51
|
Kanemura S, Okumura M, Yutani K, Ramming T, Hikima T, Appenzeller-Herzog C, Akiyama S, Inaba K. Human ER Oxidoreductin-1α (Ero1α) Undergoes Dual Regulation through Complementary Redox Interactions with Protein-Disulfide Isomerase. J Biol Chem 2016; 291:23952-23964. [PMID: 27703014 DOI: 10.1074/jbc.m116.735662] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/04/2016] [Indexed: 11/06/2022] Open
Abstract
In the mammalian endoplasmic reticulum, oxidoreductin-1α (Ero1α) generates protein disulfide bonds and transfers them specifically to canonical protein-disulfide isomerase (PDI) to sustain oxidative protein folding. This oxidative process is coupled to the reduction of O2 to H2O2 on the bound flavin adenine dinucleotide cofactor. Because excessive thiol oxidation and H2O2 generation cause cell death, Ero1α activity must be properly regulated. In addition to the four catalytic cysteines (Cys94, Cys99, Cys104, and Cys131) that are located in the flexible active site region, the Cys208-Cys241 pair located at the base of another flexible loop is necessary for Ero1α regulation, although the mechanistic basis is not fully understood. The present study revealed that the Cys208-Cys241 disulfide was reduced by PDI and other PDI family members during PDI oxidation. Differential scanning calorimetry and small angle X-ray scattering showed that mutation of Cys208 and Cys241 did not grossly affect the thermal stability or overall shape of Ero1α, suggesting that redox regulation of this cysteine pair serves a functional role. Moreover, the flexible loop flanked by Cys208 and Cys241 provides a platform for functional interaction with PDI, which in turn enhances the oxidative activity of Ero1α through reduction of the Cys208-Cys241 disulfide. We propose a mechanism of dual Ero1α regulation by dynamic redox interactions between PDI and the two Ero1α flexible loops that harbor the regulatory cysteines.
Collapse
Affiliation(s)
- Shingo Kanemura
- From the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Masaki Okumura
- From the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai 980-8577, Japan.,RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | | | - Thomas Ramming
- the Division of Molecular & Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
| | | | - Christian Appenzeller-Herzog
- the Division of Molecular & Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland.,the Berufsfachschule Gesundheit Baselland, 4142 Münchenstein, Switzerland
| | - Shuji Akiyama
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan.,the Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, Okazaki 444-8585, Japan.,the Department of Functional Molecular Science, SOKENDAI (Graduate University for Advanced Studies), Kanagawa 240-0193, Japan, and
| | - Kenji Inaba
- From the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai 980-8577, Japan, .,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo, 102-0076, Japan
| |
Collapse
|
52
|
Zheng XY, Xu J, Chen XI, Li W, Wang TY. Attenuation of oxygen fluctuation-induced endoplasmic reticulum stress in human lens epithelial cells. Exp Ther Med 2015; 10:1883-1887. [PMID: 26640566 DOI: 10.3892/etm.2015.2725] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 05/28/2015] [Indexed: 12/31/2022] Open
Abstract
Cataractogenic stresses are associated with the induction of endoplasmic reticulum (ER) stress. However, little is known about oxygen (O2)-induced ER stress in the lens. Cataract research has focused on elevated levels of O2 in lens epithelial cells (LECs). Excessive levels or a lack of O2 are known to induce ER stress whereas chronic ER stress activates the unfolded protein response (UPR). The present study investigated the hypothesis that the fluctuation of O2 levels induces a UPR, and may be controlled by maintaining human LECs (hLECs) in a specific concentration of O2. Human LECs were cultured in different atmospheric levels of O2. Hypoxic conditions were determined by the level of hypoxia-inducible factor (HIF)-1α. 2',7'-Dichlorodihydrofluorescein diacetate and ethidium homodimer-1 staining were conducted to detect reactive oxygen species (ROS) and cell death, respectively. Protein blot analyses were performed with antibodies specific to antioxidant and UPR-specific proteins. Reverse transcription-quantitatative polymerase chain reaction assays were performed to quantify the mRNA levels of activated NF-E2-related factor 2 (Nrf2) and kelch-like ECH-associated protein 1 (Keap1). The treatment of human LECs with 0 and 20% atmospheric O2 activated Nrf2/Keap1. The LECs shifted to 1% atmospheric O2 from 0, 4 or 20% for 24 h showed decreased levels of Keap1. By contrast, hLECs cultured in 1% atmospheric O2 for 24 h and then shifted to 0, 4 or 20% O2 exhibited a significant upregulation of Nrf2. These results suggest that oxidative stress proteins were not expressed in a 1% O2 environment. The O2 levels in the culture medium were equilibrated within 2 h in the cell culture plates. These results showed that an appropriate oxygen environment for the culture of LECs is ~1 % atmospheric O2. Either 0 or 20% of atmospheric O2 activated the UPR and the Nrf2/Keap1-mediated antioxidant system in LECs and chronic exposure to O2 fluctuation led to ROS production and cell death. This study revealed that O2 fluctuation-induced UPR/ER stress could be prevented by maintaining the cells in a 1% O2 environment.
Collapse
Affiliation(s)
- Xiao-Yu Zheng
- Department of Ophthalmology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Jia Xu
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - X I Chen
- The Central Laboratory, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Wei Li
- The Central Laboratory, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Ting-Yan Wang
- Department of Ophthalmology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
53
|
Espinosa-Diez C, Miguel V, Mennerich D, Kietzmann T, Sánchez-Pérez P, Cadenas S, Lamas S. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol 2015; 6:183-197. [PMID: 26233704 PMCID: PMC4534574 DOI: 10.1016/j.redox.2015.07.008] [Citation(s) in RCA: 775] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/06/2015] [Indexed: 02/08/2023] Open
Abstract
Redox biological reactions are now accepted to bear the Janus faceted feature of promoting both physiological signaling responses and pathophysiological cues. Endogenous antioxidant molecules participate in both scenarios. This review focuses on the role of crucial cellular nucleophiles, such as glutathione, and their capacity to interact with oxidants and to establish networks with other critical enzymes such as peroxiredoxins. We discuss the importance of the Nrf2-Keap1 pathway as an example of a transcriptional antioxidant response and we summarize transcriptional routes related to redox activation. As examples of pathophysiological cellular and tissular settings where antioxidant responses are major players we highlight endoplasmic reticulum stress and ischemia reperfusion. Topologically confined redox-mediated post-translational modifications of thiols are considered important molecular mechanisms mediating many antioxidant responses, whereas redox-sensitive microRNAs have emerged as key players in the posttranscriptional regulation of redox-mediated gene expression. Understanding such mechanisms may provide the basis for antioxidant-based therapeutic interventions in redox-related diseases. Antioxidant responses are crucial for both redox signaling and redox damage. Glutathione-mediated reactions and Nrf2-Keap1 pathway are key antioxidant responses. Redox-related post-translational modifications activate specific signaling pathways. Redox-sensitive microRNAs contribute to redox-mediated gene expression regulation. ER stress and ischemia-reperfusion are antioxidant-related pathophysiological events.
Collapse
Affiliation(s)
- Cristina Espinosa-Diez
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Verónica Miguel
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Aapistie 7, University of Oulu, FI-90230 Oulu, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Aapistie 7, University of Oulu, FI-90230 Oulu, Finland
| | - Patricia Sánchez-Pérez
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
| | - Susana Cadenas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
| | - Santiago Lamas
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain.
| |
Collapse
|
54
|
Wang L, Wang X, Wang CC. Protein disulfide-isomerase, a folding catalyst and a redox-regulated chaperone. Free Radic Biol Med 2015; 83:305-13. [PMID: 25697778 DOI: 10.1016/j.freeradbiomed.2015.02.007] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/04/2015] [Accepted: 02/07/2015] [Indexed: 01/08/2023]
Abstract
Protein disulfide-isomerase (PDI) was the first protein-folding catalyst to be characterized, half a century ago. It plays critical roles in a variety of physiological events by displaying oxidoreductase and redox-regulated chaperone activities. This review provides a brief history of the identification of PDI as both an enzyme and a molecular chaperone and of the recent advances in studies on the structure and dynamics of PDI, the substrate binding and release, and the cooperation with its partners to catalyze oxidative protein folding and maintain ER redox homeostasis. In this review, we highlight the structural features of PDI, including the high interdomain flexibility, the multiple binding sites, the two synergic active sites, and the redox-dependent conformational changes.
Collapse
Affiliation(s)
- Lei Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xi Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chih-chen Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
55
|
Zito E. ERO1: A protein disulfide oxidase and H2O2 producer. Free Radic Biol Med 2015; 83:299-304. [PMID: 25651816 DOI: 10.1016/j.freeradbiomed.2015.01.011] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/08/2015] [Accepted: 01/15/2015] [Indexed: 12/16/2022]
Abstract
Oxidative protein folding in the endoplasmic reticulum (ER) is an essential function of eukaryotic cells that requires the relaying of electrons between the proteinaceous components of the pathway. During this process, protein disulfide isomerase (PDI) chaperones oxidatively fold their client proteins before endoplasmic reticulum oxireductin 1 (ERO1) oxidase transfers electrons from the reduced PDI to the terminal acceptor, which is usually molecular oxygen and is subsequently reduced to H2O2. ERO1 function is essential for disulfide bond formation in yeast, whereas in mammals its function is compensated for by alternative pathways. ERO1 activity is allosterically and transcriptionally regulated by the ER unfolded protein response (UPR). The ER stress-induced upregulation of ERO1 and other genes contributes to a cell's ability to cope with ER stress as a result of an adaptive homeostatic response, but the stress persists if a "maladaptive UPR" fails to reestablish ER homeostasis. As the oxidative activity of ERO1 is related to the production of H2O2 and consequently burdens cells with potentially toxic reactive oxygen species, deregulated ERO1 activity is likely to impair cell fitness under certain conditions of severe ER stress and may therefore lead to a change from an adaptive to a maladaptive UPR. This review summarizes the evidence of the double-edged sword activity of ERO1 by highlighting its role as a protein disulfide oxidase and H2O2 producer.
Collapse
Affiliation(s)
- Ester Zito
- Dulbecco Telethon Institute, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milano, Italy.
| |
Collapse
|
56
|
Thiol-disulfide exchange between the PDI family of oxidoreductases negates the requirement for an oxidase or reductase for each enzyme. Biochem J 2015; 469:279-88. [PMID: 25989104 PMCID: PMC4613490 DOI: 10.1042/bj20141423] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 05/19/2015] [Indexed: 01/20/2023]
Abstract
The PDI family form disulfide bridges in substrates via thiol-disulfide exchange reactions. We show in the present study that disulfide exchange can occur directly between individual PDI proteins. Implication is that only certain members need to be oxidized or reduced to maintain function. The formation of disulfides in proteins entering the secretory pathway is catalysed by the protein disulfide isomerase (PDI) family of enzymes. These enzymes catalyse the introduction, reduction and isomerization of disulfides. To function continuously they require an oxidase to reform the disulfide at their active site. To determine how each family member can be recycled to catalyse disulfide exchange, we have studied whether disulfides are transferred between individual PDI family members. We studied disulfide exchange either between purified proteins or by identifying mixed disulfide formation within cells grown in culture. We show that disulfide exchange occurs efficiently and reversibly between specific PDIs. These results have allowed us to define a hierarchy for members of the PDI family, in terms of ability to act as electron acceptors or donors during thiol-disulfide exchange reactions and indicate that there is no kinetic barrier to the exchange of disulfides between several PDI proteins. Such promiscuous disulfide exchange negates the necessity for each enzyme to be oxidized by Ero1 (ER oxidoreductin 1) or reduced by a reductive system. The lack of kinetic separation of the oxidative and reductive pathways in mammalian cells contrasts sharply with the equivalent systems for native disulfide formation within the bacterial periplasm.
