51
|
Yanik SC, Baker AH, Mann KK, Schlezinger JJ. Organotins are potent activators of PPARγ and adipocyte differentiation in bone marrow multipotent mesenchymal stromal cells. Toxicol Sci 2011; 122:476-88. [PMID: 21622945 DOI: 10.1093/toxsci/kfr140] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adipocyte differentiation in bone marrow is potentially deleterious to both bone integrity and lymphopoiesis. Here, we examine the hypothesis that organotins, common environmental contaminants that are dual ligands for peroxisome proliferator-activated receptor (PPAR) γ and its heterodimerization partner retinoid X receptor (RXR), are potent activators of bone marrow adipogenesis. A C57Bl/6-derived bone marrow multipotent mesenchymal stromal cell (MSC) line, BMS2, was treated with rosiglitazone, a PPARγ agonist, bexarotene, an RXR agonist, or a series of organotins. Rosiglitazone and bexarotene potently activated adipocyte differentiation; however, bexarotene had a maximal efficacy of only 20% of that induced by rosiglitazone. Organotins (tributyltin [TBT], triphenyltin, and dibutyltin) also stimulated adipocyte differentiation (EC₅₀ of 10-20 nM) but with submaximal, structure-dependent efficacy. In coexposures, both bexarotene and TBT enhanced rosiglitazone-induced adipogenesis. To investigate the contribution of PPARγ to TBT-induced adipogenesis, we examined expression of PPARγ2, as well as its transcriptional target FABP4. TBT-induced PPARγ2 and FABP4 protein expression with an efficacy intermediate between rosiglitazone and bexarotene, similar to lipid accumulation. A PPARγ antagonist and PPARγ-specific small hairpin RNA suppressed TBT-induced differentiation, although to a lesser extent than rosiglitazone-induced differentiation, suggesting that TBT may engage alternate pathways. TBT and bexarotene, but not rosiglitazone, also induced the expression of TGM2 (an RXR target) and ABCA1 (a liver X receptor target). The results show that an environmental contaminant, acting with the same potency as a therapeutic drug, induces PPARγ-dependent adipocyte differentiation in bone marrow MSCs. Activation of multiple nuclear receptor pathways by organotins may have significant implications for bone physiology.
Collapse
Affiliation(s)
- Susan C Yanik
- Department of Environmental Health, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
52
|
Campbell SE, Rudder B, Phillips RB, Whaley SG, Stimmel JB, Leesnitzer LM, Lightner J, Dessus-Babus S, Duffourc M, Stone WL, Menter DG, Newman RA, Yang P, Aggarwal BB, Krishnan K. γ-Tocotrienol induces growth arrest through a novel pathway with TGFβ2 in prostate cancer. Free Radic Biol Med 2011; 50:1344-54. [PMID: 21335085 DOI: 10.1016/j.freeradbiomed.2011.02.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 02/07/2011] [Accepted: 02/09/2011] [Indexed: 12/24/2022]
Abstract
Regions along the Mediterranean and in southern Asia have lower prostate cancer incidence compared to the rest of the world. It has been hypothesized that one of the potential contributing factors for this low incidence includes a higher intake of tocotrienols. Here we examine the potential of γ-tocotrienol (GT3) to reduce prostate cancer proliferation and focus on elucidating pathways by which GT3 could exert a growth-inhibitory effect on prostate cancer cells. We find that the γ and δ isoforms of tocotrienol are more effective at inhibiting the growth of prostate cancer cell lines (PC-3 and LNCaP) compared with the γ and δ forms of tocopherol. Knockout of PPAR-γ and GT3 treatment show inhibition of prostate cancer cell growth, through a partially PPAR-γ-dependent mechanism. GT3 treatment increases the levels of the 15-lipoxygenase-2 enzyme, which is responsible for the conversion of arachidonic acid to the PPAR-γ-activating ligand 15-S-hydroxyeicosatrienoic acid. In addition, the latent precursor and the mature forms of TGFβ2 are down-regulated after treatment with GT3, with concomitant disruptions in TGFβ receptor I, SMAD-2, p38, and NF-κB signaling.
Collapse
Affiliation(s)
- Sharon E Campbell
- Department of Biochemistry and Molecular Biology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Hirsch J, Johnson CL, Nelius T, Kennedy R, Riese WD, Filleur S. PEDF inhibits IL8 production in prostate cancer cells through PEDF receptor/phospholipase A2 and regulation of NFκB and PPARγ. Cytokine 2011; 55:202-10. [PMID: 21570865 DOI: 10.1016/j.cyto.2011.04.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 03/02/2011] [Accepted: 04/15/2011] [Indexed: 11/19/2022]
Abstract
Interleukin-8 (IL8/CXCL8) has been described as a key effector in prostate cancer progression and resistance to standard chemotherapeutic drugs. In the present study, we investigated the effect of the natural, angio-inhibitory and anti-tumoral Pigment Epithelium-Derived Factor (PEDF) on the expression of IL8 cytokine by prostate cancer cells. Using a cytokine antibody array and ELISA, in addition to IL8 quantitative RT PCR, we showed that PEDF inhibits the production of IL8 in human hormone-refractory prostate cancer cells, and delays the growth of these cells in vitro. IL8 reduction was mimicked in cancer cells treated with PPARγ agonist and NFκB-specific inhibitors. Accordingly, PPARγ expression increased in response to PEDF, whereas RelA/p65 expression and nuclear localization, and NFκB transcriptional activity decreased. NFκB deactivation was reversed by the PPARγ antagonist GW9662 and PPARγ (Leu(468)/Glu(471)) dominant negative suggesting a PPARγ-dependent process. We also investigated PEDF Receptor/PLA2 as key player in this pathway by small interference RNA. PEDFR knock down in prostate cancer cells reversed PEDF-induced PPARγ up-regulation, and NFκB and IL8 inhibition compared to non-targeting control siRNA. We conclude that by binding to PEDFR, PEDF up-regulates PPARγ, leading subsequently to suppressed NFκB-mediated transcriptional activation, reduced production of IL8 and limited proliferation of prostate cancer cells. These results reinforce PEDF's therapeutic potential and imply that blocking IL8 could represent a novel alternative for prostate cancer treatment.
Collapse
Affiliation(s)
- Jennifer Hirsch
- Department of Urology, Texas Tech University-Health Sciences Center, Lubbock, TX 79430, USA.
| | | | | | | | | | | |
Collapse
|
54
|
Souza PCT, Barra GB, Velasco LFR, Ribeiro ICJ, Simeoni LA, Togashi M, Webb P, Neves FAR, Skaf MS, Martínez L, Polikarpov I. Helix 12 dynamics and thyroid hormone receptor activity: experimental and molecular dynamics studies of Ile280 mutants. J Mol Biol 2011; 412:882-93. [PMID: 21530542 DOI: 10.1016/j.jmb.2011.04.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 04/06/2011] [Accepted: 04/06/2011] [Indexed: 01/28/2023]
Abstract
Nuclear hormone receptors (NRs) form a family of transcription factors that mediate cellular responses initiated by hormone binding. It is generally recognized that the structure and dynamics of the C-terminal helix 12 (H12) of NRs' ligand binding domain (LBD) are fundamental to the recognition of coactivators and corepressors that modulate receptor function. Here we study the role of three mutations in the I280 residue of H12 of thyroid hormone receptors using site-directed mutagenesis, functional assays, and molecular dynamics simulations. Although residues at position 280 do not interact with coactivators or with the ligand, we show that its mutations can selectively block coactivator and corepressor binding, and affect hormone binding affinity differently. Molecular dynamics simulations suggest that ligand affinity is reduced by indirectly displacing the ligand in the binding pocket, facilitating water penetration and ligand destabilization. Mutations I280R and I280K link H12 to the LBD by forming salt bridges with E457 in H12, stabilizing H12 in a conformation that blocks both corepressor and coactivator recruitment. The I280M mutation, in turn, blocks corepressor binding, but appears to enhance coactivator affinity, suggesting stabilization of H12 in agonist conformation.
Collapse
Affiliation(s)
- Paulo C T Souza
- Institute of Chemistry, State University of Campinas, Campinas, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Specific thiazolidinediones inhibit ovarian cancer cell line proliferation and cause cell cycle arrest in a PPARγ independent manner. PLoS One 2011; 6:e16179. [PMID: 21283708 PMCID: PMC3025024 DOI: 10.1371/journal.pone.0016179] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 12/14/2010] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Peroxisome Proliferator Activated Receptor gamma (PPARγ) agonists, such as the thiazolinediones (TZDs), have been studied for their potential use as cancer therapeutic agents. We investigated the effect of four TZDs--Rosiglitazone (Rosi), Ciglitazone (CGZ), Troglitazone (TGZ), and Pioglitazone (Pio)--on ovarian cancer cell proliferation, PPARγ expression and PPAR luciferase reporter activity. We explored whether TZDs act in a PPARγ dependent or independent manner by utilizing molecular approaches to inhibit or overexpress PPARγ activity. PRINCIPAL FINDINGS Treatment with CGZ or TGZ for 24 hours decreased proliferation in three ovarian cancer cell lines, Ovcar3, CaOv3, and Skov3, whereas Rosi and Pio had no effect. This decrease in Ovcar3 cell proliferation was due to a higher fraction of cells in the G(0)/G(1) stage of the cell cycle. CGZ and TGZ treatment increased apoptosis after 4 hours of treatment but not after 8 or 12 hours. Treatment with TGZ or CGZ increased PPARγ mRNA expression in Ovcar3 cells; however, protein levels were unchanged. Surprisingly, luciferase promoter assays revealed that none of the TZDs increased PPARγ activity. Overexpression of wild type PPARγ increased reporter activity. This was further augmented by TGZ, Rosi, and Pio indicating that these cells have the endogenous capacity to mediate PPARγ transactivation. To determine whether PPARγ mediates the TZD-induced decrease in proliferation, cells were treated with CGZ or TGZ in the absence or presence of a dominant negative (DN) or wild type overexpression PPARγ construct. Neither vector changed the TZD-mediated cell proliferation suggesting this effect of TZDs on ovarian cancer cells may be PPARγ independent. CONCLUSIONS CGZ and TGZ cause a decrease in ovarian cancer cell proliferation that is PPARγ independent. This concept is supported by the finding that a DN or overexpression of the wild type PPARγ did not affect the changes in cell proliferation and cell cycle.
