51
|
Retarding the senescence of human vascular endothelial cells induced by hydrogen peroxide: effects of 17beta-estradiol (E2) mediated mitochondria protection. Biogerontology 2014; 15:367-75. [DOI: 10.1007/s10522-014-9507-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/30/2014] [Indexed: 01/26/2023]
|
52
|
May FE. Novel drugs that target the estrogen-related receptor alpha: their therapeutic potential in breast cancer. Cancer Manag Res 2014; 6:225-52. [PMID: 24904222 PMCID: PMC4041375 DOI: 10.2147/cmar.s35024] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
THE INCIDENCE OF BREAST CANCER CONTINUES TO RISE 1.7 million women were diagnosed with and 521,000 women died from breast cancer in 2012. This review considers first current treatment options: surgery; radiotherapy; and systemic endocrine, anti-biological, and cytotoxic therapies. Clinical management includes prevention, early detection by screening, treatment with curative intent, management of chronic disease, and palliative control of advanced breast cancer. Next, the potential of novel drugs that target DNA repair, growth factor dependence, intracellular and intercellular signal transduction, and cell cycle are considered. Estrogen-related receptor alpha has attracted attention as a therapeutic target in triple-negative breast cancers with de novo resistance to, and in breast cancers with acquired resistance to, endocrine therapies such as antiestrogens and aromatase inhibitors. Estrogen-related receptor alpha is an orphan receptor and transcription factor. Its activity is regulated by coregulator proteins and posttranslational modification. It is an energy sensor that controls adaptation to energy demand and may facilitate glycolytic metabolism and mitochondrial oxidative respiration in breast cancer cells. Estrogen-related receptor alpha increases breast cancer cell migration, proliferation, and tumor development. It is expressed at high levels in estrogen receptor-negative tumors, and is proposed to activate estrogen-responsive genes in endocrine-resistant tumors. The structures and functions of the ligand-binding domains of estrogen receptor alpha and estrogen-related receptor alpha, their ability to bind estrogens, phytoestrogens, and synthetic ligands, and the effects of ligand agonists, antagonists, and inverse agonists on biological activity, are evaluated. Synthetic ligands of estrogen-related receptor alpha have activity in preclinical models of metabolic disorders, diabetes, osteoporosis, and oncology. The clinical settings in which these novel drugs might have utility in the management of advanced breast cancer, and biomarkers for stratification of patients likely to benefit, are discussed. Finally, the potential side effects of the novel drugs on metabolism, osteoporosis, osteo-metastasis, and cachexia are considered.
Collapse
Affiliation(s)
- Felicity Eb May
- Northern Institute for Cancer Research and Department of Pathology, Faculty of Medical Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne, UK
| |
Collapse
|
53
|
Zou C, Yu S, Xu Z, Wu D, Ng CF, Yao X, Yew DT, Vanacker JM, Chan FL. ERRα augments HIF-1 signalling by directly interacting with HIF-1α in normoxic and hypoxic prostate cancer cells. J Pathol 2014; 233:61-73. [PMID: 24425001 DOI: 10.1002/path.4329] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/09/2013] [Accepted: 01/08/2014] [Indexed: 12/12/2022]
Abstract
Adaptation of cancer cells to a hypoxic microenvironment is important for their facilitated malignant growth and advanced development. One major mechanism mediating the hypoxic response involves up-regulation of hypoxia-inducible factor 1 (HIF-1) expression, which controls reprogramming of energy metabolism and angiogenesis. Oestrogen-related receptor-α (ERRα) is a pivotal regulator of cellular energy metabolism and many biosynthetic pathways, and has also been proposed to be an important factor promoting the Warburg effect in advanced cancer. We and others have previously shown that ERRα expression is increased in prostate cancer and is also a prognostic marker. Here we show that ERRα is oncogenic in prostate cancer and also a key hypoxic growth regulator. ERRα-over-expressing prostate cancer cells were more resistant to hypoxia and showed enhanced HIF-1α protein expression and HIF-1 signalling. These effects could also be observed in ERRα-over-expressing cells grown under normoxia, suggesting that ERRα could function to pre-adapt cancer cells to meet hypoxia stress. Immunoprecipitation and FRET assays indicated that ERRα could physically interact with HIF-1α via its AF-2 domain. A ubiquitination assay showed that this ERRα-HIF-1α interaction could inhibit ubiquitination of HIF-1α and thus reduce its degradation. Such ERRα-HIF-1α interaction could be attenuated by XCT790, an ERRα-specific inverse agonist, resulting in reduced HIF-1α levels. In summary, we show that ERRα can promote the hypoxic growth adaptation of prostate cancer cells via a protective interaction with HIF-1α, suggesting ERRα as a potential therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Chang Zou