Collapse
|
57
|
Kupsco A, Schlenk D. Oxidative stress, unfolded protein response, and apoptosis in developmental toxicity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:1-66. [PMID: 26008783 DOI: 10.1016/bs.ircmb.2015.02.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Physiological development requires precise spatiotemporal regulation of cellular and molecular processes. Disruption of these key events can generate developmental toxicity in the form of teratogenesis or mortality. The mechanism behind many developmental toxicants remains unknown. While recent work has focused on the unfolded protein response (UPR), oxidative stress, and apoptosis in the pathogenesis of disease, few studies have addressed their relationship in developmental toxicity. Redox regulation, UPR, and apoptosis are essential for physiological development and can be disturbed by a variety of endogenous and exogenous toxicants to generate lethality and diverse malformations. This review examines the current knowledge of the role of oxidative stress, UPR, and apoptosis in physiological development as well as in developmental toxicity, focusing on studies and advances in vertebrates model systems.
Collapse
Affiliation(s)
- Allison Kupsco
- Environmental Toxicology Program, University of California, Riverside, CA, USA
| | - Daniel Schlenk
- Environmental Toxicology Program, University of California, Riverside, CA, USA; Environmental Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
58
|
Mohanasundaram KA, Haworth NL, Grover MP, Crowley TM, Goscinski A, Wouters MA. Potential role of glutathione in evolution of thiol-based redox signaling sites in proteins. Front Pharmacol 2015; 6:1. [PMID: 25805991 PMCID: PMC4354306 DOI: 10.3389/fphar.2015.00001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/05/2015] [Indexed: 11/23/2022] Open
Abstract
Cysteine is susceptible to a variety of modifications by reactive oxygen and nitrogen oxide species, including glutathionylation; and when two cysteines are involved, disulfide formation. Glutathione-cysteine adducts may be removed from proteins by glutaredoxin, whereas disulfides may be reduced by thioredoxin. Glutaredoxin is homologous to the disulfide-reducing thioredoxin and shares similar binding modes of the protein substrate. The evolution of these systems is not well characterized. When a single Cys is present in a protein, conjugation of the redox buffer glutathione may induce conformational changes, resulting in a simple redox switch that effects a signaling cascade. If a second cysteine is introduced into the sequence, the potential for disulfide formation exists. In favorable protein contexts, a bistable redox switch may be formed. Because of glutaredoxin's similarities to thioredoxin, the mutated protein may be immediately exapted into the thioredoxin-dependent redox cycle upon addition of the second cysteine. Here we searched for examples of protein substrates where the number of redox-active cysteine residues has changed throughout evolution. We focused on cross-strand disulfides (CSDs), the most common type of forbidden disulfide. We searched for proteins where the CSD is present, absent and also found as a single cysteine in protein orthologs. Three different proteins were selected for detailed study-CD4, ERO1, and AKT. We created phylogenetic trees, examining when the CSD residues were mutated during protein evolution. We posit that the primordial cysteine is likely to be the cysteine of the CSD which undergoes nucleophilic attack by thioredoxin. Thus, a redox-active disulfide may be introduced into a protein structure by stepwise mutation of two residues in the native sequence to Cys. By extension, evolutionary acquisition of structural disulfides in proteins can potentially occur via transition through a redox-active disulfide state.
Collapse
Affiliation(s)
| | - Naomi L. Haworth
- School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, Deakin UniversityGeelong, VIC, Australia
| | - Mani P. Grover
- School of Medicine, Faculty of Health, Deakin UniversityGeelong, VIC, Australia
| | - Tamsyn M. Crowley
- School of Medicine, Faculty of Health, Deakin UniversityGeelong, VIC, Australia
- Australian Animal Health Laboratory, Animal, Food and Health Sciences Division, Commonwealth Scientific and Industrial Research OrganisationGeelong, VIC, Australia
| | - Andrzej Goscinski
- School of Information Technology, Faculty of Science, Engineering and Built Environment, Deakin UniversityGeelong, VIC, Australia
| | - Merridee A. Wouters
- School of Medicine, Faculty of Health, Deakin UniversityGeelong, VIC, Australia
| |
Collapse
|
59
|
Hudson DA, Gannon SA, Thorpe C. Oxidative protein folding: from thiol-disulfide exchange reactions to the redox poise of the endoplasmic reticulum. Free Radic Biol Med 2015; 80:171-82. [PMID: 25091901 PMCID: PMC4312752 DOI: 10.1016/j.freeradbiomed.2014.07.037] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/23/2014] [Indexed: 12/21/2022]
Abstract
This review examines oxidative protein folding within the mammalian endoplasmic reticulum (ER) from an enzymological perspective. In protein disulfide isomerase-first (PDI-first) pathways of oxidative protein folding, PDI is the immediate oxidant of reduced client proteins and then addresses disulfide mispairings in a second isomerization phase. In PDI-second pathways the initial oxidation is PDI-independent. Evidence for the rapid reduction of PDI by reduced glutathione is presented in the context of PDI-first pathways. Strategies and challenges are discussed for determination of the concentrations of reduced and oxidized glutathione and of the ratios of PDI(red):PDI(ox). The preponderance of evidence suggests that the mammalian ER is more reducing than first envisaged. The average redox state of major PDI-family members is largely to almost totally reduced. These observations are consistent with model studies showing that oxidative protein folding proceeds most efficiently at a reducing redox poise consistent with a stoichiometric insertion of disulfides into client proteins. After a discussion of the use of natively encoded fluorescent probes to report the glutathione redox poise of the ER, this review concludes with an elaboration of a complementary strategy to discontinuously survey the redox state of as many redox-active disulfides as can be identified by ratiometric LC-MS-MS methods. Consortia of oxidoreductases that are in redox equilibrium can then be identified and compared to the glutathione redox poise of the ER to gain a more detailed understanding of the factors that influence oxidative protein folding within the secretory compartment.
Collapse
Affiliation(s)
- Devin A Hudson
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Shawn A Gannon
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
60
|
Lahiri S, Chao JT, Tavassoli S, Wong AKO, Choudhary V, Young BP, Loewen CJR, Prinz WA. A conserved endoplasmic reticulum membrane protein complex (EMC) facilitates phospholipid transfer from the ER to mitochondria. PLoS Biol 2014; 12:e1001969. [PMID: 25313861 PMCID: PMC4196738 DOI: 10.1371/journal.pbio.1001969] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/03/2014] [Indexed: 11/24/2022] Open
Abstract
Tethering of the endoplasmic reticulum to mitochondria by a conserved endoplasmic reticulum complex is needed for the transfer of phospholipids between these organelles. Mitochondrial membrane biogenesis and lipid metabolism require phospholipid transfer from the endoplasmic reticulum (ER) to mitochondria. Transfer is thought to occur at regions of close contact of these organelles and to be nonvesicular, but the mechanism is not known. Here we used a novel genetic screen in S. cerevisiae to identify mutants with defects in lipid exchange between the ER and mitochondria. We show that a strain missing multiple components of the conserved ER membrane protein complex (EMC) has decreased phosphatidylserine (PS) transfer from the ER to mitochondria. Mitochondria from this strain have significantly reduced levels of PS and its derivative phosphatidylethanolamine (PE). Cells lacking EMC proteins and the ER–mitochondria tethering complex called ERMES (the ER–mitochondria encounter structure) are inviable, suggesting that the EMC also functions as a tether. These defects are corrected by expression of an engineered ER–mitochondrial tethering protein that artificially tethers the ER to mitochondria. EMC mutants have a significant reduction in the amount of ER tethered to mitochondria even though ERMES remained intact in these mutants, suggesting that the EMC performs an additional tethering function to ERMES. We find that all Emc proteins interact with the mitochondrial translocase of the outer membrane (TOM) complex protein Tom5 and this interaction is important for PS transfer and cell growth, suggesting that the EMC forms a tether by associating with the TOM complex. Together, our findings support that the EMC tethers ER to mitochondria, which is required for phospholipid synthesis and cell growth. Mitochondrial membrane biogenesis and lipid metabolism depend on the transfer of phospholipid from the endoplasmic reticulum to mitochondria. This transfer is thought to occur at regions where these organelles are in close contact, and, although the process is thought not to involve vesicles, the mechanism is not known. In this study, we found a complex of proteins in the endoplasmic reticulum that is required for the transfer of one phospholipid—phosphatidylserine—from the endoplasmic reticulum to mitochondria. Cells lacking this protein complex have nonfunctional mitochondria with an abnormal lipid composition. We show that the complex is required to maintain close contacts between the endoplasmic reticulum and mitochondria; the complex probably directly interacts with at least one protein on the surface of mitochondria. In addition, cells lacking this complex and a second previously identified tethering complex are not viable. Thus, our findings suggest that tethering of the endoplasmic reticulum and mitochondria is essential for cell growth, likely because it is necessary for lipid exchange between these organelles.
Collapse
Affiliation(s)
- Sujoy Lahiri
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jesse T Chao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shabnam Tavassoli
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew K O Wong
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vineet Choudhary
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Barry P Young
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher J R Loewen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - William A Prinz
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
61
|
Zhang L, Niu Y, Zhu L, Fang J, Wang X, Wang L, Wang CC. Different interaction modes for protein-disulfide isomerase (PDI) as an efficient regulator and a specific substrate of endoplasmic reticulum oxidoreductin-1α (Ero1α). J Biol Chem 2014; 289:31188-99. [PMID: 25258311 DOI: 10.1074/jbc.m114.602961] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Protein-disulfide isomerase (PDI) and sulfhydryl oxidase endoplasmic reticulum oxidoreductin-1α (Ero1α) constitute the pivotal pathway for oxidative protein folding in the mammalian endoplasmic reticulum (ER). Ero1α oxidizes PDI to introduce disulfides into substrates, and PDI can feedback-regulate Ero1α activity. Here, we show the regulatory disulfide of Ero1α responds to the redox fluctuation in ER very sensitively, relying on the availability of redox active PDI. The regulation of Ero1α is rapidly facilitated by either a or a' catalytic domain of PDI, independent of the substrate binding domain. On the other hand, activated Ero1α specifically binds to PDI via hydrophobic interactions and preferentially catalyzes the oxidation of domain a'. This asymmetry ensures PDI to function simultaneously as an oxidoreductase and an isomerase. In addition, several PDI family members are also characterized to be potent regulators of Ero1α. The novel modes for PDI as a competent regulator and a specific substrate of Ero1α govern efficient and faithful oxidative protein folding and maintain the ER redox homeostasis.
