molecular Cancer Research of the University of Zurich, Switzerland, Department of Biochemistry and Department of Medical Genetics and Microbiology, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
| | - Javier Peña-Diaz
- Institute of Molecular Cancer Research of the University of Zurich, Switzerland, Department of Biochemistry and Department of Medical Genetics and Microbiology, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
| | - Igor Shevelev
- Institute of Molecular Cancer Research of the University of Zurich, Switzerland, Department of Biochemistry and Department of Medical Genetics and Microbiology, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
| | - Igor Stagljar
- Institute of Molecular Cancer Research of the University of Zurich, Switzerland, Department of Biochemistry and Department of Medical Genetics and Microbiology, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
| | - Pavel Janscak
- Institute of Molecular Cancer Research of the University of Zurich, Switzerland, Department of Biochemistry and Department of Medical Genetics and Microbiology, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
- *To whom correspondence should be addressed. +41(0)44 635 3470+41(0)44 635 3484
| |
Collapse
|
57
|
Dion E, Li L, Jean M, Belzile F. An Arabidopsis MLH1 mutant exhibits reproductive defects and reveals a dual role for this gene in mitotic recombination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:431-40. [PMID: 17559505 DOI: 10.1111/j.1365-313x.2007.03145.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The eukaryotic DNA mismatch repair (MMR) system contributes to maintaining genome integrity and DNA sequence fidelity in at least two important ways: by correcting errors arising during DNA replication, and also by preventing recombination events between divergent sequences. This study aimed to investigate the role of one key MMR gene in recombination. We obtained a mutant line in which the AtMLH1 gene has been disrupted by the insertion of a T-DNA within the coding region. Transcript analysis indicated that no full-length transcript was produced in mutant plants. The loss of a functional AtMLH1 gene led to a significant reduction in fertility in both homozygotes and heterozygotes, and we observed a strong bias against transmission of the mutant allele. To investigate the role of AtMLH1 in mitotic recombination, the mutant was crossed to a series of recombination reporter lines. A strong decrease (72%) in the frequency of homologous recombination was observed in the mutant. However, the decline in recombination due to homeology was less severe in the Atmlh1 mutant than in a wild-type control. These data demonstrate a dual role for AtMLH1 in recombination: it is both required for recombination and acts to limit recombination between diverged sequences.
Collapse
Affiliation(s)
- Eric Dion
- Département de phytologie, 1243 Pavillon C.-E. Marchand, Université Laval, Québec, QC, G1K 7P4, Canada
| | | | | | | |
Collapse
|
58
|
Harrington JM, Kolodner RD. Saccharomyces cerevisiae Msh2-Msh3 acts in repair of base-base mispairs. Mol Cell Biol 2007; 27:6546-54. [PMID: 17636021 PMCID: PMC2099603 DOI: 10.1128/mcb.00855-07] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA mismatch repair is thought to act through two subpathways involving the recognition of base-base and insertion/deletion mispairs by the Msh2-Msh6 heterodimer and the recognition of insertion/deletion mispairs by the Msh2-Msh3 heterodimer. Here, through genetic and biochemical approaches, we describe a previously unidentified role of the Msh2-Msh3 heterodimer in the recognition of base-base mispairs and the suppression of homology-mediated duplication and deletion mutations. Saccharomyces cerevisiae msh3 mutants did not show an increase in the rate of base substitution mutations by the CAN1 forward mutation assay compared to the rate for the wild type but did show an altered spectrum of base substitution mutations, including an increased accumulation of base pair changes from GC to CG and from AT to TA; msh3 mutants also accumulated homology-mediated duplication and deletion mutations. The mutation spectrum of mlh3 mutants paralleled that of msh3 mutants, suggesting that the Mlh1-Mlh3 heterodimer may also play a role in the repair of base-base mispairs and in the suppression of homology-mediated duplication and deletion mutations. Mispair binding analysis with purified Msh2-Msh3 and DNA substrates derived from CAN1 sequences found to be mutated in vivo demonstrated that Msh2-Msh3 exhibited robust binding to specific base-base mispairs that was consistent with functional mispair binding.
Collapse
Affiliation(s)
- Jill M Harrington
- Ludwig Institute for Cancer Research, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0669, USA
| | | |
Collapse
|
59
|
Cannavo E, Gerrits B, Marra G, Schlapbach R, Jiricny J. Characterization of the Interactome of the Human MutL Homologues MLH1, PMS1, and PMS2. J Biol Chem 2007; 282:2976-86. [PMID: 17148452 DOI: 10.1074/jbc.m609989200] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Postreplicative mismatch repair (MMR) involves the concerted action of at least 20 polypeptides. Although the minimal human MMR system has recently been reconstituted in vitro, genetic evidence from different eukaryotic organisms suggests that some steps of the MMR process may be carried out by more than one protein. Moreover, MMR proteins are involved also in other pathways of DNA metabolism, but their exact role in these processes is unknown. In an attempt to gain novel insights into the function of MMR proteins in human cells, we searched for interacting partners of the MutL homologues MLH1 and PMS2 by tandem affinity purification and of PMS1 by large scale immunoprecipitation. In addition to proteins known to interact with the MutL homologues during MMR, mass spectrometric analyses identified a number of other polypeptides, some of which bound to the above proteins with very high affinity. Whereas some of these interactors may represent novel members of the mismatch repairosome, others appear to implicate the MutL homologues in biological processes ranging from intracellular transport through cell signaling to cell morphology, recombination, and ubiquitylation.
Collapse
Affiliation(s)
- Elda Cannavo
- Institute of Molecular Cancer Research, University of Zurich, Switzerland
| | | | | | | | | |
Collapse
|
60
|
Kloor M, von Knebel Doeberitz M, Gebert JF. Molecular testing for microsatellite instability and its value in tumor characterization. Expert Rev Mol Diagn 2007; 5:599-611. [PMID: 16013977 DOI: 10.1586/14737159.5.4.599] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Molecular analysis of tumor tissue has become a rapidly expanding field in medical research, exploiting the advantages of new technologies adapted to high-throughput examination of genetic alterations, gene and protein expression patterns. Only exceptionally, these approaches have found their way into routine clinical diagnosis and therapy. Microsatellite instability testing has been established as a very powerful tool to identify patients with hereditary nonpolyposis colorectal cancer, one of the most common familial cancer syndromes. In addition, there is emerging evidence that microsatellite instability analysis may become increasingly important for the clinician, having considerable impact on patients' prognosis as well as therapeutic decisions, at least in colorectal cancer patients. A better understanding of the microsatellite instability phenotype, its pathogenesis and implications for the course of the disease will pave the way for novel diagnostic and therapeutic strategies specifically tailored to microsatellite-unstable tumors. This review summarizes the current significance of molecular testing for microsatellite instability in several tumor entities and provides prospects of future developments.
Collapse
Affiliation(s)
- Matthias Kloor
- Institute of Molecular Pathology, Im Neuenheimer Feld 220/221, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
61
|
Kadyrov FA, Dzantiev L, Constantin N, Modrich P. Endonucleolytic function of MutLalpha in human mismatch repair. Cell 2006; 126:297-308. [PMID: 16873062 DOI: 10.1016/j.cell.2006.05.039] [Citation(s) in RCA: 462] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 03/20/2006] [Accepted: 05/15/2006] [Indexed: 11/21/2022]
Abstract
Half of hereditary nonpolyposis colon cancer kindreds harbor mutations that inactivate MutLalpha (MLH1*PMS2 heterodimer). MutLalpha is required for mismatch repair, but its function in this process is unclear. We show that human MutLalpha is a latent endonuclease that is activated in a mismatch-, MutSalpha-, RFC-, PCNA-, and ATP-dependent manner. Incision of a nicked mismatch-containing DNA heteroduplex by this four-protein system is strongly biased to the nicked strand. A mismatch-containing DNA segment spanned by two strand breaks is removed by the 5'-to-3' activity of MutSalpha-activated exonuclease I. The probable endonuclease active site has been localized to a PMS2 DQHA(X)(2)E(X)(4)E motif. This motif is conserved in eukaryotic PMS2 homologs and in MutL proteins from a number of bacterial species but is lacking in MutL proteins from bacteria that rely on d(GATC) methylation for strand discrimination in mismatch repair. Therefore, the mode of excision initiation may differ in these organisms.