- School of Biomedical Sciences, Chinese University of Hong Kong, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
van der Laan S, Golfetto E, Vanacker JM, Maiorano D. Cell cycle-dependent expression of Dub3, Nanog and the p160 family of nuclear receptor coactivators (NCoAs) in mouse embryonic stem cells. PLoS One 2014; 9:e93663. [PMID: 24695638 PMCID: PMC3973558 DOI: 10.1371/journal.pone.0093663] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/08/2014] [Indexed: 01/29/2023] Open
Abstract
Pluripotency of embryonic stem cells (ESC) is tightly regulated by a network of transcription factors among which the estrogen-related receptor β (Esrrb). Esrrb contributes to the relaxation of the G1 to S-phase (G1/S) checkpoint in mouse ESCs by transcriptional control of the deubiquitylase Dub3 gene, contributing to Cdc25A persistence after DNA damage. We show that in mESCs, Dub3 gene expression is cell cycle regulated and is maximal prior G1/S transition. In addition, following UV-induced DNA damage in G1, Dub3 expression markedly increases in S-phase also suggesting a role in checkpoint recovery. Unexpectedly, we also observed cell cycle-regulation of Nanog expression, and not Oct4, reaching high levels prior to G1/S transition, finely mirroring Cyclin E1 fluctuations. Curiously, while Esrrb showed only limited cell-cycle oscillations, transcript levels of the p160 family of nuclear receptor coactivators (NCoAs) displayed strong cell cycle-dependent fluctuations. Since NCoAs function in concert with Esrrb in transcriptional activation, we focussed on NCoA1 whose levels specifically increase prior onset of Dub3 transcription. Using a reporter assay, we show that NCoA1 potentiates Esrrb-mediated transcription of Dub3 and we present evidence of protein interaction between the SRC1 splice variant NCoA1 and Esrrb. Finally, we show a differential developmental regulation of all members of the p160 family during neural conversion of mESCs. These findings suggest that in mouse ESCs, changes in the relative concentration of a coactivator at a given cell cycle phase, may contribute to modulation of the transcriptional activity of the core transcription factors of the pluripotent network and be implicated in cell fate decisions upon onset of differentiation.
Collapse
Affiliation(s)
- Siem van der Laan
- Genome Surveillance and Stability laboratory, Department “Molecular Bases of Human Diseases”, CNRS-UPR1142, Institute of Human Genetics, Montpellier, France
| | - Eleonora Golfetto
- Genome Surveillance and Stability laboratory, Department “Molecular Bases of Human Diseases”, CNRS-UPR1142, Institute of Human Genetics, Montpellier, France
| | - Jean-Marc Vanacker
- Physiopathology of orphan nuclear receptors, Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Domenico Maiorano
- Genome Surveillance and Stability laboratory, Department “Molecular Bases of Human Diseases”, CNRS-UPR1142, Institute of Human Genetics, Montpellier, France
| |
Collapse
|
55
|
Bernatchez G, Giroux V, Lassalle T, Carpentier AC, Rivard N, Carrier JC. ERRα metabolic nuclear receptor controls growth of colon cancer cells. Carcinogenesis 2013; 34:2253-61. [PMID: 23720198 DOI: 10.1093/carcin/bgt180] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The estrogen-related receptor alpha (ERRα) is a nuclear receptor that acts primarily as a regulator of metabolic processes, particularly in tissues subjected to high-energy demand. In addition to its control of energy metabolism and mitochondrial biogenesis, ERRα has recently been associated with cancer progression. Notably, increased expression of ERRα has been shown in several cancerous tissues, including breast, ovary and colon. However, additional studies are required to gain insight into the action of ERRα in cancer biology, particularly in non-endocrine-related cancers. Therefore, using a short hairpin RNA-mediated approach, we investigated whether ERRα is required