51
|
Enteroaggregative Escherichia coli Adherence Fimbriae Drive Inflammatory Cell Recruitment via Interactions with Epithelial MUC1. mBio 2017; 8:mBio.00717-17. [PMID: 28588132 PMCID: PMC5461410 DOI: 10.1128/mbio.00717-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) causes diarrhea and intestinal inflammation worldwide. EAEC strains are characterized by the presence of aggregative adherence fimbriae (AAF), which play a key role in pathogenesis by mediating attachment to the intestinal mucosa and by triggering host inflammatory responses. Here, we identify the epithelial transmembrane mucin MUC1 as an intestinal host cell receptor for EAEC, demonstrating that AAF-mediated interactions between EAEC and MUC1 facilitate enhanced bacterial adhesion. We further demonstrate that EAEC infection also causes elevated expression of MUC1 in inflamed human intestinal tissues. Moreover, we find that MUC1 facilitates AAF-dependent migration of neutrophils across the epithelium in response to EAEC infection. Thus, we show for the first time a proinflammatory role for MUC1 in the host response to an intestinal pathogen. EAEC is a clinically important intestinal pathogen that triggers intestinal inflammation and diarrheal illness via mechanisms that are not yet fully understood. Our findings provide new insight into how EAEC triggers host inflammation and underscores the pivotal role of AAFs—the principal adhesins of EAEC—in driving EAEC-associated disease. Most importantly, our findings add a new dimension to the signaling properties of the transmembrane mucin MUC1. Mostly studied for its role in various forms of cancer, MUC1 is widely regarded as playing an anti-inflammatory role in response to infection with bacterial pathogens in various tissues. However, the role of MUC1 during intestinal infections has not been previously explored, and our results describe the first report of MUC1 as a proinflammatory factor following intestinal infection.
Collapse
|
52
|
Abstract
Respiratory immunity is accomplished using multiple mechanisms including structure/anatomy of the respiratory tract, mucosal defense in the form of the mucociliary apparatus, innate immunity using cells and molecules and acquired immunity. There are species differences of the respiratory immune system that influence the response to environmental challenges and pharmaceutical, industrial and agricultural compounds assessed in nonclinical safety testing and hazard identification. These differences influence the interpretation of respiratory system changes after exposure to these challenges and compounds in nonclinical safety assessment and hazard identification and their relevance to humans.
Collapse
|
53
|
Sheng Y, Ng CP, Lourie R, Shah ET, He Y, Wong KY, Seim I, Oancea I, Morais C, Jeffery PL, Hooper J, Gobe GC, McGuckin MA. MUC13 overexpression in renal cell carcinoma plays a central role in tumor progression and drug resistance. Int J Cancer 2017; 140:2351-2363. [PMID: 28205224 DOI: 10.1002/ijc.30651] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/21/2016] [Accepted: 01/25/2017] [Indexed: 01/09/2023]
Abstract
Metastatic renal cell carcinoma is a largely incurable disease, and existing treatments targeting angiogenesis and tyrosine kinase receptors are only partially effective. Here we reveal that MUC13, a cell surface mucin glycoprotein, is aberrantly expressed by most renal cell carcinomas, with increasing expression positively correlating with tumor grade. Importantly, we demonstrated that high MUC13 expression was a statistically significant independent predictor of poor survival in two independent cohorts, particularly in stage 1 cancers. In cultured renal cell carcinoma cells MUC13 promoted proliferation and induced the cell cycle regulator, cyclin D1, and inhibited apoptosis by inducing the anti-apoptotic proteins, BCL-xL and survivin. Silencing of MUC13 expression inhibited migration and invasion, and sensitized renal cancer cells to killing by the multi-kinase inhibitors used clinically, sorafenib and sunitinib, and reversed acquired resistance to these drugs. Furthermore, we demonstrated that MUC13 promotion of renal cancer cell growth and survival is mediated by activation of nuclear factor κB, a transcription factor known to regulate the expression of genes that play key roles in the development and progression of cancer. These results show that MUC13 has potential as a prognostic marker for aggressive early stage renal cell cancer and is a plausible target to sensitize these tumors to therapy.
Collapse
Affiliation(s)
- Yonghua Sheng
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Choa Ping Ng
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Rohan Lourie
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Esha T Shah
- Ghrelin Research Group, Translational Research Institute-Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,Comparative and Endocrine Biology Laboratory, Translational Research Institute-Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Yaowu He
- Cancer Biology Group, Mater Research Institute-University of Queensland, Brisbane, QLD, Australia
| | - Kuan Yau Wong
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Inge Seim
- Ghrelin Research Group, Translational Research Institute-Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,Comparative and Endocrine Biology Laboratory, Translational Research Institute-Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Iulia Oancea
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Christudas Morais
- Centre for Kidney Disease Research, The University of Queensland School of Medicine, Translational Research Institute, Brisbane, QLD, Australia
| | - Penny L Jeffery
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia.,Ghrelin Research Group, Translational Research Institute-Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,Comparative and Endocrine Biology Laboratory, Translational Research Institute-Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - John Hooper
- Cancer Biology Group, Mater Research Institute-University of Queensland, Brisbane, QLD, Australia
| | - Glenda C Gobe
- Centre for Kidney Disease Research, The University of Queensland School of Medicine, Translational Research Institute, Brisbane, QLD, Australia
| | - Michael A McGuckin
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
54
|
Lundmark A, Johannsen G, Eriksson K, Kats A, Jansson L, Tervahartiala T, Rathnayake N, Åkerman S, Klinge B, Sorsa T, Yucel-Lindberg T. Mucin 4 and matrix metalloproteinase 7 as novel salivary biomarkers for periodontitis. J Clin Periodontol 2017; 44:247-254. [PMID: 28005264 PMCID: PMC5347886 DOI: 10.1111/jcpe.12670] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2016] [Indexed: 12/14/2022]
Abstract
AIM Periodontitis is a chronic inflammatory disease, characterized by irreversible destruction of tooth-supporting tissue including alveolar bone. We recently reported mucin 4 (MUC4) and matrix metalloproteinase 7 (MMP7) as highly associated with periodontitis in gingival tissue biopsies. The aim of this study was to further investigate the levels of MUC4 and MMP7 in saliva and gingival crevicular fluid (GCF) samples of patients with periodontitis. MATERIALS AND METHODS Saliva and GCF samples were collected from periodontitis patients and healthy controls. The levels of MUC4, MMP7, and total protein concentrations were analysed using ELISA or Bradford assay. RESULTS MUC4 levels were significantly lower in saliva and GCF from periodontitis patients relative to healthy controls. MMP7 levels were significantly higher in saliva and GCF from periodontitis patients. Multivariate analysis revealed that MUC4 was significantly associated with periodontitis after adjusting for age and smoking habits and, moreover, that the combination of MUC4 and MMP7 accurately discriminated periodontitis from healthy controls. CONCLUSIONS MUC4 and MMP7 may be utilized as possible novel biomarkers for periodontitis.
Collapse
Affiliation(s)
- Anna Lundmark
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Gunnar Johannsen
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Kaja Eriksson
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Anna Kats
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Leif Jansson
- Department of Periodontology, Folktandvården Eastmaninstitutet, Stockholm, Sweden
| | - Taina Tervahartiala
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Nilminie Rathnayake
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Sigvard Åkerman
- Department of Orofacial Pain and Jaw Function, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Björn Klinge
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden.,Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Timo Sorsa
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden.,Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tülay Yucel-Lindberg
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
55
|
Corfield A. Eukaryotic protein glycosylation: a primer for histochemists and cell biologists. Histochem Cell Biol 2017; 147:119-147. [PMID: 28012131 PMCID: PMC5306191 DOI: 10.1007/s00418-016-1526-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2016] [Indexed: 12/21/2022]
Abstract
Proteins undergo co- and posttranslational modifications, and their glycosylation is the most frequent and structurally variegated type. Histochemically, the detection of glycan presence has first been performed by stains. The availability of carbohydrate-specific tools (lectins, monoclonal antibodies) has revolutionized glycophenotyping, allowing monitoring of distinct structures. The different types of protein glycosylation in Eukaryotes are described. Following this educational survey, examples where known biological function is related to the glycan structures carried by proteins are given. In particular, mucins and their glycosylation patterns are considered as instructive proof-of-principle case. The tissue and cellular location of glycoprotein biosynthesis and metabolism is reviewed, with attention to new findings in goblet cells. Finally, protein glycosylation in disease is documented, with selected examples, where aberrant glycan expression impacts on normal function to let disease pathology become manifest. The histological applications adopted in these studies are emphasized throughout the text.
Collapse
Affiliation(s)
- Anthony Corfield
- Mucin Research Group, School of Clinical Sciences, Bristol Royal Infirmary, University of Bristol, Bristol, BS2 8HW, UK.
| |
Collapse
|
56
|
van Putten JPM, Strijbis K. Transmembrane Mucins: Signaling Receptors at the Intersection of Inflammation and Cancer. J Innate Immun 2017; 9:281-299. [PMID: 28052300 DOI: 10.1159/000453594] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 11/19/2016] [Indexed: 12/18/2022] Open
Abstract
Mucosal surfaces line our body cavities and provide the interaction surface between commensal and pathogenic microbiota and the host. The barrier function of the mucosal layer is largely maintained by gel-forming mucin proteins that are secreted by goblet cells. In addition, mucosal epithelial cells express cell-bound mucins that have both barrier and signaling functions. The family of transmembrane mucins consists of diverse members that share a few characteristics. The highly glycosylated extracellular mucin domains inhibit invasion by pathogenic bacteria and can form a tight mesh structure that protects cells in harmful conditions. The intracellular tails of transmembrane mucins can be phosphorylated and connect to signaling pathways that regulate inflammation, cell-cell interactions, differentiation, and apoptosis. Transmembrane mucins play important roles in preventing infection at mucosal surfaces, but are also renowned for their contributions to the development, progression, and metastasis of adenocarcinomas. In general, transmembrane mucins seem to have evolved to monitor and repair damaged epithelia, but these functions can be highjacked by cancer cells to yield a survival advantage. This review presents an overview of the current knowledge of the functions of transmembrane mucins in inflammatory processes and carcinogenesis in order to better understand the diverse functions of these multifunctional proteins.