Collapse
|
56
|
PPARγ mediates innate immunity by regulating the 1α,25-dihydroxyvitamin D3 induced hBD-3 and cathelicidin in human keratinocytes. J Dermatol Sci 2010; 60:179-86. [PMID: 20970965 DOI: 10.1016/j.jdermsci.2010.09.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 09/17/2010] [Accepted: 09/21/2010] [Indexed: 01/17/2023]
Abstract
BACKGROUND Production of antimicrobial peptides (AMPs) is the primary mechanism by which skin innate immunity protects against infection. Hormonally active vitamin D3 (1α,25-dihydroxyvitamin D3; 1,25D₃) is a vital regulator of skin innate immunity, and has been shown to increase the expression and function of AMPs. OBJECTIVE PPARγ is a ligand-activated nuclear receptor and plays a role in keratinocyte differentiation and cutaneous homeostasis. In this study, we investigate whether 1,25D₃-activated PPARγ signaling regulates AMP expression in keratinocytes. METHODS Subconfluent keratinocytes were treated with 1,25D₃ for the indicated times. The mRNA and protein levels of AMPs were detected by RT-PCR and Western blot, and the DNA binding activation of PPARγ, VDRE and AP-1 was investigated by EMSA. To examine the role of PPARγ, the recombinant adenovirus carrying a dominant-negative form of PPARγ (dn-PPARγ) was constructed and transfected into keratinocytes. RESULTS We show here that 1,25D₃ significantly enhances hBD-3 and cathelicidin expression in keratinocytes. Expression of dn-PPARγ did not affect binding to the vitamin D-responsive element (VDRE), which is crucial for cathelicidin induction by VD3; however, it did decrease 1,25D₃ induction of both hBD-3 and cathelicidin. Inhibition of the p38, ERK, and JNK signaling pathways blocked hBD-3 expression, whereas only p38 inhibition suppressed cathelicidin induction. dn-PPARγ had no effect on ERK and JNK activity, but inhibited p38 phosphorylation and suppressed 1,25D₃-induced AP-1 activation via effects on Fra1 and c-Fos proteins. CONCLUSIONS In conclusion, PPARγ regulates the 1,25D₃-induced hBD-3 and cathelicidin expression in keratinocytes through the regulation of AP-1 and p38 activity.
Collapse
|
57
|
Zhu NL, Wang J, Tsukamoto H. The Necdin-Wnt pathway causes epigenetic peroxisome proliferator-activated receptor gamma repression in hepatic stellate cells. J Biol Chem 2010; 285:30463-71. [PMID: 20663865 DOI: 10.1074/jbc.m110.156703] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatic stellate cells (HSCs), vitamin A-storing liver pericytes, undergo myofibroblastic trans-differentiation or "activation" to participate in liver wound healing. This cellular process involves loss of regulation by adipogenic transcription factors such as peroxisome proliferator-activated receptor γ (PPARγ). Necdin, a melanoma antigen family protein, promotes neuronal and myogenic differentiation while inhibiting adipogenesis. The present study demonstrates that necdin is selectively expressed in HSCs among different liver cell types and induced during their activation in vitro and in vivo. Silencing of necdin with adenovirally expressed shRNA, reverses activated HSCs to quiescent cells in a manner dependent on PPARγ and suppressed canonical Wnt signaling. Promoter analysis, site-directed mutagenesis, and chromatin immunoprecipitation demonstrate that Wnt10b, a canonical Wnt induced in activated HSCs, is a direct target of necdin. Necdin silencing abrogates three epigenetic signatures implicated in repression of PPARγ: increased MeCP2 (methyl CpG binding protein 2) and HP-1α co-repressor recruitments to Pparγ promoter and enhanced H3K27 dimethylation at the exon 5 locus, again in a manner dependent on suppressed canonical Wnt. These epigenetic effects are reproduced by antagonism of canonical Wnt signaling with Dikkopf-1. Our results demonstrate a novel necdin-Wnt pathway, which serves to mediate antiadipogenic HSC trans-differentiation via epigenetic repression of PPARγ.
Collapse
Affiliation(s)
- Nian-Ling Zhu
- Department of Pathology, Southern California Research Center for ALPD and Cirrhosis, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | |
Collapse
|
58
|
A unique secondary-structure switch controls constitutive gene repression by retinoic acid receptor. Nat Struct Mol Biol 2010; 17:801-7. [PMID: 20543827 DOI: 10.1038/nsmb.1855] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 03/25/2010] [Indexed: 12/13/2022]
Abstract
In the absence of ligand, some nuclear receptors, including retinoic acid receptor (RAR), act as transcriptional repressors by recruiting corepressor complexes to target genes. This constitutive repression is crucial in metazoan reproduction, development and homeostasis. However, its specific molecular determinants had remained obscure. Using structural, biochemical and cell-based assays, we show that the basal repressive activity of RAR is conferred by an extended beta-strand that forms an antiparallel beta-sheet with specific corepressor residues. Agonist binding induces a beta-strand-to-alpha-helix transition that allows for helix H11 formation, which in turn provokes corepressor release, repositioning of helix H12 and coactivator recruitment. Several lines of evidence suggest that this structural switch could be implicated in the intrinsic repressor function of other nuclear receptors. Finally, we report on the molecular mechanism by which inverse agonists strengthen corepressor interaction and enhance gene silencing by RAR.
Collapse
|
59
|
Wang P, Dharmaraj N, Brayman MJ, Carson DD. Peroxisome proliferator-activated receptor gamma activation inhibits progesterone-stimulated human MUC1 expression. Mol Endocrinol 2010; 24:1368-79. [PMID: 20484415 DOI: 10.1210/me.2009-0221] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mucin 1 (MUC1) is a type I transmembrane glycoprotein abundantly expressed on nearly all epithelial tissues and overexpressed by many cancer cells. Previous studies from our lab showed that progesterone receptor (PR)B is a strong stimulator of MUC1 gene expression. It is reported that liganded peroxisome proliferator-activated receptor gamma (PPARgamma) stimulates Muc1 expression in murine trophoblast. Here, we demonstrate that although the PPARgamma ligand, rosiglitazone, stimulates the murine Muc1 promoter in HEC1A, a human uterine epithelial cell line, rosiglitazone alone, has no significant effect on basal human MUC1 promoter activity. In fact, rosiglitazone treatment antagonizes progesterone-stimulated human MUC1 promoter activity and protein expression in two human uterine epithelial cell lines and T47D human breast cancer cells. This response is antagonized by the PPARgamma antagonist, GW9662, as well as a dominant-negative form of PPARgamma, demonstrating the response is mediated by PPARgamma. Additional studies indicate that PPARgamma activation does not change PR binding to the MUC1 promoter but generally antagonizes progesterone activity by stimulating PRB degradation and inhibiting progesterone-induced PRB phosphorylation. Collectively, these studies indicate that PPARgamma activation inhibits PRB activity through both acute (phosphorylation) and long-term (PRB degradation) pathways.
Collapse
Affiliation(s)
- Peng Wang
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | |
Collapse
|
60
|
Djaouti L, Jourdan T, Demizieux L, Chevrot M, Gresti J, Vergès B, Degrace P. Different effects of pioglitazone and rosiglitazone on lipid metabolism in mouse cultured liver explants. Diabetes Metab Res Rev 2010; 26:297-305. [PMID: 20503262 DOI: 10.1002/dmrr.1081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Pioglitazone (PIO) and rosiglitazone (ROSI) are widely used as oral antidiabetic agents for treatment of type 2 diabetes. Although these medications exert similar effects on blood glucose, recent clinical studies indicated that PIO has a more pronounced beneficial effect on lipid parameters than ROSI. In order to get further insight into the lipid effects of both drugs, we tested whether PIO, compared to ROSI, could exert direct effects on lipid liver metabolism in relation with plasma lipids. METHODS We performed in vitro studies using mice liver slices incubated 21 h either with ROSI (1 micromol/L) or PIO (7.5 micromol/L). RESULTS We showed that both glitazones slightly reduced HMG-CoA reductase mRNA levels at the same degree but only PIO reduced intracellular cholesterol content, suggesting an alteration of cholesterol uptake rather than an inhibition of cholesterol biosynthesis. This concept was supported by the reduction of scavenger receptor class B type I expression, hepatic lipase activity and high-density lipoprotein cholesterol uptake in PIO-treated liver explants. Conversely, hepatic lipase mRNA levels were increased 3.5-fold. ROSI, but not PIO, induced acetyl-CoA carboxylase and fatty acid synthase gene expression and increased apoB secretion suggesting a stimulation of lipogenesis. Concurrently, peroxisome proliferator-activated receptor-gamma mRNA levels were induced by ROSI and not significantly changed by PIO. Besides, PIO appeared to be a more potent activator of AMP-Activated Protein Kinase than ROSI. CONCLUSIONS PIO and ROSI exert specific direct effects on liver and extrapolating these data to humans could explain the significant improvements in plasma lipids observed in diabetic patients treated with PIO.
Collapse
Affiliation(s)
- Louiza Djaouti
- UMR 866 INSERM-UB, Team Physiopathology of dyslipidemias, Faculty of Sciences Gabriel, University of Burgundy, Dijon 21000, France
| | | | | | | | | | | | | |
Collapse
|
61
|
A Dominant-Negative PPARgamma Mutant Promotes Cell Cycle Progression and Cell Growth in Vascular Smooth Muscle Cells. PPAR Res 2010; 2009:438673. [PMID: 20300579 PMCID: PMC2837897 DOI: 10.1155/2009/438673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 11/24/2009] [Indexed: 01/16/2023] Open
Abstract
PPARγ ligands have been shown to have antiproliferative effects on many cell types. We herein report that a synthetic dominant-negative (DN) PPARγ mutant functions like a growth factor to promote cell cycle progression and cell proliferation in human coronary artery smooth muscle cells (CASMCs). In quiescent CASMCs, adenovirus-expressed DN-PPARγ promoted G1→S cell cycle progression, enhanced BrdU incorporation, and increased cell proliferation. DN-PPARγ expression also markedly enhanced positive regulators of the cell cycle, increasing Rb and CDC2 phosphorylation and the expression of cyclin A, B1, D1, and MCM7. Conversely, overexpression of wild-type (WT) or constitutively-active (CA) PPARγ inhibited cell cycle progression and the activity and expression of positive regulators of the cell cycle. DN-PPARγ expression, however, did not up-regulate positive cell cycle regulators in PPARγ-deficient cells, strongly suggesting that DN-PPARγ effects on cell cycle result from blocking the function of endogenous wild-type PPARγ. DN-PPARγ expression enhanced phosphorylation of ERK MAPKs. Furthermore, the ERK specific-inhibitor PD98059 blocked DN-PPARγ-induced phosphorylation of Rb and expression of cyclin A and MCM7. Our data thus suggest that DN-PPARγ promotes cell cycle progression and cell growth in CASMCs by modulating fundamental cell cycle regulatory proteins and MAPK mitogenic signaling pathways in vascular smooth muscle cells (VSMCs).