Collapse
Affiliation(s)
- Farid A Kadyrov
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
62
|
Affiliation(s)
- Paul Modrich
- Department of Biochemistry and Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA.
| |
Collapse
|
63
|
Plotz G, Zeuzem S, Raedle J. DNA mismatch repair and Lynch syndrome. J Mol Histol 2006; 37:271-83. [PMID: 16821093 DOI: 10.1007/s10735-006-9038-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 06/06/2006] [Indexed: 01/31/2023]
Abstract
The evolutionary conserved mismatch repair proteins correct a wide range of DNA replication errors. Their importance as guardians of genetic integrity is reflected by the tremendous decrease of replication fidelity (two to three orders of magnitude) conferred by their loss. Germline mutations in mismatch repair genes, predominantly MSH2 and MLH1, have been found to underlie the Lynch syndrome (also called hereditary non-polyposis colorectal cancer, HNPCC), a hereditary predisposition for cancer. Lynch syndrome affects predominantly the colon and accounts for 2-5% of all colon cancer cases. During more than 30 years of biochemical, crystallographic and clinical research, deep insight has been achieved in the function of mismatch repair and the diseases that are associated with its loss. We review the biochemistry of mismatch repair and also introduce the clinical, diagnostic and genetic aspects of Lynch syndrome.
Collapse
Affiliation(s)
- Guido Plotz
- Klinik für Innere Medizin II, Universitätsklinikum des Saarlandes, Kirrberger Strasse, Gebäude 41, D-66421 Homburg, Germany.
| | | | | |
Collapse
|
64
|
Abstract
By removing biosynthetic errors from newly synthesized DNA, mismatch repair (MMR) improves the fidelity of DNA replication by several orders of magnitude. Loss of MMR brings about a mutator phenotype, which causes a predisposition to cancer. But MMR status also affects meiotic and mitotic recombination, DNA-damage signalling, apoptosis and cell-type-specific processes such as class-switch recombination, somatic hypermutation and triplet-repeat expansion. This article reviews our current understanding of this multifaceted DNA-repair system in human cells.
Collapse
Affiliation(s)
- Josef Jiricny
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
65
|
Affiliation(s)
- Ravi R Iyer
- Department of Biochemistry and Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
66
|
Chao EC, Lipkin SM. Molecular models for the tissue specificity of DNA mismatch repair-deficient carcinogenesis. Nucleic Acids Res 2006; 34:840-52. [PMID: 16464822 PMCID: PMC1361617 DOI: 10.1093/nar/gkj489] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 11/17/2005] [Accepted: 01/18/2006] [Indexed: 01/05/2023] Open
Abstract
A common feature of all the known cancer genetic syndromes is that they predispose only to selective types of malignancy. However, many of the genes mutated in these syndromes are ubiquitously expressed, and influence seemingly universal processes such as DNA repair or cell cycle control. The tissue specificity of cancers that arise from malfunction of these apparently universal traits remains a key puzzle in cancer genetics. Mutations in DNA mismatch repair (MMR) genes cause the most common known cancer genetic syndrome, hereditary non-polyposis colorectal cancer, and the fundamental biology of MMR is one of the most intensively studied processes in laboratories all around the world. This review uses MMR as a model system to understand mechanisms that may explain the selective development of tumors in particular cell types despite the universal nature of this process. We evaluate recent data giving insights into the specific tumor types that are attributable to defective MMR in humans and mice under different modes of inheritance, and propose models that may explain the spectrum of cancer types observed.
Collapse
Affiliation(s)
- Elizabeth C Chao
- Department of Medicine, Division of Hematology-Oncology, University of California Irvine, CA 92697-4038, USA.
| | | |
Collapse
|
67
|
Cannavo E, Marra G, Sabates-Bellver J, Menigatti M, Lipkin SM, Fischer F, Cejka P, Jiricny J. Expression of the MutL homologue hMLH3 in human cells and its role in DNA mismatch repair. Cancer Res 2006; 65:10759-66. [PMID: 16322221 DOI: 10.1158/0008-5472.can-05-2528] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The human mismatch repair (MMR) proteins hMLH1 and hPMS2 function in MMR as a heterodimer. Cells lacking either protein have a strong mutator phenotype and display microsatellite instability, yet mutations in the hMLH1 gene account for approximately 50% of hereditary nonpolyposis colon cancer families, whereas hPMS2 mutations are substantially less frequent and less penetrant. Similarly, in the mouse model, Mlh1-/- animals are highly cancer prone and present with gastrointestinal tumors at an early age, whereas Pms2-/- mice succumb to cancer much later in life and do not present with gastrointestinal tumors. This evidence suggested that MLH1 might functionally interact with another MutL homologue, which compensates, at least in part, for a deficiency in PMS2. Sterility of Mlh1-/-, Pms2-/-, and Mlh3-/- mice implicated the Mlh1/Pms2 and Mlh1/Mlh3 heterodimers in meiotic recombination. We now show that the hMLH1/hMLH3 heterodimer, hMutLgamma, can also assist in the repair of base-base mismatches and single extrahelical nucleotides in vitro. Analysis of hMLH3 expression in colon cancer cell lines indicated that the protein levels vary substantially and independently of hMLH1. If hMLH3 participates in MMR in vivo, its partial redundancy with hPMS2, coupled with the fluctuating expression levels of hMLH3, may help explain the low penetrance of hPMS2 mutations in hereditary nonpolyposis colon cancer families.
Collapse
Affiliation(s)
- Elda Cannavo
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Abstract
Since the discovery of the major human genes with DNA mismatch repair (MMR) function in 1993-1995, mutations in four, MSH2, MLH1, MSH6, and PMS2, have been convincingly linked to susceptibility of hereditary nonpolyposis colorectal cancer (HNPCC)/Lynch syndrome. Among these, PMS2 mutations are associated with diverse clinical features, including those of the Turcot syndrome. Two additional MMR genes, MLH3 and PMS1, have also been proposed to play a role in Lynch syndrome predisposition, but the clinical significance of mutations in these genes is less clear. According to the database maintained by the International Collaborative Group on Hereditary Nonpolyposis Colorectal Cancer (ICG-HNPCC), current InSiGHT (International Society for Gastrointestinal Hereditary Tumors), approximately 500 different HNPCC-associated MMR gene mutations are known that primarily involve MLH1 (approximately 50%), MSH2 (approximately 40%), and MSH6 (approximately 10%). Examination of HNPCC/Lynch syndrome-associated MMR genes and their mutations has revealed several other important functions for their protein products beyond postreplicative mismatch repair as well as many alternative mechanisms of pathogenicity. Despite these advances, much is yet to be learned about the molecular basis of correlations between genetic changes and clinical features of the disease.
Collapse
Affiliation(s)
- Päivi Peltomäki
- Department of Medical Genetics, Biomedicum Helsinki, University of Helsinki, P.O. Box 63, Haartmaninkatu 8, 00014, Finland.
| |
Collapse
|
69
|
Abstract
Loss of DNA mismatch repair (MMR) in mammalian cells, as well as having a causative role in cancer, has been linked to resistance to certain DNA damaging agents including clinically important cytotoxic chemotherapeutics. MMR-deficient cells exhibit defects in G2/M cell cycle arrest and cell killing when treated with these agents. MMR-dependent cell cycle arrest occurs, at least for low doses of alkylating agents, only after the second S-phase following DNA alkylation, suggesting that two rounds of DNA replication are required to generate a checkpoint signal. These results point to an indirect role for MMR proteins in damage signalling where aberrant processing of mismatches leads to the generation of DNA structures (single-strand gaps and/or double-strand breaks) that provoke checkpoint activation and cell killing. Significantly, recent studies have revealed that the role of MMR proteins in mismatch repair can be uncoupled from the MMR-dependent damage responses. Thus, there is a threshold of expression of MSH2 or MLH1 required for proper checkpoint and cell-death signalling, even though sub-threshold levels are sufficient for fully functional MMR repair activity. Segregation is also revealed through the identification of mutations in MLH1 or MSH2 that provide alleles functional in MMR but not in DNA damage responses and mutations in MSH6 that compromise MMR but not in apoptotic responses to DNA damaging agents. These studies suggest a direct role for MMR proteins in recognizing and signalling DNA damage responses that is independent of the MMR catalytic repair process. How MMR-dependent G2 arrest may link to cell death remains elusive and we speculate that it is perhaps the resolution of the MMR-dependent G2 cell cycle arrest following DNA damage that is important in terms of cell survival.