Collapse
Affiliation(s)
- Jos P M van Putten
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
57
|
The properties of the mucus barrier, a unique gel--how can nanoparticles cross it? Ther Deliv 2016; 7:229-44. [PMID: 27010985 DOI: 10.4155/tde-2015-0002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The key criterion for a nanoparticle drug-delivery system is the ability to produce substantial bioavailability without damaging the physiological protective mechanisms. The main area for drug delivery is the aerodigestive tract. All epithelial surfaces have a membrane-bound layer and in the lung this layer is surmounted by a gel layer. In the gastrointestinal tract the membrane-bound mucin layer is covered by a mucus bilayer. The pore sizes of mucus gels are around 100 to 200 nm. Consequently, only nanoparticles in this size range could potentially penetrate without modification of these layers. To study nanoparticle permeation with results that pertain to in vivo conditions, native mucus mucin preparations must be used. Strategies to increase pores in mucus gels are discussed herein.
Collapse
|
58
|
Abstract
Mucins are heavily O-glycosylated proteins primarily produced by glandular and ductal epithelial cells, either in membrane-tethered or secretory forms, for providing lubrication and protection from various exogenous and endogenous insults. However, recent studies have linked their aberrant overexpression with infection, inflammation, and cancer that underscores their importance in tissue homeostasis. In this review, we present current status of the existing mouse models that have been developed to gain insights into the functional role(s) of mucins under physiological and pathological conditions. Knockout mouse models for membrane-associated (Muc1 and Muc16) and secretory mucins (Muc2) have helped us to elucidate the role of mucins in providing effective and protective barrier functions against pathological threats, participation in disease progression, and improved our understanding of mucin interaction with biotic and abiotic environmental components. Emphasis is also given to available transgenic mouse models (MUC1 and MUC7), which has been exploited to understand the context-dependent regulation and therapeutic potential of human mucins during inflammation and cancer.
Collapse
|
59
|
Abstract
A number of mechanisms ensure that the intestine is protected from pathogens and also against our own intestinal microbiota. The outermost of these is the secreted mucus, which entraps bacteria and prevents their translocation into the tissue. Mucus contains many immunomodulatory molecules and is largely produced by the goblet cells. These cells are highly responsive to the signals they receive from the immune system and are also able to deliver antigens from the lumen to dendritic cells in the lamina propria. In this Review, we will give a basic overview of mucus, mucins and goblet cells, and explain how each of these contributes to immune regulation in the intestine.
Collapse
Affiliation(s)
- Malin E V Johansson
- Department of Medical Biochemistry, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Gunnar C Hansson
- Department of Medical Biochemistry, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
60
|
Sheng YH, He Y, Hasnain SZ, Wang R, Tong H, Clarke DT, Lourie R, Oancea I, Wong KY, Lumley JW, Florin TH, Sutton P, Hooper JD, McMillan NA, McGuckin MA. MUC13 protects colorectal cancer cells from death by activating the NF-κB pathway and is a potential therapeutic target. Oncogene 2016; 36:700-713. [PMID: 27399336 PMCID: PMC5541270 DOI: 10.1038/onc.2016.241] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 05/24/2016] [Accepted: 06/01/2016] [Indexed: 02/07/2023]
Abstract
MUC13 is a transmembrane mucin glycoprotein that is over produced by many cancers, although its functions are not fully understood. Nuclear factor-κB (NF-κB) is a key transcription factor promoting cancer cell survival, but therapeutically targeting this pathway has proved difficult because NF-κB has pleiotropic functions. Here, we report that MUC13 prevents colorectal cancer cell death by promoting two distinct pathways of NF-kB activation, consequently upregulating BCL-XL. MUC13 promoted tumor necrosis factor (TNF)-induced NF-κB activation by interacting with TNFR1 and the E3 ligase, cIAP1, to increase ubiquitination of RIPK1. MUC13 also promoted genotoxin-induced NF-κB activation by increasing phosphorylation of ATM and SUMOylation of NF-κB essential modulator. Moreover, elevated expression of cytoplasmic MUC13 and NF-κB correlated with colorectal cancer progression and metastases. Our demonstration that MUC13 enhances NF-κB signaling in response to both TNF and DNA-damaging agents provides a new molecular target for specific inhibition of NF-κB activation. As proof of principle, silencing MUC13 sensitized colorectal cancer cells to killing by cytotoxic drugs and inflammatory signals and abolished chemotherapy-induced enrichment of CD133+ CD44+ cancer stem cells, slowed xenograft growth in mice, and synergized with 5-fluourouracil to induce tumor regression. Therefore, these data indicate that combining chemotherapy and MUC13 antagonism could improve the treatment of metastatic cancers.
Collapse
Affiliation(s)
- Y H Sheng
- Inflammatory Disease Biology and Therapeutics Group-Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Y He
- Cancer Biology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - S Z Hasnain
- Inflammatory Disease Biology and Therapeutics Group-Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - R Wang
- Inflammatory Disease Biology and Therapeutics Group-Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - H Tong
- Inflammatory Disease Biology and Therapeutics Group-Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - D T Clarke
- Molecular Basis of Disease Program, School of Medical Sciences, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - R Lourie
- Inflammatory Disease Biology and Therapeutics Group-Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.,Inflammatory Bowel Diseases Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - I Oancea
- Inflammatory Disease Biology and Therapeutics Group-Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.,Inflammatory Bowel Diseases Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - K Y Wong
- Inflammatory Disease Biology and Therapeutics Group-Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - J W Lumley
- Wesley Hospital, Auchenflower, Australia
| | - T H Florin
- Inflammatory Bowel Diseases Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - P Sutton
- Mucosal Immunology, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Melbourne, Victoria, Australia.,Centre for Animal Biotechnology, School of Veterinary and Agricultural Science, University of Melbourne, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Victoria, Australia
| | - J D Hooper
- Cancer Biology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - N A McMillan
- Molecular Basis of Disease Program, School of Medical Sciences, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - M A McGuckin
- Inflammatory Disease Biology and Therapeutics Group-Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
61
|
MUC13 interaction with receptor tyrosine kinase HER2 drives pancreatic ductal adenocarcinoma progression. Oncogene 2016; 36:491-500. [PMID: 27321183 PMCID: PMC5173450 DOI: 10.1038/onc.2016.218] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 05/03/2016] [Accepted: 05/08/2016] [Indexed: 11/12/2022]
Abstract
Although MUC13, a transmembrane mucin, is aberrantly expressed in pancreatic ductal adenocarcinoma (PDAC) and generally correlates with increased expression of HER2, the underlying mechanism remains poorly understood. Herein, we found that MUC13 co-localizes and interacts with HER2 in PDAC cells (reciprocal co-immunoprecipitation, immunofluorescence, proximity ligation, co-capping assays) and tissues (immunohistofluorescence). The results from this study demonstrate that MUC13 functionally interacts and activates HER2 at p1248 in PDAC cells, leading to stimulation of HER2 signaling cascade including, ERK1/2, FAK, AKT and PAK1 as well as regulation of the growth, cytoskeleton remodeling and motility and invasion of PDAC cells - all collectively contributing to PDAC progression. Interestingly, all of these phenotypic effects of MUC13-HER2 co-localization could be effectively compromised by depleting MUC13 and mediated by the first and second EGF-like domains of MUC13. Further, MUC13-HER2 co-localization also holds true in PDAC tissues with a strong functional correlation with events contributing to increased degree of disorder and cancer aggressiveness. In brief, findings presented here provide compelling evidence of a functional ramification of MUC13-HER2: this interaction could be potentially exploited for targeted therapeutics in a subset of patients harboring an aggressive form of PDAC.
Collapse
|
62
|
Comparative genome-wide association studies of a depressive symptom phenotype in a repeated measures setting by race/ethnicity in the Multi-Ethnic Study of Atherosclerosis. BMC Genet 2015; 16:118. [PMID: 26459564 PMCID: PMC4603946 DOI: 10.1186/s12863-015-0274-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 09/30/2015] [Indexed: 11/29/2022] Open
Abstract
Background Time-varying phenotypes have been studied less frequently in the context of genome-wide analyses across ethnicities, particularly for mood disorders. This study uses genome-wide association studies of depressive symptoms in a longitudinal framework and across multiple ethnicities to find common variants for depressive symptoms. Ethnicity-specific GWAS for depressive symptoms were conducted using three approaches: a baseline measure, longitudinal measures averaged over time, and a repeated measures analysis. We then used meta-analysis to jointly analyze the results across ethnicities within the Multi-ethnic Study of Atherosclerosis (MESA, n = 6,335), and then within ethnicity, across MESA and a sample from the Health and Retirement Study African- and European-Americans (HRS, n = 10,163). Methods This study uses genome-wide association studies of depressive symptoms in a longitudinal framework and across multiple ethnicities to find common variants for depressive symptoms. Ethnicity-specific GWAS for depressive symptoms were conducted using three approaches: a baseline measure, longitudinal measures averaged over time, and a repeated measures analysis. We then used meta-analysis to jointly analyze the results across ethnicities within the Multi-ethnic Study of Atherosclerosis (MESA, n = 6,335), and then within ethnicity, across MESA and a sample from the Health and Retirement Study African- and European-Americans (HRS, n = 10,163). Results Several novel variants were identified at the genome-wide suggestive level (5×10−8 < p-value ≤ 5×10−6) in each ethnicity for each approach to analyzing depressive symptoms. The repeated measures analyses resulted in typically smaller p-values and an increase in the number of single-nucleotide polymorphisms (SNP) reaching genome-wide suggestive level. Conclusions For phenotypes that vary over time, the detection of genetic predictors may be enhanced by repeated measures analyses. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0274-0) contains supplementary material, which is available to authorized users.
Collapse
|
63
|
Exploring the role and diversity of mucins in health and disease with special insight into non-communicable diseases. Glycoconj J 2015; 32:575-613. [PMID: 26239922 DOI: 10.1007/s10719-015-9606-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022]
Abstract
Mucins are major glycoprotein components of the mucus that coats the surfaces of cells lining the respiratory, digestive, gastrointestinal and urogenital tracts. They function to protect epithelial cells from infection, dehydration and physical or chemical injury, as well as to aid the passage of materials through a tract i.e., lubrication. They are also implicated in the pathogenesis of benign and malignant diseases of secretory epithelial cells. In Human there are two types of mucins, membrane-bound and secreted that are originated from mucous producing goblet cells localized in the epithelial cell layer or in mucous producing glands and encoded by MUC gene. Mucins belong to a heterogeneous family of high molecular weight proteins composed of a long peptidic chain with a large number of tandem repeats that form the so-called mucin domain. The molecular weight is generally high, ranging between 0.2 and 10 million Dalton and all mucins contain one or more domains which are highly glycosylated. The size and number of repeats vary between mucins and the genetic polymorphism represents number of repeats (VNTR polymorphisms), which means the size of individual mucins can differ substantially between individuals which can be used as markers. In human it is only MUC1 and MUC7 that have mucin domains with less than 40% serine and threonine which in turn could reduce number of PTS domains. Mucins can be considered as powerful two-edged sword, as its normal function protects from unwanted substances and organisms at an arm's length while, malfunction of mucus may be an important factor in human diseases. In this review we have unearthed the current status of different mucin proteins in understanding its role and function in various non-communicable diseases in human with special reference to its organ specific locations. The findings described in this review may be of direct relevance to the major research area in biomedicine with reference to mucin and mucin associated diseases.