Collapse
Affiliation(s)
- Lihui Zhang
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingbo Niu
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zhu
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingqi Fang
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi'e Wang
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China and
| | - Lei Wang
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China and
| | - Chih-chen Wang
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China and
| |
Collapse
|
62
|
Mehmeti I, Lortz S, Elsner M, Lenzen S. Peroxiredoxin 4 improves insulin biosynthesis and glucose-induced insulin secretion in insulin-secreting INS-1E cells. J Biol Chem 2014; 289:26904-26913. [PMID: 25122762 DOI: 10.1074/jbc.m114.568329] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Oxidative folding of (pro)insulin is crucial for its assembly and biological function. This process takes place in the endoplasmic reticulum (ER) and is accomplished by protein disulfide isomerase and ER oxidoreductin 1β, generating stoichiometric amounts of hydrogen peroxide (H2O2) as byproduct. During insulin resistance in the prediabetic state, increased insulin biosynthesis can overwhelm the ER antioxidative and folding capacity, causing an imbalance in the ER redox homeostasis and oxidative stress. Peroxiredoxin 4 (Prdx4), an ER-specific antioxidative peroxidase can utilize luminal H2O2 as driving force for reoxidizing protein disulfide isomerase family members, thus efficiently contributing to disulfide bond formation. Here, we examined the functional significance of Prdx4 on β-cell function with emphasis on insulin content and secretion during stimulation with nutrient secretagogues. Overexpression of Prdx4 in glucose-responsive insulin-secreting INS-1E cells significantly metabolized luminal H2O2 and improved the glucose-induced insulin secretion, which was accompanied by the enhanced proinsulin mRNA transcription and insulin content. This β-cell beneficial effect was also observed upon stimulation with the nutrient insulin secretagogue combination of leucine plus glutamine, indicating that the effect is not restricted to glucose. However, knockdown of Prdx4 had no impact on H2O2 metabolism or β-cell function due to the fact that Prdx4 expression is negligibly low in pancreatic β-cells. Moreover, we provide evidence that the constitutively low expression of Prdx4 is highly susceptible to hyperoxidation in the presence of high glucose. Overall, these data suggest an important role of Prdx4 in maintaining insulin levels and improving the ER folding capacity also under conditions of a high insulin requirement.
Collapse
Affiliation(s)
- Ilir Mehmeti
- Institute of Clinical Biochemistry, Hannover Medical School, 30623 Hannover, Germany
| | - Stephan Lortz
- Institute of Clinical Biochemistry, Hannover Medical School, 30623 Hannover, Germany
| | - Matthias Elsner
- Institute of Clinical Biochemistry, Hannover Medical School, 30623 Hannover, Germany
| | - Sigurd Lenzen
- Institute of Clinical Biochemistry, Hannover Medical School, 30623 Hannover, Germany.
| |
Collapse
|
63
|
Abstract
SIGNIFICANCE The thioredoxin (Trx) superfamily proteins, including protein disulfide isomerases (PDI) and Dsb protein family, are major players in oxidative protein folding, which involves native disulfide bond formation. These proteins contain Trx folds with CXXC active sites and fulfill their physiological functions in oxidative cellular compartments such as the endoplasmic reticulum (ER) or the bacterial periplasm. RECENT ADVANCES The structure of the Trx superfamily protein PDI has been solved by X-ray crystallography and shown to be a flexible molecule, having a horseshoe shape with a closed reduced and an open oxidized conformation, which is important for exerting its catalytic activity. Atomic force microscopy revealed that PDI works as a placeholder to prevent early non-native disulfide bond formation and further misfolding. S-nitrosylation of the active site of PDI inhibits the PDI activity and links protein misfolding to neurodegenerative diseases like Alzheimer's and Parkinson's diseases. CRITICAL ISSUES Electron transfer pathways of the oxidative protein folding show conserved Trx-like thiol-disulfide chemistry. Overall, mammalian cells have a large number of disulfide-containing proteins, the folding of which involves non-native disulfide bond isomerization. The process is sensitive to oxidative stress and ER stress. FUTURE DIRECTIONS The correct oxidative protein folding is critical for the substrate protein stability and function, and protein misfolding is linked to, for example, neurodegenerative diseases. Further understanding on the mechanisms and specific roles of Trx superfamily proteins in oxidative protein folding may lead to drug development for the treatment of bacterial infection and various human diseases in aging and neurodegeneration.
Collapse
Affiliation(s)
- Jun Lu
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | | |
Collapse
|
64
|
Delic M, Göngrich R, Mattanovich D, Gasser B. Engineering of protein folding and secretion-strategies to overcome bottlenecks for efficient production of recombinant proteins. Antioxid Redox Signal 2014; 21:414-37. [PMID: 24483278 DOI: 10.1089/ars.2014.5844] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Recombinant protein production has developed into a huge market with enormous positive implications for human health and for the future direction of a biobased economy. Limitations in the economic and technical feasibility of production processes are often related to bottlenecks of in vivo protein folding. RECENT ADVANCES Based on cell biological knowledge, some major bottlenecks have been overcome by the overexpression of molecular chaperones and other folding related proteins, or by the deletion of deleterious pathways that may lead to misfolding, mistargeting, or degradation. CRITICAL ISSUES While important success could be achieved by this strategy, the list of reported unsuccessful cases is disappointingly long and obviously dependent on the recombinant protein to be produced. Singular engineering of protein folding steps may not lead to desired results if the pathway suffers from several limitations. In particular, the connection between folding quality control and proteolytic degradation needs further attention. FUTURE DIRECTIONS Based on recent understanding that multiple steps in the folding and secretion pathways limit productivity, synergistic combinations of the cell engineering approaches mentioned earlier need to be explored. In addition, systems biology-based whole cell analysis that also takes energy and redox metabolism into consideration will broaden the knowledge base for future rational engineering strategies.
Collapse
Affiliation(s)
- Marizela Delic
- 1 Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU) , Vienna, Austria
| | | | | | | |
Collapse
|
65
|
Selenite cataracts: activation of endoplasmic reticulum stress and loss of Nrf2/Keap1-dependent stress protection. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1794-805. [PMID: 24997453 DOI: 10.1016/j.bbadis.2014.06.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 12/21/2022]
Abstract
Cataract-induced by sodium selenite in suckling rats is one of the suitable animal models to study the basic mechanism of human cataract formation. The aim of this present investigation is to study the endoplasmic reticulum (ER) stress-mediated activation of unfolded protein response (UPR), overproduction of reactive oxygen species (ROS), and suppression of Nrf2/Keap1-dependent antioxidant protection through endoplasmic reticulum-associated degradation (ERAD) pathway and Keap1 promoter DNA demethylation in human lens epithelial cells (HLECs) treated with sodium selenite. Lenses enucleated from sodium selenite injected rats generated overproduction of ROS in lens epithelial cells and newly formed lens fiber cells resulting in massive lens epithelial cells death after 1-5days. All these lenses developed nuclear cataracts after 4-5days. Sodium selenite treated HLECs induced ER stress and activated the UPR leading to release of Ca(2+) from ER, ROS overproduction and finally HLECs death. Sodium selenite also activated the mRNA expressions of passive DNA demethylation pathway enzymes such as Dnmt1, Dnmt3a, and Dnmt3b, and active DNA demethylation pathway enzyme, Tet1 leading to DNA demethylation in the Keap1 promoter of HLECs. This demethylated Keap1 promoter results in overexpression of Keap1 mRNA and protein. Overexpression Keap1 protein suppresses the Nrf2 protein through ERAD leading to suppression of Nrf2/Keap1 dependent antioxidant protection in the HLECs treated with sodium selenite. As an outcome, the cellular redox status is altered towards lens oxidation and results in cataract formation.
Collapse
|
66
|
Palsamy P, Bidasee KR, Ayaki M, Augusteyn RC, Chan JY, Shinohara T. Methylglyoxal induces endoplasmic reticulum stress and DNA demethylation in the Keap1 promoter of human lens epithelial cells and age-related cataracts. Free Radic Biol Med 2014; 72:134-48. [PMID: 24746615 PMCID: PMC4410980 DOI: 10.1016/j.freeradbiomed.2014.04.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/03/2014] [Accepted: 04/08/2014] [Indexed: 01/03/2023]
Abstract
Age-related cataracts are a leading cause of blindness. Previously, we have demonstrated the association of the unfolded protein response with various cataractogenic stressors. However, DNA methylation alterations leading to suppression of lenticular antioxidant protection remains unclear. Here, we report the methylglyoxal-mediated sequential events responsible for Keap1 promoter DNA demethylation in human lens epithelial cells, because Keap1 is a negative regulatory protein that regulates the Nrf2 antioxidant protein. Methylglyoxal induces endoplasmic reticulum stress and activates the unfolded protein response leading to overproduction of reactive oxygen species before human lens epithelial cell death. Methylglyoxal also suppresses Nrf2 and DNA methyltransferases but activates the DNA demethylation pathway enzyme TET1. Bisulfite genomic DNA sequencing confirms the methylglyoxal-mediated Keap1 promoter DNA demethylation leading to overexpression of Keap1 mRNA and protein. Similarly, bisulfite genomic DNA sequencing shows that human clear lenses (n = 15) slowly lose 5-methylcytosine in the Keap1 promoter throughout life, at a rate of 1% per year. By contrast, diabetic cataractous lenses (n = 21) lose an average of 90% of the 5-methylcytosine regardless of age. Overexpressed Keap1 protein is responsible for decreasing Nrf2 by proteasomal degradation, thereby suppressing Nrf2-dependent stress protection. This study demonstrates for the first time the associations of unfolded protein response activation, Nrf2-dependent antioxidant system failure, and loss of Keap1 promoter methylation because of altered active and passive DNA demethylation pathway enzymes in human lens epithelial cells by methylglyoxal. As an outcome, the cellular redox balance is altered toward lens oxidation and cataract formation.