Collapse
Affiliation(s)
- Vincent O'Brien
- Centre for Oncology and Applied Pharmacology, Cancer Research UK Beatson Laboratories, Garscube Estate, Glasgow G61 1BD, UK.
| | | |
Collapse
|
70
|
Kosinski J, Steindorf I, Bujnicki JM, Giron-Monzon L, Friedhoff P. Analysis of the quaternary structure of the MutL C-terminal domain. J Mol Biol 2005; 351:895-909. [PMID: 16024043 DOI: 10.1016/j.jmb.2005.06.044] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 06/14/2005] [Accepted: 06/17/2005] [Indexed: 11/29/2022]
Abstract
The dimeric DNA mismatch repair protein MutL has a key function in communicating mismatch recognition by MutS to downstream repair processes. Dimerization of MutL is mediated by the C-terminal domain, while activity of the protein is modulated by the ATP-dependent dimerization of the highly conserved N-terminal domain. Recently, a crystal structure analysis of the Escherichia coli MutL C-terminal dimerization domain has been reported and a model for the biological dimer was proposed. In this model, dimerization is mediated by the internal (In) subdomain comprising residues 475-569. Here, we report a computational analysis of all protein interfaces observed in the crystal structure and suggest that the biological dimer interface is formed by a hydrophobic surface patch of the external (Ex) subdomain (residues 432-474 and 570-615). Moreover, sequence analysis revealed that this surface patch is conserved among the MutL proteins. To test this hypothesis, single and double-cysteine variants of MutL were generated and tested for their ability to be cross-linked with chemical cross-linkers of various size. Finally, deletion of the C-terminal residues 605-615 abolished homodimerization. The biochemical data are fully compatible with a revised model for the biological dimer, which has important implications for understanding the heterodimerization of eukaryotic MutL homologues, modeling the MutL holoenzyme and predicting protein-protein interaction sites.
Collapse
Affiliation(s)
- Jan Kosinski
- Institut für Biochemie FB 08, Justus-Liebig Universität, Giessen D-35392, Germany
| | | | | | | | | |
Collapse
|
71
|
Truninger K, Menigatti M, Luz J, Russell A, Haider R, Gebbers JO, Bannwart F, Yurtsever H, Neuweiler J, Riehle HM, Cattaruzza MS, Heinimann K, Schär P, Jiricny J, Marra G. Immunohistochemical analysis reveals high frequency of PMS2 defects in colorectal cancer. Gastroenterology 2005; 128:1160-71. [PMID: 15887099 DOI: 10.1053/j.gastro.2005.01.056] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Germline mutations in the DNA mismatch repair (MMR) genes MSH2, MSH6, or MLH1 predispose to colorectal cancer (CRC) with an autosomal dominant inheritance pattern. The protein encoded by PMS2 is also essential for MMR; however, alterations in this gene have been documented only in extremely rare cases. We addressed this unexpected finding by analyzing a large series of CRCs. METHODS Expression of MSH2, MSH6, MLH1, and PMS2 was studied by immunohistochemistry in 1048 unselected, consecutive CRCs. Where absence of MMR proteins was detected, microsatellite instability and cytosine methylation of the respective gene promoter were analyzed. The DNA of patients presenting with PMS2-deficient cancers was examined for germline and somatic alterations in the PMS2 gene. RESULTS An aberrant pattern of MMR protein expression was detected in 13.2% of CRCs. Loss of expression of MSH2, MSH6, or MLH1 was found in 1.4%, 0.5%, and 9.8%, respectively. PMS2 deficiency accompanied by microsatellite instability was found in 16 cases (1.5%) with a weak family history of cancer. The PMS2 promoter was not hypermethylated in these cases. Despite interference of the PMS2 pseudogenes, we identified several heterozygous germline mutations in the PMS2 gene. CONCLUSIONS PMS2 defects account for a small but significant proportion of CRCs and for a substantial fraction of tumors with microsatellite instability. However, the penetrance of heterozygous germline mutations in PMS2 is considerably lower than that of mutations in other MMR genes. The possible underlying causes of this unorthodox inheritance pattern are discussed.
Collapse
Affiliation(s)
- Kaspar Truninger
- Institute of Molecular Cancer Research, University of Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Gologan A, Sepulveda AR. Microsatellite Instability and DNA Mismatch Repair Deficiency Testing in Hereditary and Sporadic Gastrointestinal Cancers. Clin Lab Med 2005; 25:179-96. [PMID: 15749237 DOI: 10.1016/j.cll.2004.12.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reference cancers associated with DNA mismatch repair (MMR)deficiency are the adenocarcinomas of patients with hereditary nonpolyposis colorectal cancer, also known as Lynch syndrome. Sporadic gastrointestinal (GI) carcinomas, most commonly colorectal and gastric carcinomas, may also be associated with deficiencies of DNA mismatch repair. Deficiency in cellular MMR leads to wide-spread mutagenesis and neoplastic development and progression. An important diagnostic feature of MMR-deficient tumors is the high rate of mutations that accumulate in repetitive nucleotide regions, and these mutations are known as microsatellite instability(MSI). A standard panel of markers to test for MSI in tumors has been recommended and efficiently separates tumors into those with high, low, or no microsatellite instability (MSI-H, MSI-L, or MSS). Tumors characterized by MSI-H characteristically show loss of one of the main DNA MMR proteins, mLH1 or MSH2, and rarely MSH6 and PMS2, detected by immunohistochemistry (IHC). The combination of MSI testing and IHC for MMR proteins in tumors tissues is used to identify underlying DNA MMR deficiency andis clinically relevant screen patients who might have hereditary non-polyposis colorectal cancer for DNA repair gene germline testing. Increasing evidence demonstrates that tumors with a positive MSI status have lower lymph node metastases burden, and these patients have an overall improved survival, suggesting that the MSI and MMR status may contribute to decision making regarding treatment approaches. Updated guidelines for MSI and IHC for DNAMMR testing, and the biological and potential clinical implications of MMR deficiency and microsatellite instability in GI polyps and cancers are reviewed.
Collapse
Affiliation(s)
- Adrian Gologan
- Department of Pathology, University of Pittsburgh, PUH-A610, 100 Lothrop Street, Pittsburgh, PA 15213-2582, USA
| | | |
Collapse
|
73
|
Morimoto H, Tsukada J, Kominato Y, Tanaka Y. Reduced expression of human mismatch repair genes in adult T-cell leukemia. Am J Hematol 2005; 78:100-7. [PMID: 15682421 DOI: 10.1002/ajh.20259] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this study, we investigated the expression of six human DNA mismatch repair (MMR) genes, human MutS homologues 2 (hMSH2), 3 (hMSH3), and 6 (hMSH6), human MutL homologue 1 (hMLH1), human post-meiotic segregations 1 (hPMS1) and 2 (hPMS2), in primary leukemic cells obtained from 11 patients with acute-type adult T-cell leukemia (ATL) by using reverse transcription-polymerase chain reaction (RT-PCR). In contrast to normal peripheral lymphocytes, all primary ATL samples had reduced or loss of expression of two or more MMR genes, and the expression of several MMR genes was simultaneously suppressed in each ATL patient. Abnormal expression of hMSH2, hMSH3, hMSH6, hMLH1, and hPMS1 was observed more frequently than that of hPMS2. In particular, expression of hMSH2 and hPMS1 was reduced in all cases. Western blot analysis further showed reduced expression of both hMSH2 and hPMS1 proteins in all five cases examined. In three out of the 5 cases, both of the two proteins were undetectable. Interestingly, methylation-specific PCR indicated methylation of hPMS1 promoter in all of four ATL cases examined. hPMS1 expression, but not hMSH2 expression, was restored by treatment with a DNA demethylation agent, 5-aza-2'-deoxycytidine, suggesting that methylation plays a crucial role in inhibition of the hPMS1 gene expression in ATL. Our results demonstrate that defect of both human MutS and human MutL systems in primary ATL cells.