Collapse
|
64
|
Hoffmann W. TFF2, a MUC6-binding lectin stabilizing the gastric mucus barrier and more (Review). Int J Oncol 2015. [PMID: 26201258 DOI: 10.3892/ijo.2015.3090] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The peptide TFF2 (formerly 'spasmolytic polypeptide'), a member of the trefoil factor family (TFF) containing two TFF domains, is mainly expressed together with the mucin MUC6 in the gastric epithelium and duodenal Brunner's glands. Pathologically, TFF2 expression is observed ectopically during stone diseases, chronic inflammatory conditions and in several metaplastic and neoplastic epithelia; most prominent being the 'spasmolytic polypeptide-expressing metaplasia' (SPEM), which is an established gastric precancerous lesion. TFF2 plays a critical role in maintaining gastric mucosal integrity and appears to restrain tumorigenesis in the stomach. Recently, porcine TFF2 has been shown to interact with the gastric mucin MUC6 and thus stabilize the gastric mucus barrier. On the one hand, TFF2 binds to MUC6 via non-covalent lectin interactions with the glycotope GlcNAcα1→4Galβ1→R. On the other hand, TFF2 is probably also covalently bound to MUC6 via disulfide bridges. Thus, implications for the complex multimeric assembly, cross-linking, and packaging of MUC6 as well as the rheology of gastric mucus are discussed in detail in this review. Furthermore, TFF2 is also expressed in minor amounts in the immune and nervous systems. Thus, similar to galectins, its lectin activity would perfectly enable TFF2 to form multivalent complexes and cross-linked lattices with a plethora of transmembrane glycoproteins and thus modulate different signal transduction processes. This could explain the multiple and diverse biological effects of TFF2 [e.g., motogenic, (anti)apoptotic, and angiogenic effects]. Finally, a function during fertilization is also possible for TFF domains because they occur as shuffled modules in certain zona pellucida proteins.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany
| |
Collapse
|
65
|
Saraiva-Pava K, Navabi N, Skoog EC, Lindén SK, Oleastro M, Roxo-Rosa M. New NCI-N87-derived human gastric epithelial line after human telomerase catalytic subunit over-expression. World J Gastroenterol 2015; 21:6526-6542. [PMID: 26074691 PMCID: PMC4458763 DOI: 10.3748/wjg.v21.i21.6526] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/07/2015] [Accepted: 03/31/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To establish a cellular model correctly mimicking the gastric epithelium to overcome the limitation in the study of Helicobacter pylori (H. pylori) infection.
METHODS: Aiming to overcome this limitation, clones of the heterogenic cancer-derived NCI-N87 cell line were isolated, by stably-transducing it with the human telomerase reverse-transcriptase (hTERT) catalytic subunit gene. The clones were first characterized regarding their cell growth pattern and phenotype. For that we measured the clones’ adherence properties, expression of cell-cell junctions’ markers (ZO-1 and E-cadherin) and ability to generate a sustained transepithelial electrical resistance. The gastric properties of the clones, concerning expression of mucins, zymogens and glycan contents, were then evaluated by haematoxylin and eosin staining, Periodic acid Schiff (PAS) and PAS/Alcian Blue-staining, immunocytochemistry and Western blot. In addition, we assessed the usefulness of the hTERT-expressing gastric cell line for H. pylori research, by performing co-culture assays and measuring the IL-8 secretion, by ELISA, upon infection with two H. pylori strains differing in virulence.
RESULTS: Compared with the parental cell line, the most promising NCI-hTERT-derived clones (CL5 and CL6) were composed of cells with homogenous phenotype, presented higher relative telomerase activities, better adhesion properties, ability to be maintained in culture for longer periods after confluency, and were more efficient in PAS-reactive mucins secretion. Both clones were shown to produce high amounts of MUC1, MUC2 and MUC13. NCI-hTERT-CL5 mucins were shown to be decorated with blood group H type 2 (BG-H), Lewis-x (Lex), Ley and Lea and, in a less extent, with BG-A antigens, but the former two antigens were not detected in the NCI-hTERT-CL6. None of the clones exhibited detectable levels of MUC6 nor sialylated Lex and Lea glycans. Entailing good gastric properties, both NCI-hTERT-clones were found to produce pepsinogen-5 and human gastric lipase. The progenitor-like phenotype of NCI-hTERT-CL6 cells was highlighted by large nuclei and by the apical vesicular-like distribution of mucin 5AC and Pg5, supporting the accumulation of mucus-secreting and zymogens-chief mature cells functions.
CONCLUSION: These traits, in addition to resistance to microaerobic conditions and good responsiveness to H. pylori co-culture, in a strain virulence-dependent manner, make the NCI-hTERT-CL6 a promising model for future in vitro studies.
Collapse
|
66
|
Chen J, Tellez G, Richards JD, Escobar J. Identification of Potential Biomarkers for Gut Barrier Failure in Broiler Chickens. Front Vet Sci 2015; 2:14. [PMID: 26664943 PMCID: PMC4672187 DOI: 10.3389/fvets.2015.00014] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/08/2015] [Indexed: 01/10/2023] Open
Abstract
The objective of the present study was to identify potential biomarkers for gut barrier failure in chickens. A total of 144 day-of-hatch Ross 308 male broiler chickens were housed in 24 battery cages with six chicks per cage. Cages were randomly assigned to either a control group (CON) or gut barrier failure (GBF) group. During the first 13 days, birds in CON or GBF groups were fed a common corn–soy starter diet. On day 14, CON chickens were switched to a corn grower diet, and GBF chickens were switched to rye–wheat–barley grower diet. In addition, on day 21, GBF chickens were orally challenged with a coccidiosis vaccine. At days 21 and 28, birds were weighed by cage and feed intake was recorded to calculate feed conversion ratio. At day 28, one chicken from each cage was euthanized to collect intestinal samples for morphometric analysis, blood for serum, and intestinal mucosa scrapings for gene expression. Overall performance and feed efficiency was severely affected (P < 0.05) by a GBF model when compared with CON group at days 21 and 28. Duodenum of GBF birds had wider villi, longer crypt depth, and higher crypt depth/villi height ratio than CON birds. Similarly, GBF birds had longer crypt depth in jejunum and ileum when compared with CON birds. Protein levels of endotoxin and α1-acid glycoprotein (AGP) in serum, as well as mRNA levels of interleukin (IL)-8, IL-1β, transforming growth factor (TGF)-β4, and fatty acid-binding protein (FABP) 6 were increased (P < 0.05) in GBF birds compared to CON birds; however, mRNA levels of FABP2, occludin, and mucin 2 (MUC2) were reduced by 34% (P < 0.05), 24% (P = 0.107), and 29% (P = 0.088), respectively, in GBF birds compared to CON birds. The results from the present study suggest that serum endotoxin and AGP, as well as, gene expression of FABP2, FABP6, IL-8, IL-1β, TGF-β4, occludin, and MUC2 in mucosa may work as potential biomarkers for gut barrier health in chickens.
Collapse
Affiliation(s)
- Juxing Chen
- Novus International, Inc. , St. Charles, MO , USA
| | - Guillermo Tellez
- Department of Poultry Science, University of Arkansas , Fayetteville, AR , USA
| | | | | |
Collapse
|
67
|
Kavanaugh D, O'Callaghan J, Kilcoyne M, Kane M, Joshi L, Hickey RM. The intestinal glycome and its modulation by diet and nutrition. Nutr Rev 2015; 73:359-75. [DOI: 10.1093/nutrit/nuu019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
68
|
Nishii Y, Yamaguchi M, Kimura Y, Hasegawa T, Aburatani H, Uchida H, Hirata K, Sakuma Y. A newly developed anti-Mucin 13 monoclonal antibody targets pancreatic ductal adenocarcinoma cells. Int J Oncol 2015; 46:1781-7. [PMID: 25672256 DOI: 10.3892/ijo.2015.2880] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/05/2015] [Indexed: 11/06/2022] Open
Abstract
Pancreatic cancer is one of the most severe forms of malignancy. Patients with unresectable or metastatic pancreatic cancer usually receive chemotherapy that causes various adverse effects. Antibody-drug conjugates (ADCs), drugs developed by conjugating an anticancer agent to a monoclonal antibody (mAb), can alleviate the side effects of chemotherapy because ADCs selectively bind to cancer cells expressing a particular antigen. We recently developed the recombinant protein DT3C comprising diphtheria toxin (DT) lacking the receptor-binding domain but containing the C1, C2, and C3 domains of Streptococcus protein G (3C). The mAb-DT3C conjugates can be used to select mAbs that are internalized by cells, because the conjugates decrease cell viability only when they are internalized by cells through Ab-antigen reactions. We developed a new mAb to be internalized by TCC-PAN2 cells, a pancreatic carcinoma cell line. The mAb, designated TCC56, recognized Mucin 13 (MUC13), while TCC56‑DT3C conjugates induced cell death in TCC-PAN2 cells expressing MUC13. We found that MUC13 was expressed, at least partially, in all 40 pancreatic ductal carcinoma tissues and adjacent non-cancerous tissues analyzed. The expression levels of MUC13 in pancreatic cancer tissues were greater than those in normal tissues. Our findings suggest that MUC13 can be a target molecule for pancreatic cancer treatment. ADCs, including mAb TCC56, could be promising anticancer agents to alleviate the adverse effects of chemotherapy.