Collapse
|
62
|
Mo C, Chearwae W, Bright JJ. PPARγ regulates LIF-induced growth and self-renewal of mouse ES cells through Tyk2-Stat3 pathway. Cell Signal 2010; 22:495-500. [DOI: 10.1016/j.cellsig.2009.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 11/09/2009] [Indexed: 10/20/2022]
|
63
|
Pseudomonas signal molecule 3-oxo-C12-homoserine lactone interferes with binding of rosiglitazone to human PPARγ. Microbes Infect 2010; 12:231-7. [DOI: 10.1016/j.micinf.2009.12.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 12/14/2009] [Accepted: 12/21/2009] [Indexed: 11/23/2022]
|
64
|
Desch M, Schreiber A, Schweda F, Madsen K, Friis UG, Weatherford ET, Sigmund CD, Sequeira Lopez ML, Gomez RA, Todorov VT. Increased renin production in mice with deletion of peroxisome proliferator-activated receptor-gamma in juxtaglomerular cells. Hypertension 2010; 55:660-6. [PMID: 20065157 DOI: 10.1161/hypertensionaha.109.138800] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We recently found that endogenous (free fatty acids) and pharmacological (thiazolidinediones) agonists of nuclear receptor Peroxisome proliferator-activated receptor (PPAR)gamma stimulate renin transcription. In addition, the renin gene was identified as a direct target of PPARgamma. The mouse renin gene is regulated by PPARgamma through a distal enhancer direct repeat closely related to consensus PPAR response element (PPRE). In vitro studies demonstrated that PPARgamma knockdown stimulated PPRE-driven transcription. These data predicted that deficiency of PPARgamma would upregulate mouse renin expression. Consistent with these observations knockdown of PPARgamma increased the transcription of a reporter gene driven by the mouse renin PPRE-like motif in vitro. To study the impact of PPARgamma on renin production in vivo, we used a cre/lox system to generate double-transgenic mice with disrupted PPARgamma locus in renin-producing juxtaglomerular (JG) cells of the kidney (RC-PPARgamma(fl/fl) mice). We provide evidence that PPARgamma expression was effectively reduced in JG cells of RC-PPARgamma(fl/fl) mice. Fluorescent immunohistochemistry showed stronger renin signal in RC-PPARgamma(fl/fl) than in littermate control RC-PPARgamma(wt/wt) mice. Renin mRNA levels and plasma renin concentration in RC-PPARgamma(fl/fl) mice were almost 2-fold higher than in littermate controls. Arterial blood pressure and pressure control of renal vascular resistance, which play decisive roles in the regulation of renin production were indistinguishable between RC-PPARgamma(wt/wt) and RC-PPARgamma(fl/fl) mice. These data demonstrate that the JG-specific PPARgamma deficiency results in increased mouse renin expression in vivo thus corroborating earlier in vitro results. PPARgamma appears to be a relevant transcription factor for the control of renin gene in JG cells.
Collapse
Affiliation(s)
- Michael Desch
- Institute of Physiology, University of Regensburg, D-93040 Regensburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Zhang F, Liu F, Yan M, Ji H, Hu L, Li X, Qian J, He X, Zhang L, Shen A, Cheng C. Peroxisome proliferator-activated receptor-γ agonists suppress iNOS expression induced by LPS in rat primary Schwann cells. J Neuroimmunol 2010; 218:36-47. [DOI: 10.1016/j.jneuroim.2009.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 10/06/2009] [Accepted: 10/22/2009] [Indexed: 10/20/2022]
|
66
|
Li MY, Hsin MKY, Yip J, Mok TSK, Underwood MJ, Chen GG. PPARγ Activation Extinguishes Smoking Carcinogen by Inhibiting NNK-Mediated Proliferation. Am J Respir Cell Mol Biol 2010; 42:113-22. [DOI: 10.1165/rcmb.2008-0463oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
67
|
Kang Q, Chen A. Curcumin inhibits srebp-2 expression in activated hepatic stellate cells in vitro by reducing the activity of specificity protein-1. Endocrinology 2009; 150:5384-94. [PMID: 19808779 PMCID: PMC2795713 DOI: 10.1210/en.2009-0517] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Elevated levels of cholesterol/low-density lipoprotein (LDL) are a risk factor for the development of nonalcoholic steatohepatitis and its associated hepatic fibrosis. However, underlying mechanisms remain elusive. We previously reported that curcumin induced gene expression of peroxisome proliferator-activated receptor (PPAR)-gamma and stimulated its activity, leading to the inhibition of the activation of hepatic stellate cells (HSCs), the major effector cells during hepatic fibrogenesis. We recently showed that curcumin suppressed gene expression of LDL receptor in activated HSCs in vitro by repressing gene expression of the transcription factor sterol regulatory element binding protein-2 (SREBP-2), leading to the reduction in the level of intracellular cholesterol in HSCs and to the attenuation of the stimulatory effects of LDL on HSCs activation. The current study aimed at exploring molecular mechanisms by which curcumin inhibits srebp-2 expression in HSCs. Promoter deletion assays, mutagenesis assays, and EMSAs localize a specificity protein-1 (SP-1) binding GC-box in the srebp-2 promoter, which is responsible for enhancing the promoter activity and responding to curcumin in HSCs. Curcumin suppresses gene expression of SP-1 and reduces its trans-activation activity, which are mediated by the activation of PPARgamma. The inhibitory effect of curcumin on SP-1 binding to the GC-box is confirmed by chromatin immuno-precipitation. In summary, our results demonstrate that curcumin inhibits srebp-2 expression in cultured HSCs by activating PPARgamma and reducing the SP-1 activity, leading to the repression of ldlr expression. These results provide novel insights into molecular mechanisms by which curcumin inhibits LDL-induced HSC activation.
Collapse
Affiliation(s)
- Qiaohua Kang
- Department of Pathology, School of Medicine, Saint Louis University, St. Louis, Missouri 63104, USA
| | | |
Collapse
|
68
|
Kang Q, Chen A. Curcumin eliminates oxidized LDL roles in activating hepatic stellate cells by suppressing gene expression of lectin-like oxidized LDL receptor-1. J Transl Med 2009; 89:1275-90. [PMID: 19736547 PMCID: PMC2783367 DOI: 10.1038/labinvest.2009.93] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Type II diabetes mellitus (T2DM) is often accompanied by non-alcoholic steatohepatitis (NASH) and associated with hypercholesterolemia, that is, increased levels of plasma low-density lipoprotein (LDL) and oxidized LDL (ox-LDL). Approximately one-third of NASH develops hepatic fibrosis. The role of hypercholesterolemia in T2DM and NASH-associated hepatic fibrogenesis remains obscure. We previously reported that the phytochemical curcumin inhibited the activation of hepatic stellate cells (HSCs), the major effector cells during hepatic fibrogenesis, and protected the liver from fibrogenesis in vitro and in vivo. The aims of this study are to evaluate the role of ox-LDL in activation of HSCs, to assess curcumin effects on eliminating the role of ox-LDL, and to further explore the underlying mechanisms. In this report, we observe that ox-LDL alters the expression of genes closely relevant to HSC activation, which is eliminated by curcumin. Curcumin suppresses gene expression of lectin-like oxidized LDL receptor-1 (LOX-1), leading to the blockade of the transport of extracellular ox-LDL into cells. This suppressive effect of curcumin results from the interruption of Wnt signaling and the activation of peroxisome proliferator-activated receptor-gamma (PPARgamma). In conclusion, these results support our initial hypothesis and demonstrate that ox-LDL stimulates HSC activation, which is eliminated by curcumin by suppressing lox-1 expression by interrupting Wnt signaling and stimulating PPARgamma activity. These results provide novel insights into the role of ox-LDL in T2DM and NASH-associated hepatic fibrogenesis and mechanisms by which curcumin suppresses ox-LDL-induced HSC activation, as well as the implication of curcumin in the treatment of T2DM and NASH-associated hepatic fibrosis.
Collapse
Affiliation(s)
| | - Anping Chen
- Corresponding Author: Anping Chen, Ph. D., Department of Pathology, School of Medicine, Saint Louis University, 1100 S. Grand Blvd, Room 215, Edward A. Doisy Research Center, St. Louis, MO 63104, USA. Tel: 314-977-7832; Fax: 314-977-8499; E-mail:
| |
Collapse
|
69
|
Gastaldelli A, Harrison SA, Belfort-Aguilar R, Hardies LJ, Balas B, Schenker S, Cusi K. Importance of changes in adipose tissue insulin resistance to histological response during thiazolidinedione treatment of patients with nonalcoholic steatohepatitis. Hepatology 2009; 50:1087-93. [PMID: 19670459 DOI: 10.1002/hep.23116] [Citation(s) in RCA: 202] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Pioglitazone treatment improves insulin resistance (IR), glucose metabolism, hepatic steatosis, and necroinflammation in patients with nonalcoholic steatohepatitis (NASH). Because abnormal lipid metabolism/elevated plasma free fatty acids (FFAs) are important to the pathophysiology of NASH, we examined the impact of pioglitazone therapy on adipose tissue insulin resistance (Adipo-IR) during the treatment of patients with NASH. To this end, we assessed glucose/lipid metabolism in 47 patients with impaired glucose tolerance/type 2 diabetes mellitus and NASH and 20 nondiabetic controls. All individuals underwent a 75-g oral glucose tolerance test (OGTT) in which we measured glucose tolerance, IR, and suppression of plasma FFAs. We also measured Adipo-IR index (fasting, FFAs x insulin), hepatic fat by magnetic resonance spectroscopy, and liver histology (liver biopsy). Patients were randomized (double-blind) to diet plus pioglitazone (45 mg/day) or placebo for 6 months, and all measurements were repeated. We found that patients with NASH had severe Adipo-IR and low adiponectin levels. Fasting FFAs were increased and their suppression during the OGTT was impaired. Adipo-IR was strongly associated with hepatic fat (r= 0.54) and reduced glucose clearance both fasting (r=0.34) and during the OGTT (r=0.40, all P <0.002). Pioglitazone significantly improved glucose tolerance and glucose clearance, steatosis and necroinflammation (all P<0.01-0.001 versus placebo). Fasting/postprandial plasma FFAs decreased to levels of controls with pioglitazone (P<0.02 versus placebo). Adipo-IR decreased by 47% and correlated with the reduction of hepatic fat (r=0.46, P=0.009) and with the reduction in hepatic necroinflammation (r=0.47, P=0.0007). CONCLUSION Patients with NASH have severe Adipo-IR independent of the degree of obesity. Amelioration of Adipo-IR by pioglitazone is closely related to histological improvement and plays an important role during treatment of patients with NASH.