Collapse
Affiliation(s)
- Periyasamy Palsamy
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Keshore R Bidasee
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Masahiko Ayaki
- Department of Ophthalmology, Keio University, Tokyo 1698582, Japan
| | - Robert C Augusteyn
- Vision Cooperative Research Centre, Brien Holden Vision Institute, Sydney 2052, Australia; Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jefferson Y Chan
- Department of Laboratory Medicine and Pathology, University of California at Irvine, Irvine, CA 92697, USA
| | - Toshimichi Shinohara
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
67
|
Pedone E, Fiorentino G, Pirone L, Contursi P, Bartolucci S, Limauro D. Functional and structural characterization of protein disulfide oxidoreductase from Thermus thermophilus HB27. Extremophiles 2014; 18:723-31. [DOI: 10.1007/s00792-014-0652-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/27/2014] [Indexed: 11/28/2022]
|
68
|
Szarka A, Lőrincz T. The role of ascorbate in protein folding. PROTOPLASMA 2014; 251:489-97. [PMID: 24150425 DOI: 10.1007/s00709-013-0560-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 10/02/2013] [Indexed: 05/13/2023]
Abstract
Ascorbate was linked to protein folding a long time ago. At the first level of this connection, it had been shown that ascorbate functions as an essential cofactor in the hydroxylation enzymes involved in collagen synthesis. Although the hydroxylation reactions catalyzed by the members of the prolyl 4-hydroxylase family are considered to be ascorbate dependent, the hydroxylation of proline alone does not need ascorbate. Prolyl 4-hydroxylases participate in two catalytic reactions: one in which proline residues are hydroxylated, while 2-oxoglutarate is decarboxylated and molecular oxygen is consumed. This reaction is ascorbate independent. However, in another reaction, prolyl 4-hydroxylases catalyze the decarboxylation of 2-oxoglutarate uncoupled from proline hydroxylation but still needing molecular oxygen. At this time, ferrous iron is oxidized and the protein is rendered catalytically inactive until reduced by ascorbate. At the second level of the connection, the oxidation and the oxidized form of ascorbate, dehydroascorbate, is involved in the formation of disulfide bonds of secretory proteins. The significance of the dehydroascorbate reductase activity of protein disulfide isomerase was debated because protein disulfide isomerase as a dehydroascorbate reductase was found to be too slow to be the major route for the reduction of dehydroascorbate (and formation of disulfides) in the endoplasmic reticulum lumen. However, very recently, low tissue ascorbate levels and a noncanonical scurvy were observed in endoplasmic reticulum thiol oxidase- and peroxiredoxin 4-compromised mice. This novel observation implies that ascorbate may be involved in oxidative protein folding and creates a link between the disulfide bond formation (oxidative protein folding) and hydroxylation.
Collapse
Affiliation(s)
- András Szarka
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, Budapest University of Technology and Economics, 1111 Szent Gellért tér 4, Budapest, Hungary,
| | | |
Collapse
|
69
|
Koritzinsky M, Wouters BG. The roles of reactive oxygen species and autophagy in mediating the tolerance of tumor cells to cycling hypoxia. Semin Radiat Oncol 2014; 23:252-61. [PMID: 24012339 DOI: 10.1016/j.semradonc.2013.05.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumor hypoxia (low oxygenation) causes treatment resistance and poor patient outcome. A substantial fraction of tumor cells experience cycling hypoxia, characterized by transient episodes of hypoxia and reoxygenation. These cells are under a unique burden of stress, mediated by excessive production of reactive oxygen species (ROS). Cellular components damaged by ROS can be cleared by autophagy, rendering cycling hypoxic tumor cells particularly vulnerable to inhibition of autophagy and its upstream regulatory pathways. Activation of the PERK-mediated signaling arm of the unfolded protein response during hypoxia plays a critical role in the defense against ROS, both by stimulating glutathione synthesis pathways and through promoting autophagy.
Collapse
Affiliation(s)
- Marianne Koritzinsky
- Ontario Cancer Institute and Campbell Family Institute for Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Canada; Institute of Medical Science, University of Toronto, Canada.
| | | |
Collapse
|
70
|
Biochemical evidence that regulation of Ero1β activity in human cells does not involve the isoform-specific cysteine 262. Biosci Rep 2014; 34:BSR20130124. [PMID: 27919037 PMCID: PMC3971451 DOI: 10.1042/bsr20130124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/08/2014] [Accepted: 01/28/2014] [Indexed: 12/13/2022] Open
Abstract
In the ER (endoplasmic reticulum) of human cells, disulfide bonds are predominantly generated by the two isoforms of Ero1 (ER oxidoreductin-1): Ero1α and Ero1β. The activity of Ero1α is tightly regulated through the formation of intramolecular disulfide bonds to help ensure balanced ER redox conditions. Ero1β is less tightly regulated, but the molecular details underlying control of activity are not as well characterized as for Ero1α. Ero1β contains an additional cysteine residue (Cys262), which has been suggested to engage in an isoform-specific regulatory disulfide bond with Cys100. However, we show that the two regulatory disulfide bonds in Ero1α are likely conserved in Ero1β (Cys90–Cys130 and Cys95–Cys100). Molecular modelling of the Ero1β structure predicted that the side chain of Cys262 is completely buried. Indeed, we found this cysteine to be reduced and partially protected from alkylation in the ER of living cells. Furthermore, mutation of Cys100–but not of Cys262–rendered Ero1β hyperactive in cells, as did mutation of Cys130. Ero1β hyperactivity induced the UPR (unfolded protein response) and resulted in oxidative perturbation of the ER redox state. We propose that features other than a distinct pattern of regulatory disulfide bonds determine the loose redox regulation of Ero1β relative to Ero1α. Our findings indicate that the regulatory disulfide bonds are conserved in the human oxidases Ero1α and Ero1β. We therefore propose that features other than a distinct pattern of disulfide bonds determine the previously established difference in regulation of Ero1α and Ero1β activity.
Collapse
|
71
|
Palsamy P, Bidasee KR, Shinohara T. Valproic acid suppresses Nrf2/Keap1 dependent antioxidant protection through induction of endoplasmic reticulum stress and Keap1 promoter DNA demethylation in human lens epithelial cells. Exp Eye Res 2014; 121:26-34. [PMID: 24525405 DOI: 10.1016/j.exer.2014.01.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/27/2014] [Accepted: 01/31/2014] [Indexed: 02/02/2023]
Abstract
Recent epidemiological studies confirm the prevalence of cataract in epileptic patients. Similarly, the drugs used to treat epilepsy also show the connection with increased cataract formation. In this present study, we investigated the suppression of Nrf2/Keap1 dependent antioxidant protection through induction of endoplasmic (ER) stress and Keap1 promoter DNA demethylation in human lens epithelial cells (HLECs) treated with valproic acid (VPA), an antiepileptic drug. 20 mM VPA induces ER stress and activates the unfolded protein response (UPR) within 4 h by activating the ER stress sensor proteins, such as PERK, IRE1α, and ATF6 in HLECs. Consequently, the integrated ER stress signals, such as eIF2α, ATF4, BiP, and CHOP are altered accordingly to induce ER-Ca2+ release, reactive oxygen species (ROS) overproduction, and cell death in HLECs treated with VPA. VPA also suppresses the Nrf2, catalase, and glutathione reductase expressions with significant increases in Keap1 protein. Bisulphite genomic DNA sequencing reveals the promoter DNA demethylation in the Keap1 promoter, which results in the overexpression of Keap1 mRNA and protein in HLECs treated with 20 mM VPA. VPA also alters the expression profiles of passive DNA demethylation pathway enzymes such Dnmt1, Dnmt3a, Dnmt3b, and active DNA demethylation pathway enzyme, TET1 leading to DNA demethylation in the Keap1 promoter of HLECs. Overexpressed Keap1 decreases the Nrf2 level, thereby abolishing the Nrf2 dependent antioxidant protection. This might be responsible for lenticular proteins oxidation and cataract formation.
Collapse
Affiliation(s)
- Periyasamy Palsamy
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Keshore R Bidasee
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Toshimichi Shinohara
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
72
|
Medraño-Fernandez I, Fagioli C, Mezghrani A, Otsu M, Sitia R. Different redox sensitivity of endoplasmic reticulum associated degradation clients suggests a novel role for disulphide bonds in secretory proteins. Biochem Cell Biol 2014; 92:113-8. [PMID: 24697695 DOI: 10.1139/bcb-2013-0090] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
To maintain proteostasis in the endoplasmic reticulum (ER), terminally misfolded secretory proteins must be recognized, partially unfolded, and dislocated to the cytosol for proteasomal destruction, in a complex process called ER-associated degradation (ERAD). Dislocation implies reduction of inter-chain disulphide bonds. When in its reduced form, protein disulphide isomerase (PDI) can act not only as a reductase but also as an unfoldase, preparing substrates for dislocation. PDI oxidation by Ero1 favours substrate release and transport across the ER membrane. Here we addressed the redox dependency of ERAD and found that DTT stimulates the dislocation of proteins with DTT-resistant disulphide bonds (i.e., orphan Ig-μ chains) but stabilizes a ribophorin mutant (Ri332) devoid of them. DTT promotes the association of Ri332, but not of Ig-µ, with PDI. This discrepancy may suggest that disulphide bonds in cargo proteins can be utilized to oxidize PDI, hence facilitating substrate detachment and degradation also in the absence of Ero1. Accordingly, Ero1 silencing retards Ri332 degradation, but has little if any effect on Ig-µ. Thus, some disulphides can increase the stability and simultaneously favour quality control of secretory proteins.
Collapse
Affiliation(s)
- Iria Medraño-Fernandez
- a Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | | | | | | | | |
Collapse
|
73
|
Deregulation of pancreas-specific oxidoreductin ERO1β in the pathogenesis of diabetes mellitus. Mol Cell Biol 2014; 34:1290-9. [PMID: 24469402 DOI: 10.1128/mcb.01647-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A growing body of evidence has underlined the significance of endoplasmic reticulum (ER) stress in the pathogenesis of diabetes mellitus. ER oxidoreductin 1β (ERO1β) is a pancreas-specific disulfide oxidase that is known to be upregulated in response to ER stress and to promote protein folding in pancreatic β cells. It has recently been demonstrated that ERO1β promotes insulin biogenesis in β cells and thus contributes to physiological glucose homeostasis, though it is unknown if ERO1β is involved in the pathogenesis of diabetes mellitus. Here we show that in diabetic model mice, ERO1β expression is paradoxically decreased in β cells despite the indications of increased ER stress. However, overexpression of ERO1β in β cells led to the upregulation of unfolded protein response genes and markedly enlarged ER lumens, indicating that ERO1β overexpression caused ER stress in the β cells. Insulin contents were decreased in the β cells that overexpressed ERO1β, leading to impaired insulin secretion in response to glucose stimulation. These data indicate the importance of the fine-tuning of the ER redox state, the disturbance of which would compromise the function of β cells in insulin synthesis and thus contribute to the pathogenesis of diabetes mellitus.