Collapse
Affiliation(s)
- Yukari Nishii
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Miki Yamaguchi
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yasutoshi Kimura
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tadashi Hasegawa
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Uchida
- Laboratory of Oncology, Department of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Koichi Hirata
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuji Sakuma
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
69
|
Pelaseyed T, Bergström JH, Gustafsson JK, Ermund A, Birchenough GMH, Schütte A, van der Post S, Svensson F, Rodríguez-Piñeiro AM, Nyström EEL, Wising C, Johansson MEV, Hansson GC. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol Rev 2015; 260:8-20. [PMID: 24942678 DOI: 10.1111/imr.12182] [Citation(s) in RCA: 909] [Impact Index Per Article: 90.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The gastrointestinal tract is covered by mucus that has different properties in the stomach, small intestine, and colon. The large highly glycosylated gel-forming mucins MUC2 and MUC5AC are the major components of the mucus in the intestine and stomach, respectively. In the small intestine, mucus limits the number of bacteria that can reach the epithelium and the Peyer's patches. In the large intestine, the inner mucus layer separates the commensal bacteria from the host epithelium. The outer colonic mucus layer is the natural habitat for the commensal bacteria. The intestinal goblet cells secrete not only the MUC2 mucin but also a number of typical mucus components: CLCA1, FCGBP, AGR2, ZG16, and TFF3. The goblet cells have recently been shown to have a novel gate-keeping role for the presentation of oral antigens to the immune system. Goblet cells deliver small intestinal luminal material to the lamina propria dendritic cells of the tolerogenic CD103(+) type. In addition to the gel-forming mucins, the transmembrane mucins MUC3, MUC12, and MUC17 form the enterocyte glycocalyx that can reach about a micrometer out from the brush border. The MUC17 mucin can shuttle from a surface to an intracellular vesicle localization, suggesting that enterocytes might control and report epithelial microbial challenge. There is communication not only from the epithelial cells to the immune system but also in the opposite direction. One example of this is IL10 that can affect and improve the properties of the inner colonic mucus layer. The mucus and epithelial cells of the gastrointestinal tract are the primary gate keepers and controllers of bacterial interactions with the host immune system, but our understanding of this relationship is still in its infancy.
Collapse
Affiliation(s)
- Thaher Pelaseyed
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Frameshift Mutations of MUC15 Gene in Gastric and its Regional Heterogeneity in Gastric and Colorectal Cancers. Pathol Oncol Res 2015; 21:713-8. [DOI: 10.1007/s12253-014-9878-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/10/2014] [Indexed: 01/06/2023]
|
71
|
Corfield AP. Mucins: A biologically relevant glycan barrier in mucosal protection. Biochim Biophys Acta Gen Subj 2015; 1850:236-52. [PMID: 24821013 DOI: 10.1016/j.bbagen.2014.05.003] [Citation(s) in RCA: 378] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 04/05/2014] [Accepted: 05/02/2014] [Indexed: 02/08/2023]
|
72
|
Functions and regulation of MUC13 mucin in colon cancer cells. J Gastroenterol 2014; 49:1378-91. [PMID: 24097071 PMCID: PMC3979492 DOI: 10.1007/s00535-013-0885-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/09/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND MUC13 is overexpressed and aberrantly localized in colon cancer tissue; however, the specific functions and regulation of MUC13 expression are unknown. METHODS Stable cell lines with either overexpressed or suppressed MUC13 levels were analyzed to determine cell growth, colony formation, cell migration, and cell invasion assays. The molecular mechanisms involved in MUC13 regulation were elucidated via chromatin immunoprecipitation (ChIP) and analysis of interleukin 6 (IL6) treatments. Colon cancer tissues were analyzed by immunohistochemistry (IHC) for the protein levels of MUC13 and P-STAT5 in colon cancer cells. RESULTS Overexpression of MUC13 increased cell growth, colony formation, cell migration, and invasion. In concordance, MUC13 silencing decreased these tumorigenic features. Overexpression of MUC13 also modulated various cancer-associated proteins, including telomerase reverse transcriptase, sonic hedgehog, B cell lymphoma murine like site 1, and GATA like transcription factor 1. Additionally, MUC13-overexpressing cells showed increased HER2 and P-ERK expression. ChIP analysis revealed binding of STAT5 to the predicted MUC13 promoter. IL6 treatment of colon cancer cells increased the expression of MUC13 via activation of the JAK2/STAT5 signaling pathway. Suppression of JAK2 and STAT5 signaling by chemical inhibitors abolished IL6-induced MUC13 expression. IHC analysis showed increased expression of both P-STAT5 and MUC13 in colon cancer as compared to adjacent normal tissue. CONCLUSIONS The results of this study, for the first time, suggest functional roles of MUC13 in colon cancer progression and provide information regarding the regulation of MUC13 expression via JAK2/STAT5 which may reveal promising therapeutic approaches for colon cancer treatment.
Collapse
|
73
|
Sung HY, Park AK, Ju W, Ahn JH. Overexpression of mucin 13 due to promoter methylation promotes aggressive behavior in ovarian cancer cells. Yonsei Med J 2014; 55:1206-13. [PMID: 25048476 PMCID: PMC4108803 DOI: 10.3349/ymj.2014.55.5.1206] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Recent discoveries suggest that aberrant DNA methylation provides cancer cells with advanced metastatic properties. However, the precise regulatory mechanisms controlling metastasis genes and their role in metastatic transformation are largely unknown. To address epigenetically-regulated gene products involved in ovarian cancer metastasis, we examined the mechanisms regulating mucin 13 (MUC13) expression and its influence on aggressive behaviors of ovarian malignancies. MATERIALS AND METHODS We injected SK-OV-3 ovarian cancer cells peritoneally into nude mice to mimic human ovarian tumor metastasis. Overexpression of MUC13 mRNA was detected in metastatic implants from the xenografts by expression microarray analysis and quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The DNA methylation status within the MUC13 promoter region was determined using bisulfite sequencing PCR and quantitative methylation-specific PCR. We evaluated the effects of exogenous MUC13 on cell invasion and migration using in vitro transwell assays. RESULTS MUC13 mRNA expression was up-regulated, and methylation of specific CpG sites within the promoter was reduced in the metastatic implants relative to those in wild-type SK-OV-3 cells. Addition of a DNA methyltransferase inhibitor to SK-OV-3 cells induced MUC13 expression, thereby implying epigenetic regulation of MUC13 by promoter methylation. MUC13 overexpression increased migration and invasiveness, compared to control cells, suggesting aberrant up-regulation of MUC13 is strongly associated with progression of aggressive behaviors in ovarian cancer. CONCLUSION We provide novel evidence for epigenetic regulation of MUC13 in ovarian cancer. We suggest that the DNA methylation status within the MUC13 promoter region may be a potential biomarker of aggressive behavior in ovarian cancer.
Collapse
Affiliation(s)
- Hye Youn Sung
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Ae Kyung Park
- College of Pharmacy, Sunchon National University, Suncheon, Korea
| | - Woong Ju
- Department of Obstetrics and Gynecology, School of Medicine, Ewha Womans University, Seoul, Korea.
| | - Jung-Hyuck Ahn
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul, Korea.
| |
Collapse
|
74
|
Goetstouwers T, Van Poucke M, Coppieters W, Nguyen VU, Melkebeek V, Coddens A, Van Steendam K, Deforce D, Cox E, Peelman LJ. Refined candidate region for F4ab/ac enterotoxigenic Escherichia coli susceptibility situated proximal to MUC13 in pigs. PLoS One 2014; 9:e105013. [PMID: 25137053 PMCID: PMC4138166 DOI: 10.1371/journal.pone.0105013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/15/2014] [Indexed: 11/19/2022] Open
Abstract
F4 enterotoxigenic Escherichia coli (F4 ETEC) are an important cause of diarrhea in neonatal and newly-weaned pigs. Based on the predicted differential O-glycosylation patterns of the 2 MUC13 variants (MUC13A and MUC13B) in F4ac ETEC susceptible and F4ac ETEC resistant pigs, the MUC13 gene was recently proposed as the causal gene for F4ac ETEC susceptibility. Because the absence of MUC13 on Western blot from brush border membrane vesicles of F4ab/acR+ pigs and the absence of F4ac attachment to immunoprecipitated MUC13 could not support this hypothesis, a new GWAS study was performed using 52 non-adhesive and 68 strong adhesive pigs for F4ab/ac ETEC originating from 5 Belgian farms. A refined candidate region (chr13: 144,810,100–144,993,222) for F4ab/ac ETEC susceptibility was identified with MUC13 adjacent to the distal part of the region. This candidate region lacks annotated genes and contains a sequence gap based on the sequence of the porcine GenomeBuild 10.2. We hypothesize that a porcine orphan gene or trans-acting element present in the identified candidate region has an effect on the glycosylation of F4 binding proteins and therefore determines the F4ab/ac ETEC susceptibility in pigs.
Collapse
Affiliation(s)
- Tiphanie Goetstouwers
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Mario Van Poucke
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Wouter Coppieters
- Unit of Animal Genomics, GIGA-R and Faculty of Veterinary Medicine, University of Liège (B34), Liège (Sart Tilman), Belgium
| | - Van Ut Nguyen
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Vesna Melkebeek
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Annelies Coddens
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Katleen Van Steendam
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Luc J. Peelman
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Belgium
- * E-mail:
| |
Collapse
|
75
|
Jochim N, Gerhard R, Just I, Pich A. Time-resolved cellular effects induced by TcdA from Clostridium difficile. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:1089-1100. [PMID: 24711272 DOI: 10.1002/rcm.6882] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/07/2014] [Accepted: 02/26/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE The anaerobe Clostridium difficile is a common pathogen that causes infection of the colon leading to diarrhea or pseudomembranous colitis. Its major virulence factors are toxin A (TcdA) and toxin B (TcdB), which specifically inactivate small GTPases by glucosylation leading to reorganization of the cytoskeleton and finally to cell death. In the present work a quantitative proteome analysis using the isotope-coded protein label (ICPL) approach was conducted to investigate proteome changes in the colon cell line Caco-2 after treatment with recombinant wild-type TcdA (rTcdA-wt) or a glucosyltransferase-deficient mutant TcdA (rTcdA-mut). METHODS Proteins from crude cell lysates or cellular subfractions were identified by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS). Two time points (5 h, 24 h) of toxin treatment were analyzed and about 4000 proteins were identified in each case. RESULTS After 5 h treatment with rTcdA-wt, 150 proteins had a significantly altered abundance; rTcdA-mut caused regulation of 50 proteins at this time point. After 24 h treatment with rTcdA-wt changes in abundance of 61 proteins were observed, but no changes in protein abundance were detected after 24 h if cells were treated with rTcdA-mut. TcdA affected several proteins involved in signaling events, cytoskeleton and cell-cell contact organization, translation, and metabolic processes. The ICPL-dependent quantification was verified by label-free targeted MS techniques based on multiple reaction monitoring (MRM) and triple quadrupole mass spectrometry. CONCLUSIONS LC/MS-based proteome analyses and the ICPL approach revealed comprehensive and reproducible proteome date and provided new insights into the cellular effects of clostridial glucosylating toxins (CGT).