for the rapid growth of colon cancer cells and to maintain their neoplastic metabolic state. Results show that silencing ERRα significantly impaired colon cancer cell proliferation and colony formation in vitro as well as their in vivo tumorigenic capacity. A pronounced delay in G1-to-S cell cycle phase transition was observed in ERRα-depleted cells in association with reduced cyclin-dependent kinase 2 activity and hyperphosphorylated state of the retinoblastoma protein along with disturbed expression of several cell cycle regulators, including p15 and p27. Interestingly, ERRα-depleted HCT116 cells also displayed significant reduction in expression of a large set of key genes to glycolysis, tricarboxylic acid cycle and lipid synthesis. Furthermore, using (14)C isotope tracer analysis, ERRα depletion in colon cancer cells resulted in reduced glucose incorporation and glucose-mediated lipogenesis in these cells. These findings suggest that ERRα coordinates colon cancer cell proliferation and tumorigenic capacity with energy metabolism. Thus, ERRα could represent a promising therapeutic target in colon cancer.
Collapse
|
56
|
Boudjadi S, Bernatchez G, Beaulieu JF, Carrier JC. Control of the human osteopontin promoter by ERRα in colorectal cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:266-76. [PMID: 23680656 DOI: 10.1016/j.ajpath.2013.03.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/24/2013] [Accepted: 03/07/2013] [Indexed: 12/19/2022]
Abstract
Colorectal cancer is the second leading cause of death from cancer. Osteopontin (OPN) is a component of tumor extracellular matrix identified as a key marker of cancer progression. The estrogen-related receptor α (ERRα) has been implicated in endocrine-related cancer development and progression, possibly through modulation of cellular energy metabolism. Previous reports that ERRα regulates OPN expression in bone prompted us to investigate whether ERRα controls OPN expression in human colorectal cancer. Using a tissue microarray containing 83 tumor-normal tissue pairs of colorectal cancer samples, we found that tumor epithelial cells displayed higher staining for ERRα than normal mucosa, in correlation with elevated OPN expression. In addition, knocking down endogenous ERRα led to reduced OPN expression in HT29 colon cancer cells. Promoter analysis, inhibition of ERRα activity, and expression and mutation of potential ERRα response elements in the proximal promoter of human OPN showed that ERRα and its obligate co-activator, peroxisome proliferator-activated receptor γ co-activator-1 α, positively control human OPN promoter activity. Furthermore, chromatin immunoprecipitation experiments confirmed in vivo occupancy of the OPN promoter by ERRα in HT29 cells, suggesting that OPN is a direct target of ERRα in colorectal cancer. These findings suggest an additional mechanism by which ERRα participates in the development and progression of colorectal cancer, further supporting the relevance of targeting ERRα with antagonists as anticancer agents.
Collapse
Affiliation(s)
- Salah Boudjadi
- Department of Medicine, Faculty of Medicine and Sciences of Health, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | |
Collapse
|
57
|
Xu S, Zhuang X, Pan X, Zhang Z, Duan L, Liu Y, Zhang L, Ren X, Ding K. 1-Phenyl-4-benzoyl-1H-1,2,3-triazoles as orally bioavailable transcriptional function suppressors of estrogen-related receptor α. J Med Chem 2013; 56:4631-40. [PMID: 23656512 DOI: 10.1021/jm4003928] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Estrogen-related receptor α is a potential candidate target for therapeutic treatment of breast cancer. We describe the discovery and structure-activity relationship study of a series of 1-phenyl-4-benzoyl-1H-1,2,3-triazoles as novel suppressors of ERRα transcriptional functions. The most promising compound, 2-aminophenyl-(1-(3-isopropylphenyl)-1H-1,2,3-triazol-4-yl)methanone (14n), potently suppressed the transcriptional functions of ERRα with IC50 = 0.021 μM in a cell-based reporter gene assay and also decreased both the mRNA levels and the protein levels of ERRα and the downstream targets. This compound inhibited the proliferation and migration of breast cancer cells with high level of ERRα. Preliminary pharmacokinetic studies suggested that it possessed a good pharmacokinetic profile with an oral bioavailability of 71.8%. The compounds may serve as novel small molecule probes for further validation of ERRα as a molecular target for anticancer drug development.