Collapse
Affiliation(s)
- Hiroaki Morimoto
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | |
Collapse
|
74
|
Marra G, Jiricny J. DNA mismatch repair and colon cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 570:85-123. [PMID: 18727499 DOI: 10.1007/1-4020-3764-3_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Giancarlo Marra
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
75
|
Muheim-Lenz R, Buterin T, Marra G, Naegeli H. Short-patch correction of C/C mismatches in human cells. Nucleic Acids Res 2004; 32:6696-705. [PMID: 15613598 PMCID: PMC545458 DOI: 10.1093/nar/gkh990] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We examined whether the human nucleotide excision repair complex, which is specialized on the removal of bulky DNA adducts, also displays a correcting activity on base mismatches. The cytosine/cytosine (C/C) lesion was used as a model substrate to monitor the correction of base mismatches in human cells. Fibroblasts with different repair capabilities were transfected with shuttle vectors that contain a site-directed C/C mismatch in the replication origin, accompanied by an additional C/C mismatch in one of the flanking sequences that are not essential for replication. Analysis of the vector progeny obtained from these doubly modified substrates revealed that C/C mismatches were eliminated before DNA synthesis not only in the repair-proficient background, but also when the target cells carried a genetic defect in long-patch mismatch repair, in nucleotide excision repair, or when both pathways were deleted. Furthermore, cells deficient for long-patch mismatch repair as well as a cell line that combines mismatch and nucleotide excision repair defects were able to correct multiple C/C mispairs, placed at distances of 21-44 nt, in an independent manner, such that the removal of each lesion led to individual repair patches. These results support the existence of a concurrent short-patch mechanism that rectifies C/C mismatches.
Collapse
Affiliation(s)
- Regula Muheim-Lenz
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, 8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
76
|
Miller CA, Bill CA, Nickoloff JA. Characterization of palindromic loop mismatch repair tracts in mammalian cells. DNA Repair (Amst) 2004; 3:421-8. [PMID: 15010318 DOI: 10.1016/j.dnarep.2003.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2003] [Indexed: 01/03/2023]
Abstract
Single- and multi-base (loop) mismatches can arise in DNA by replication errors, during recombination, and by chemical modification of DNA. Single-base and loop mismatches of several nucleotides are efficiently repaired in mammalian cells by a nick-directed, MSH2-dependent mechanism. Larger loop mismatches (> or =12 bases) are repaired by an MSH2-independent mechanism. Prior studies have shown that 12- and 14-base palindromic loops are repaired with bias toward loop retention, and that repair bias is eliminated when five single-base mismatches flank the loop mismatch. Here we show that one single-base mismatch near a 12-base palindromic loop is sufficient to eliminate loop repair bias in wild-type, but not MSH2-defective mammalian cells. We also show that palindromic loop and single-base mismatches separated by 12 bases are repaired independently at least 10% of the time in wild-type cells, and at least 30% of the time in MSH2-defective cells. Palindromic loop and single-base mismatches separated by two bases were never repaired independently. These and other data indicate that loop repair tracts are variable in length. All tracts extend at least 2 bases, some extend <12 bases, and others >12 bases, on one side of the loop. These properties distinguish palindromic loop mismatch repair from the three known excision repair pathways: base excision repair which has one to six base tracts, nucleotide excision repair which has approximately 30 base tracts, and MSH2-dependent mismatch repair, which has tracts that extend for several hundred bases.
Collapse
Affiliation(s)
- Cheryl A Miller
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | |
Collapse
|
77
|
Guarné A, Ramon-Maiques S, Wolff EM, Ghirlando R, Hu X, Miller JH, Yang W. Structure of the MutL C-terminal domain: a model of intact MutL and its roles in mismatch repair. EMBO J 2004; 23:4134-45. [PMID: 15470502 PMCID: PMC524388 DOI: 10.1038/sj.emboj.7600412] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Accepted: 08/20/2004] [Indexed: 12/19/2022] Open
Abstract
MutL assists the mismatch recognition protein MutS to initiate and coordinate mismatch repair in species ranging from bacteria to humans. The MutL N-terminal ATPase domain is highly conserved, but the C-terminal region shares little sequence similarity among MutL homologs. We report here the crystal structure of the Escherichia coli MutL C-terminal dimerization domain and the likelihood of its conservation among MutL homologs. A 100-residue proline-rich linker between the ATPase and dimerization domains, which generates a large central cavity in MutL dimers, tolerates sequence substitutions and deletions of one-third of its length with no functional consequences in vivo or in vitro. Along the surface of the central cavity, residues essential for DNA binding are located in both the N- and C-terminal domains. Each domain of MutL interacts with UvrD helicase and is required for activating the helicase activity. The DNA-binding capacity of MutL is correlated with the level of UvrD activation. A model of how MutL utilizes its ATPase and DNA-binding activities to mediate mismatch-dependent activation of MutH endonuclease and UvrD helicase is proposed.
Collapse
Affiliation(s)
- Alba Guarné
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Santiago Ramon-Maiques
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Erika M Wolff
- Department of Microbiology, Immunology, and Molecular Genetics, The Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xiaojian Hu
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey H Miller
- Department of Microbiology, Immunology, and Molecular Genetics, The Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Building 5, Rm B1-03, Bethesda, MD 20892, USA. Tel.: +1 301 402 4645; Fax: +1 301 496 0201; E-mail:
| |
Collapse
|
78
|
Nakagawa H, Lockman JC, Frankel WL, Hampel H, Steenblock K, Burgart LJ, Thibodeau SN, de la Chapelle A. Mismatch repair gene PMS2: disease-causing germline mutations are frequent in patients whose tumors stain negative for PMS2 protein, but paralogous genes obscure mutation detection and interpretation. Cancer Res 2004; 64:4721-7. [PMID: 15256438 DOI: 10.1158/0008-5472.can-03-2879] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The MutLalpha heterodimer formed by mismatch repair (MMR) proteins MLH1 and PMS2 is a major component of the MMR complex, yet mutations in the PMS2 gene are rare in the etiology of hereditary nonpolyposis colorectal cancer. Evidence from five published cases suggested that contrary to the Knudson principle, PMS2 mutations cause hereditary nonpolyposis colorectal cancer or Turcot syndrome only when they are biallelic in the germline or abnormally expressed. As candidates for PMS2 mutations, we selected seven patients whose colon tumors stained negative for PMS2 and positive for MLH1 by immunohistochemistry. After conversion to haploidy, truncating germline mutations of PMS2 were found in two patients (2192delTAACT and deletion of exon 8). These mutations abrogated PMS2 protein in germline cells by Western analysis. In two additional patients, PMS2 protein from one allele also was abrogated. Novel or previously described missense variants of PMS2 were detected, but their pathogenicity is undetermined. We detected and characterized a new transcript, PMS2CL, showing 98% sequence identity with exons 9 and 11-15 of PMS2 and emanating from a locus close to PMS2 in chromosome 7p. Its predicted protein product was not detected. Thus, in addition to several previously described PMS2-related genes resembling the 5' end of PMS2, at least one related gene resembles the 3' end of PMS2. In conclusion, both detectable and presently undefined germline mutations are deleterious and produce susceptibility to cancer by the two-hit mechanism. Paralogous genes interfere with mutation detection, resulting in underdiagnosis of PMS2 mutations. Mutation detection in PMS2 requires haploid DNA.
Collapse
Affiliation(s)
- Hidewaki Nakagawa
- Division of Human Cancer Genetics, Comprehensive Cancer Center, The Ohio State University, 420 West 12th Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Lei X, Zhu Y, Tomkinson A, Sun L. Measurement of DNA mismatch repair activity in live cells. Nucleic Acids Res 2004; 32:e100. [PMID: 15249596 PMCID: PMC484197 DOI: 10.1093/nar/gnh098] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Loss of DNA mismatch repair (MMR) function leads to the development and progression of certain cancers. Currently, assays for DNA MMR activity involve the use of cell extracts and are technically challenging and costly. Here, we report a rapid, less labor-intensive method that can quantitatively measure MMR activity in live cells. A G-G or T-G mismatch was introduced into the ATG start codon of the enhanced green fluorescent protein (EGFP) gene. Repair of the G-G or T-G mismatch to G-C or T-A, respectively, in the heteroduplex plasmid generates a functional EGFP gene expression. The heteroduplex plasmid and a similarly constructed homoduplex plasmid were transfected in parallel into the same cell line and the number of green cells counted by flow cytometry. Relative EGFP expression was calculated as the total fluorescence intensity of cells transfected with the heteroduplex construct divided by that of cells transfected with the homoduplex construct. We have tested several cell lines from both MMR-deficient and MMR-proficient groups using this method, including a colon carcinoma cell line HCT116 with defective hMLH1 gene and a derivative complemented by transient transfection with hMLH1 cDNA. Results show that MMR-proficient cells have significantly higher EGFP expression than MMR-deficient cells, and that transient expression of hMLH1 alone can elevate MMR activity in HCT116 cells. This method is potentially useful in comparing and monitoring MMR activity in live cells under various growth conditions.