Collapse
Affiliation(s)
- Nelli Jochim
- Hannover Medical School, Institute of Toxicology, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | | | | | | |
Collapse
|
76
|
Chik JHL, Zhou J, Moh ESX, Christopherson R, Clarke SJ, Molloy MP, Packer NH. Comprehensive glycomics comparison between colon cancer cell cultures and tumours: implications for biomarker studies. J Proteomics 2014; 108:146-62. [PMID: 24840470 DOI: 10.1016/j.jprot.2014.05.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/28/2014] [Accepted: 05/09/2014] [Indexed: 01/27/2023]
Abstract
UNLABELLED Altered glycosylation is commonly observed in colorectal cancer. In vitro models are frequently used to study this cancer but little is known about the differences that may exist between these model cell systems and tumour tissue. We have compared the membrane protein glycosylation of five colorectal cancer cell lines (SW1116, SW480, SW620, SW837, LS174T) with epithelial cells from colorectal tumours using liquid chromatography tandem mass spectrometry. Remarkably, there were five abundant O-glycans in the tumour cells that were undetected in the low-mucin producing cell lines, although two were found in the mucinous LS174T cells. The O-glycans included the well-known glycan cancer marker, sialyl-Tn, which has been associated with mucins. Using qRT-PCR, sialyl-Tn expression was found to be associated with an increase in α2,6-sialyltransferase gene (ST6GALNAC1) and a decrease in core 1 synthase gene (C1GALT1) in LS174T cells. The expression of a subset of mucins (MUC2, MUC6, MUC5B) was also correlated with sialyl-Tn expression in LS174T cells. Overall, the membrane protein glycosylation of the model cell lines was found to differ from each other and from the epithelial cells of tumour tissue. These findings should be noted in the design of biomarker discovery experiments particularly when cell surface targets are being investigated. BIOLOGICAL SIGNIFICANCE The extent of protein glycosylation differences between in vitro cell lines and ex vivo tumours in colorectal cancer research is unknown. Our study expands current knowledge by characterising the membrane protein glycosylation profiles of five different colorectal cancer cell lines and of epithelial cells derived from resected colorectal cancer tumour tissue, using liquid chromatography tandem mass spectrometry. The detailed structural differences found in both N- and O-linked glycan structures on the membrane glycoproteins were determined and correlated with the mRNA expression of the relevant proteins in the cell lines. The glycosylation differences found between cultured cancer cell lines and epithelial cells from tumour tissue have important implications for glycan biomarker discovery.
Collapse
Affiliation(s)
- Jenny H L Chik
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, Sydney, Australia
| | - Jerry Zhou
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Edward S X Moh
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, Sydney, Australia
| | | | - Stephen J Clarke
- Department of Medicine, Royal North Shore Hospital, University of Sydney, Australia
| | - Mark P Molloy
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, Sydney, Australia; Australian Proteome Analysis Facility, Macquarie University, Sydney, Australia
| | - Nicolle H Packer
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, Sydney, Australia.
| |
Collapse
|
77
|
Genomic-based identification of novel potential biomarkers and molecular signaling networks in response to diesel exhaust particles in human middle ear epithelial cells. Mol Cell Toxicol 2014. [DOI: 10.1007/s13273-014-0012-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
78
|
Poon CE, Lecce L, Day ML, Murphy CR. Mucin 15 is lost but mucin 13 remains in uterine luminal epithelial cells and the blastocyst at the time of implantation in the rat. Reprod Fertil Dev 2014; 26:421-31. [DOI: 10.1071/rd12313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 02/18/2013] [Indexed: 01/28/2023] Open
Abstract
The glycocalyx of the uterine luminal epithelium in the rat undergoes considerable reduction before implantation. In particular, the reduction of some mucins is necessary to facilitate blastocyst adhesion and subsequent implantation. The present study investigated the localisation, abundance and hormonal control of two mucin proteins, Muc13 and Muc15, in rat uterine epithelial cells during early pregnancy to determine whether they are likely to play a role in uterine receptivity for implantation. Muc13 and Muc15 are localised to the uterine luminal epithelium but show a presence and an absence, respectively, at the apical cell surface at the time of implantation. This localisation corresponds to changes in the molecular weights of Muc13 and Muc15, as shown with western blotting analysis. Furthermore, the localisation of Muc13 and Muc15 was shown to be controlled by the ovarian hormones, oestrogen and progesterone, and they were also localised in preimplantation rat blastocysts. Our results suggest that Muc15 may operate in an anti-adhesive capacity to prevent implantation while Muc13 potentially functions in either an adhesive or cell-signalling role in the events of implantation.
Collapse
|
79
|
Wang R, Yu C, Zhao D, Wu M, Yang Z. The mucin-type glycosylating enzyme polypeptide N-acetylgalactosaminyltransferase 14 promotes the migration of ovarian cancer by modifying mucin 13. Oncol Rep 2013; 30:667-76. [PMID: 23708057 DOI: 10.3892/or.2013.2493] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/10/2013] [Indexed: 11/05/2022] Open
Abstract
A high expression of O-glycosylated proteins is one of the prominent characteristics of ovarian carcinoma cells associated with cell migration, which would be attributed to the upregulated expression of glycosyltransferases. Therefore, elucidating glycosyltransferases and their substrates may improve our understanding of their roles in tumor metastasis. In the present study, we reported that knockdown of polypeptide N-acetylgalactosaminyltransferase 14 (GALNT14) by small interfering RNA significantly suppressed the cell migration and altered cellular morphology. Immunoprecipitation and western blot analyses indicated that GALNT14 contributed to the glycosylation of transmembrane mucin 13 (MUC13), which was significantly higher in ovarian cancer cells compared with the normal/benign ovary tissues. Furthermore, interleukin-8 (IL-8), which could regulate the migration ability of epithelial ovarian cancer (EOC) cells, had no remarkable effect on the expression of GALNT14 and the tumor-associated carbohydrate epitope Tn antigen. In addition, extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor modulated the expression levels of GALNT14. Our findings provide evidence that GALNT14 may contribute to ovarian carcinogenesis through aberrant glycosylation of MUC13, but not through the IL-8 pathway. These data provide novel insights into understanding the function of MUC13 on neoplasm metastasis and may aid in the development of new anticancer drugs for EOC.
Collapse
MESH Headings
- Antigens, Tumor-Associated, Carbohydrate/genetics
- Antigens, Tumor-Associated, Carbohydrate/metabolism
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Carcinoma, Ovarian Epithelial
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Movement/physiology
- Female
- Glycosylation
- Humans
- Interleukin-8/genetics
- Interleukin-8/metabolism
- MAP Kinase Signaling System/genetics
- Mucins/genetics
- Mucins/metabolism
- N-Acetylgalactosaminyltransferases/genetics
- N-Acetylgalactosaminyltransferases/metabolism
- Neoplasm Metastasis
- Neoplasms, Glandular and Epithelial/enzymology
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/metabolism
- Neoplasms, Glandular and Epithelial/pathology
- Ovarian Neoplasms/enzymology
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Polypeptide N-acetylgalactosaminyltransferase
Collapse
Affiliation(s)
- Ranran Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | | | | | | | | |
Collapse
|
80
|
Toyoda T, Tsukamoto T, Yamamoto M, Ban H, Saito N, Takasu S, Shi L, Saito A, Ito S, Yamamura Y, Nishikawa A, Ogawa K, Tanaka T, Tatematsu M. Gene expression analysis of a Helicobacter pylori-infected and high-salt diet-treated mouse gastric tumor model: identification of CD177 as a novel prognostic factor in patients with gastric cancer. BMC Gastroenterol 2013; 13:122. [PMID: 23899160 PMCID: PMC3734037 DOI: 10.1186/1471-230x-13-122] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 07/22/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection and excessive salt intake are known as important risk factors for stomach cancer in humans. However, interactions of these two factors with gene expression profiles during gastric carcinogenesis remain unclear. In the present study, we investigated the global gene expression associated with stomach carcinogenesis and prognosis of human gastric cancer using a mouse model. METHODS To find candidate genes involved in stomach carcinogenesis, we firstly constructed a carcinogen-induced mouse gastric tumor model combined with H. pylori infection and high-salt diet. C57BL/6J mice were given N-methyl-N-nitrosourea in their drinking water and sacrificed after 40 weeks. Animals of a combination group were inoculated with H. pylori and fed a high-salt diet. Gene expression profiles in glandular stomach of the mice were investigated by oligonucleotide microarray. Second, we examined an availability of the candidate gene as prognostic factor for human patients. Immunohistochemical analysis of CD177, one of the up-regulated genes, was performed in human advanced gastric cancer specimens to evaluate the association with prognosis. RESULTS The multiplicity of gastric tumor in carcinogen-treated mice was significantly increased by combination of H. pylori infection and high-salt diet. In the microarray analysis, 35 and 31 more than two-fold up-regulated and down-regulated genes, respectively, were detected in the H. pylori-infection and high-salt diet combined group compared with the other groups. Quantitative RT-PCR confirmed significant over-expression of two candidate genes including Cd177 and Reg3g. On immunohistochemical analysis of CD177 in human advanced gastric cancer specimens, over-expression was evident in 33 (60.0%) of 55 cases, significantly correlating with a favorable prognosis (P = 0.0294). Multivariate analysis including clinicopathological factors as covariates revealed high expression of CD177 to be an independent prognostic factor for overall survival. CONCLUSIONS These results suggest that our mouse model combined with H. pylori infection and high-salt diet is useful for gene expression profiling in gastric carcinogenesis, providing evidence that CD177 is a novel prognostic factor for stomach cancer. This is the first report showing a prognostic correlation between CD177 expression and solid tumor behavior.