Collapse
Affiliation(s)
- Amalia Gastaldelli
- Diabetes Division, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | | |
Collapse
|
70
|
Campbell SE, Musich PR, Whaley SG, Stimmel JB, Leesnitzer LM, Dessus-Babus S, Duffourc M, Stone W, Newman RA, Yang P, Krishnan K. Gamma Tocopherol Upregulates the Expression of 15-S-HETE and Induces Growth Arrest Through a PPAR Gamma-Dependent Mechanism in PC-3 Human Prostate Cancer Cells. Nutr Cancer 2009; 61:649-62. [DOI: 10.1080/01635580902825654] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
71
|
The multiple endocrine neoplasia type 1 (MEN1) tumor suppressor regulates peroxisome proliferator-activated receptor gamma-dependent adipocyte differentiation. Mol Cell Biol 2009; 29:5060-9. [PMID: 19596783 DOI: 10.1128/mcb.01001-08] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Menin, the product of the MEN1 (multiple endocrine neoplasia type 1) tumor suppressor gene, is involved in activation of gene transcription as part of an MLL1 (mixed-lineage leukemia 1)/MLL2 (KMT2A/B)-containing protein complex which harbors methyltransferase activity for lysine 4 of histone H3 (H3K4). As MEN1 patients frequently develop lipomas and peroxisome proliferator-activated receptor gamma (PPARgamma) is expressed in several MEN1-related tumor types, we investigated regulation of PPARgamma activity by menin. We found that menin is required for adipocyte differentiation of murine 3T3-L1 cells and PPARgamma-expressing mouse embryonic fibroblasts. Menin augments PPARgamma target gene expression through recruitment of H3K4 methyltransferase activity. Menin interacts directly with the activation function 2 transcription activation domain of PPARgamma in a ligand-independent fashion. Ligand-dependent coactivation, however, is dependent on the LXXLL motif of menin and the intact helix 12 of PPARgamma. We propose that menin is an important factor in PPARgamma-mediated adipogenesis and that loss of PPARgamma function may contribute to lipoma development in MEN1 patients.
Collapse
|
72
|
Koppen A, Houtman R, Pijnenburg D, Jeninga EH, Ruijtenbeek R, Kalkhoven E. Nuclear receptor-coregulator interaction profiling identifies TRIP3 as a novel peroxisome proliferator-activated receptor gamma cofactor. Mol Cell Proteomics 2009; 8:2212-26. [PMID: 19596656 DOI: 10.1074/mcp.m900209-mcp200] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Nuclear receptors (NRs) are major targets for drug discovery and have key roles in development and homeostasis as well as in many diseases such as obesity, diabetes, and cancer. NRs are ligand-dependent transcription factors that need to work in concert with so-called transcriptional coregulators, including corepressors and coactivators, to regulate transcription. Upon ligand binding, NRs undergo a conformational change, which alters their binding preference for coregulators. Short alpha-helical sequences in the coregulator proteins, LXXLL (in coactivators) or LXXXIXXXL (in corepressors), are essential for the NR-coregulator interactions. However, little is known on how specificity is dictated. To obtain a comprehensive overview of NR-coregulator interactions, we used a microarray approach based on interactions between NRs and peptides derived from known coregulators. Using the peroxisome proliferator-activated receptor gamma (PPARgamma) as a model NR, we were able to generate ligand-specific interaction profiles (agonist rosiglitazone versus antagonist GW9662 versus selective PPARgamma modulator telmisartan) and characterize NR mutants and isotypes (PPARalpha, -beta/delta, and -gamma). Importantly, based on the NR-coregulator interaction profile, we were able to identify TRIP3 as a novel regulator of PPARgamma-mediated adipocyte differentiation. These findings indicate that NR-coregulator interaction profiling may be a useful tool for drug development and biological discovery.
Collapse
Affiliation(s)
- Arjen Koppen
- Department of Metabolic and Endocrine Diseases, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
73
|
Bates DJP, Lively MO, Gorczynski MJ, King SB, Townsend AJ, Morrow CS. Noncatalytic interactions between glutathione S-transferases and nitroalkene fatty acids modulate nitroalkene-mediated activation of peroxisomal proliferator-activated receptor gamma. Biochemistry 2009; 48:4159-69. [PMID: 19358561 DOI: 10.1021/bi900224c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The naturally occurring nitroalkenes, nitrolinoleic (NO(2)-LA) and nitrooleic (NO(2)-OA) acids, are among the most potent endogenous ligand activators of PPARgamma-dependent transcription. In order to understand mechanisms that regulate cellular response to these nitroalkenes, we previously demonstrated that glutathione conjugation of NO(2)-LA and MRP1-mediated efflux of the conjugates were associated with significant attenuation of PPARgamma activation by this nitroalkene [(2006) Biochemistry 45, 7889-7896]. Here we show that NO(2)-OA activation of PPARgamma is similarly affected by nonenzymatic conjugation and MRP1-mediated efflux. Moreover, the roles of glutathione S-transferases (GSTs) in the glutathione conjugation and bioactivities of NO(2)-LA and NO(2)-OA were investigated. While none of the GST isozymes tested (GSTA1-1, A4-4, M1a-1a, and P1a-1a) enhanced the rate of glutathione conjugation, expression of GSTA1-1, M1a-1a, or P1a-1a in MCF7 cells significantly reduced the magnitude of PPARgamma-dependent reporter gene transcription in response to NO(2)-LA and NO(2)-OA treatment, with GSTP1a-1a expression mediating the most potent inhibition of PPARgamma. Although these GSTs failed to catalyze nitroalkene conjugation with glutathione, the nitroalkenes were found to associate avidly with all four GST isozymes as indicated by their ability to inhibit GST activity with K(i)'s in the nanomolar range. Treatment of purified GSTP1a-1a with excess NO(2)-LA and NO(2)-OA resulted in the formation of covalent adducts between GSTP1a monomers and nitroalkenes, although separate experiments indicated that such covalent bond formation was not necessary for avid GST-nitroalkene interactions. These results suggest that GSTs can inhibit the activation of transcription by nitroalkenes via noncatalytic sequestration of these ligands, and their glutathione conjugates, away from their nuclear target, PPARgamma.
Collapse
Affiliation(s)
- Darcy J P Bates
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | |
Collapse
|
74
|
Dai Y, Qiao L, Chan KW, Yang M, Ye J, Ma J, Zou B, Gu Q, Wang J, Pang R, Lan HY, Wong BCY. Peroxisome proliferator-activated receptor-gamma contributes to the inhibitory effects of Embelin on colon carcinogenesis. Cancer Res 2009; 69:4776-83. [PMID: 19458067 DOI: 10.1158/0008-5472.can-08-4754] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Down-regulation of XIAP (X-linked inhibitor of apoptosis protein) sensitizes colon cancer cells to the anticancer effect of peroxisome proliferator-activated receptor-gamma (PPARgamma) ligands in mice. The aims of this study were to evaluate the effect of embelin (2,5-dihydroxy-3-undecyl-1,4-benzoquinone), an antagonist of XIAP, on colon cancer, with a particular focus on whether PPARgamma is required for embelin to exert its effect. A dominant-negative PPARgamma was used to antagonize endogenous PPARgamma in HCT116 cells. Cells were treated with or without embelin. Cell proliferation, apoptosis, and nuclear factor-kappaB (NF-kappaB) activity were measured. For in vivo studies, 1,2-dimethylhydrazine dihydrochloride (DMH) was s.c. injected to induce colon cancer in PPARgamma(+/+) and PPARgamma(+/-) mice. Mice were fed embelin daily for 10 days before DMH injection, and continued for 30 more weeks. Embelin inhibited proliferation and induced apoptosis in HCT116 cells with marked up-regulation of PPARgamma. In addition, embelin significantly inhibited the expressions of survivin, cyclin D1, and c-Myc. These effects were partially dependent on PPARgamma. PPARgamma(+/-) mice were more susceptible to DMH-induced colon carcinogenesis than PPARgamma(+/+) mice, and embelin significantly reduced the incidence of colon cancer in PPARgamma(+/+) mice but not in PPARgamma(+/-) mice. Embelin inhibited NF-kappaB activity in PPARgamma(+/+) mice but marginally so in PPARgamma(+/-) mice. Thus, reduced expression of PPARgamma significantly sensitizes colonic tissues to the carcinogenic effect of DMH. Embelin inhibits chemical carcinogen-induced colon carcinogenesis, but this effect is partially dependent on the presence of functional PPARgamma, indicating that PPARgamma is a necessary signaling pathway involved in the antitumor activity of normal organisms.
Collapse
Affiliation(s)
- Yun Dai
- Departments of Medicine, University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Samarasinghe SP, Sutanto MM, Danos AM, Johnson DN, Brady MJ, Cohen RN. Altering PPARgamma ligand selectivity impairs adipogenesis by thiazolidinediones but not hormonal inducers. Obesity (Silver Spring) 2009; 17:965-72. [PMID: 19165156 PMCID: PMC2674133 DOI: 10.1038/oby.2008.629] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma) acts as a ligand-dependent transcription factor with a key role in mediating adipocyte differentiation and insulin sensitivity. Recently, we and others have shown that PPARgamma recruits the nuclear corepressors NCoR and silencing mediator for retinoid and thyroid hormone receptors (SMRT) to modulate adipogenesis. While the synthetic ligands for PPARgamma, the thiazolidinediones (TZD), are widely used in the treatment of type 2 diabetes mellitus, the biologically relevant endogenous PPARgamma ligand involved in adipogenesis remains unidentified. To further understand the role of ligand binding and corepressor interaction in PPARgamma-mediated adipogenesis, a mutation was introduced in the ligand-binding domain (LBD) of murine PPARgamma. PPARgammamut was created via two amino acid substitutions known to be major determinants of ligand selectivity among PPAR isotypes, H323Y and R288M. These mutations alter PPARgamma to the corresponding residues of the PPARalpha. Characterizing the in vitro functional properties of this mutant, we show that PPARgammamut preferentially responds to the PPARalpha agonist, WY-14643, over the TZD, pioglitazone. When expressed in 3T3-L1 preadipocytes using recombinant adenovirus, wild-type PPARgamma leads to adipocyte formation with both hormonal and TZD treatment. PPARgammamut blocks the upregulation of adipocyte-specific proteins by TZD, but surprisingly, not by standard hormonal inducers. Our data suggest that TZDs and the purported endogenous ligand do not interact in the same way with the PPARgamma LBD. We propose that the endogenous ligand has distinct properties that allow for promiscuity within the hydrophobic PPAR ligand-binding pocket, yet fosters appropriate cofactor recruitment and release to allow adipogenesis to proceed.