Collapse
Affiliation(s)
- Xiufen Lei
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | | | | | | |
Collapse
|
80
|
Yao Y, Tao H, Kim JJ, Burkhead B, Carloni E, Gasbarrini A, Sepulveda AR. Alterations of DNA mismatch repair proteins and microsatellite instability levels in gastric cancer cell lines. J Transl Med 2004; 84:915-22. [PMID: 15133479 DOI: 10.1038/labinvest.3700117] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Alterations in DNA mismatch repair (MMR) proteins result in microsatellite instability (MSI), increased mutation accumulation at target genes and cancer development. About one-third of gastric cancers display high-level microsatellite instability (MSI-High) and low-level microsatellite instability (MSI-Low) is frequently detected. To determine whether variations in the levels of MMR proteins or mutations in the main DNA MMR genes are associated with MSI-Low and MSI-High in gastric cancer cell lines, the MSI status (MSI-High, MSI-Low or MS-Stable (MSS)) of 14 gastric cancer lines was determined using multiple clone analysis with a panel of five microsatellite markers. Protein levels of hMLH1, hMSH2, hMSH6, hPMS2 and hPMS1 were determined by Western blot. Sequence analysis of hMLH1 and hMSH2 was performed and the methylation status of the hMLH1 promoter was examined. The cell lines SNU1 and SNU638 showed MSI-High, decreased to essentially absent hMLH1 and hPMS2 and reduced hPMS1 and hMSH6 protein levels. The hMLH1 promoter region was hypermethylated in SNU638 cells. The MKN28, MKN87, KATOIII and SNU601 cell lines showed MSI-Low. The MMR protein levels of cells with MSI-Low status was similar to the levels detected in MSS cells. A marked decrease in the expression levels of MutL MMR proteins (hMLH1, hPMS2 and hPMS1) is associated with high levels of MSI mutations in gastric cancer cells. Gastric cancer cell lines with MSI-Low status do not show significant changes in the levels of the main DNA MMR proteins or mutations in the DNA mismatch repair genes hMSH2 and hMLH1. These well-characterized gastric cancer cell lines are a valuable resource to further our understanding of DNA MMR deficiency in cancer development, progression and prognosis.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Pathology, University of Pittsburgh Medical Center, 200 Lothrop Street, PUH-A610, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
81
|
Luo Y, Lin FT, Lin WC. ATM-mediated stabilization of hMutL DNA mismatch repair proteins augments p53 activation during DNA damage. Mol Cell Biol 2004; 24:6430-44. [PMID: 15226443 PMCID: PMC434232 DOI: 10.1128/mcb.24.14.6430-6444.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 02/18/2004] [Accepted: 04/26/2004] [Indexed: 11/20/2022] Open
Abstract
Human DNA mismatch repair (MMR) proteins correct DNA errors and regulate cellular response to DNA damage by signaling apoptosis. Mutations of MMR genes result in genomic instability and cancer development. Nonetheless, how MMR proteins are regulated has not yet been determined. While hMLH1, hPMS2, and hMLH3 are known to participate in MMR, the function of another member of MutL-related proteins, hPMS1, remains unclear. Here we show that DNA damage induces the accumulation of hPMS1, hPMS2, and hMLH1 through ataxia-telangiectasia-mutated (ATM)-mediated protein stabilization. The subcellular localization of PMS proteins is also regulated during DNA damage, which induces nuclear localization of hPMS1 and hPMS2 in an hMLH1-dependent manner. The induced levels of hMLH1 and hPMS1 are important for the augmentation of p53 phosphorylation by ATM in response to DNA damage. These observations identify hMutL proteins as regulators of p53 response and demonstrate for the first time a function of hMLH1-hPMS1 complex in controlling the DNA damage response.
Collapse
Affiliation(s)
- Yuhong Luo
- Department of Medicine, University of Alabama at Birmingham, 35294-3300, USA
| | | | | |
Collapse
|
82
|
Li GM, Presnell SR, Gu L. Folate deficiency, mismatch repair-dependent apoptosis, and human disease. J Nutr Biochem 2004; 14:568-75. [PMID: 14559107 DOI: 10.1016/s0955-2863(03)00115-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The vitamin that is most commonly deficient in the American diet is folate. Severe folate deficiency in humans is known to cause megaloblastic anemia and developmental defects, and is associated with an increased incidence of several forms of human cancer. Although the exact mechanisms by which this vitamin deficiency may cause these diseases are not known at the present time, recent work has shown that folate deficiency also causes genomic instability and programmed cell death (or apoptosis). Additionally, it is known that the DNA mismatch repair pathway mediates folate deficiency-induced apoptosis. This review will first describe work suggesting that folate deficiency causes genomic instability and apoptosis, then discuss possible mechanisms by which the mismatch repair pathway could trigger folate deficiency-induced apoptosis, which has either protective or destructive effects on tissue.
Collapse
Affiliation(s)
- Guo Min Li
- Department of Pathology and Laboratory Medicine, Markey Cancer Center, University of Kentucky Medical Center, Lexington, KY 40536, USA.
| | | | | |
Collapse
|
83
|
De Vos M, Hayward BE, Picton S, Sheridan E, Bonthron DT. Novel PMS2 pseudogenes can conceal recessive mutations causing a distinctive childhood cancer syndrome. Am J Hum Genet 2004; 74:954-64. [PMID: 15077197 PMCID: PMC1181988 DOI: 10.1086/420796] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Accepted: 02/10/2004] [Indexed: 12/29/2022] Open
Abstract
We investigated a family with an autosomal recessive syndrome of cafe-au-lait patches and childhood malignancy, notably supratentorial primitive neuroectodermal tumor. There was no cancer predisposition in heterozygotes; nor was there bowel cancer in any individual. However, autozygosity mapping indicated linkage to a region of 7p22 surrounding the PMS2 mismatch-repair gene. Sequencing of genomic PCR products initially failed to identify a PMS2 mutation. Genome searches then revealed a previously unrecognized PMS2 pseudogene, corresponding to exons 9-15, within a 100-kb inverted duplication situated 600 kb centromeric from PMS2 itself. This information allowed a redesigned sequence analysis, identifying a homozygous mutation (R802X) in PMS2 exon 14. Furthermore, in the family with Turcot syndrome, in which the first inherited PMS2 mutation (R134X) was described, a further truncating mutation was identified on the other allele, in exon 13. Further whole-genome analysis shows that the complexity of PMS2 pseudogenes is greater than appreciated and may have hindered previous mutation studies. Several previously reported PMS2 polymorphisms are, in fact, pseudogene sequence variants. Although PMS2 mutations may be rare in colorectal cancer, they appear, for the most part, to behave as recessive traits. For technical reasons, their involvement in childhood cancer, particularly in primitive neuroectodermal tumor, may have been underestimated.
Collapse
Affiliation(s)
- Michel De Vos
- Molecular Medicine Unit, University of Leeds, and Departments of Paediatric Oncology and Clinical Genetics, St. James’s University Hospital, Leeds, United Kingdom
| | - Bruce E. Hayward
- Molecular Medicine Unit, University of Leeds, and Departments of Paediatric Oncology and Clinical Genetics, St. James’s University Hospital, Leeds, United Kingdom
| | - Susan Picton
- Molecular Medicine Unit, University of Leeds, and Departments of Paediatric Oncology and Clinical Genetics, St. James’s University Hospital, Leeds, United Kingdom
| | - Eamonn Sheridan
- Molecular Medicine Unit, University of Leeds, and Departments of Paediatric Oncology and Clinical Genetics, St. James’s University Hospital, Leeds, United Kingdom
| | - David T. Bonthron
- Molecular Medicine Unit, University of Leeds, and Departments of Paediatric Oncology and Clinical Genetics, St. James’s University Hospital, Leeds, United Kingdom
| |
Collapse
|
84
|
Yuan F, Gu L, Guo S, Wang C, Li GM. Evidence for involvement of HMGB1 protein in human DNA mismatch repair. J Biol Chem 2004; 279:20935-40. [PMID: 15014079 DOI: 10.1074/jbc.m401931200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Defects in human DNA mismatch repair predispose to cancer, but many components of the pathway have not been identified. We report here the identification and characterization of a novel component required for mismatch repair in human cells. A 30-kDa protein was purified to homogeneity by virtue of its ability to complement a depleted HeLa extract in repair of mismatched heteroduplexes. The complementing activity was identified as HMGB1 (the high mobility group box 1 protein), a non-histone chromatin protein that facilitates protein-protein interactions and recognizes DNA damage. Evidence is also presented that HMGB1 physically interacts with MutSalpha and is required at a step prior to the excision of mispaired nucleotide in mismatch repair.