Collapse
|
81
|
Navabi N, McGuckin MA, Lindén SK. Gastrointestinal cell lines form polarized epithelia with an adherent mucus layer when cultured in semi-wet interfaces with mechanical stimulation. PLoS One 2013; 8:e68761. [PMID: 23869232 PMCID: PMC3712011 DOI: 10.1371/journal.pone.0068761] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 06/04/2013] [Indexed: 12/26/2022] Open
Abstract
Mucin glycoproteins are secreted in large quantities by mucosal epithelia and cell surface mucins are a prominent feature of the glycocalyx of all mucosal epithelia. Currently, studies investigating the gastrointestinal mucosal barrier use either animal experiments or non-in vivo like cell cultures. Many pathogens cause different pathology in mice compared to humans and the in vitro cell cultures used are suboptimal because they are very different from an in vivo mucosal surface, are often not polarized, lack important components of the glycocalyx, and often lack the mucus layer. Although gastrointestinal cell lines exist that produce mucins or polarize, human cell line models that reproducibly create the combination of a polarized epithelial cell layer, functional tight junctions and an adherent mucus layer have been missing until now. We trialed a range of treatments to induce polarization, 3D-organization, tight junctions, mucin production, mucus secretion, and formation of an adherent mucus layer that can be carried out using standard equipment. These treatments were tested on cell lines of intestinal (Caco-2, LS513, HT29, T84, LS174T, HT29 MTX-P8 and HT29 MTX-E12) and gastric (MKN7, MKN45, AGS, NCI-N87 and its hTERT Clone5 and Clone6) origins using Ussing chamber methodology and (immuno)histology. Semi-wet interface culture in combination with mechanical stimulation and DAPT caused HT29 MTX-P8, HT29 MTX-E12 and LS513 cells to polarize, form functional tight junctions, a three-dimensional architecture resembling colonic crypts, and produce an adherent mucus layer. Caco-2 and T84 cells also polarized, formed functional tight junctions and produced a thin adherent mucus layer after this treatment, but with less consistency. In conclusion, culture methods affect cell lines differently, and testing a matrix of methods vs. cell lines may be important to develop better in vitro models. The methods developed herein create in vitro mucosal surfaces suitable for studies of host-pathogen interactions at the mucosal surface.
Collapse
Affiliation(s)
- Nazanin Navabi
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Michael A. McGuckin
- Immunity, Infection and Inflammation Program, Mater Medical Research Institute and the University of Queensland School of Biomedical Sciences, Translational Research Institute, Woolloongabba, Australia
| | - Sara K. Lindén
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
82
|
Mucins as diagnostic and prognostic biomarkers in a fish-parasite model: transcriptional and functional analysis. PLoS One 2013; 8:e65457. [PMID: 23776483 PMCID: PMC3680472 DOI: 10.1371/journal.pone.0065457] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/26/2013] [Indexed: 01/01/2023] Open
Abstract
Mucins are O-glycosylated glycoproteins present on the apex of all wet-surfaced epithelia with a well-defined expression pattern, which is disrupted in response to a wide range of injuries or challenges. The aim of this study was to identify mucin gene sequences of gilthead sea bream (GSB), to determine its pattern of distribution in fish tissues and to analyse their transcriptional regulation by dietary and pathogenic factors. Exhaustive search of fish mucins was done in GSB after de novo assembly of next-generation sequencing data hosted in the IATS transcriptome database (www.nutrigroup-iats.org/seabreamdb). Six sequences, three categorized as putative membrane-bound mucins and three putative secreted-gel forming mucins, were identified. The transcriptional tissue screening revealed that Muc18 was the predominant mucin in skin, gills and stomach of GSB. In contrast, Muc19 was mostly found in the oesophagus and Muc13 was along the entire intestinal tract, although the posterior intestine exhibited a differential pattern with a high expression of an isoform that does not share a clear orthologous in mammals. This mucin was annotated as intestinal mucin (I-Muc). Its RNA expression was highly regulated by the nutritional background, whereas the other mucins, including Muc2 and Muc2-like, were expressed more constitutively and did not respond to high replacement of fish oil (FO) by vegetable oils (VO) in plant protein-based diets. After challenge with the intestinal parasite Enteromyxum leei, the expression of a number of mucins was decreased mainly in the posterior intestine of infected fish. But, interestingly, the highest down-regulation was observed for the I-Muc. Overall, the magnitude of the changes reflected the intensity and progression of the infection, making mucins and I-Muc, in particular, reliable markers of prognostic and diagnostic value of fish intestinal health.
Collapse
|
83
|
Abstract
Mucins--large, highly glycosylated proteins--are important for the luminal protection of the gastrointestinal tract. Enterocytes have their apical surface covered by transmembrane mucins and goblet cells produce the secreted gel-forming mucins that form mucus. The small intestine has a single unattached mucus layer, which in cystic fibrosis becomes attached, accounting for the intestinal manifestations of this disease. The stomach and colon have two layers of mucus; the inner layer is attached and the outer layer is less dense and unattached. In the colon, the outer mucus layer is the habitat for commensal bacteria. The inner mucus layer is impervious to bacteria and is renewed every hour by surface goblet cells. The crypt goblet cells have the ability to restitute the mucus layer by secretion, for example after an ischaemic challenge. Proteases of certain parasites and some bacteria can cleave mucins and dissolve the mucus as part of their pathogenicity. The inner mucus layer can, however, also become penetrable to bacteria by several other mechanisms, including aberrations in the immune system. When bacteria reach the epithelial surface, the immune system is activated and inflammation is triggered. This mechanism might occur in some types of ulcerative colitis.
Collapse
|
84
|
MUC1 and MUC13 differentially regulate epithelial inflammation in response to inflammatory and infectious stimuli. Mucosal Immunol 2013; 6:557-68. [PMID: 23149663 DOI: 10.1038/mi.2012.98] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The MUC1 cell-surface mucin is highly expressed on the gastric mucosal surface, while MUC13 is highly expressed on the intestinal mucosal surface. Polymorphisms in both MUC1 and MUC13 have been linked to inflammatory bowel diseases. MUC1 can act as a decoy molecule on the apical cell surface of epithelial cells and thereby limit bacterial adherence, infection, and inflammation. In this study, we examined whether and how MUC1 and MUC13 modulate infectious and inflammatory signaling. Using gastrointestinal tissue from Muc1- or Muc13-deficient mice in ex vivo culture, MUC1 small interfering RNA (siRNA) silencing in MKN7 gastric epithelial cells, and MUC13 siRNA silencing in LS513 intestinal epithelial cells, we showed that loss of MUC1 increased chemokine secretion, whereas loss of MUC13 decreased chemokine secretion in response to tumor necrosis factor-α. Anti-inflammatory activity of MUC1 and pro-inflammatory activity of MUC13 were also seen after exposure to pathogens, NOD1 (nucleotide-binding oligomerisation domain-containing protein-1), and Toll-like receptor ligands. MUC1 and MUC13 both regulate chemokine secretion in gastrointestinal epithelial cells through a nuclear factor-κB-dependent pathway, although MUC13 modulation could also involve other pathways. Our studies demonstrate that MUC1 and MUC13 are important components of gastrointestinal homeostasis and that disruption or inappropriate expression of these mucins could predispose to infectious and inflammatory disease and inflammation-induced cancer.
Collapse
|
85
|
Tauro BJ, Greening DW, Mathias RA, Mathivanan S, Ji H, Simpson RJ. Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. Mol Cell Proteomics 2013; 12:587-98. [PMID: 23230278 PMCID: PMC3591653 DOI: 10.1074/mcp.m112.021303] [Citation(s) in RCA: 348] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 10/19/2012] [Indexed: 12/14/2022] Open
Abstract
Exosomes are naturally occurring biological nanomembranous vesicles (∼40 to 100 nm) of endocytic origin that are released from diverse cell types into the extracellular space. They have pleiotropic functions such as antigen presentation and intercellular transfer of protein cargo, mRNA, microRNA, lipids, and oncogenic potential. Here we describe the isolation, via sequential immunocapture using anti-A33- and anti-EpCAM-coupled magnetic beads, of two distinct populations of exosomes released from organoids derived from human colon carcinoma cell line LIM1863. The exosome populations (A33-Exos and EpCAM-Exos) could not be distinguished via electron microscopy and contained stereotypical exosome markers such as TSG101, Alix, and HSP70. The salient finding of this study, revealed via gel-based LC-MS/MS, was the exclusive identification in EpCAM-Exos of the classical apical trafficking molecules CD63 (LAMP3), mucin 13 and the apical intestinal enzyme sucrase isomaltase and increased expression of dipeptidyl peptidase IV and the apically restricted pentaspan membrane glycoprotein prominin 1. In contrast, the A33-Exos preparation was enriched with basolateral trafficking molecules such as early endosome antigen 1, the Golgi membrane protein ADP-ribosylation factor, and clathrin. Our observations are consistent with EpCAM- and A33-Exos being released from the apical and basolateral surfaces, respectively, and the EpCAM-Exos proteome profile with widely published stereotypical exosomes. A proteome analysis of LIM1863-derived shed microvesicles (sMVs) was also performed in order to clearly distinguish A33- and EpCAM-Exos from sMVs. Intriguingly, several members of the MHC class I family of antigen presentation molecules were exclusively observed in A33-Exos, whereas neither MHC class I nor MHC class II molecules were observed via MS in EpCAM-Exos. Additionally, we report for the first time in any extracellular vesicle study the colocalization of EpCAM, claudin-7, and CD44 in EpCAM-Exos. Given that these molecules are known to complex together to promote tumor progression, further characterization of exosome subpopulations will enable a deeper understanding of their possible role in regulation of the tumor microenvironment.
Collapse
Affiliation(s)
- Bow J. Tauro
- From the ‡Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
- §Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - David W. Greening
- From the ‡Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Rommel A. Mathias
- From the ‡Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Suresh Mathivanan
- From the ‡Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Hong Ji
- From the ‡Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Richard J. Simpson
- From the ‡Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
86
|
Molecular organization of the mucins and glycocalyx underlying mucus transport over mucosal surfaces of the airways. Mucosal Immunol 2013; 6:379-92. [PMID: 22929560 PMCID: PMC3637662 DOI: 10.1038/mi.2012.81] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mucus, with its burden of inspired particulates and pathogens, is cleared from mucosal surfaces of the airways by cilia beating within the periciliary layer (PCL). The PCL is held to be "watery" and free of mucus by thixotropic-like forces arising from beating cilia. With radii of gyration ~250 nm, however, polymeric mucins should reptate readily into the PCL, so we assessed the glycocalyx for barrier functions. The PCL stained negative for MUC5AC and MUC5B, but it was positive for keratan sulfate (KS), a glycosaminoglycan commonly associated with glycoconjugates. Shotgun proteomics showed KS-rich fractions from mucus containing abundant tethered mucins, MUC1, MUC4, and MUC16, but no proteoglycans. Immuno-histology by light and electron microscopy localized MUC1 to microvilli, MUC4 and MUC20 to cilia, and MUC16 to goblet cells. Electron and atomic force microscopy revealed molecular lengths of 190-1,500 nm for tethered mucins, and a finely textured glycocalyx matrix filling interciliary spaces. Adenoviral particles were excluded from glycocalyx of the microvilli, whereas the smaller adenoassociated virus penetrated, but were trapped within. Hence, tethered mucins organized as a space-filling glycocalyx function as a selective barrier for the PCL, broadening their role in innate lung defense and offering new molecular targets for conventional and gene therapies.