Collapse
|
74
|
Israel BA, Kodali VK, Thorpe C. Going through the barrier: coupled disulfide exchange reactions promote efficient catalysis in quiescin sulfhydryl oxidase. J Biol Chem 2013; 289:5274-84. [PMID: 24379406 DOI: 10.1074/jbc.m113.536219] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The quiescin sulfhydryl oxidase (QSOX) family of enzymes generates disulfide bonds in peptides and proteins with the reduction of oxygen to hydrogen peroxide. Determination of the potentials of the redox centers in Trypanosoma brucei QSOX provides a context for understanding catalysis by this facile oxidant of protein thiols. The CXXC motif of the thioredoxin domain is comparatively oxidizing (E'0 of -144 mV), consistent with an ability to transfer disulfide bonds to a broad range of thiol substrates. In contrast, the proximal CXXC disulfide in the ERV (essential for respiration and vegetative growth) domain of TbQSOX is strongly reducing (E'0 of -273 mV), representing a major apparent thermodynamic barrier to overall catalysis. Reduction of the oxidizing FAD cofactor (E'0 of -153 mV) is followed by the strongly favorable reduction of molecular oxygen. The role of a mixed disulfide intermediate between thioredoxin and ERV domains was highlighted by rapid reaction studies in which the wild-type CGAC motif in the thioredoxin domain of TbQSOX was replaced by the more oxidizing CPHC or more reducing CGPC sequence. Mixed disulfide bond formation is accompanied by the generation of a charge transfer complex with the flavin cofactor. This provides thermodynamic coupling among the three redox centers of QSOX and avoids the strongly uphill mismatch between the formal potentials of the thioredoxin and ERV disulfides. This work identifies intriguing mechanistic parallels between the eukaryotic QSOX enzymes and the DsbA/B system catalyzing disulfide bond generation in the bacterial periplasm and suggests that the strategy of linked disulfide exchanges may be exploited in other catalysts of oxidative protein folding.
Collapse
Affiliation(s)
- Benjamin A Israel
- From the Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716
| | | | | |
Collapse
|
75
|
Koritzinsky M, Levitin F, van den Beucken T, Rumantir RA, Harding NJ, Chu KC, Boutros PC, Braakman I, Wouters BG. Two phases of disulfide bond formation have differing requirements for oxygen. ACTA ACUST UNITED AC 2013; 203:615-27. [PMID: 24247433 PMCID: PMC3840938 DOI: 10.1083/jcb.201307185] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Disulfide bonds introduced during or shortly after protein synthesis can occur without oxygen, whereas those introduced during post-translational folding or isomerization are oxygen dependent. Most proteins destined for the extracellular space require disulfide bonds for folding and stability. Disulfide bonds are introduced co- and post-translationally in endoplasmic reticulum (ER) cargo in a redox relay that requires a terminal electron acceptor. Oxygen can serve as the electron acceptor in vitro, but its role in vivo remains unknown. Hypoxia causes ER stress, suggesting a role for oxygen in protein folding. Here we demonstrate the existence of two phases of disulfide bond formation in living mammalian cells, with differential requirements for oxygen. Disulfide bonds introduced rapidly during protein synthesis can occur without oxygen, whereas those introduced during post-translational folding or isomerization are oxygen dependent. Other protein maturation processes in the secretory pathway, including ER-localized N-linked glycosylation, glycan trimming, Golgi-localized complex glycosylation, and protein transport, occur independently of oxygen availability. These results suggest that an alternative electron acceptor is available transiently during an initial phase of disulfide bond formation and that post-translational oxygen-dependent disulfide bond formation causes hypoxia-induced ER stress.
Collapse
Affiliation(s)
- Marianne Koritzinsky
- Ontario Cancer Institute and Campbell Family Institute for Cancer Research, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Oxidative protein-folding systems in plant cells. Int J Cell Biol 2013; 2013:585431. [PMID: 24187554 PMCID: PMC3800646 DOI: 10.1155/2013/585431] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/01/2013] [Indexed: 12/13/2022] Open
Abstract
Plants are unique among eukaryotes in having evolved organelles: the protein storage vacuole, protein body, and chloroplast. Disulfide transfer pathways that function in the endoplasmic reticulum (ER) and chloroplasts of plants play critical roles in the development of protein storage organelles and the biogenesis of chloroplasts, respectively. Disulfide bond formation requires the cooperative function of disulfide-generating enzymes (e.g., ER oxidoreductase 1), which generate disulfide bonds de novo, and disulfide carrier proteins (e.g., protein disulfide isomerase), which transfer disulfides to substrates by means of thiol-disulfide exchange reactions. Selective molecular communication between disulfide-generating enzymes and disulfide carrier proteins, which reflects the molecular and structural diversity of disulfide carrier proteins, is key to the efficient transfer of disulfides to specific sets of substrates. This review focuses on recent advances in our understanding of the mechanisms and functions of the various disulfide transfer pathways involved in oxidative protein folding in the ER, chloroplasts, and mitochondria of plants.
Collapse
|
77
|
Aller I, Meyer AJ. The oxidative protein folding machinery in plant cells. PROTOPLASMA 2013; 250:799-816. [PMID: 23090240 DOI: 10.1007/s00709-012-0463-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 10/02/2012] [Indexed: 06/01/2023]
Abstract
Formation of intra-molecular disulfides and concomitant oxidative protein folding is essential for stability and catalytic function of many soluble and membrane-bound proteins in the endomembrane system, the mitochondrial inter-membrane space and the thylakoid lumen. Disulfide generation from free cysteines in nascent polypeptide chains is generally a catalysed process for which distinct pathways exist in all compartments. A high degree of similarities between highly diverse eukaryotic and bacterial systems for generation of protein disulfides indicates functional conservation of key processes throughout evolution. However, while many aspects about molecular function of enzymatic systems promoting disulfide formation have been demonstrated for bacterial and non-plant eukaryotic organisms, it is now clear that the plant machinery for oxidative protein folding displays distinct details, suggesting that the different pathways have been adapted to plant-specific requirements in terms of compartmentation, molecular function and regulation. Here, we aim to evaluate biological diversity by comparing the plant systems for oxidative protein folding to the respective systems from non-plant eukaryotes.
Collapse
Affiliation(s)
- Isabel Aller
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | | |
Collapse
|
78
|
Battle DM, Gunasekara SD, Watson GR, Ahmed EM, Saysell CG, Altaf N, Sanusi AL, Munipalle PC, Scoones D, Walker J, Viswanath Y, Benham AM. Expression of the endoplasmic reticulum oxidoreductase Ero1α in gastro-intestinal cancer reveals a link between homocysteine and oxidative protein folding. Antioxid Redox Signal 2013; 19:24-35. [PMID: 23373818 DOI: 10.1089/ars.2012.4651] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIM Ero proteins are central to oxidative protein folding in the endoplasmic reticulum (ER), but their expression varies in a tissue-specific manner. The aim of this work was to establish the expression of Ero1α in the digestive system and to examine the behavior of Ero1α in premalignant Barrett's esophagus, esophageal (OE) and gastric cancers and esophageal cancer cell lines. RESULTS Ero1α is expressed in the columnar epithelium of Barrett's tissue, and in OE tumors and gastric tumors. Homocysteine, a precursor in the metabolism of cysteine and methionine, induces the active Ox1 form of Ero1α in the OE cancer cell line OE33. INNOVATION These results demonstrate for the first time that Ero1α can sense the level of an amino acid precursor, identifying a potential link between diet, antioxidants, and oxidative protein folding in the ER. CONCLUSION The high expression of Ero1α in cancers of the esophagus and stomach demonstrates the importance of ER redox regulation in the gastro-intestinal (GI) tract in health and disease. Proteins and metabolites involved in disulfide bond formation and redox regulation may be suitable targets for both biomarker and drug development in GI cancer.
Collapse
Affiliation(s)
- Danielle M Battle
- School of Biological and Biomedical Sciences, Durham University, Durham, England
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Avezov E, Cross BCS, Kaminski Schierle GS, Winters M, Harding HP, Melo EP, Kaminski CF, Ron D. Lifetime imaging of a fluorescent protein sensor reveals surprising stability of ER thiol redox. ACTA ACUST UNITED AC 2013; 201:337-49. [PMID: 23589496 PMCID: PMC3628511 DOI: 10.1083/jcb.201211155] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Interfering with disulfide bond formation impedes protein folding and promotes endoplasmic reticulum (ER) stress. Due to limitations in measurement techniques, the relationships of altered thiol redox and ER stress have been difficult to assess. We report that fluorescent lifetime measurements circumvented the crippling dimness of an ER-tuned fluorescent redox-responsive probe (roGFPiE), faithfully tracking the activity of the major ER-localized protein disulfide isomerase, PDI. In vivo lifetime imaging by time-correlated single-photon counting (TCSPC) recorded subtle changes in ER redox poise induced by exposure of mammalian cells to a reducing environment but revealed an unanticipated stability of redox to fluctuations in unfolded protein load. By contrast, TCSPC of roGFPiE uncovered a hitherto unsuspected reductive shift in the mammalian ER upon loss of luminal calcium, whether induced by pharmacological inhibition of calcium reuptake into the ER or by physiological activation of release channels. These findings recommend fluorescent lifetime imaging as a sensitive method to track ER redox homeostasis in mammalian cells.
Collapse
Affiliation(s)
- Edward Avezov
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, England, UK
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Benham AM, van Lith M, Sitia R, Braakman I. Ero1-PDI interactions, the response to redox flux and the implications for disulfide bond formation in the mammalian endoplasmic reticulum. Philos Trans R Soc Lond B Biol Sci 2013; 368:20110403. [PMID: 23530257 PMCID: PMC3638393 DOI: 10.1098/rstb.2011.0403] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The protein folding machinery of the endoplasmic reticulum (ER) ensures that proteins entering the eukaryotic secretory pathway acquire appropriate post-translational modifications and reach a stably folded state. An important component of this protein folding process is the supply of disulfide bonds. These are introduced into client proteins by ER resident oxidoreductases, including ER oxidoreductin 1 (Ero1). Ero1 is usually considered to function in a linear pathway, by ‘donating’ a disulfide bond to protein disulfide isomerase (PDI) and receiving electrons that are passed on to the terminal electron acceptor molecular oxygen. PDI engages with a range of clients as the direct catalyst of disulfide bond formation, isomerization or reduction. In this paper, we will consider the interactions of Ero1 with PDI family proteins and chaperones, highlighting the effect that redox flux has on Ero1 partnerships. In addition, we will discuss whether higher order protein complexes play a role in Ero1 function.
