51
|
Termont S, Vandenbroucke K, Iserentant D, Neirynck S, Steidler L, Remaut E, Rottiers P. Intracellular accumulation of trehalose protects Lactococcus lactis from freeze-drying damage and bile toxicity and increases gastric acid resistance. Appl Environ Microbiol 2006; 72:7694-700. [PMID: 17028239 PMCID: PMC1694204 DOI: 10.1128/aem.01388-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Interleukin-10 (IL-10) is a promising candidate for the treatment of inflammatory bowel disease. Intragastric administration of Lactococcus lactis genetically modified to secrete IL-10 in situ in the intestine was shown to be effective in healing and preventing chronic colitis in mice. However, its use in humans is hindered by the sensitivity of L. lactis to freeze-drying and its poor survival in the gastrointestinal tract. We expressed the trehalose synthesizing genes from Escherichia coli under control of the nisin-inducible promoter in L. lactis. Induced cells accumulated intracellular trehalose and retained nearly 100% viability after freeze-drying, together with a markedly prolonged shelf life. Remarkably, cells producing trehalose were resistant to bile, and their viability in human gastric juice was enhanced. None of these effects were seen with exogenously added trehalose. Trehalose accumulation did not interfere with IL-10 secretion or with therapeutic efficacy in murine colitis. The newly acquired properties should enable a larger proportion of the administered bacteria to reach the gastrointestinal tract in a bioactive form, providing a means for more effective mucosal delivery of therapeutics.
Collapse
Affiliation(s)
- Sofie Termont
- Department for Molecular Biomedical Research, Flanders Interuniversity Institute for Biotechnology (VIB) and Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
52
|
Creti R, Koch S, Fabretti F, Baldassarri L, Huebner J. Enterococcal colonization of the gastro-intestinal tract: role of biofilm and environmental oligosaccharides. BMC Microbiol 2006; 6:60. [PMID: 16834772 PMCID: PMC1534043 DOI: 10.1186/1471-2180-6-60] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 07/11/2006] [Indexed: 11/17/2022] Open
Abstract
Background Biofilm formation in E. faecalis is presumed to play an important role in a number of enterococcal infections. We have previously identified a genetic locus provisionally named bop that is involved in maltose metabolism and biofilm formation. A transposon insertion into the second gene of the locus (bopB) resulted in loss of biofilm formation, while the non-polar deletion of this gene, together with parts of the flanking genes (bopA and bopC) resulted in increased biofilm formation. A polar effect of the transposon insertion on a transcriptional regulator (bopD) was responsible for the reduced biofilm formation of the transposon mutant. Results The amount of biofilm formed is related to the presence of maltose or glucose in the growth medium. While the wild-type strain was able to produce biofilm in medium containing either glucose or maltose, two mutants of this locus showed opposite effects. When grown in medium containing 1% glucose, the transposon mutant showed reduced biofilm formation (9%), while the deletion mutant produced more biofilm (110%) than the wild-type. When grown in medium containing 1% maltose, the transposon mutant was able to produce more biofilm than the wild-type strain (111%), while the deletion mutant did not produce biofilm (4%). Biofilm formation was not affected by the presence of several other sugar sources. In a gastrointestinal colonization model, the biofilm-negative mutant was delayed in colonization of the mouse intestinal tract. Conclusion The biofilm-positive phenotype of the wild-type strain seems to be associated with colonization of enterococci in the gut and the presence of oligosaccharides in food may influence biofilm formation and therefore colonization of enterococci in the gastrointestinal system.