Collapse
|
87
|
Lillehoj EP, Kato K, Lu W, Kim KC. Cellular and molecular biology of airway mucins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 303:139-202. [PMID: 23445810 PMCID: PMC5593132 DOI: 10.1016/b978-0-12-407697-6.00004-0] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Airway mucus constitutes a thin layer of airway surface liquid with component macromolecules that covers the luminal surface of the respiratory tract. The major function of mucus is to protect the lungs through mucociliary clearance of inhaled foreign particles and noxious chemicals. Mucus is comprised of water, ions, mucin glycoproteins, and a variety of other macromolecules, some of which possess anti-microbial, anti-protease, and anti-oxidant activities. Mucins comprise the major protein component of mucus and exist as secreted and cell-associated glycoproteins. Secreted, gel-forming mucins are mainly responsible for the viscoelastic property of mucus, which is crucial for effective mucociliary clearance. Cell-associated mucins shield the epithelial surface from pathogens through their extracellular domains and regulate intracellular signaling through their cytoplasmic regions. However, neither the exact structures of mucin glycoproteins, nor the manner through which their expression is regulated, are completely understood. This chapter reviews what is currently known about the cellular and molecular properties of airway mucins.
Collapse
Affiliation(s)
- Erik P. Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kosuke Kato
- Center for Inflammation, Translational and Clinical Lung Research and Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Wenju Lu
- Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Kwang C. Kim
- Center for Inflammation, Translational and Clinical Lung Research and Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
88
|
Gupta BK, Maher DM, Ebeling MC, Sundram V, Koch MD, Lynch DW, Bohlmeyer T, Watanabe A, Aburatani H, Puumala SE, Jaggi M, Chauhan SC. Increased expression and aberrant localization of mucin 13 in metastatic colon cancer. J Histochem Cytochem 2012; 60:822-31. [PMID: 22914648 DOI: 10.1369/0022155412460678] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
MUC13 is a newly identified transmembrane mucin. Although MUC13 is known to be overexpressed in ovarian and gastric cancers, limited information is available regarding the expression of MUC13 in metastatic colon cancer. Herein, we investigated the expression profile of MUC13 in colon cancer using a novel anti-MUC13 monoclonal antibody (MAb, clone ppz0020) by immunohistochemical (IHC) analysis. A cohort of colon cancer samples and tissue microarrays containing adjacent normal, non-metastatic colon cancer, metastatic colon cancer, and liver metastasis tissues was used in this study to investigate the expression pattern of MUC13. IHC analysis revealed significantly higher (p<0.001) MUC13 expression in non-metastatic colon cancer samples compared with faint or very low expression in adjacent normal tissues. Interestingly, metastatic colon cancer and liver metastasis tissue samples demonstrated significantly (p<0.05) higher cytoplasmic and nuclear MUC13 expression compared with non-metastatic colon cancer and adjacent normal colon samples. Moreover, cytoplasmic and nuclear MUC13 expression correlated with larger and poorly differentiated tumors. Four of six tested colon cancer cell lines also expressed MUC13 at RNA and protein levels. These studies demonstrate a significant increase in MUC13 expression in metastatic colon cancer and suggest a correlation between aberrant MUC13 localization (cytoplasmic and nuclear expression) and metastatic colon cancer.
Collapse
Affiliation(s)
- Brij K Gupta
- Cancer Biology Research Center, Sanford Research, University of South Dakota, Sioux Falls, SD, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Fu WX, Liu Y, Lu X, Niu XY, Ding XD, Liu JF, Zhang Q. A genome-wide association study identifies two novel promising candidate genes affecting Escherichia coli F4ab/F4ac susceptibility in swine. PLoS One 2012; 7:e32127. [PMID: 22457712 PMCID: PMC3311625 DOI: 10.1371/journal.pone.0032127] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 01/24/2012] [Indexed: 11/18/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) expressing F4 fimbria is the major pathogenic bacteria causing diarrhoea in neonatal and post-weaning piglets. Previous studies have revealed that the susceptibility to ETEC F4ab/F4ac is an autosomal Mendelian dominant trait and the loci controlling the F4ab/F4ac receptor are located on SSC13q41, between markers SW207 and S0283. To pinpoint these loci and further validate previous findings, we performed a genome-wide association study (GWAS) using a two generation family-based population, consisting of 301 piglets with phenotypes of susceptibility to ETEC F4ab/F4ac by the vitro adhesion test. The DNA of all piglets and their parents was genotyped using the Illumina PorcineSNP60 BeadChip, and 50,972 and 50,483 SNPs were available for F4ab and F4ac susceptibility, respectively, in the association analysis after quality control. In summary, 28 and 18 significant SNPs (p<0.05) were detected associated with F4ab and F4ac susceptibility respectively at genome-wide significance level. From these significant findings, two novel candidate genes, HEG1 and ITGB5, were firstly identified as the most promising genes underlying F4ab/F4ac susceptibility in swine according to their functions and positions. Our findings herein provide a novel evidence for unravelling genetic mechanism of diarrhoea risk in piglets.
Collapse
Affiliation(s)
- Wei-Xuan Fu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yang Liu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xin Lu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Xiao-Yan Niu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiang-Dong Ding
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian-Feng Liu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
- * E-mail: (J-FL); (QZ)
| | - Qin Zhang
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
- * E-mail: (J-FL); (QZ)
| |
Collapse
|
90
|
Jono H, Lim JH, Xu H, Li JD. PKCθ synergizes with TLR-dependent TRAF6 signaling pathway to upregulate MUC5AC mucin via CARMA1. PLoS One 2012; 7:e31049. [PMID: 22303480 PMCID: PMC3267763 DOI: 10.1371/journal.pone.0031049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 12/30/2011] [Indexed: 01/09/2023] Open
Abstract
CARD-containing MAGUK protein 1 (CARMA1) plays a crucial role in regulating adaptive immune responses upon T-cell receptor (TCR) activation in T cells. Its role in regulating host mucosal innate immune response such as upregulation of mucin remains unknown. Here we show that CARMA1 acts as a key signaling mediator for synergistic upregulation of MUC5AC mucin by bacterium nontypeable Haemophilus influenzae (NTHi) and phorbol ester PMA in respiratory epithelial cells. NTHi-induced TLR-dependent TRAF6-MKK3-p38 MAPK signaling pathway synergizes with PKCθ-MEK-ERK signaling pathway. CARMA1 plays a crucial role in mediating this synergistic effect via TRAF6, thereby resulting in synergistic upregulation of MUC5AC mucin. Thus our study unveils a novel role for CARMA1 in mediating host mucosal innate immune response.
Collapse
Affiliation(s)
- Hirofumi Jono
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jae Hyang Lim
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State Universtity, Atlanta, Georgia, United States of America
| | - Haidong Xu
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State Universtity, Atlanta, Georgia, United States of America
| | - Jian-Dong Li
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State Universtity, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
91
|
Barnett AM, Roy NC, McNabb WC, Cookson AL. The interactions between endogenous bacteria, dietary components and the mucus layer of the large bowel. Food Funct 2012; 3:690-9. [DOI: 10.1039/c2fo30017f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
92
|
Sheng YH, Hasnain SZ, Florin THJ, McGuckin MA. Mucins in inflammatory bowel diseases and colorectal cancer. J Gastroenterol Hepatol 2012; 27:28-38. [PMID: 21913981 DOI: 10.1111/j.1440-1746.2011.06909.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The gastrointestinal tract is protected by a mucus barrier with both secreted and cell-surface mucins contributing to the exclusion of luminal microbes and toxins. Alterations in the structure and/or quantity of mucins alter the barrier function of mucus and could play roles in initiating and maintaining mucosal inflammation in inflammatory bowel diseases (IBD), and in driving cancer development in the intestine. The aim of this review is to focus on the roles of the mucins in IBD. The polymorphisms of mucin genes that have been associated with susceptibility to IBD, and alterations in mucin expression as well as factors that regulate production of the mucins in IBD, are summarized. Data from animal models of intestinal inflammation, which support the importance of mucins in IBD and cancer development, are also discussed.
Collapse
Affiliation(s)
- Yong H Sheng
- Immunity, Infection and Inflammation Program, Mater Medical Research Institute, South Brisbane, Queensland, Australia
| | | | | | | |
Collapse
|
93
|
Suh YS, Lee HJ, Jung EJ, Kim MA, Nam KT, Goldenring JR, Yang HK, Kim WH. The combined expression of metaplasia biomarkers predicts the prognosis of gastric cancer. Ann Surg Oncol 2011; 19:1240-9. [PMID: 22048633 DOI: 10.1245/s10434-011-2125-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Indexed: 12/22/2022]
Abstract
BACKGROUND Our previous study indicated that gene expression profiling of intestinal metaplasia (IM) or spasmolytic polypeptide-expressing metaplasia (SPEM) can identify useful prognostic markers of early-stage gastric cancer, and seven metaplasia biomarkers (MUC13, CDH17, OLFM4, KRT20, LGALS4, MUC5AC, and REG4) were selectively expressed in 17-50% of gastric cancer tissues. We investigated whether the combined expression of these metaplasia biomarkers could predict the prognosis of advanced stage gastric cancer. METHODS The expression of seven metaplasia biomarkers was evaluated immunohistochemically using tissue microarrays comprised of 450 gastric cancer patients. The clinicopathologic correlations and the prognostic impact were analyzed according to the expression of multiple biomarkers. RESULTS MUC13, CDH17, LGALS4, and REG4 were significant prognostic biomarkers in univariate analysis. No expression of four markers was found in 56 cases (14.2%); 1 marker was seen in 67 cases (17%), 2 in 106 cases (27%), 3 in 101 cases (25.7%), and 4 in 63 cases (16%). Patients in which two or fewer proteins were expressed (group B) showed younger age, undifferentiated or diffuse type cancer, larger tumor size, larger number of metastatic lymph nodes, and more advanced stage than those in which three or more proteins were expressed (group A). In undifferentiated or stage II/III gastric cancer, the prognosis of group B was significantly poorer than that of group A by multivariate analysis. CONCLUSIONS The combined loss of expression of multiple metaplasia biomarkers is considered an independent prognostic indicator in undifferentiated or stage II/III gastric cancer.