Collapse
Affiliation(s)
- Adam M Benham
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK.
| | | | | | | |
Collapse
|
81
|
Cain K, Peters S, Hailu H, Sweeney B, Stephens P, Heads J, Sarkar K, Ventom A, Page C, Dickson A. A CHO cell line engineered to express XBP1 and ERO1-Lα has increased levels of transient protein expression. Biotechnol Prog 2013; 29:697-706. [DOI: 10.1002/btpr.1693] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/11/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Katharine Cain
- Protein Expression and Purification Group; UCB, Slough; Berkshire SL1 4EN England
| | - Shirley Peters
- Protein Expression and Purification Group; UCB, Slough; Berkshire SL1 4EN England
| | - Hanna Hailu
- Protein Expression and Purification Group; UCB, Slough; Berkshire SL1 4EN England
| | - Bernie Sweeney
- Protein Expression and Purification Group; UCB, Slough; Berkshire SL1 4EN England
| | - Paul Stephens
- Protein Expression and Purification Group; UCB, Slough; Berkshire SL1 4EN England
| | - James Heads
- Protein Biophysics; UCB, Slough; Berkshire SL1 4EN England
| | - Kaushik Sarkar
- Protein Biophysics; UCB, Slough; Berkshire SL1 4EN England
| | - Andy Ventom
- Protein Biophysics; UCB, Slough; Berkshire SL1 4EN England
| | - Catherine Page
- Faculty of Life Sciences; The Michael Smith Building, The University of Manchester; Manchester M13 9PT England
| | - Alan Dickson
- Faculty of Life Sciences; The Michael Smith Building, The University of Manchester; Manchester M13 9PT England
| |
Collapse
|
82
|
Oka OBV, Bulleid NJ. Forming disulfides in the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2425-9. [PMID: 23434683 DOI: 10.1016/j.bbamcr.2013.02.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/05/2013] [Accepted: 02/10/2013] [Indexed: 11/25/2022]
Abstract
Protein disulfide bonds are an important co- and post-translational modification for proteins entering the secretory pathway. They are covalent interactions between two cysteine residues which support structural stability and promote the assembly of multi-protein complexes. In the mammalian endoplasmic reticulum (ER), disulfide bond formation is achieved by the combined action of two types of enzyme: one capable of forming disulfides de novo and another able to introduce these disulfides into substrates. The initial process of introducing disulfides into substrate proteins is catalyzed by the protein disulfide isomerase (PDI) oxidoreductases which become reduced and, therefore, have to be re-oxidized to allow for further rounds of disulfide exchange. This review will discuss the various pathways operating in the ER that facilitate oxidation of the PDI oxidoreductases and ultimately catalyze disulfide bond formation in substrate proteins. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.
Collapse
|
83
|
Schuiki I, Zhang L, Volchuk A. Endoplasmic reticulum redox state is not perturbed by pharmacological or pathological endoplasmic reticulum stress in live pancreatic β-cells. PLoS One 2012; 7:e48626. [PMID: 23144914 PMCID: PMC3493583 DOI: 10.1371/journal.pone.0048626] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/03/2012] [Indexed: 01/16/2023] Open
Abstract
Accumulation of unfolded, misfolded and aggregated proteins in the endoplasmic reticulum (ER) causes ER stress. ER stress can result from physiological situations such as acute increases in secretory protein biosynthesis or pathological conditions that perturb ER homeostasis such as alterations in the ER redox state. Here we monitored ER redox together with transcriptional output of the Unfolded Protein Response (UPR) in INS-1 insulinoma cells stably expressing eroGFP (ER-redox-sensor) and mCherry protein driven by a GRP78 promoter (UPR-sensor). Live cell imaging, flow cytometry and biochemical characterization were used to examine these parameters in response to various conditions known to induce ER stress. As expected, treatment of the cells with the reducing agent dithiothreitol caused a decrease in the oxidation state of the ER accompanied by an increase in XBP-1 splicing. Unexpectedly however, other treatments including tunicamycin, thapsigargin, DL-homocysteine, elevated free fatty acids or high glucose had essentially no influence on the ER redox state, despite inducing ER stress. Comparable results were obtained with dispersed rat islet cells expressing eroGFP. Thus, unlike in yeast cells, ER stress in pancreatic β-cells is not associated with a more reducing ER environment.
Collapse
Affiliation(s)
- Irmgard Schuiki
- Division of Cellular and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Liling Zhang
- Division of Cellular and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Allen Volchuk
- Division of Cellular and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
84
|
Bulleid NJ. Disulfide bond formation in the mammalian endoplasmic reticulum. Cold Spring Harb Perspect Biol 2012; 4:4/11/a013219. [PMID: 23125019 DOI: 10.1101/cshperspect.a013219] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The formation of disulfide bonds between cysteine residues occurs during the folding of many proteins that enter the secretory pathway. As the polypeptide chain collapses, cysteines brought into proximity can form covalent linkages during a process catalyzed by members of the protein disulfide isomerase family. There are multiple pathways in mammalian cells to ensure disulfides are introduced into proteins. Common requirements for this process include a disulfide exchange protein and a protein oxidase capable of forming disulfides de novo. In addition, any incorrect disulfides formed during the normal folding pathway are removed in a process involving disulfide exchange. The pathway for the reduction of disulfides remains poorly characterized. This work will cover the current knowledge in the field and discuss areas for future investigation.
Collapse
Affiliation(s)
- Neil J Bulleid
- Institute of Molecular, Cellular and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, United Kingdom.
| |
Collapse
|
85
|
Zito E, Hansen H, Yeo G, Fujii J, Ron D. Endoplasmic reticulum thiol oxidase deficiency leads to ascorbic acid depletion and noncanonical scurvy in mice. Mol Cell 2012; 48:39-51. [PMID: 22981861 PMCID: PMC3473360 DOI: 10.1016/j.molcel.2012.08.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 07/16/2012] [Accepted: 08/07/2012] [Indexed: 12/16/2022]
Abstract
Endoplasmic reticulum (ER) thiol oxidases initiate a disulfide relay to oxidatively fold secreted proteins. We found that combined loss-of-function mutations in genes encoding the ER thiol oxidases ERO1α, ERO1β, and PRDX4 compromised the extracellular matrix in mice and interfered with the intracellular maturation of procollagen. These severe abnormalities were associated with an unexpectedly modest delay in disulfide bond formation in secreted proteins but a profound, 5-fold lower procollagen 4-hydroxyproline content and enhanced cysteinyl sulfenic acid modification of ER proteins. Tissue ascorbic acid content was lower in mutant mice, and ascorbic acid supplementation improved procollagen maturation and lowered sulfenic acid content in vivo. In vitro, the presence of a sulfenic acid donor accelerated the oxidative inactivation of ascorbate by an H(2)O(2)-generating system. Compromised ER disulfide relay thus exposes protein thiols to competing oxidation to sulfenic acid, resulting in depletion of ascorbic acid, impaired procollagen proline 4-hydroxylation, and a noncanonical form of scurvy.
Collapse
Affiliation(s)
- Ester Zito
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Henning Gram Hansen
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Giles S.H. Yeo
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - David Ron
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| |
Collapse
|
86
|
Hansen HG, Schmidt JD, Søltoft CL, Ramming T, Geertz-Hansen HM, Christensen B, Sørensen ES, Juncker AS, Appenzeller-Herzog C, Ellgaard L. Hyperactivity of the Ero1α oxidase elicits endoplasmic reticulum stress but no broad antioxidant response. J Biol Chem 2012; 287:39513-23. [PMID: 23027870 DOI: 10.1074/jbc.m112.405050] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Oxidizing equivalents for the process of oxidative protein folding in the endoplasmic reticulum (ER) of mammalian cells are mainly provided by the Ero1α oxidase. The molecular mechanisms that regulate Ero1α activity in order to harness its oxidative power are quite well understood. However, the overall cellular response to oxidative stress generated by Ero1α in the lumen of the mammalian ER is poorly characterized. Here we investigate the effects of overexpressing a hyperactive mutant (C104A/C131A) of Ero1α. We show that Ero1α hyperactivity leads to hyperoxidation of the ER oxidoreductase ERp57 and induces expression of two established unfolded protein response (UPR) targets, BiP (immunoglobulin-binding protein) and HERP (homocysteine-induced ER protein). These effects could be reverted or aggravated by N-acetylcysteine and buthionine sulfoximine, respectively. Because both agents manipulate the cellular glutathione redox buffer, we conclude that the observed effects of Ero1α-C104A/C131A overexpression are likely caused by an oxidative perturbation of the ER glutathione redox buffer. In accordance, we show that Ero1α hyperactivity affects cell viability when cellular glutathione levels are compromised. Using microarray analysis, we demonstrate that the cell reacts to the oxidative challenge caused by Ero1α hyperactivity by turning on the UPR. Moreover, this analysis allowed the identification of two new targets of the mammalian UPR, CRELD1 and c18orf45. Interestingly, a broad antioxidant response was not induced. Our findings suggest that the hyperoxidation generated by Ero1α-C104A/C131A is addressed in the ER lumen and is unlikely to exert oxidative injury throughout the cell.
Collapse
Affiliation(s)
- Henning Gram Hansen
- Department of Biology, University of Copenhagen, 2200 Copenhagen N., Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Guo PC, Ma JD, Jiang YL, Wang SJ, Bao ZZ, Yu XJ, Chen Y, Zhou CZ. Structure of yeast sulfhydryl oxidase erv1 reveals electron transfer of the disulfide relay system in the mitochondrial intermembrane space. J Biol Chem 2012; 287:34961-34969. [PMID: 22910915 DOI: 10.1074/jbc.m112.394759] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The disulfide relay system in the mitochondrial intermembrane space drives the import of proteins with twin CX(9)C or twin CX(3)C motifs by an oxidative folding mechanism. This process requires disulfide bond transfer from oxidized Mia40 to a substrate protein. Reduced Mia40 is reoxidized/regenerated by the FAD-linked sulfhydryl oxidase Erv1 (EC 1.8.3.2). Full-length Erv1 consists of a flexible N-terminal shuttle domain (NTD) and a conserved C-terminal core domain (CTD). Here, we present crystal structures at 2.0 Å resolution of the CTD and at 3.0 Å resolution of a C30S/C133S double mutant of full-length Erv1 (Erv1FL). Similar to previous homologous structures, the CTD exists as a homodimer, with each subunit consisting of a conserved four-helix bundle that accommodates the isoalloxazine ring of FAD and an additional single-turn helix. The structure of Erv1FL enabled us to identify, for the first time, the three-dimensional structure of the Erv1NTD, which is an amphipathic helix flanked by two flexible loops. This structure also represents an intermediate state of electron transfer from the NTD to the CTD of another subunit. Comparative structural analysis revealed that the four-helix bundle of the CTD forms a wide platform for the electron donor NTD. Moreover, computational simulation combined with multiple-sequence alignment suggested that the amphipathic helix close to the shuttle redox enter is critical for the recognition of Mia40, the upstream electron donor. These findings provide structural insights into electron transfer from Mia40 via the shuttle domain of one subunit of Erv1 to the CTD of another Erv1 subunit.