Collapse
Affiliation(s)
- Roberta Creti
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate – Istituto Superiore di Sanità, Roma, Italy
| | - Stefanie Koch
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Francesca Fabretti
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate – Istituto Superiore di Sanità, Roma, Italy
- Division of Infectious Diseases, Department of Medicine, University Hospital Freiburg, Germany
| | - Lucilla Baldassarri
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate – Istituto Superiore di Sanità, Roma, Italy
| | - Johannes Huebner
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Department of Medicine, University Hospital Freiburg, Germany
| |
Collapse
|
53
|
Duong T, Barrangou R, Russell WM, Klaenhammer TR. Characterization of the tre locus and analysis of trehalose cryoprotection in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 2006; 72:1218-25. [PMID: 16461669 PMCID: PMC1392980 DOI: 10.1128/aem.72.2.1218-1225.2006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Freezing and lyophilization are common methods used for preservation and storage of microorganisms during the production of concentrated starter cultures destined for industrial fermentations or product formulations. The compatible solute trehalose has been widely reported to protect bacterial, yeast and animal cells against a variety of environmental stresses, particularly freezing and dehydration. Analysis of the Lactobacillus acidophilus NCFM genome revealed a putative trehalose utilization locus consisting of a transcriptional regulator, treR; a trehalose phosphoenolpyruvate transferase system (PTS) transporter, treB; and a trehalose-6-phosphate hydrolase, treC. The objective of this study was to characterize the tre locus in L. acidophilus and determine whether or not intracellular uptake of trehalose contributes to cryoprotection. Cells subjected to repeated freezing and thawing cycles were monitored for survival in the presence of various concentrations of trehalose. At 20% trehalose a 2-log increase in survival was observed. The trehalose PTS transporter and trehalose hydrolase were disrupted by targeted plasmid insertions. The resulting mutants were unable to grow on trehalose, indicating that both trehalose transport into the cell via a PTS and hydrolysis via a trehalose-6-phosphate hydrolase were necessary for trehalose fermentation. Trehalose uptake was found to be significantly reduced in the transporter mutant but unaffected in the hydrolase mutant. Additionally, the cryoprotective effect of trehalose was reduced in these mutants, suggesting that intracellular transport and hydrolysis contribute significantly to cryoprotection.
Collapse
Affiliation(s)
- Tri Duong
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | |
Collapse
|
54
|
Le Breton Y, Pichereau V, Sauvageot N, Auffray Y, Rincé A. Maltose utilization in Enterococcus faecalis. J Appl Microbiol 2005; 98:806-13. [PMID: 15752325 DOI: 10.1111/j.1365-2672.2004.02468.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AIMS The aim of this research was to characterize the metabolic pathway for maltose utilization in Enterococcus faecalis. METHODS AND RESULTS Screening a library of Enterococcus faecalis insertional mutants allowed the isolation of mutants affected in maltose utilization. Genetic analysis of the insertion loci revealed insertions in neighbour genes encoding an EII component of a phosphotransferase system (PTS) transporter (malT) and a maltose phosphorylase homologue (malP). The malP gene forms part of an operon which also includes genes encoding a phosphoglucomutase (malB), a mutarotase (aldose 1-epimerase) (malM) and a transcriptional regulator (malR). Analysis of (14)C-labelled carbohydrates uptake revealed that more than 97% of maltose enters the cells by the PTS transporter MalT. CONCLUSIONS Both experimental data and genetic organization of the malPBMR operon strongly suggest that in Enterococcus faecalis, maltose enters using a PTS, leaving maltose-6-phosphate inside the cells which is hydrolysed by a maltose phosphate phosphorylase (MalP). SIGNIFICANCE AND IMPACT OF THE STUDY This study describes a new pathway for maltose utilization in lactic acid bacteria.