Collapse
Affiliation(s)
- Shanika P. Samarasinghe
- Section of Endocrinology, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Maria M. Sutanto
- Section of Endocrinology, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, Illinois, USA
| | - Arpad M. Danos
- Section of Endocrinology, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, Illinois, USA
| | - Daniel N. Johnson
- Section of Endocrinology, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Matthew J. Brady
- Section of Endocrinology, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, Illinois, USA
| | - Ronald N. Cohen
- Section of Endocrinology, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
76
|
Smith AG, Beaumont KA, Smit DJ, Thurber AE, Cook AL, Boyle GM, Parsons PG, Sturm RA, Muscat GE. PPARγ agonists attenuate proliferation and modulate Wnt/β-catenin signalling in melanoma cells. Int J Biochem Cell Biol 2009; 41:844-52. [DOI: 10.1016/j.biocel.2008.08.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 08/18/2008] [Accepted: 08/21/2008] [Indexed: 11/26/2022]
|
77
|
Alexander RL, Wright MW, Gorczynski MJ, Smitherman PK, Akiyama TE, Wood HB, Berger JP, King SB, Morrow CS. Differential potencies of naturally occurring regioisomers of nitrolinoleic acid in PPARgamma activation. Biochemistry 2009; 48:492-8. [PMID: 19105608 PMCID: PMC9972884 DOI: 10.1021/bi8016747] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous studies demonstrated that the naturally occurring electrophile and PPARgamma ligand, nitrolinoleic acid (NO(2)-LA), exists as a mixture of four regioisomers [Alexander, R. L., et al. (2006) Biochemistry 45, 7889-7896]. We hypothesized that these alternative isomers have distinct bioactivities; therefore, to determine if the regioisomers are quantitatively or qualitatively different with respect to PPARgamma activation, NO(2)-LA was separated into three fractions which were identified by NMR (13-NO(2)-LA, 12-NO(2)-LA, and a mixture of 9- and 10-NO(2)-LA) and characterized for PPARgamma interactions. A competition radioligand binding assay showed that all three NO(2)-LA fractions had similar binding affinities for PPARgamma (IC(50) = 0.41-0.60 microM) that were comparable to that of the pharmaceutical ligand, rosiglitazone (IC(50) = 0.25 microM). However, when PPARgamma-dependent transcription activation was examined, there were significant differences observed among the NO(2)-LA fractions. Each isomer behaved as a partial agonist in this reporter gene assay; however, the 12-NO(2) derivative was the most potent with respect to maximum activation of PPARgamma and an EC(50) of 0.045 microM (compare with the rosiglitazone EC(50) of 0.067 microM), while the 13-NO(2) and 9- and 10-NO(2) derivatives were considerably less effective with EC(50) values of 0.41-0.62 microM. We conclude that the regioisomers of NO(2)-LA are not functionally equivalent. The 12-NO(2) derivative appears to be the most potent in PPARgamma-dependent transcription activation, whereas the weaker PPARgamma agonists, 13-NO(2) and 9- and 10-NO(2), may be relatively more important in signaling via other, PPARgamma-independent pathways in which this family of nitrolipid electrophiles is implicated.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Charles S. Morrow
- To whom correspondence should be addressed: Department of Biochemistry, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157. Telephone: (336) 713-7218. Fax: (336) 716-7671.
| |
Collapse
|
78
|
Garcia-Bates TM, Bernstein SH, Phipps RP. Peroxisome proliferator-activated receptor gamma overexpression suppresses growth and induces apoptosis in human multiple myeloma cells. Clin Cancer Res 2008; 14:6414-25. [PMID: 18927280 DOI: 10.1158/1078-0432.ccr-08-0457] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE Peroxisome proliferator-activated receptor gamma (PPARgamma) is a transcription factor that regulates immune and inflammatory responses. Our laboratory has shown that normal and malignant B cells, including multiple myeloma, express PPARgamma. Moreover, certain PPARgamma ligands can induce apoptosis in multiple myeloma cells. Because PPARgamma ligands can also have PPARgamma-independent effects, the role of PPARgamma in B-cell malignancies remains poorly understood. To further understand the role of PPARgamma, we examined the functional consequences of its overexpression in human multiple myeloma. EXPERIMENTAL DESIGN In the present work, we developed a lentiviral vector for PPARgamma gene delivery. We transduced multiple myeloma cells with a lentivirus-expressing PPARgamma and studied the involvement of this receptor on cell growth and viability. RESULTS PPARgamma overexpression decreased multiple myeloma cell proliferation and induced spontaneous apoptosis even in the absence of exogenous ligand. These PPARgamma-overexpressing cells were dramatically more sensitive to PPARgamma ligand-induced apoptosis compared with uninfected or LV-empty-infected cells. Apoptosis was associated with the down-regulation of antiapoptotic proteins X-linked inhibitor of apoptosis protein and myeloid cell leukemia-1 as well as induction of caspase-3 activity. Importantly, PPARgamma overexpression-induced cell death was not abrogated by coincubation with bone marrow stromal cells (BMSC), which are known to protect multiple myeloma cells from apoptosis. Additionally, PPARgamma overexpression in multiple myeloma or BMSC inhibited both basal and multiple myeloma-induced interleukin-6 production by BMSC. CONCLUSIONS Our results indicate that PPARgamma negatively controls multiple myeloma growth and viability in part through inhibition of interleukin-6 production by BMSC. As such, PPARgamma is a viable therapeutic target in multiple myeloma.
Collapse
Affiliation(s)
- Tatiana M Garcia-Bates
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | |
Collapse
|
79
|
SMRT repression of nuclear receptors controls the adipogenic set point and metabolic homeostasis. Proc Natl Acad Sci U S A 2008; 105:20021-6. [PMID: 19066220 DOI: 10.1073/pnas.0811012105] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nuclear receptor corepressor, silencing mediator of retinoid and thyroid hormone receptors (SMRT), is recruited by a plethora of transcription factors to mediate lineage and signal-dependent transcriptional repression. We generated a knockin mutation in the receptor interaction domain (RID) of SMRT (SMRT(mRID)) that solely disrupts its interaction with nuclear hormone receptors (NHRs). SMRT(mRID) mice are viable and exhibit no gross developmental abnormalities, demonstrating that the reported lethality of SMRT knockouts is determined by non-NHR transcription factors. However, SMRT(mRID) mice exhibit widespread metabolic defects including reduced respiration, altered insulin sensitivity, and 70% increased adiposity. The latter phenotype is illustrated by the observation that SMRT(mRID)-derived MEFs display a dramatically increased adipogenic capacity and accelerated differentiation rate. Collectively, our results demonstrate that SMRT-RID-dependent repression is a key determinant of the adipogenic set point as well as an integrator of glucose metabolism and whole-body metabolic homeostasis.
Collapse
|
80
|
Alexis JD, Wang N, Che W, Lerner-Marmarosh N, Sahni A, Korshunov VA, Zou Y, Ding B, Yan C, Berk BC, Abe JI. Bcr kinase activation by angiotensin II inhibits peroxisome-proliferator-activated receptor gamma transcriptional activity in vascular smooth muscle cells. Circ Res 2008; 104:69-78. [PMID: 19023129 DOI: 10.1161/circresaha.108.188409] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bcr is a serine/threonine kinase activated by platelet-derived growth factor that is highly expressed in the neointima after vascular injury. Here, we demonstrate that Bcr is an important mediator of angiotensin (Ang) II and platelet-derived growth factor-mediated inflammatory responses in vascular smooth muscle cells (VSMCs). Among transcription factors that might regulate Ang II-mediated inflammatory responses we found that ligand-mediated peroxisome proliferator-activated receptor (PPAR)gamma transcriptional activity was significantly decreased by Ang II. Ang II increased Bcr expression and kinase activity. Overexpression of Bcr significantly inhibited PPARgamma activity. In contrast, knockdown of Bcr using Bcr small interfering RNA and a dominant-negative form of Bcr (DN-Bcr) reversed Ang II-mediated inhibition of PPARgamma activity significantly, suggesting the critical role of Bcr in Ang II-mediated inhibition of PPARgamma activity. Point-mutation and in vitro kinase analyses showed that PPARgamma was phosphorylated by Bcr at serine 82. Overexpression of wild-type Bcr kinase did not inhibit ligand-mediated PPARgamma1 S82A mutant transcriptional activity, indicating that Bcr regulates PPARgamma activity via S82 phosphorylation. DN-Bcr and Bcr small interfering RNA inhibited Ang II-mediated nuclear factor kappaB activation in VSMCs. DN-PPARgamma reversed DN-Bcr-mediated inhibition of nuclear factor kappaB activation, suggesting that PPARgamma is downstream from Bcr. Intimal proliferation in low-flow carotid arteries was decreased in Bcr knockout mice compared with wild-type mice, suggesting the critical role of Bcr kinase in VSMC proliferation in vivo, at least in part, via regulating PPARgamma/nuclear factor kappaB transcriptional activity.
Collapse
Affiliation(s)
- Jeffrey D Alexis
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Jennewein C, Kuhn AM, Schmidt MV, Meilladec-Jullig V, von Knethen A, Gonzalez FJ, Brüne B. Sumoylation of peroxisome proliferator-activated receptor gamma by apoptotic cells prevents lipopolysaccharide-induced NCoR removal from kappaB binding sites mediating transrepression of proinflammatory cytokines. THE JOURNAL OF IMMUNOLOGY 2008; 181:5646-52. [PMID: 18832723 DOI: 10.4049/jimmunol.181.8.5646] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Efficient clearance of apoptotic cells (AC) by professional phagocytes is crucial for tissue homeostasis and resolution of inflammation. Macrophages respond to AC with an increase in antiinflammatory cytokine production but a diminished release of proinflammatory mediators. Mechanisms to explain attenuated proinflammatory cytokine formation remain elusive. We provide evidence that peroxisome proliferator-activated receptor gamma (PPARgamma) coordinates antiinflammatory responses following its activation by AC. Exposing murine RAW264.7 macrophages to AC before LPS stimulation reduced NF-kappaB transactivation and lowered target gene expression of, that is, TNF-alpha and IL-6 compared with controls. In macrophages overexpressing a dominant negative mutant of PPARgamma, NF-kappaB transactivation in response to LPS was restored, while macrophages from myeloid lineage-specific conditional PPARgamma knockout mice proved that PPARgamma transmitted an antiinflammatory response, which was delivered by AC. Expressing a PPARgamma-Delta aa32-250 deletion mutant, we observed no inhibition of NF-kappaB. Analyzing the PPARgamma domain structures within aa 32-250, we anticipated PPARgamma sumoylation in mediating the antiinflammatory effect in response to AC. Interfering with sumoylation of PPARgamma by mutating the predicted sumoylation site (K77R), or knockdown of the small ubiquitin-like modifier (SUMO) E3 ligase PIAS1 (protein inhibitor of activated STAT1), eliminated the ability of AC to suppress NF-kappaB. Chromatin immunoprecipitation analysis demonstrated that AC prevented the LPS-induced removal of nuclear receptor corepressor (NCoR) from the kappaB site within the TNF-alpha promoter. We conclude that AC induce PPARgamma sumoylation to attenuate the removal of NCoR, thereby blocking transactivation of NF-kappaB. This contributes to an antiinflammatory phenotype shift in macrophages responding to AC by lowering proinflammatory cytokine production.