Collapse
Affiliation(s)
- Peng-Chao Guo
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui 230027, China
| | - Jin-Di Ma
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui 230027, China
| | - Yong-Liang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui 230027, China
| | - Shu-Jie Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui 230027, China
| | - Zhang-Zhi Bao
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui 230027, China
| | - Xiao-Jie Yu
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui 230027, China
| | - Yuxing Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui 230027, China
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui 230027, China.
| |
Collapse
|
88
|
Higa A, Chevet E. Redox signaling loops in the unfolded protein response. Cell Signal 2012; 24:1548-55. [DOI: 10.1016/j.cellsig.2012.03.011] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 03/20/2012] [Indexed: 12/30/2022]
|
89
|
Andreu CI, Woehlbier U, Torres M, Hetz C. Protein disulfide isomerases in neurodegeneration: from disease mechanisms to biomedical applications. FEBS Lett 2012; 586:2826-34. [PMID: 22828277 DOI: 10.1016/j.febslet.2012.07.023] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 07/10/2012] [Accepted: 07/10/2012] [Indexed: 11/26/2022]
Abstract
Protein disulfide isomerases (PDIs) are a family of foldases and chaperones primarily located at the endoplasmic reticulum that catalyze the formation and isomerization of disulfide bonds thereby facilitating protein folding. PDIs also perform important physiological functions in protein quality control, cell death, and cell signaling. Protein misfolding is involved in the etiology of the most common neurodegenerative diseases, including Alzheimer, Parkinson, amyotrophic lateral sclerosis, Prion-related disorders, among others. Accumulating evidence indicate altered expression of PDIs as a prominent and common feature of these neurodegenerative conditions. Here we overview most recent advances in our understanding of the possible functional contribution of PDIs to neurodegeneration, depicting a complex and poorly understood scenario. Possible therapeutic benefits of targeting PDIs in a disease context and their use as biomarkers are discussed.
Collapse
Affiliation(s)
- Catherine I Andreu
- Institute of Biomedical Sciences, Program of Cellular and Molecular Biology, University of Chile, Santiago, Chile
| | | | | | | |
Collapse
|
90
|
Rath E, Haller D. Mitochondria at the interface between danger signaling and metabolism: role of unfolded protein responses in chronic inflammation. Inflamm Bowel Dis 2012; 18:1364-77. [PMID: 22183876 DOI: 10.1002/ibd.21944] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 10/19/2011] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel diseases (IBDs), like many other chronic diseases, feature multiple cellular stress responses including endoplasmic reticulum (ER) unfolded protein response (UPR). Maintaining protein homeostasis is indispensable for cell survival and, consequently, distinct signaling pathways have evolved to transmit organelle stress. While the ER UPR, aiming to restore ER homeostasis after challenges to ER function, has been extensively studied in the context of chronic diseases, only recently the related mitochondrial UPR (mtUPR), induced by disturbances of mitochondrial proteostasis, has drawn some attention. ER and mitochondria are in close contact and interact physically and functionally. Accumulating data have placed mitochondria at the center of diverse cellular functions and suggest mitochondria as integrators of signaling pathways such as autophagy and inflammation. Consequently, it is likely that mitochondrial stress and ER stress cannot be regarded separately and that mitochondrial stress, as well as ER stress, participates in the pathology of IBD. Protein homeostasis is particularly sensitive toward infections, oxidative stress, and energy deficiency. Thus, environmental disturbances impacting organelle function lead to the concerted activation of distinct UPRs. The metabolic status might therefore serve as an innate mechanism to sense the epithelial environment, including luminal-derived and host-derived factors. This review highlights mtUPR and its interrelation with ER UPR, focuses on recent studies identifying mitochondria as integrators of cellular danger signaling, and, furthermore, illustrates the importance ER UPR and mitochondrial dysfunction in IBD.
Collapse
Affiliation(s)
- Eva Rath
- Technische Universität München, Chair for Biofunctionality, ZIEL, Research Center for Nutrition and Food Science, CDD, Center for Diet and Disease, Freising-Weihenstephan, Germany
| | | |
Collapse
|
91
|
Ramming T, Appenzeller-Herzog C. The physiological functions of mammalian endoplasmic oxidoreductin 1: on disulfides and more. Antioxid Redox Signal 2012; 16:1109-18. [PMID: 22220984 DOI: 10.1089/ars.2011.4475] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SIGNIFICANCE The oxidative process of disulfide-bond formation is essential for the folding of most secretory and membrane proteins in the endoplasmic reticulum (ER). It is driven by electron relay pathways that transfer two electrons derived from the fusion of two adjacent cysteinyl side chains onto various types of chemical oxidants. The conserved, ER-resident endoplasmic oxidoreductin 1 (Ero1) sulfhydryl oxidases that reduce molecular oxygen to generate an active-site disulfide represent one of these pathways. In mammals, two family members exist, Ero1α and Ero1β. RECENT ADVANCES The two mammalian Ero1 enzymes differ in transcriptional and post-translational regulation, tissue distribution, and catalytic turnover. A specific protein-protein interaction between either isoform and protein disulfide isomerase (PDI) facilitates the propagation of disulfides from Ero1 via PDI to nascent polypeptides, and inbuilt oxidative shutdown mechanisms in Ero1α and Ero1β prevent excessive oxidation of PDI. CRITICAL ISSUES Besides disulfide-bond generation, Ero1α also regulates calcium release from the ER and the secretion of disulfide-linked oligomers through its reversible association with the chaperone ERp44. This review explores the functional repertoire and possible redundancy of mammalian Ero1 enzymes. FUTURE DIRECTIONS Systematic analyses of different knockout mouse models will be the most promising strategy to shed new light on unique and tissue-specific roles of Ero1α and Ero1β. Moreover, in-depth characterization of the known physical interactions of Ero1 with peroxidases and PDI family members will help broaden our functional and mechanistic understanding of Ero1 enzymes.
Collapse
Affiliation(s)
- Thomas Ramming
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Switzerland
| | | |
Collapse
|
92
|
Low glucose under hypoxic conditions induces unfolded protein response and produces reactive oxygen species in lens epithelial cells. Cell Death Dis 2012; 3:e301. [PMID: 22513875 PMCID: PMC3358018 DOI: 10.1038/cddis.2012.40] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Aging is enhanced by hypoxia and oxidative stress. As the lens is located in the hypoglycemic environment under hypoxia, aging lens with diabetes might aggravate these stresses. This study was designed to examine whether low glucose under hypoxic conditions induces the unfolded protein response (UPR), and also if the UPR then generates the reactive oxygen species (ROS) in lens epithelial cells (LECs). The UPR was activated within 1 h by culturing the human LECs (HLECs) and rat LECs in <1.5 mM glucose under hypoxic conditions. These conditions also induced the Nrf2-dependent antioxidant-protective UPR, production of ROS, and apoptosis. The rat LECs located in the anterior center region were the least susceptible to the UPR, whereas the proliferating LECs in the germinative zone were the most susceptible. Because the cortical lens fiber cells are differentiated from the LECs after the onset of diabetes, we suggest that these newly formed cortical fibers have lower levels of Nrf2, and are then oxidized resulting in cortical cataracts. Thus, low glucose and oxygen conditions induce the UPR, generation of ROS, and expressed the Nrf2 and Nrf2-dependent antioxidant enzymes at normal levels. But these cells eventually lose reduced glutathione (GSH) and induce apoptosis. The results indicate a new link between hypoglycemia under hypoxia and impairment of HLEC functions.
Collapse
|
93
|
Kakihana T, Nagata K, Sitia R. Peroxides and peroxidases in the endoplasmic reticulum: integrating redox homeostasis and oxidative folding. Antioxid Redox Signal 2012; 16:763-71. [PMID: 22146055 DOI: 10.1089/ars.2011.4238] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE The endoplasmic reticulum (ER), the port of entry into the secretory pathway, is a complex organelle that performs many fundamental functions, including protein synthesis and quality control, Ca(2+) storage and signaling. Redox homeostasis is of paramount importance for allowing the efficient folding of secretory proteins, most of which contain essential disulfide bonds. RECENT ADVANCES revealed that an intricate protein network sustains the processes of disulfide bond formation and reshuffling in the ER. Remarkably, H(2)O(2), which is a known by-product of Ero1 flavoproteins in cells, is utilized by peroxiredoxin-4 and glutathione peroxidases-7 and -8, which reside in the mammalian secretory compartment and further fuel oxidative protein folding while limiting oxidative damage. CRITICAL ISSUES that remain to be addressed are the sources, diffusibility and signaling role(s) of H(2)O(2) in and between organelles and cells, how the emerging redundancy in the systems is coupled to precise regulation, and how the distinct pathways operating in the early secretory compartment are integrated with one another. FUTURE DIRECTIONS A further dissection of the pathways that integrate folding, redox homeostasis, and signaling in the early secretory pathway may allow to manipulate protein homeostasis and survival-death decisions in degenerative diseases or cancer.
Collapse
Affiliation(s)
- Taichi Kakihana
- Department of Molecular and Cellular Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
94
|
Abstract
SIGNIFICANCE Disulfide bond formation is an essential reaction involved in the folding and maturation of many secreted and membrane proteins. Both prokaryotic and eukaryotic cells utilize various disulfide oxidoreductases and redox-active cofactors to accelerate this oxidative reaction, and higher eukaryotes have diversified and refined these disulfide-introducing cascades over the course of evolution. RECENT ADVANCES In the past decade, atomic resolution structures have been solved for an increasing number of disulfide oxidoreductases, thereby revealing the structural and mechanistic basis of cellular disulfide bond formation systems. CRITICAL ISSUES In this review, we focus on the evolution, structure, and regulatory mechanisms of endoplasmic reticulum oxidoreductin 1 (Ero1) family enzymes, the primary disulfide bond-generating catalysts in the endoplasmic reticulum (ER). Detailed comparison of Ero1 with other oxidoreductases, such as Prx4, QSOX, Erv1/2, and disulfide bond protein B (DsbB), provides important insight into how this ER-resident flavoenzyme acts in a regulated and specific manner to maintain redox and protein homeostasis in eukaryotic cells. FUTURE DIRECTIONS Currently, it is presumed that multiple pathways in addition to that mediated by Ero1 cooperate to achieve oxidative folding of many secretory and membrane proteins in mammalian cells. The important open question is how each oxidative pathway works distinctly or redundantly in response to various cellular conditions.
Collapse
Affiliation(s)
- Kazutaka Araki
- Laboratory of Molecular and Cellular Biology, Kyoto Sangyo University, Kyoto, Japan
| | | |
Collapse
|
95
|
Rutkevich LA, Williams DB. Vitamin K epoxide reductase contributes to protein disulfide formation and redox homeostasis within the endoplasmic reticulum. Mol Biol Cell 2012; 23:2017-27. [PMID: 22496424 PMCID: PMC3364168 DOI: 10.1091/mbc.e12-02-0102] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ero1 oxidation of PDI family members drives disulfide bond formation, but parallel pathways support Ero1 function. Relative contributions of known and candidate ER oxidation pathways are ranked by combinatorial RNAi in human hepatoma cells to reveal VKOR as a substantial contributor to ER oxidation, but no role for QSOX1 is observed. The transfer of oxidizing equivalents from the endoplasmic reticulum (ER) oxidoreductin (Ero1) oxidase to protein disulfide isomerase is an important pathway leading to disulfide formation in nascent proteins within the ER. However, Ero1-deficient mouse cells still support oxidative protein folding, which led to the discovery that peroxiredoxin IV (PRDX4) catalyzes a parallel oxidation pathway. To identify additional pathways, we used RNA interference in human hepatoma cells and evaluated the relative contributions to oxidative protein folding and ER redox homeostasis of Ero1, PRDX4, and the candidate oxidants quiescin-sulfhydryl oxidase 1 (QSOX1) and vitamin K epoxide reductase (VKOR). We show that Ero1 is primarily responsible for maintaining cell growth, protein secretion, and recovery from a reductive challenge. We further show by combined depletion with Ero1 that PRDX4 and, for the first time, VKOR contribute to ER oxidation and that depletion of all three activities results in cell death. Of importance, Ero1, PRDX4, or VKOR was individually capable of supporting cell viability, secretion, and recovery after reductive challenge in the near absence of the other two activities. In contrast, no involvement of QSOX1 in ER oxidative processes could be detected. These findings establish VKOR as a significant contributor to disulfide bond formation within the ER.