Collapse
Affiliation(s)
- Y Le Breton
- Laboratoire de Microbiologie de l'Environnement, USC INRA, IRBA, Université de Caen, 14032 Caen Cedex, France
| | | | | | | | | |
Collapse
|
55
|
Andersson U, Molenaar D, Rådström P, de Vos WM. Unity in organisation and regulation of catabolic operons in Lactobacillus plantarum, Lactococcus lactis and Listeria monocytogenes. Syst Appl Microbiol 2005; 28:187-95. [PMID: 15900965 DOI: 10.1016/j.syapm.2004.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Global regulatory circuits together with more specific local regulators play a notable role when cells are adapting to environmental changes. Lactococcus lactis is a lactic acid bacterium abundant in nature fermenting most mono- and disaccharides. Comparative genomics analysis of the operons encoding the proteins and enzymes crucial for catabolism of lactose, maltose and threhalose revealed an obvious unity in operon organisation . The local regulator of each operon was located in a divergent transcriptional direction to the rest of the operon including the transport protein-encoding genes. Furthermore, in all three operons a catabolite responsive element (CRE) site was detected inbetween the gene encoding the local regulator and one of the genes encoding a sugar transport protein. It is evident that regardless of type of transport system and catabolic enzymes acting upon lactose, maltose and trehalose, respectively, Lc. lactis shows unity in both operon organisation and regulation of these catabolic operons. This knowledge was further extended to other catabolic operons in Lc. lactis and the two related bacteria Lactobacillus plantarum and Listeria monocytogenes. Thirty-nine catabolic operons responsible for degradation of sugars and sugar alcohols in Lc. lactis, Lb. plantarum and L. monocytogenes were investigated and the majority of those possessed the same organisation as the lactose, maltose and trehalose operons of Lc. lactis. Though, the frequency of CRE sites and their location varied among the bacteria. Both Lc. lactis and Lb. plantarum showed CRE sites in direct proximity to genes coding for proteins responsible for sugar uptake. However, in L. monocytogenes CRE sites were not frequently found and not in the vicinity of genes encoding transport proteins, suggesting a more local mode of regulation of the catabolic operons found and/or the use of inducer control in this bacterium.
Collapse
Affiliation(s)
- Ulrika Andersson
- Applied Microbiology, Lund Institute of Technology, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | | | | | | |
Collapse
|
56
|
Neves AR, Pool WA, Kok J, Kuipers OP, Santos H. Overview on sugar metabolism and its control inLactococcus lactis— The input from in vivo NMR. FEMS Microbiol Rev 2005. [DOI: 10.1016/j.fmrre.2005.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
57
|
Jensen JB, Ampomah OY, Darrah R, Peters NK, Bhuvaneswari TV. Role of trehalose transport and utilization in Sinorhizobium meliloti--alfalfa interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:694-702. [PMID: 16042015 DOI: 10.1094/mpmi-18-0694] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Genes thuA and thuB in Sinorhizobium meliloti Rm1021 code for a major pathway for trehalose catabolism and are induced by trehalose but not by related structurally similar disaccharides like sucrose or maltose. S. meliloti strains mutated in either of these two genes were severely impaired in their ability to grow on trehalose as the sole source of carbon. ThuA and ThuB show no homology to any known enzymes in trehalose utilization. ThuA has similarity to proteins of unknown function in Mesorhizobium loti, Agrobacterium tumefaciens, and Brucella melitensis, and ThuB possesses homology to dehydrogenases containing the consensus motif AGKHVXCEKP. thuAB genes are expressed in bacteria growing on the root surface and in the infection threads but not in the symbiotic zone of the nodules. Even though thuA and thuB mutants were impaired in competitive colonization of Medicago sativa roots, these strains were more competitive than the wild-type Rml021 in infecting alfalfa roots and forming nitrogen-fixing nodules. Possible reasons for their increased competitiveness are discussed.
Collapse
Affiliation(s)
- John Beck Jensen
- Department of Biology, Faculty of Science, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | | | |
Collapse
|
58
|
Murphy HN, Stewart GR, Mischenko VV, Apt AS, Harris R, McAlister MSB, Driscoll PC, Young DB, Robertson BD. The OtsAB pathway is essential for trehalose biosynthesis in Mycobacterium tuberculosis. J Biol Chem 2005; 280:14524-9. [PMID: 15703182 DOI: 10.1074/jbc.m414232200] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The disaccharide trehalose is the major free sugar in the cytoplasm of mycobacteria; it is a constituent of cell wall glycolipids, and it plays a role in mycolic acid transport during cell wall biogenesis. The pleiotropic role of trehalose in the biology of Mycobacterium tuberculosis and its absence from mammalian cells suggests that its biosynthesis may provide a useful target for novel drugs. However, there are three potential pathways for trehalose biosynthesis in M. tuberculosis, and the aim of the present study was to introduce mutations into each of the pathways to determine whether or not they are functionally redundant. The results show that the OtsAB pathway, which generates trehalose from glucose and glucose-6-phosphate, is the dominant pathway required for M. tuberculosis growth in laboratory culture and for virulence in a mouse model. Of the two otsB homologues annotated in the genome sequence of M. tuberculosis, only OtsB2 (Rv3372) has a functional role in the pathway. OtsB2, trehalose-6-phosphate phosphatase, is strictly essential for growth and provides a tractable target for high throughput screening. Inactivation of the TreYZ pathway, which can generate trehalose from alpha-1,4-linked glucose polymers, had no effect on the growth of M. tuberculosis in vitro or in mice. Deletion of the treS gene altered the late stages of pathogenesis of M. tuberculosis in mice, significantly increasing the time to death in a chronic infection model. Because the TreS enzyme catalyzes the interconversion of trehalose and maltose, the mouse phenotype could reflect either a requirement for synthesis of additional trehalose or, conversely, a requirement for breakdown of stored trehalose to liberate free glucose.