Collapse
Affiliation(s)
- Carla Jennewein
- Institute of Biochemistry I/Zentrum für Arzneimittelforschung, -Entwicklung und -Sicherheit, Faculty of Medicine, Goethe-University Frankfurt am Main, Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
82
|
Adiponectin and Cardiovascular Disease. Cardiovasc Endocrinol 2008. [DOI: 10.1007/978-1-59745-141-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
83
|
CITED2 signals through peroxisome proliferator-activated receptor-gamma to regulate death of cortical neurons after DNA damage. J Neurosci 2008; 28:5559-69. [PMID: 18495890 DOI: 10.1523/jneurosci.1014-08.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DNA damage is an important initiator of neuronal apoptosis and activates signaling events not yet fully defined. Using the camptothecin-induced DNA damage model in neurons, we previously showed that cyclin D1-associated cell cycle cyclin-dependent kinases (Cdks) (Cdk4/6) and p53 activation are two major events leading to activation of the mitochondrial apoptotic pathway. With gene array analyses, we detected upregulation of Cited2, a CBP (cAMP response element-binding protein-binding protein)/p300 interacting transactivator, in response to DNA damage. This upregulation was confirmed by reverse transcription-PCR and Western blot. CITED2 was functionally important because CITED2 overexpression promotes death, whereas CITED2 deficiency protects. Cited2 upregulation is upstream of the mitochondrial death pathway (BAX, Apaf1, or cytochrome c release) and appears to be independent of p53. However, inhibition of the Cdk4 blocked Cited2 induction. The Cited2 prodeath mechanism does not involve Bmi-1 or p53. Instead, Cited2 activates peroxisome proliferator-activated receptor-gamma (PPARgamma), an activity that we demonstrate is critical for DNA damage-induced death. These results define a novel neuronal prodeath pathway in which Cdk4-mediated regulation of Cited2 activates PPARgamma and consequently caspase.
Collapse
|
84
|
Park KW, Waki H, Villanueva CJ, Monticelli LA, Hong C, Kang S, MacDougald OA, Goldrath AW, Tontonoz P. Inhibitor of DNA binding 2 is a small molecule-inducible modulator of peroxisome proliferator-activated receptor-gamma expression and adipocyte differentiation. Mol Endocrinol 2008; 22:2038-48. [PMID: 18562627 PMCID: PMC2631374 DOI: 10.1210/me.2007-0454] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We previously identified the small molecule harmine as a regulator of peroxisome proliferator activated-receptor gamma (PPARgamma) and adipocyte differentiation. In an effort to identify signaling pathways mediating harmine's effects, we performed transcriptional profiling of 3T3-F442A preadipocytes. Inhibitor of DNA biding 2 (Id2) was identified as a gene rapidly induced by harmine but not by PPARgamma agonists. Id2 is also induced in 3T3-L1 preadipocytes treated with dexamethasone, 3-isobutyl-1-methylxanthine, and insulin, suggesting that Id2 regulation is a common feature of the adipogenic program. Stable overexpression of Id2 in preadipocytes promotes expression of PPARgamma and enhances morphological differentiation and lipid accumulation. Conversely, small interfering RNA-mediated knockdown of Id2 antagonizes adipocyte differentiation. Mice lacking Id2 expression display reduced adiposity, and embryonic fibroblasts derived from these mice exhibit reduced PPARgamma expression and a diminished capacity for adipocyte differentiation. Finally, Id2 expression is elevated in adipose tissues of obese mice and humans. These results outline a role for Id2 in the modulation of PPARgamma expression and adipogenesis and underscore the utility of adipogenic small molecules as tools to dissect adipocyte biology.
Collapse
Affiliation(s)
- Kye Won Park
- Howard Hughes Medical Institute, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Gani OABSM, Sylte I. Ligand-induced stabilization and activation of peroxisome proliferator-activated receptor gamma. Chem Biol Drug Des 2008; 72:50-7. [PMID: 18554251 DOI: 10.1111/j.1747-0285.2008.00677.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peroxisome proliferator-activated receptor gamma belongs to the nuclear receptor superfamily and is activated by the antidiabetic drugs rosiglitazone and pioglitazone. Ligand-independent constitutive activity of peroxisome proliferator-activated receptor gamma is also demonstrated. X-ray crystallographic structures show that the active or inactive conformations of the receptor are determined by the position of helix 12 in the C-terminal end. In this study, molecular dynamics simulations were used to gain molecular insight into the activation process and the structural stability of inactive and active peroxisome proliferator-activated receptor gamma receptor structure. The simulations showed: (i) during molecular dynamics simulations without agonist at the active site, the receptor structure with helix 12 in a position corresponding to activated receptor structure was structurally more stable than with helix 12 in a position corresponding to inactive receptor structure, which may contribute to the constitutive activity of the receptor; (ii) docosahexenoic acid stabilized the active receptor conformation more efficiently than the glitazones; (iii) docosahexenoic acid, but not glitazones, induced structural changes into the inactive receptor structure such that helix 12 was shifted into a position more similar to that of an active receptor structure, which indicate that docosahexenoic acid is a more effective peroxisome proliferator-activated receptor gamma agonist than the glitazones.
Collapse
Affiliation(s)
- Osman A B S M Gani
- Department of Pharmacology, Institute of Medical Biology, Faculty of Medicine, University of Tromsø, 9037 Tromsø, Norway
| | | |
Collapse
|
86
|
Schwab M, Reynders V, Loitsch S, Shastri YM, Steinhilber D, Schröder O, Stein J. PPARgamma is involved in mesalazine-mediated induction of apoptosis and inhibition of cell growth in colon cancer cells. Carcinogenesis 2008; 29:1407-14. [PMID: 18544567 DOI: 10.1093/carcin/bgn118] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Mesalazine has been identified as a candidate chemopreventive agent in colon cancer prophylaxis because of its pro-apoptotic and anti-proliferative effects. However, the precise mechanisms of action are not entirely understood. The aim of our study was to investigate the involvement of peroxisome proliferator-activated receptor gamma (PPARgamma) in mesalazine's anticarcinogenic actions in colorectal cancer cells. EXPERIMENTAL DESIGN The effects of mesalazine on cell cycle distribution, cell count, proliferation and caspase-mediated apoptosis were examined in Caco-2, HT-29 and HCT-116 cells used as wild-type, dominant-negative PPARgamma mutant and empty vector cultures. We focused on caspase-3 activity, cleavage of poly(ADP-ribose) polymerase (PARP), caspase-8 and caspase-9, as well as on expression of survivin, X-linked inhibitor of apoptosis (Xiap), phosphatase and tensin homolog deleted from chromosome ten (PTEN) and c-Myc. Techniques employed included transfection assays, immunoblotting, flow cytometry analysis, colorimetric and fluorometric assays. RESULTS Mesalazine caused a time- and dose-dependent decrease in both cell growth and proliferation. Growth inhibition was accompanied by a G1/G0 arrest, a significant increase in PTEN, caspase-3 activity, cleavage of PARP and caspase-8, whereas the expressions of Xiap, survivin and c-Myc were decreased simultaneously. Cleavage of caspase-9 was not observed. Moreover, PPARgamma expression and activity were elevated. The growth-inhibitory effect of mesalazine was partially reduced in dominant-negative PPARgamma mutant cells, whereas the expression of c-Myc was not affected. Mesalazine-mediated increased caspase-3 activity, the expression of PTEN, cleavage of PARP and caspase-8 as well as reduced levels of survivin and Xiap were completely abolished in the PPARgamma mutant cell lines. CONCLUSION This study clearly demonstrates that mesalazine-mediated pro-apoptotic and anti-proliferative actions are regulated via PPARgamma-dependent and -independent pathways in colonocytes.
Collapse
Affiliation(s)
- Markus Schwab
- First Department of Medicine-ZAFES, Johann Wolfgang Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | | | | | | | | | | | | |
Collapse
|
87
|
PPARγ is an important transcription factor in 1α,25-dihydroxyvitamin D3-induced involucrin expression. J Dermatol Sci 2008; 50:53-60. [DOI: 10.1016/j.jdermsci.2007.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 09/18/2007] [Accepted: 10/26/2007] [Indexed: 02/04/2023]
|
88
|
Schwab M, Reynders V, Loitsch S, Steinhilber D, Schröder O, Stein J. The dietary histone deacetylase inhibitor sulforaphane induces human beta-defensin-2 in intestinal epithelial cells. Immunology 2008; 125:241-51. [PMID: 18373608 DOI: 10.1111/j.1365-2567.2008.02834.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial peptides like human beta-defensin-2 (HBD-2) play an important role in the innate immune system protecting the intestinal mucosa against bacterial invasion. The dietary histone deacetylase (HDAC) inhibitors sulforaphane (SFN) and butyrate have received a great deal of attention because of their ability to simultaneously modulate multiple cellular targets involved in cellular protection. In this study the influence of SFN and butyrate on HBD-2 expression as well as the molecular pathways involved in SFN-mediated induction of HBD-2 were scrutinized. Treatment of Caco-2, HT-29 and SW480 cells with SFN led to a time- and dose-dependent upregulation of HBD-2 mRNA expression as determined by semi-quantitative reverse transcription-polymerase chain reaction. Moreover, HBD-2 protein production increased in response to SFN, measured by enzyme-linked immunosorbent assay. Induction of HBD-2 was also observed in response to butyrate. Immunofluorescence analysis revealed that the protein was localized in the cytosol. Coincubation of SFN with a vitamin D receptor (VDR), or an extracellular-regulated kinase 1/2 or a nuclear factor-kappaB inhibitor all reduced HBD-2 mRNA upregulation. In contrast, transfection of cells with a dominant-negative peroxisome proliferator-activated receptor gamma (PPARgamma) mutant vector to inhibit PPARgamma wild-type action and inhibition of p38 mitogen-activated protein kinase (MAPK) signalling did not affect SFN-mediated upregulation of HBD-2 mRNA. Moreover, SFN induced the expression of VDR, PPARgamma and phosphorylated ERK1/2 but did not affect p38 MAPK activation. The data clearly demonstrate for the first time that the dietary HDAC inhibitor SFN is able to induce antimicrobial peptides in colonocytes. In this process HBD-2 expression is regulated via VDR, mitogen-activated protein kinase kinase/extracellular-regulated kinase and nuclear factor-kappaB signalling.