Collapse
Affiliation(s)
- Lori A Rutkevich
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
96
|
Lundemo AG, Pettersen CHH, Berge K, Berge RK, Schønberg SA. Tetradecylthioacetic acid inhibits proliferation of human SW620 colon cancer cells--gene expression profiling implies endoplasmic reticulum stress. Lipids Health Dis 2011; 10:190. [PMID: 22027281 PMCID: PMC3235040 DOI: 10.1186/1476-511x-10-190] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 10/25/2011] [Indexed: 01/20/2023] Open
Abstract
Background Previous reports have shown an antiproliferative effect of the synthetic, 3-thia fatty acid tetradecylthioacetic acid (TTA) on different cancer cells in vitro and in vivo. The mechanisms behind the observed effects are poorly understood. We therefore wanted to explore the molecular mechanisms involved in TTA-induced growth inhibition of the human colon cancer cell line SW620 by gene expression profiling. Methods An antiproliferative effect of TTA on SW620 cells in vitro was displayed in real time using the xCELLigence System (Roche). Affymetrix gene expression profiling was performed to elucidate the molecular mechanisms behind the antiproliferative effect of TTA. Changes in gene expression were verified at protein level by western blotting. Results TTA reduced SW620 cell growth, measured as baseline cell index, by 35% and 55% after 48 h and 72 h, respectively. We show for the first time that TTA induces an endoplasmic reticulum (ER) stress response in cancer cells. Gene expression analysis revealed changes related to ER stress and unfolded protein response (UPR). This was verified at protein level by phosphorylation of eukaryote translation initiation factor 2 alpha (eIF2α) and downstream up-regulation of activating transcription factor 4 (ATF4). Transcripts for positive and negative cell cycle regulators were down- and up-regulated, respectively. This, together with a down-regulation of Cyclin D1 at protein level, indicates inhibition of cell cycle progression. TTA also affected transcripts involved in calcium homeostasis. Moreover, mRNA and protein level of the ER stress inducible C/EBP-homologous protein (CHOP), Tribbles homolog 3 (Drosophila) (TRIB3) and CCAAT/enhancer binding protein beta (C/EBPβ) were enhanced, and the C/EBPβ LIP/LAP ratio was significantly increased. These results indicate prolonged ER stress and a possible link to induction of cell death. Conclusion We find that TTA-induced growth inhibition of SW620 cells seems to be mediated through induction of ER stress and activation of the UPR pathway.
Collapse
Affiliation(s)
- Anne G Lundemo
- Norwegian University of Science and Technology, Faculty of Medicine, Department of Laboratory Medicine, Children's and Women's Health, PO Box 8905, N-7491 Trondheim, Norway
| | | | | | | | | |
Collapse
|
97
|
Abstract
Analysis of the human genome reveals that approximately a third of all open reading frames code for proteins that enter the endoplasmic reticulum (ER), demonstrating the importance of this organelle for global protein maturation. The path taken by a polypeptide through the secretory pathway starts with its translocation across or into the ER membrane. It then must fold and be modified correctly in the ER before being transported via the Golgi apparatus to the cell surface or another destination. Being physically segregated from the cytosol means that the ER lumen has a distinct folding environment. It contains much of the machinery for fulfilling the task of protein production, including complex pathways for folding, assembly, modification, quality control, and recycling. Importantly, the compartmentalization means that several modifications that do not occur in the cytosol, such as glycosylation and extensive disulfide bond formation, can occur to secreted proteins to enhance their stability before their exposure to the extracellular milieu. How these various machineries interact during the normal pathway of folding and protein secretion is the subject of this review.
Collapse
Affiliation(s)
- Ineke Braakman
- Cellular Protein Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| | | |
Collapse
|
98
|
Cameron TL, Bell KM, Tatarczuch L, Mackie EJ, Rajpar MH, McDermott BT, Boot-Handford RP, Bateman JF. Transcriptional profiling of chondrodysplasia growth plate cartilage reveals adaptive ER-stress networks that allow survival but disrupt hypertrophy. PLoS One 2011; 6:e24600. [PMID: 21935428 PMCID: PMC3174197 DOI: 10.1371/journal.pone.0024600] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 08/15/2011] [Indexed: 12/20/2022] Open
Abstract
Metaphyseal chondrodysplasia, Schmid type (MCDS) is characterized by mild short stature and growth plate hypertrophic zone expansion, and caused by collagen X mutations. We recently demonstrated the central importance of ER stress in the pathology of MCDS by recapitulating the disease phenotype by expressing misfolding forms of collagen X (Schmid) or thyroglobulin (Cog) in the hypertrophic zone. Here we characterize the Schmid and Cog ER stress signaling networks by transcriptional profiling of microdissected mutant and wildtype hypertrophic zones. Both models displayed similar unfolded protein responses (UPRs), involving activation of canonical ER stress sensors and upregulation of their downstream targets, including molecular chaperones, foldases, and ER-associated degradation machinery. Also upregulated were the emerging UPR regulators Wfs1 and Syvn1, recently identified UPR components including Armet and Creld2, and genes not previously implicated in ER stress such as Steap1 and Fgf21. Despite upregulation of the Chop/Cebpb pathway, apoptosis was not increased in mutant hypertrophic zones. Ultrastructural analysis of mutant growth plates revealed ER stress and disrupted chondrocyte maturation throughout mutant hypertrophic zones. This disruption was defined by profiling the expression of wildtype growth plate zone gene signatures in the mutant hypertrophic zones. Hypertrophic zone gene upregulation and proliferative zone gene downregulation were both inhibited in Schmid hypertrophic zones, resulting in the persistence of a proliferative chondrocyte-like expression profile in ER-stressed Schmid chondrocytes. Our findings provide a transcriptional map of two chondrocyte UPR gene networks in vivo, and define the consequences of UPR activation for the adaptation, differentiation, and survival of chondrocytes experiencing ER stress during hypertrophy. Thus they provide important insights into ER stress signaling and its impact on cartilage pathophysiology.
Collapse
Affiliation(s)
- Trevor L. Cameron
- Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - Katrina M. Bell
- Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - Liliana Tatarczuch
- School of Veterinary Science, University of Melbourne, Parkville, Victoria, Australia
| | - Eleanor J. Mackie
- School of Veterinary Science, University of Melbourne, Parkville, Victoria, Australia
| | - M. Helen Rajpar
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Ben T. McDermott
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Raymond P. Boot-Handford
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - John F. Bateman
- Murdoch Childrens Research Institute, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
99
|
Long Q, Zhu X, Wu Y, Feng B, Jin D, Huang J, Lei T, Gan L, Yang Z. Molecular cloning and characterization of the porcine Ero1L and ERp44 genes: potential roles in controlling energy metabolism. Gen Comp Endocrinol 2011; 173:259-69. [PMID: 21664357 DOI: 10.1016/j.ygcen.2011.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/16/2011] [Accepted: 05/24/2011] [Indexed: 01/23/2023]
Abstract
Disulfide bond formation is a pivotal step in the maturation and release of secretory proteins that is controlled by specific endoplasmic reticulum (ER) resident enzymes. An important element in this process is Ero (ER oxidoreduction), a glycosylated flavoenzyme tightly associated with oxidative protein folding that lacks the known ER retention motifs. ER resident protein 44kDa (ERp44) is an ER resident protein that mediates ERo1 localization in ER and also prevents the secretion of unassembled cargo proteins with unpaired cysteine. These proteins are not only the key participants in the disulfide-bond formation process, but they also control the secretory pathway on both qualitative and quantitative levels. Here, we cloned full-length cDNA sequences of the porcine Ero1L (1448bp) and ERp44 (1361bp) genes. Isolation and characterization of their genomic sequences revealed that Ero1L contains 16 exons and 15 introns almost 150 kp in length, whereas ERp44 contains 12 exons and 11 introns more than 140 kp in length, and they are located on porcine chromosome 1q21 and 1q29, respectively. Tissue distribution analysis of the two genes revealed extremely high expression in adipose tissue, and the topology of their phylogenic tree indicates a high degree of conservation among different species. We looked at transcription factors binding sites in the 5'-flanking regions of Ero1L and ERp44, and many adipose differentiations related factors reflect the tight relationship to energy metabolism.
Collapse
Affiliation(s)
- Qinqiang Long
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Katika MR, Hendriksen PJM, van Loveren H, Peijnenburg A. Exposure of Jurkat cells to bis (tri-n-butyltin) oxide (TBTO) induces transcriptomics changes indicative for ER- and oxidative stress, T cell activation and apoptosis. Toxicol Appl Pharmacol 2011; 254:311-22. [PMID: 21601586 DOI: 10.1016/j.taap.2011.04.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 04/21/2011] [Accepted: 04/26/2011] [Indexed: 01/02/2023]
Abstract
Tributyltin oxide (TBTO) is an organotin compound that is widely used as a biocide in agriculture and as an antifouling agent in paints. TBTO is toxic for many cell types, particularly immune cells. The present study aimed to identify the effects of TBTO on the human T lymphocyte cell line Jurkat. Cells were treated with 0.2 and 0.5μM TBTO for 3, 6, 12 and 24h and then subjected to whole genome gene expression microarray analysis. The biological interpretation of the gene expression profiles revealed that endoplasmic reticulum (ER) stress is among the earliest effects of TBTO. Simultaneously or shortly thereafter, oxidative stress, activation of NFKB and NFAT, T cell activation, and apoptosis are induced. The effects of TBTO on genes involved in ER stress, NFAT pathway, T cell activation and apoptosis were confirmed by qRT-PCR. Activation and nuclear translocation of NFATC1 and the oxidative stress response proteins NRF2 and KEAP1 were confirmed by immunocytology. Taking advantage of previously published microarray data, we demonstrated that the induction of ER stress, oxidative stress, T cell activation and apoptosis by TBTO is not unique for Jurkat cells but does also occur in mouse thymocytes both ex vivo and in vivo and rat thymocytes ex vivo. We propose that the induction of ER stress leading to a T cell activation response is a major factor in the higher sensitivity of immune cells above other types of cells for TBTO.
Collapse
Affiliation(s)
- Madhumohan R Katika
- RIKILT-Institute of Food Safety, Wageningen University and Research Centre, Wageningen, The Netherlands
| | | | | | | |
Collapse
|