Collapse
Affiliation(s)
- Helen N Murphy
- Centre for Molecular Microbiology and Infection, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Palmfeldt J, Paese M, Hahn-Hägerdal B, Van Niel EWJ. The pool of ADP and ATP regulates anaerobic product formation in resting cells of Lactococcus lactis. Appl Environ Microbiol 2004; 70:5477-84. [PMID: 15345435 PMCID: PMC520924 DOI: 10.1128/aem.70.9.5477-5484.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis grows homofermentatively on glucose, while its growth on maltose under anaerobic conditions results in mixed acid product formation in which formate, acetate, and ethanol are formed in addition to lactate. Maltose was used as a carbon source to study mixed acid product formation as a function of the growth rate. In batch and nitrogen-limited chemostat cultures mixed acid product formation was shown to be linked to the growth rate, and homolactic fermentation occurred only in resting cells. Two of the four lactococcal strains investigated with maltose, L. lactis 65.1 and MG1363, showed more pronounced mixed acid product formation during growth than L. lactis ATCC 19435 or IL-1403. In resting cell experiments all four strains exhibited homolactic fermentation. In resting cells the intracellular concentrations of ADP, ATP, and fructose 1,6-bisphosphate were increased and the concentration of P(i) was decreased compared with the concentrations in growing cells. Addition of an ionophore (monensin or valinomycin) to resting cultures of L. lactis 65.1 induced mixed acid product formation concomitant with decreases in the ADP, ATP, and fructose 1,6-bisphosphate concentrations. ADP and ATP were shown to inhibit glyceraldehyde-3-phosphate dehydrogenase, lactate dehydrogenase, and alcohol dehydrogenase in vitro. Alcohol dehydrogenase was the most sensitive enzyme and was totally inhibited at an adenine nucleotide concentration of 16 mM, which is close to the sum of the intracellular concentrations of ADP and ATP of resting cells. This inhibition of alcohol dehydrogenase might be partially responsible for the homolactic behavior of resting cells. A hypothesis regarding the level of the ATP-ADP pool as a regulating mechanism for the glycolytic flux and product formation in L. lactis is discussed.
Collapse
Affiliation(s)
- Johan Palmfeldt
- Applied Microbiology, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | | | | | | |
Collapse
|
60
|
Andersson U, Rådström P. Physiological function of the maltose operon regulator, MalR, in Lactococcus lactis. BMC Microbiol 2002; 2:28. [PMID: 12296976 PMCID: PMC130022 DOI: 10.1186/1471-2180-2-28] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2002] [Accepted: 09/25/2002] [Indexed: 11/27/2022] Open
Abstract
Background Maltose metabolism is initiated by an ATP-dependent permease system in Lactococcus lactis. The subsequent degradation of intracellular maltose is performed by the concerted action of Pi-dependent maltose phosphorylase and β-phosphoglucomutase. In some Gram-positive bacteria, maltose metabolism is regulated by a maltose operon regulator (MalR), belonging to the LacI-GalR family of transcriptional regulators. A gene presumed to encode MalR has been found directly downstream the maltose phosphorylase-encoding gene, malP in L. lactis. The purpose of this study was to investigate the physiological role of the MalR protein in maltose metabolism in L. lactis. Results A L. lactis ssp. lactis mutant, TMB5004, deficient in the putative MalR protein, was physiologically characterised. The mutant was not able to ferment maltose, while its capability to grow on glucose as well as trehalose was not affected. The activity of maltose phosphorylase and β-phosphoglucomutase was not affected in the mutant. However, the specific maltose uptake rate in the wild type was, at its lowest, five times higher than in the mutant. This difference in maltose uptake increased as the maltose concentration in the assay was increased. Conclusion According to amino acid sequence similarities, the presumed MalR is a member of the LacI-GalR family of transcriptional regulators. Due to the suggested activating effect on maltose transport and absence of effect on the activities of maltose phosphorylase and β-phosphoglucomutase, MalR of L. lactis is considered rather as an activator than a repressor.