Collapse
Affiliation(s)
- Markus Schwab
- First Department of Medicine-ZAFES, Johann Wolfgang Goethe-University Frankfurt, Germany.
| | | | | | | | | | | |
Collapse
|
89
|
Kennedy A, Chung S, LaPoint K, Fabiyi O, McIntosh MK. Trans-10, cis-12 conjugated linoleic acid antagonizes ligand-dependent PPARgamma activity in primary cultures of human adipocytes. J Nutr 2008; 138:455-61. [PMID: 18287349 PMCID: PMC2366092 DOI: 10.1093/jn/138.3.455] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We previously demonstrated that trans-10, cis-12 (10,12) conjugated linoleic acid (CLA) causes human adipocyte delipidation, insulin resistance, and inflammation in part by attenuating PPARgamma target gene expression. We hypothesized that CLA antagonizes the activity of PPARgamma in an isomer-specific manner. 10,12 CLA, but not cis-9, trans-11 (9,11) CLA, suppressed ligand-stimulated activation of a peroxisome proliferator response element-luciferase reporter. This decreased activation of PPARgamma by 10,12 CLA was accompanied by an increase in PPARgamma and extracellular signal-related kinase (ERK)1/2 phosphorylation, followed by decreased PPARgamma protein levels. To investigate if 10,12 CLA-mediated delipidation was preventable with a PPARgamma ligand (BRL), cultures were treated for 1 wk with 10,12 CLA or 10,12 CLA + BRL and adipogenic gene and protein expression, glucose uptake, and triglyceride (TG) were measured. BRL cosupplementation completely prevented 10,12 CLA suppression of adipocyte fatty acid-binding protein, lipoprotein lipase, and perilipin mRNA levels without preventing reductions in PPARgamma or insulin-dependent glucose transporter 4 (GLUT4) expression, glucose uptake, or TG. Lastly, we investigated the impact of CLA withdrawal in the absence or presence of BRL for 2 wk. CLA withdrawal did not rescue CLA-mediated reductions in adipogenic gene and protein expression. In contrast, BRL supplementation for 2 wk following CLA withdrawal rescued mRNA levels of PPARgamma target genes. However, the levels of PPARgamma and GLUT4 protein and TG were only partially rescued by BRL. Collectively, we demonstrate for the first time, to our knowledge, that 10,12 CLA antagonizes ligand-dependent PPARgamma activity, possibly via PPARgamma phosphorylation by ERK.
Collapse
Affiliation(s)
- Arion Kennedy
- Department of Nutrition, University of North Carolina, Greensboro, NC 27402−6170
| | - Soonkyu Chung
- Department of Pathology, Wake Forest University, School of Medicine, Winston Salem, NC 27157
| | - Kathleen LaPoint
- Department of Nutrition, University of North Carolina, Greensboro, NC 27402−6170
| | - Oluwatoyin Fabiyi
- Department of Nutrition, University of North Carolina, Greensboro, NC 27402−6170
| | - Michael K. McIntosh
- Department of Nutrition, University of North Carolina, Greensboro, NC 27402−6170
| |
Collapse
|
90
|
Ruan X, Zheng F, Guan Y. PPARs and the kidney in metabolic syndrome. Am J Physiol Renal Physiol 2008; 294:F1032-47. [PMID: 18234957 DOI: 10.1152/ajprenal.00152.2007] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The metabolic syndrome (MetS) is defined by a set of metabolic risk factors, including insulin resistance, central obesity, dyslipidemia, hyperglycemia, and hypertension for type 2 diabetes and cardiovascular disease. Although both retrospective and prospective clinical studies have revealed that MetS is associated with chronic renal disease, even with a nondiabetic cause, the cellular and molecular mechanisms in this association remain largely uncharacterized. Recently, increasing evidence suggests that peroxisome proliferator-activated receptors (PPARs), a subgroup of the nuclear hormone receptor superfamily of ligand-activated transcription factors, may play an important role in the pathogenesis of MetS. All three members of the PPAR nuclear receptor subfamily, PPARalpha, -beta/delta, and -gamma, are critical in regulating insulin sensitivity, adipogenesis, lipid metabolism, inflammation, and blood pressure. PPARs have also been implicated in many renal pathophysiological conditions, including diabetic nephropathy and glomerulosclerosis. Ligands for PPARs such as hypolipidemic PPARalpha activators, and antidiabetic thiazolidinedione PPARgamma agonists affect not only diverse aspects of MetS but also renal disease progression. Emerging data suggest that PPARs may be potential therapeutic targets for MetS and its related renal complications. This review focuses on current knowledge of the role of PPARs in MetS and discusses the potential therapeutic utility of PPAR modulators in the treatment of kidney diseases associated with MetS.
Collapse
Affiliation(s)
- Xiongzhong Ruan
- Center for Nephrology, University College of London, London, United Kingdom
| | | | | |
Collapse
|
91
|
Schäfer G, Wißmann C, Hertel J, Lunyak V, Höcker M. Regulation of Vascular Endothelial Growth Factor D by Orphan Receptors Hepatocyte Nuclear Factor-4α and Chicken Ovalbumin Upstream Promoter Transcription Factors 1 and 2. Cancer Res 2008; 68:457-66. [DOI: 10.1158/0008-5472.can-07-5136] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
92
|
Kaplan J, Cook JA, O'Connor M, Zingarelli B. PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR γ IS REQUIRED FOR THE INHIBITORY EFFECT OF CIGLITAZONE BUT NOT 15-DEOXY-Δ12,14-PROSTAGLANDIN J2 ON THE NFκB PATHWAY IN HUMAN ENDOTHELIAL CELLS. Shock 2007; 28:722-726. [PMID: 17621259 DOI: 10.1097/shk.0b013e318055683a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma) is a ligand-activated nuclear receptor with effects on inflammation, atherosclerosis, and apoptosis. The endogenous PPARgamma ligand, 15-deoxy-Delta12,14-PGJ2 (15d-PGJ2), and the synthetic ligand, ciglitazone, have anti-inflammatory properties in endothelial cells. In addition to PPARgamma-dependent effects on the anti-inflammatory process, it has been proposed that PPARgamma ligands may also inhibit the nuclear transcription factor kappaB (NFkappaB) pathway in a PPARgamma-independent manner. The purpose of this study was to compare the effects of 15d-PGJ2 and ciglitazone on the cytokine-induced activation of the NFkappaB pathway. Human umbilical vein endothelial cells (HUVECs) were transiently transfected with NFkappaB-luciferase or PPARgamma elements-luciferase reporter constructs for 48 h. The HUVECs were pretreated with 15d-PGJ2 or ciglitazone (30 microM) for 1 h, followed by a 4-h stimulation with tumor necrosis factor alpha (100 U/mL). Luciferase assay was performed to determine reporter activity. Additionally, HUVECs were transiently transfected with a dominant-negative mutant, which retains ligand and DNA binding but exhibits markedly reduced transactivation. Stimulation of HUVEC with tumor necrosis factor alpha increased NFkappaB activation while decreasing PPARgamma activity. Overexpression of a dominant-negative PPARgamma mutant prevented the inhibitory effect of ciglitazone on cytokine-induced NFkappaB activation in transfected human endothelial cells. Conversely, 15d-PGJ2 inhibited the cytokine-induced NFkappaB activation even in the absence of PPARgamma. Our data suggest that 15d-PGJ2 exerts direct inhibitory effects on the NFkappaB pathway through a PPARgamma-independent mechanism. On the contrary, the inhibitory effect of ciglitazone on the NFkappaB pathway seems to require PPARgamma activation.
Collapse
Affiliation(s)
- Jennifer Kaplan
- Cincinnati Children's Hospital Medical Center, 3229 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|
93
|
Ito M, Fukuzawa K, Mochizuki Y, Nakano T, Tanaka S. Ab initio fragment molecular orbital study of molecular interactions between liganded retinoid X receptor and its coactivator; part II: influence of mutations in transcriptional activation function 2 activating domain core on the molecular interactions. J Phys Chem A 2007; 112:1986-98. [PMID: 18020317 DOI: 10.1021/jp075430r] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ab initio fragment molecular orbital (FMO) calculations were performed for retinoid X receptor (RXR) complexes with its ligand 9-cis retinoic acid (9cRA) and steroid receptor coactivator-1 (SRC1) to examine the influence of mutations in transcriptional activation function 2 activating domain core (AF2C) of RXR on molecular interactions between 9cRA liganded RXR and SRC1 coactivator. The RXR-SRC1 interactions in three types of RXR-9cRA-SRC1 complexes, namely, a wild type (WT), a mutant whose Glu453 of AF2C was substituted by Lys (E453K), and another mutant whose Glu456 of AF2C was substituted by Lys (E456K), were compared. Through the comparison of WT, E453K, and E456K, possible causes for a marked decrease in the transcriptional activity of RXR by the mutation of Glu453, which is known as a highly conserved charged residue of AF2C, were discussed. It was quantitatively demonstrated that the strength of the RXR-SRC1 interaction correlates with the degree of the transcriptional activation (WT > E456K > E453K). In E453K, the RXR-SRC1 interaction was substantially reduced by the AF2C-SRC1 repulsive interaction, and the charge transfer (CT) from RXR to SRC1 was also inhibited by the decreased electron donation from AF2C to SRC1. Our findings suggest that the inhibitions of the local RXR-SRC1 interaction via AF2C and of the local CT from RXR to SRC1 via AF2C would be the possible causes for the marked decrease in the transcriptional activity of RXR.
Collapse
Affiliation(s)
- Mika Ito
- Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|
94
|
Hazra S, Dubinett SM. Ciglitazone mediates COX-2 dependent suppression of PGE2 in human non-small cell lung cancer cells. Prostaglandins Leukot Essent Fatty Acids 2007; 77:51-8. [PMID: 17697767 PMCID: PMC2045645 DOI: 10.1016/j.plefa.2007.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 05/13/2007] [Accepted: 05/17/2007] [Indexed: 11/20/2022]
Abstract
BACKGROUND Cyclooxygenase-2 (COX-2) over-expression and subsequent prostaglandin E2 (PGE2) production are frequently associated with human non-small-cell lung cancer (NSCLC) and are involved in tumor proliferation, invasion, angiogenesis, and resistance to apoptosis. Here, we report that ciglitazone downregulates PGE2 in NSCLC cells. METHODS PGE2 ELISA assay and COX-2 ELISA assay were performed for measuring PGE2 and COX-2, respectively, in NSCLC. The mRNA level of COX-2 was measured by semi-quantitative RT-PCR. The transient transfection experiments were performed to measure COX-2 and peroxisome proliferator-response element (PPRE) promoter activity in NSCLC. Western blots were unitized to measure PGE synthase (PGES) and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) protein expression. RESULTS COX-2 ELISA assays suggested that ciglitazone-dependent inhibition of PGE2 occurs through the suppression of COX-2. Ciglitazone treatment suppressed COX-2 mRNA expression and COX-2 promoter activity while upregulating PPRE promoter activity. Ciglitazone did not modify the expression of enzymes downstream of COX-2 including PGES and 15-PGDH. Utilization of a dominant-negative PPARgamma showed that the suppression of COX-2 and PGE2 by ciglitazone is mediated via non-PPAR pathways. CONCLUSION Taken together, our findings suggest that ciglitazone is a negative modulator of COX-2/PGE2 in NSCLC.