Collapse
Affiliation(s)
- Fenghua Yuan
- Department of Pathology and Laboratory Medicine, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
85
|
Bignami M, Casorelli I, Karran P. Mismatch repair and response to DNA-damaging antitumour therapies. Eur J Cancer 2003; 39:2142-9. [PMID: 14522371 DOI: 10.1016/s0959-8049(03)00569-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Most antitumour therapies damage tumour cell DNA either directly or indirectly. DNA damage responses, and particularly DNA repair, influence the outcome of therapy. Because DNA repair normally excises lethal DNA lesions, it is intuitive that efficient repair will contribute to intrinsic drug resistance. Indeed, in certain circumstances reduced levels of DNA nucleotide excision repair are associated with a good therapeutic outlook (Curr Biol 9 (1999) 273). A paradoxical relationship between DNA mismatch repair (MMR) and drug sensitivity has been revealed by model studies in cell lines. This suggests that connections between MMR and tumour therapy might be more complex. Here, we briefly review how MMR deficiency can affect drug resistance and the extent to which loss of MMR is a prognostic factor in certain cancer therapies. We also consider how the inverse relationship between MMR activity and drug resistance might influence the development of treatment-related malignancies which are increasingly linked to MMR defects.
Collapse
Affiliation(s)
- M Bignami
- Laboratorio di Tossicologia Comparata, Istituto Superiore di Sanita', Viale Regina Elena 299, 00161 Rome, Italy.
| | | | | |
Collapse
|
86
|
Cortellino S, Turner D, Masciullo V, Schepis F, Albino D, Daniel R, Skalka AM, Meropol NJ, Alberti C, Larue L, Bellacosa A. The base excision repair enzyme MED1 mediates DNA damage response to antitumor drugs and is associated with mismatch repair system integrity. Proc Natl Acad Sci U S A 2003; 100:15071-6. [PMID: 14614141 PMCID: PMC299910 DOI: 10.1073/pnas.2334585100] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cytotoxicity of methylating agents is caused mostly by methylation of the O6 position of guanine in DNA to form O6-methylguanine (O6-meG). O6-meG can direct misincorporation of thymine during replication, generating O6-meG:T mismatches. Recognition of these mispairs by the mismatch repair (MMR) system leads to cell cycle arrest and apoptosis. MMR also modulates sensitivity to other antitumor drugs. The base excision repair (BER) enzyme MED1 (also known as MBD4) interacts with the MMR protein MLH1. MED1 was found to exhibit thymine glycosylase activity on O6-meG:T mismatches. To examine the biological significance of this activity, we generated mice with targeted inactivation of the Med1 gene and prepared mouse embryonic fibroblasts (MEF) with different Med1 genotype. Unlike wild-type and heterozygous cultures, Med1-/- MEF failed to undergo G2-M cell cycle arrest and apoptosis upon treatment with the methylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Similar results were obtained with platinum compounds' 5-fluorouracil and irinotecan. As is the case with MMR-defective cells, resistance of Med1-/- MEF to MNNG was due to a tolerance mechanism because DNA damage accumulated but did not elicit checkpoint activation. Interestingly, steady state amounts of several MMR proteins are reduced in Med1-/- MEF, in comparison with Med1+/+ and Med1+/- MEF. We conclude that MED1 has an additional role in DNA damage response to antitumor agents and is associated with integrity of the MMR system. MED1 defects (much like MMR defects) may impair cell cycle arrest and apoptosis induced by DNA damage.
Collapse
Affiliation(s)
- Salvatore Cortellino
- Program in Human Genetics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Pedrazzi G, Bachrati CZ, Selak N, Studer I, Petkovic M, Hickson ID, Jiricny J, Stagljar I. The Bloom's syndrome helicase interacts directly with the human DNA mismatch repair protein hMSH6. Biol Chem 2003; 384:1155-64. [PMID: 12974384 DOI: 10.1515/bc.2003.128] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bloom's syndrome (BS) is a rare genetic disorder characterised by genome instability and cancer susceptibility. BLM, the BS gene product, belongs to the highly-conserved RecQ family of DNA helicases. Although the exact function of BLM in human cells remains to be defined, it seems likely that BLM eliminates some form of homologous recombination (HR) intermediate that arises during DNA replication. Similarly, the mismatch repair (MMR) system also plays a crucial role in the maintenance of genomic stability, by correcting DNA errors generated during DNA replication. Recent evidence implicates components of the MMR system also in HR repair. We now show that hMSH6, a component of the heterodimeric mismatch recognition complex hMSH2/hMSH6 (hMutS(alpha)), interacts with the BLM protein both in vivo and in vitro. In agreement with these findings, BLM and hMSH6 co-localise to discrete nuclear foci following exposure of the cells to ionising radiation. However, the purified recombinant MutS(alpha) complex does not affect the helicase activity of BLM in vitro. As BLM has previously been shown to interact with the hMLH1 component of the hMLH1/hPMS2 (hMutL(alpha)) heterodimeric MMR complex, our present findings further strengthen the link between BLM and processes involving correction of DNA mismatches, such as in the regulation of the fidelity of homologous recombination events.
Collapse
Affiliation(s)
- Graziella Pedrazzi
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Raevaara TE, Vaccaro C, Abdel-Rahman WM, Mocetti E, Bala S, Lönnqvist KE, Kariola R, Lynch HT, Peltomäki P, Nyström-Lahti M. Pathogenicity of the hereditary colorectal cancer mutation hMLH1 del616 linked to shortage of the functional protein. Gastroenterology 2003; 125:501-9. [PMID: 12891553 DOI: 10.1016/s0016-5085(03)00905-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Hereditary nonpolyposis colorectal cancer is associated with mismatch repair deficiency. Most predisposing mutations prevent the production of functional mismatch repair protein. Thus, when the wild-type copy is also inactivated, the cell becomes mismatch repair deficient, and this leads to a high degree of microsatellite instability in tumors. However, tumors linked to nontruncating mutations may display positive or partly positive immunohistochemical staining of the mutated protein and low or atypical microsatellite instability status, which suggests impaired functional activity but not a total lack of mismatch repair. We found human mutL homology (hMLH) 1 del616, one of the most widespread recurring mutations in hereditary nonpolyposis colorectal cancer, segregating in a large hereditary nonpolyposis colorectal cancer family. Because the predicted coding change is a deletion of only 1 amino acid, the pathogenicity of the mutation was evaluated. METHODS Many analyses were performed to assess the pathogenicity of hMLH1 del616 and to study the expression and function of the mutated messenger RNA and protein. RESULTS Genetic and immunohistochemical evidence supported hMLH1-linked cancer predisposition in this family. Microsatellite instability varied from low to high, and the hMLH1 protein was lost in 2 tumors but was partly detectable in 1 tumor. Whereas similar optimal amounts of mutated hMLH1 del616 and wild-type hMLH1 proteins were equally functional in an in vitro mismatch repair assay, the amount of in vivo-expressed hMLH1 del616 was much lower than the amount of wild-type protein; this suggests that the deletion imparts instability to the mutant protein. CONCLUSIONS Our results suggest that the pathogenicity of hMLH1 del616 is not linked to nonfunctionality, but to shortage of the functional protein.
Collapse
Affiliation(s)
- Tiina E Raevaara
- Division of Genetics, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Plotz G, Raedle J, Brieger A, Trojan J, Zeuzem S. N-terminus of hMLH1 confers interaction of hMutLalpha and hMutLbeta with hMutSalpha. Nucleic Acids Res 2003; 31:3217-26. [PMID: 12799449 PMCID: PMC162253 DOI: 10.1093/nar/gkg420] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mismatch repair is a highly conserved system that ensures replication fidelity by repairing mispairs after DNA synthesis. In humans, the two protein heterodimers hMutSalpha (hMSH2-hMSH6) and hMutLalpha (hMLH1-hPMS2) constitute the centre of the repair reaction. After recognising a DNA replication error, hMutSalpha recruits hMutLalpha, which then is thought to transduce the repair signal to the excision machinery. We have expressed an ATPase mutant of hMutLalpha as well as its individual subunits hMLH1 and hPMS2 and fragments of hMLH1, followed by examination of their interaction properties with hMutSalpha using a novel interaction assay. We show that, although the interaction requires ATP, hMutLalpha does not need to hydrolyse this nucleotide to join hMutSalpha on DNA, suggesting that ATP hydrolysis by hMutLalpha happens downstream of complex formation. The analysis of the individual subunits of hMutLalpha demonstrated that the hMutSalpha-hMutLalpha interaction is predominantly conferred by hMLH1. Further experiments revealed that only the N-terminus of hMLH1 confers this interaction. In contrast, only the C-terminus stabilised and co-immunoprecipitated hPMS2 when both proteins were co-expressed in 293T cells, indicating that dimerisation and stabilisation are mediated by the C-terminal part of hMLH1. We also examined another human homologue of bacterial MutL, hMutLbeta (hMLH1-hPMS1). We show that hMutLbeta interacts as efficiently with hMutSalpha as hMutLalpha, and that it predominantly binds to hMutSalpha via hMLH1 as well.