Collapse
Affiliation(s)
- Ulrika Andersson
- Applied Microbiology, Center for Chemistry and Chemical Engineering, Lund Institute of Technology, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden
| | - Peter Rådström
- Applied Microbiology, Center for Chemistry and Chemical Engineering, Lund Institute of Technology, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
61
|
Maruta K, Mukai K, Yamashita H, Kubota M, Chaen H, Fukuda S, Kurimoto M. Gene encoding a trehalose phosphorylase from Thermoanaerobacter brockii ATCC 35047. Biosci Biotechnol Biochem 2002; 66:1976-80. [PMID: 12400703 DOI: 10.1271/bbb.66.1976] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A gene encoding a trehalose phosphorylase was cloned from Thermoanaerobacter brockii ATCC 35047. The gene encodes a polypeptide of 774 amino acid residues. The deduced amino acid sequence was homologous to bacterial maltose phosphorylases and a trehalose 6-phosphate phosphorylase catalyzing anomer-inverting reactions. On the other hand, no homology was found between the T. brockii enzyme and an anomer-retaining trehalose phosphorylase from Grifola frondosa.
Collapse
Affiliation(s)
- Kazuhiko Maruta
- Amase Institute, Hayashibara Biochemical Laboratories, Inc, Okayama, Japan.
| | | | | | | | | | | | | |
Collapse
|
62
|
Andersson U, Rådström P. Beta-glucose 1-phosphate-interconverting enzymes in maltose- and trehalose-fermenting lactic acid bacteria. Environ Microbiol 2002; 4:81-8. [PMID: 11972617 DOI: 10.1046/j.1462-2920.2002.00268.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Maltose and trehalose catabolic pathways are linked through their common enzyme, beta-phosphoglucomutase, and metabolite, beta-glucose 1-phosphate, in Lactococcus lactis. Maltose is degraded by the concerted action of maltose phosphorylase and beta-phosphoglucomutase, whereas trehalose is assimilated by a novel pathway, including the recently discovered enzyme, trehalose 6-phosphate phosphorylase, and beta-phosphoglucomutase. In the present study, 40 strains of lactic acid bacteria were investigated for utilization of metabolic reactions involving beta-glucose 1-phosphate. All genera of the low G+C content lactic acid bacteria belonging to the clostridial subbranch of Gram-positive bacteria were represented in the study. The strains, which fermented maltose or trehalose, were investigated for beta-phosphoglucomutase, maltose phosphorylase and trehalose 6-phosphate phosphorylase activity, as indications of maltose and trehalose catabolic pathways involving beta-glucose 1-phosphate interconversions. Eighty per cent of all strains fermented maltose and, of these strains, 63% were shown to use a maltose phosphorylase/beta- phosphoglucomutase pathway. One-third of the strains fermenting trehalose were found to harbour trehalose 6-phosphate phosphorylase activity, and these were also shown to possess beta-phosphoglucomutase activity. Mainly L. lactis and Enterococcus faecalis strains were found to harbour the novel trehalose 6-phosphate phosphorylase/beta-phosphoglucomutase pathway. As lower beta-glucose 1-phosphate interconverting enzyme activities were observed in the majority of glucose-cultivated lactic acid bacteria, glucose was suggested to repress the synthesis of these enzymes in most strains. Thus, metabolic reactions involving the beta-anomer of glucose 1-phosphate are frequently found in both maltose- and trehalose-utilizing lactic acid bacteria.
Collapse
Affiliation(s)
- Ulrika Andersson
- Applied Microbiology, Center for Chemistry and Chemical Engineering, Lund Institute of Technology, Lund University, PO Box 124, SE-221 00 Lund, Sweden
| | | |
Collapse
|