Collapse
Affiliation(s)
- Yun-Suhk Suh
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Chauhan SC, Ebeling MC, Maher DM, Koch MD, Watanabe A, Aburatani H, Lio Y, Jaggi M. MUC13 mucin augments pancreatic tumorigenesis. Mol Cancer Ther 2011; 11:24-33. [PMID: 22027689 DOI: 10.1158/1535-7163.mct-11-0598] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The high death rate of pancreatic cancer is attributed to the lack of reliable methods for early detection and underlying molecular mechanisms of its aggressive pathogenesis. Although MUC13, a newly identified transmembrane mucin, is known to be aberrantly expressed in ovarian and gastro-intestinal cancers, its role in pancreatic cancer is unknown. Herein, we investigated the expression profile and functions of MUC13 in pancreatic cancer progression. The expression profile of MUC13 in pancreatic cancer was investigated using a recently generated monoclonal antibody (clone PPZ0020) and pancreatic tissue microarrays. The expression of MUC13 was significantly (P < 0.005) higher in cancer samples compared with normal/nonneoplastic pancreatic tissues. For functional analyses, full-length MUC13 was expressed in MUC13 null pancreatic cancer cell lines, MiaPaca and Panc1. MUC13 overexpression caused a significant (P < 0.05) increase in cell motility, invasion, proliferation, and anchorage-dependent or -independent clonogenicity while decreasing cell-cell and cell-substratum adhesion. Exogenous MUC13 expression significantly (P < 0.05) enhanced pancreatic tumor growth and reduced animal survival in a xenograft mouse model. These tumorigenic characteristics correlated with the upregulation/phosphorylation of HER2, p21-activated kinase 1 (PAK1), extracellular signal-regulated kinase (ERK), Akt, and metastasin (S100A4), and the suppression of p53. Conversely, suppression of MUC13 in HPAFII pancreatic cancer cells by short hairpin RNA resulted in suppression of tumorigenic characteristics, repression of HER2, PAK1, ERK, and S100A4, and upregulation of p53. MUC13 suppression also significantly (P < 0.05) reduced tumor growth and increased animal survival. These results imply a role of MUC13 in pancreatic cancer and suggest its potential use as a diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Subhash C Chauhan
- Cancer Biology Research Center, Sanford Research/USD, Sioux Falls, SD 57104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Resta-Lenert S, Das S, Batra SK, Ho SB. Muc17 protects intestinal epithelial cells from enteroinvasive E. coli infection by promoting epithelial barrier integrity. Am J Physiol Gastrointest Liver Physiol 2011; 300:G1144-55. [PMID: 21393431 PMCID: PMC3119115 DOI: 10.1152/ajpgi.00138.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The membrane-bound mucin MUC17 (mouse homolog Muc3) is highly expressed on the apical surface of intestinal epithelia and is thought to play a role in epithelial restitution and protection. Therefore, we hypothesized that MUC17 has a role in protection of the intestinal mucosa against luminal pathogens. Human intestinal cell lines were transfected by electroporation (Caco-2 and HT 29/19A) and by retroviral expression vector (LS174T, a cell line with high levels of MUC17 expression) using MUC17 siRNA. Transepithelial electrical resistance, permeability, tight-junction protein expression, adhesion, and invasion in response to enteroinvasive Escherichia coli (EIEC) were measured in all cell lines. In some experiments, the effect of the addition of exogenous purified crude mucin or recombinant Muc3 cysteine-rich domain protein (Muc3 CRD1-L-CRD2) as preventative or protective treatment was tested. Reduction of endogenous MUC17 is associated with increased permeability, inducible nitric oxide synthase and cyclooxygenase 2 induction, and enhanced bacterial invasion in response to EIEC exposure. Bacterial adhesion is not affected. Exogenous mucin (Muc3) and recombinant Muc3CRD treatment had a small but significant effect in attenuating the effects of EIEC infection. In conclusion, these data suggest that both native and exogenous MUC17 play a role in attachment and invasion of EIEC in colonic cell lines and in maintaining epithelial barrier function.
Collapse
Affiliation(s)
| | - Srustidhar Das
- 2Department of Biochemistry and Molecular Biology, University of Nebraska, Medical Center, Omaha, Nebraska
| | - Surinder K. Batra
- 2Department of Biochemistry and Molecular Biology, University of Nebraska, Medical Center, Omaha, Nebraska
| | - Samuel B. Ho
- 1Department of Medicine, University of California San Diego, and VA San Diego Healthcare System, San Diego, California;
| |
Collapse
|
96
|
Cho CKJ, Drabovich AP, Batruch I, Diamandis EP. Verification of a biomarker discovery approach for detection of Down syndrome in amniotic fluid via multiplex selected reaction monitoring (SRM) assay. J Proteomics 2011; 74:2052-9. [PMID: 21624510 DOI: 10.1016/j.jprot.2011.05.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/09/2011] [Accepted: 05/12/2011] [Indexed: 12/19/2022]
Abstract
Prenatal screening test for Down syndrome (DS) can be improved by discovery of novel biomarkers. A multiplex selected reaction monitoring (SRM) assay was developed to test previously identified thirteen candidate proteins in amniotic fluid (AF). One unique peptide was selected for each protein based on discovery data, while three MS/MS transitions were selected based on intelligent SRM results. For one of the candidates, matrix metalloproteinase-2 (MMP2), ELISA was also performed to validate SRM results in AF and to test serum samples. Comparison of AF samples from DS versus controls via SRM assay revealed five proteins that were differentially expressed. Bile salt-activated lipase, mucin-13, carboxypeptidase A1, and dipeptidyl peptidase 4 showed a decrease in DS-affected AF, and MMP2 showed an increase, in comparison to controls (P<0.05). Discovery-based spectral counting ratios and SRM ratios showed a strong correlation, and MMP2 ELISA further confirmed the validity of the SRM data. Potential implications of differentially expressed proteins during fetal development are proposed. Our data also shows that SRM can provide a high-throughput and accurate platform for biomarker verification.
Collapse
Affiliation(s)
- Chan-Kyung J Cho
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
97
|
Lactobacillus adhesion to mucus. Nutrients 2011; 3:613-36. [PMID: 22254114 PMCID: PMC3257693 DOI: 10.3390/nu3050613] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 05/05/2011] [Accepted: 05/11/2011] [Indexed: 12/12/2022] Open
Abstract
Mucus provides protective functions in the gastrointestinal tract and plays an important role in the adhesion of microorganisms to host surfaces. Mucin glycoproteins polymerize, forming a framework to which certain microbial populations can adhere, including probiotic Lactobacillus species. Numerous mechanisms for adhesion to mucus have been discovered in lactobacilli, including partially characterized mucus binding proteins. These mechanisms vary in importance with the in vitro models studied, which could significantly affect the perceived probiotic potential of the organisms. Understanding the nature of mucus-microbe interactions could be the key to elucidating the mechanisms of probiotic adhesion within the host.
Collapse
|
98
|
What role do mucins have in the development of laryngeal squamous cell carcinoma? A systematic review. Eur Arch Otorhinolaryngol 2011; 268:1109-1117. [PMID: 21526360 DOI: 10.1007/s00405-011-1617-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 04/14/2011] [Indexed: 02/06/2023]
Abstract
Mucins are the dominant component in the protective mucus layer on mucosal surfaces including the larynx. Hence, they are part of the first line of defence against external stimuli including effect of smoking in the larynx. We asked whether existing published evidence supported the hypothesis that alteration in mucins expression/production is related to the laryngeal neoplastic process. The objective of this study is to review published evidence for mucins having an important role in normal laryngeal physiology and the development of laryngeal squamous cell carcinoma (SCC). We aimed to review all available literature on mucins in the larynx in order to develop hypotheses to be tested by future research. Thereby, new potential means of prevention and treatment of laryngeal cancer may be developed. A systematic search of all published literature was conducted. Systematic searches were done in the following databases: AMED, BNI, EMBASE, HMIC, MEDLINE, PsycINFO, CINAHL and HEALTH BUSINESS ELITE from their respective inception up to 11 February 2011. The following keywords were used in combination: mucin, larynx and squamous cell carcinoma. Altogether, 53 studies were identified; 43 studies were excluded following screening of the titles and abstracts. Full text manuscripts for ten studies were obtained for detailed evaluation and five studies were included in this review. No single study fulfilled all relevant criteria. Based on the included studies, we now know that MUC1 is definitely expressed in SCC larynx. However, there is no definitive evidence to suggest that MUC1 and MUC2 are aberrantly expressed in SCC larynx as compared to normal larynx. Further studies using the best available detection technique to detect MUC1, MUC2 and other possible relevant mucins i.e., MUC4 on adequate numbers of normal and SCC specimens are needed to confirm the findings of this review.
Collapse
|
99
|
Maher DM, Gupta BK, Nagata S, Jaggi M, Chauhan SC. Mucin 13: structure, function, and potential roles in cancer pathogenesis. Mol Cancer Res 2011; 9:531-537. [PMID: 21450906 DOI: 10.1158/1541-7786.mcr-10-0443] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mucin 13 (MUC13) is a high-molecular-weight transmembrane glycoprotein that is frequently and aberrantly expressed in a variety of epithelial carcinomas, including gastric, colorectal, and ovarian cancers. On the basis of the high expression of MUC13 in cancer cells as well as recent laboratory findings suggesting a malignant phenotype of MUC13-transfected cell lines, the oncogenic potential of MUC13 has emerged. The various functional domains of MUC13 may confer oncogenic potential to MUC13. For example, the bulky extracellular domain with extensive modification with glycan chains may prevent cell-cell and cell-extracellular matrix binding whereas the cytoplasmic tail containing serine and tyrosine residues for potential phosphorylation may participate in cell signaling. MUC13 exhibits the characteristics suitable as an early marker for cancer screening and presents a promising target for antibody-guided targeted therapy.
Collapse
Affiliation(s)
- Diane M Maher
- Cancer Biology Research Center, Sanford Research/USD
| | - Brij K Gupta
- Cancer Biology Research Center, Sanford Research/USD.,Basic Biomedical Science Division, Sanford School of Medicine, The University of South Dakota, Sioux Falls, South Dakota
| | | | - Meena Jaggi
- Cancer Biology Research Center, Sanford Research/USD.,Department of Obstetrics and Gynecology, The University of South Dakota, Sioux Falls, South Dakota.,Basic Biomedical Science Division, Sanford School of Medicine, The University of South Dakota, Sioux Falls, South Dakota
| | - Subhash C Chauhan
- Cancer Biology Research Center, Sanford Research/USD.,Department of Obstetrics and Gynecology, The University of South Dakota, Sioux Falls, South Dakota.,Basic Biomedical Science Division, Sanford School of Medicine, The University of South Dakota, Sioux Falls, South Dakota
| |
Collapse
|
100
|
Doxycycline attenuates acrolein-induced mucin production, in part by inhibiting MMP-9. Eur J Pharmacol 2011; 650:418-23. [DOI: 10.1016/j.ejphar.2010.10.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 09/30/2010] [Accepted: 10/06/2010] [Indexed: 11/20/2022]
|