Collapse
Affiliation(s)
- Guido Plotz
- 2nd Department of Medicine, University of the Saarland, Kirrberger Strasse, D-66421 Homburg/Saar, Germany
| | | | | | | | | |
Collapse
|
90
|
Cejka P, Stojic L, Mojas N, Russell AM, Heinimann K, Cannavó E, di Pietro M, Marra G, Jiricny J. Methylation-induced G(2)/M arrest requires a full complement of the mismatch repair protein hMLH1. EMBO J 2003; 22:2245-54. [PMID: 12727890 PMCID: PMC156088 DOI: 10.1093/emboj/cdg216] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The mismatch repair (MMR) gene hMLH1 is mutated in approximately 50% of hereditary non-polyposis colon cancers and transcriptionally silenced in approximately 25% of sporadic tumours of the right colon. Cells lacking hMLH1 display microsatellite instability and resistance to killing by methylating agents. In an attempt to study the phenotypic effects of hMLH1 downregulation in greater detail, we designed an isogenic system, in which hMLH1 expression is regulated by doxycycline. We now report that human embryonic kidney 293T cells expressing high amounts of hMLH1 were MMR-proficient and arrested at the G(2)/M cell cycle checkpoint following treatment with the DNA methylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), while cells not expressing hMLH1 displayed a MMR defect and failed to arrest upon MNNG treatment. Interestingly, MMR proficiency was restored even at low hMLH1 concentrations, while checkpoint activation required a full complement of hMLH1. In the MMR-proficient cells, activation of the MNNG-induced G(2)/M checkpoint was accompanied by phosphorylation of p53, but the cell death pathway was p53 independent, as the latter polypeptide is functionally inactivated in these cells by SV40 large T antigen.
Collapse
Affiliation(s)
- Petr Cejka
- Institute of Molecular Cancer Research, University of Zürich, August Forel-Strasse 7, CH-8008 Zürich Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Hall MC, Shcherbakova PV, Fortune JM, Borchers CH, Dial JM, Tomer KB, Kunkel TA. DNA binding by yeast Mlh1 and Pms1: implications for DNA mismatch repair. Nucleic Acids Res 2003; 31:2025-34. [PMID: 12682353 PMCID: PMC153752 DOI: 10.1093/nar/gkg324] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The yeast Mlh1-Pms1 heterodimer required for mismatch repair (MMR) binds to DNA. Here we map DNA binding to N-terminal fragments of Mlh1 and Pms1. We demonstrate that Mlh1 and Pms1 N-terminal domains (NTDs) independently bind to double-stranded and single-stranded DNA, in the absence of dimerization and with different affinities. Full-length Mlh1p alone, which can homodimerize, also binds to DNA. Substituting conserved positively charged amino acids in Mlh1 produces mutator phenotypes in a haploid yeast strain characteristic of reduced MMR. These substitutions strongly reduce DNA binding by the Mlh1 NTD and, to a lesser extent, they also reduce DNA binding by full-length Mlh1 and the Mlh1-Pms1 heterodimer. Replacement of a homologous Pms1 residue has a much smaller effect on mutation rate and does not reduce DNA binding. The results demonstrate that NTDs of yeast Mlh1 and Pms1 contain independent DNA binding sites and they suggest that the C-terminal region of Mlh1p may also contribute to DNA binding. The differential mutator effects and binding properties observed here further suggest that Mlh1 and Pms1 differ in their interactions with DNA. Finally, the results are consistent with the hypothesis that DNA binding by Mlh1 is important for MMR.
Collapse
Affiliation(s)
- Mark C Hall
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | |
Collapse
|
92
|
Shimodaira H, Yoshioka-Yamashita A, Kolodner RD, Wang JYJ. Interaction of mismatch repair protein PMS2 and the p53-related transcription factor p73 in apoptosis response to cisplatin. Proc Natl Acad Sci U S A 2003; 100:2420-5. [PMID: 12601175 PMCID: PMC151356 DOI: 10.1073/pnas.0438031100] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mismatch repair (MMR) proteins contribute to genome integrity by correcting replication errors. In higher eukaryotes, MMR proteins also regulate the cellular response to DNA lesions such as oxidized, alkylated, or crosslinked bases. Previous studies have linked MMR proteins to the activation of apoptosis through p53-dependent and p53-independent mechanisms. MMR-deficient cells exhibit variable defects in the induction of p53 and its related p73, which are activators of apoptosis. However, the specific role of each MMR protein in the regulation of apoptosis has not been determined. Here, we describe an interaction between PMS2, an MMR protein, and p73. This interaction causes the stabilization of p73 and the redistribution of PMS2 to the nuclear compartment. Exposure to cisplatin enhances the association between PMS2 and p73. Moreover, stimulation of the p73 proapoptotic function by cisplatin requires PMS2. These results suggest that PMS2 contributes to genome integrity not only through DNA repair but also by enhancing DNA damage-induced apoptosis.
Collapse
Affiliation(s)
- Hideki Shimodaira
- Ludwig Institute for Cancer Research, University of California at San Diego, Bonner Hall 3326, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
93
|
Mac Partlin M, Homer E, Robinson H, McCormick CJ, Crouch DH, Durant ST, Matheson EC, Hall AG, Gillespie DAF, Brown R. Interactions of the DNA mismatch repair proteins MLH1 and MSH2 with c-MYC and MAX. Oncogene 2003; 22:819-25. [PMID: 12584560 DOI: 10.1038/sj.onc.1206252] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
MSH2 and MLH1 have a central role in correcting mismatches in DNA occurring during DNA replication and have been implicated in the engagement of apoptosis induced by a number of cytotoxic anticancer agents. The function of MLH1 is not clearly defined, although it is required for mismatch repair (MMR) and engagement of apoptosis after certain types of DNA damage. In order to identify other partners of MLH1 that may be involved in signalling MMR or apoptosis, we used human MLH1 in yeast two-hybrid screens of normal human breast and ovarian cDNA libraries. As well as known partners of MLH1 such as PMS1, MLH3 and MBD4, we identified the carboxy terminus of the human c-MYC proto-oncogene as an interacting sequence. We demonstrate, both in vitro by yeast two-hybrid and GST-fusion pull-down experiments, as well as in vivo by coimmunoprecipitation from human tumour cell extracts, that MLH1 interacts with the c-MYC protein. We further demonstrate that the heterodimeric partner of c-MYC, MAX, interacts with a different MMR protein, MSH2, both in vitro and in vivo. Using an inducible c-MYC-ER fusion gene, we show that elevated c-MYC expression leads to an increased HGPRT mutation rate of Rat1 cells and an increase in the number of frameshift mutants at the HGPRT locus. The effect on HGPRT mutation rate is small (2-3-fold), but is consistent with deregulated c-MYC expression partially inhibiting MMR activity.
Collapse
|
94
|
Abstract
Defects in DNA-repair pathways lead to an accumulation of mutations in genomic DNA that result from non-repair or mis-repair of modifications introduced into the DNA by endogenous or exogenous agents or by the malfunction of DNA metabolic pathways. Until recently, only two repair pathways, postreplicative mismatch repair and nucleotide excision repair, have been linked to cancer in mammals, but these have been joined in recent months also by the damage-reversal and base-excision-repair processes, which have been shown to be inactivated, either through mutation or epigenetically, in human cancer.