Collapse
Affiliation(s)
- Saswati Hazra
- Lung Cancer Research Program of the Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | | |
Collapse
|
95
|
Dai X, Sayama K, Shirakata Y, Hanakawa Y, Yamasaki K, Tokumaru S, Yang L, Wang X, Hirakawa S, Tohyama M, Yamauchi T, Takashi K, Kagechika H, Hashimoto K. STAT5a/PPARγ Pathway Regulates Involucrin Expression in Keratinocyte Differentiation. J Invest Dermatol 2007; 127:1728-35. [PMID: 17330131 DOI: 10.1038/sj.jid.5700758] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Signal transducers and activators of transcription (STATs) are critical to growth factor-mediated intracellular signal transduction. We observed the rapid expression and activation of STAT5a during keratinocyte differentiation induced by suspension culture. STAT5a expression preceded that of involucrin, an important molecule in the terminal differentiation of keratinocytes. To determine whether STAT5a regulated involucrin expression, we expressed a dominant-negative (dn) STAT5a that blocks the dimerization of STAT5 and inhibits its nuclear translocation. We found that dn-STAT5a inhibited involucrin expression in keratinocytes. Given that STAT5 regulates adipogenesis via activating the peroxisome proliferator-activated receptor (PPAR) gamma signal, we hypothesized that STAT5a regulated involucrin expression in the same manner. To test this hypothesis, we examined the expression and transactivation of PPARgamma in a suspension culture of keratinocytes. Suspension culture induced PPARgamma expression and triggered PPARgamma transactivation rapidly and dn-STAT5a downregulated this induction and suppressed PPARgamma transactivation. Furthermore, preincubation with the PPARgamma/retinoid X-receptor inhibitor HX-531 or the introduction of a dn-PPARgamma prevented the activation of involucrin promoter and inhibited its induction. This report provides early evidence of a major role for STAT5a in the differentiation of keratinocytes, where it contributes to involucrin expression by activating the PPARgamma signal.
Collapse
Affiliation(s)
- Xiuju Dai
- Department of Dermatology, Ehime University School of Medicine, Ehime, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Tarcin O, Bajaj M, Akalin S. Insulin Resistance, Adipocyte Biology, and Thiazolidinediones: A Review. Metab Syndr Relat Disord 2007; 5:103-15. [DOI: 10.1089/met.2007.0001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ozlem Tarcin
- Marmara University Faculty of Medicine, Endocrinology and Metabolism, Istanbul, Turkey
| | - Mandeep Bajaj
- Department Of Medicine, Baylor College Of Medicine, Houston, Texas, USA
| | - Sema Akalin
- Marmara University Faculty of Medicine, Endocrinology and Metabolism, Istanbul, Turkey
| |
Collapse
|
97
|
Tordjman J, Leroyer S, Chauvet G, Quette J, Chauvet C, Tomkiewicz C, Chapron C, Barouki R, Forest C, Aggerbeck M, Antoine B. Cytosolic aspartate aminotransferase, a new partner in adipocyte glyceroneogenesis and an atypical target of thiazolidinedione. J Biol Chem 2007; 282:23591-602. [PMID: 17545671 DOI: 10.1074/jbc.m611111200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We show that cytosolic aspartate aminotransferase (cAspAT) is involved in adipocyte glyceroneogenesis, a regulated pathway that controls fatty acid homeostasis by promoting glycerol 3-phosphate formation for fatty acid re-esterification during fasting. cAspAT activity, as well as the incorporation of [(14)C]aspartate into the neutral lipid fraction of 3T3-F442A adipocytes was stimulated by the thiazolidinedione (TZD) rosiglitazone. Conversely, the ratio of fatty acid to glycerol released into the medium decreased. Regulation of cAspAT gene expression was specific to differentiated adipocytes and did not require any peroxisome proliferator-activated receptor gamma (PPARgamma)/retinoid X receptor-alpha direct binding. Nevertheless, PPARgamma is indirectly necessary for both cAspAT basal expression and TZD responsiveness because they are, respectively, diminished and abolished by ectopic overexpression of a dominant negative PPARgamma. The cAspAT TZD-responsive site was restricted to a single AGGACA hexanucleotide located at -381 to -376 bp whose mutation impaired the specific RORalpha binding. RORalpha ectopic expression activated the cAspAT gene transcription in absence of rosiglitazone, and its protein amount in nuclear extracts is 1.8-fold increased by rosiglitazone treatment of adipocytes. Finally, the amounts of RORalpha and cAspAT mRNAs were similarly increased by TZD treatment of human adipose tissue explants, confirming coordinated regulation. Our data identify cAspAT as a new member of glyceroneogenesis, transcriptionally regulated by TZD via the control of RORalpha expression by PPARgamma in adipocytes.
Collapse
Affiliation(s)
- Joan Tordjman
- Inserm U530, Université Paris Descartes, F-75006, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Burns KA, Vanden Heuvel JP. Modulation of PPAR activity via phosphorylation. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:952-60. [PMID: 17560826 PMCID: PMC2712836 DOI: 10.1016/j.bbalip.2007.04.018] [Citation(s) in RCA: 330] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2006] [Revised: 03/06/2007] [Accepted: 04/30/2007] [Indexed: 02/08/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily of transcription factors that respond to specific ligands by altering gene expression in a cell-, developmental- and sex-specific manner. Three subtypes of this receptor have been discovered (PPARalpha, beta and gamma), each apparently evolving to fulfill different biological niches. PPARs control a variety of target genes involved in lipid homeostasis, diabetes and cancer. Similar to other nuclear receptors, the PPARs are phosphoproteins and their transcriptional activity is affected by cross-talk with kinases and phosphatases. Phosphorylation by the mitogen-activated protein kinases (ERK- and p38-MAPK), Protein Kinase A and C (PKA, PKC), AMP Kinase (AMPK) and glycogen synthase kinase-3 (GSK3) affect their activity in a ligand-dependent or -independent manner. The effects of phosphorylation depend on the cellular context, receptor subtype and residue metabolized which can be manifested at several steps in the PPAR activation sequence including ligand affinity, DNA binding, coactivator recruitment and proteasomal degradation. The review will summarize the known PPAR kinases that directly act on these receptors, the sites affected and the result of this modification on receptor activity.
Collapse
Affiliation(s)
| | - John P. Vanden Heuvel
- To whom correspondence should be addressed: Jack Vanden Heuvel, PhD, Professor of Molecular Toxicology, Penn State University, 325 Life Sciences Building, University Park, PA 16802, T: (814) 863-8532, F: (814) 863-1696, , jackvh.cas.psu.edu
| |
Collapse
|
99
|
Schwab M, Reynders V, Loitsch S, Steinhilber D, Stein J, Schröder O. Involvement of different nuclear hormone receptors in butyrate-mediated inhibition of inducible NF kappa B signalling. Mol Immunol 2007; 44:3625-32. [PMID: 17521736 DOI: 10.1016/j.molimm.2007.04.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2007] [Revised: 04/13/2007] [Accepted: 04/16/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND NF kappa B plays a major role in the control of immune responses and inflammation. Recently, butyrate has not only been demonstrated to suppress NF kappa B activation in colorectal cancer cells, but also to modulate the activity and expression of the Peroxisome-Proliferator-Activated-Receptor gamma (PPAR gamma) and the vitamin D receptor (VDR). Therefore, we investigated a putative involvement of both receptors in butyrate-mediated inhibition of inducible NF kappa B signalling. RESULTS Treatment of HT-29 cells with butyrate attenuated basal p50 as well as TNFalpha- and LPS-induced p50 and p65 NF kappa B dimer activity in the nucleus as measured by transcription factor assay. Cytosolic expression of I kappa B alpha protein was reduced by butyrate, and TNFalpha but not by LPS. Challenge of cells with the VDR antagonist ZK191732 up-regulated basal NF kappa B activity by decreasing I kappa B alpha simultaneously, while basal signalling was not influenced by the PPAR gamma inhibitor GW9662. Pre-treatment with ZK191732 reduced the inhibitory effect of butyrate on NF kappa B activation caused by TNFalpha whereas no activation was noted in transfected dominant-negative PPAR gamma mutant vector cells. Adversely, the inhibitory effect of butyrate on NF kappa B activity induced by LPS was almost reversed in dominant-negative PPAR gamma mutant cells while pre-incubation of ZK191732 did not affect butyrate-mediated attenuation of LPS-induced NF kappa B signalling. CONCLUSION These findings provide evidence for the involvement of the nuclear hormone receptors PPAR gamma and VDR in butyrate-mediated inhibition of inducible NF kappa B activation dependent on the stimulated signalling pathway. Moreover, VDR appears to play an inhibitory role in the regulation of basal NF kappa B signalling.
Collapse
Affiliation(s)
- Markus Schwab
- First Department of Medicine-ZAFES, Johann Wolfgang Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
100
|
von Knethen A, Soller M, Tzieply N, Weigert A, Johann AM, Jennewein C, Köhl R, Brüne B. PPARgamma1 attenuates cytosol to membrane translocation of PKCalpha to desensitize monocytes/macrophages. ACTA ACUST UNITED AC 2007; 176:681-94. [PMID: 17325208 PMCID: PMC2064025 DOI: 10.1083/jcb.200605038] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recently, we provided evidence that PKCα depletion in monocytes/macrophages contributes to cellular desensitization during sepsis. We demonstrate that peroxisome proliferator–activated receptor γ (PPARγ) agonists dose dependently block PKCα depletion in response to the diacylglycerol homologue PMA in RAW 264.7 and human monocyte–derived macrophages. In these cells, we observed PPARγ-dependent inhibition of nuclear factor-κB (NF-κB) activation and TNF-α expression in response to PMA. Elucidating the underlying mechanism, we found PPARγ1 expression not only in the nucleus but also in the cytoplasm. Activation of PPARγ1 wild type, but not an agonist-binding mutant of PPARγ1, attenuated PMA-mediated PKCα cytosol to membrane translocation. Coimmunoprecipitation assays pointed to a protein–protein interaction of PKCα and PPARγ1, which was further substantiated using a mammalian two-hybrid system. Applying PPARγ1 mutation and deletion constructs, we identified the hinge helix 1 domain of PPARγ1 that is responsible for PKCα binding. Therefore, we conclude that PPARγ1-dependent inhibition of PKCα translocation implies a new model of macrophage desensitization.
Collapse
Affiliation(s)
- Andreas von Knethen
- Institute of Biochemistry I, Faculty of Medicine, Johann Wolfgang Goethe University, 60590 Frankfurt, Theodor-Stern-Kai 7, Germany.
| | | | | | | | | | | | | | | |
Collapse
|