Collapse
Affiliation(s)
- Josef Jiricny
- Institute of Molecular Cancer Research, University of Zürich, Switzerland.
| | | |
Collapse
|
95
|
Shin CY, Turker MS. A:T --> G:C base pair substitutions occur at a higher rate than other substitution events in Pms2 deficient mouse cells. DNA Repair (Amst) 2002; 1:995-1001. [PMID: 12531009 DOI: 10.1016/s1568-7864(02)00149-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The mismatch repair pathway involves multiple proteins that are required to correct DNA polymerase generated mismatches before they become mutations. It has been shown recently, that the predominant base-pair substitution events leading to loss of endogenous Aprt activity in Pms2 null mouse cells are A:T --> G:C mutations (Oncogene 21 (2002) 1768, Oncogene 21 (2002) 2840). To determine if this observation could be explained by an increased rate of A:T --> G:C mutations relative to other base-pair substitutions, we developed a reversion assay to examine G:C --> A:T, C:G --> A:T, and A:T --> G:C mutations within mouse Aprt in a Pms2 null mouse kidney cell line. The results demonstrated a 6-50-fold increase in the rate of the A:T --> G:C mutations relative to the other base-pair substitutions. Additional work demonstrated that growth of the Pms2 null cells in antioxidant containing medium reduced the rate of the A:T --> G:C mutations. The results are discussed with regards to the role of mismatch repair proteins in preventing base-pair substitutions, including those induced by oxidative stress.
Collapse
Affiliation(s)
- Chi Y Shin
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | |
Collapse
|
96
|
Abstract
Cellular DNA continuously incurs damage and a range of damage response mechanisms function to maintain genomic integrity in the face of this onslaught. During the development of the immune response, the cell utilises three defined processes, V(D)J recombination, class switch recombination and somatic hypermutation, to create genetic diversity in developing T and B cells. Curiously, the damage response mechanisms employed to maintain genomic stability in somatic cells have been exploited and adapted to help generate diversity during immune development. As a consequence of this overlap, there is mounting evidence that disorders attributable to impaired damage response mechanisms display associated immunodeficiency. Since double strand breaks (DSB) are created during at least two of the mechanisms used to create immunoglobulin diversity, namely V(D)J recombination and class switch recombination, it is not surprising that disorders associated with defects in the response to double strand breaks are those most associated with immunodeficiency. Here, we review the steps involved in the generation of genetic diversity during immune development with a focus on the damage response mechanisms employed and then consider human immunodeficiency disorders associated with impaired damage response mechanisms.
Collapse
Affiliation(s)
- Mark O'Driscoll
- Genome Damage and Stability Centre, University of Sussex, East Sussex, BN1 9RR, UK
| | | |
Collapse
|
97
|
Hersh MN, Stambrook PJ, Stringer JR. Visualization of mosaicism in tissues of normal and mismatch-repair-deficient mice carrying a microsatellite-containing transgene. Mutat Res 2002; 505:51-62. [PMID: 12175905 DOI: 10.1016/s0027-5107(02)00120-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To determine the frequency of mutation in different cell types of mammals, transgenic mice that allow mutant cells to be visualized in situ were used. These mice carry a defective allele of the human placental alkaline phosphatase (PLAP) gene. The allele does not produce enzyme because the reading frame is shifted by an insertion of 7 G:C basepairs. The insertion is adjacent to four existing G:C basepairs, so the allele has a tract of 11Gs. The G11 PLAP allele was studied in wildtype mice and in mice deficient in mismatch-repair (MMR) due to lack of either Pms2 or Mlh1. PLAP(+) cells were counted in brain, heart, kidney, and liver. In wildtype mice, there was an average of between 5 and 30 PLAP(+) events per million cells. No cells with alkaline phosphatase activity were detected in tissues from mice lacking the PLAP gene. In MMR-deficient mice, the number of PLAP(+) allele was increased by at least three-order of magnitude in brain, heart and kidney, but <10-fold in liver. These data show that MMR is vital to maintaining repeat stability in brain, heart and kidney cells. The reason for the different results in the liver is not clear. Cells in the liver were shown to be capable of expressing of PLAP enzyme and PLAP mRNA was present in this organ.
Collapse
Affiliation(s)
- Megan N Hersh
- Department of Molecular Genetics, Biochemistry and Microbiology, College of Medicine, University of Cincinnati, OH 45267-0524, USA
| | | | | |
Collapse
|
98
|
Kim JJ, Tao H, Carloni E, Leung WK, Graham DY, Sepulveda AR. Helicobacter pylori impairs DNA mismatch repair in gastric epithelial cells. Gastroenterology 2002; 123:542-53. [PMID: 12145807 DOI: 10.1053/gast.2002.34751] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Helicobacter pylori infection is a major gastric cancer risk factor. H. pylori gastritis occurs more frequently in individuals with microsatellite instability-positive than those with microsatellite instability-negative gastric cancers, raising the possibility that H. pylori infection affects DNA mismatch repair (MMR). The aim of this study was to determine the effect of H. pylori on the expression of DNA MMR proteins and RNA in gastric epithelial cells. METHODS Gastric cancer cell lines were cocultured with H. pylori, bacterial extracts, and Campylobacter jejuni or Escherichia coli. MutS (hMSH2 and hMSH6) and MutL (hMLH1, hPMS2, and hPMS1) DNA MMR protein and RNA levels were determined. RESULTS All cell lines examined showed decreased levels of MutS and MutL DNA MMR proteins in a dose-dependent manner after coculture with H. pylori strains. The reduction in DNA MMR protein levels was caused by heat-sensitive H. pylori products. The levels of DNA MMR proteins were affected by C. jejuni but not by E. coli. RNA levels of hMSH2 and hMSH6 were also reduced after exposure to H. pylori. CONCLUSIONS H. pylori infection of gastric epithelial cells leads to a decrease in DNA MMR proteins that is at least in part related to an H. pylori-induced decrease in messenger RNA levels of repair genes. These data suggest that H. pylori infection might lead to a deficiency of DNA MMR in gastric epithelial cells that may increase the risk of mutation accumulation in gastric mucosa cells and the risk of gastric cancer during chronic H. pylori infection.
Collapse
Affiliation(s)
- Jae J Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
99
|
Chang CL, Marra G, Chauhan DP, Ha HT, Chang DK, Ricciardiello L, Randolph A, Carethers JM, Boland CR. Oxidative stress inactivates the human DNA mismatch repair system. Am J Physiol Cell Physiol 2002; 283:C148-54. [PMID: 12055083 DOI: 10.1152/ajpcell.00422.2001] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the human DNA mismatch repair (MMR) system, hMSH2 forms the hMutSalpha and hMutSbeta complexes with hMSH6 and hMSH3, respectively, whereas hMLH1 and hPMS2 form the hMutLalpha heterodimer. These complexes, together with other components in the MMR system, correct single-base mismatches and small insertion/deletion loops that occur during DNA replication. Microsatellite instability (MSI) occurs when the loops in DNA microsatellites are not corrected because of a malfunctioning MMR system. Low-frequency MSI (MSI-L) is seen in some chronically inflamed tissues in the absence of genetic inactivation of the MMR system. We hypothesize that oxidative stress associated with chronic inflammation might damage protein components of the MMR system, leading to its functional inactivation. In this study, we demonstrate that noncytotoxic levels of H2O2 inactivate both single-base mismatch and loop repair activities of the MMR system in a dose-dependent fashion. On the basis of in vitro complementation assays using recombinant MMR proteins, we show that this inactivation is most likely due to oxidative damage to hMutSalpha, hMutSbeta, and hMutLalpha protein complexes. We speculate that inactivation of the MMR function in response to oxidative stress may be responsible for the MSI-L seen in nonneoplastic and cancer tissues associated with chronic inflammation.
Collapse
Affiliation(s)
- Christina L Chang
- Department of Medicine and Cancer Center; University of California at San Diego, La Jolla, California 92093 - 0688, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Gu L, Wu J, Zhu BB, Li GM. Deficiency of a novel mismatch repair activity in a bladder tumor cell line. Nucleic Acids Res 2002; 30:2758-63. [PMID: 12087158 PMCID: PMC117065 DOI: 10.1093/nar/gkf410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We demonstrate here that a cell line derived from a bladder cancer is defective in strand-specific mismatch repair. The mismatch repair deficiency in this cell line is associated with microsatellite instability and blocks an early step in the repair pathway. Since the addition of a known mismatch repair component hMutSalpha, hMutSbeta, hMutLalpha, replication protein A or proliferating cellular nuclear antigen could not restore mismatch repair to the mutant extract, the bladder tumor cell line is likely to be defective in an uncharacterized repair component. However, the repair in the mutant extract could be complemented by a partially purified activity derived from HeLa nuclear extracts. Therefore, in addition to revealing that a loss of mismatch repair function is associated with bladder cancer, this study provides information implicating a new mismatch repair activity.
Collapse
Affiliation(s)
- Liya Gu
- Department of Pathology and Laboratory Medicine, Suite MS 117, Markey Cancer Center, University of Kentucky Medical Center, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|