Collapse
Affiliation(s)
- Shilin Xu
- Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Cai C, Yuan GJ, Huang Y, Yang N, Chen X, Wen L, Wang X, Zhang L, Ding Y. Estrogen-related receptor α is involved in the osteogenic differentiation of mesenchymal stem cells isolated from human periodontal ligaments. Int J Mol Med 2013; 31:1195-201. [PMID: 23525223 DOI: 10.3892/ijmm.2013.1305] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/25/2013] [Indexed: 11/06/2022] Open
Abstract
Recently, it has been reported that the orphan nuclear receptor estrogen-related receptor α (ERRα) is involved in the osteogenic differentiation of mesenchymal stem cells (MSCs). Moreover, ERRα has been identified as a novel therapeutic target for treating osteoporosis and other bone diseases. Human periodontal ligament tissue-derived mesenchymal stem cells (hPDLSCs) have recently been used in stem cell-mediated therapies because of their multipotency, particularly toward osteogenic differentiation. However, it is still unclear whether ERRα can regulate the osteogenic differentiation of hPDLSCs. In the present study, we investigated the role of ERRα in the osteogenic differentiation of hPDLSCs in vitro. We isolated hPDLSCs and confirmed their capacity for multipotent differentiation. Furthermore, we examined ERRα expression in hPDLSCs by RT-PCR and immunocytochemistry. We found that the expression of ERRα mRNA was significantly increased during the late stage of osteogenic differentiation of hPDLSCs. Moreover, transfection of recombinant lentiviral-mediated miRNA targeting ERRα significantly suppressed ALP activity, mineralization capacity, and the mRNA expression of osteogenesis-related genes (ALP, OCN, RUNX2 and OPN) in hPDLSCs. Our results indicate that ERRα may promote the osteogenic differentiation of hPDLSCs in vitro.
Collapse
Affiliation(s)
- Chuan Cai
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Mirebeau-Prunier D, Le Pennec S, Jacques C, Fontaine JF, Gueguen N, Boutet-Bouzamondo N, Donnart A, Malthièry Y, Savagner F. Estrogen-related receptor alpha modulates lactate dehydrogenase activity in thyroid tumors. PLoS One 2013; 8:e58683. [PMID: 23516535 PMCID: PMC3596295 DOI: 10.1371/journal.pone.0058683] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 02/07/2013] [Indexed: 02/07/2023] Open
Abstract
Metabolic modifications of tumor cells are hallmarks of cancer. They exhibit an altered metabolism that allows them to sustain higher proliferation rates in hostile environment outside the cell. In thyroid tumors, the expression of the estrogen-related receptor α (ERRα), a major factor of metabolic adaptation, is closely related to the oxidative metabolism and the proliferative status of the cells. To elucidate the role played by ERRα in the glycolytic adaptation of tumor cells, we focused on the regulation of lactate dehydrogenases A and B (LDHA, LDHB) and the LDHA/LDHB ratio. Our study included tissue samples from 10 classical and 10 oncocytic variants of follicular thyroid tumors and 10 normal thyroid tissues, as well as samples from three human thyroid tumor cell lines: FTC-133, XTC.UC1 and RO82W-1. We identified multiple cis-acting promoter elements for ERRα, in both the LDHA and LDHB genes. The interaction between ERRα and LDH promoters was confirmed by chromatin immunoprecipitation assays and in vitro analysis for LDHB. Using knock-in and knock-out cellular models, we found an inverse correlation between ERRα expression and LDH activity. This suggests that thyroid tumor cells may reprogram their metabolic pathways through the up-regulation of ERRα by a process distinct from that proposed by the recently revisited Warburg hypothesis.
Collapse
|
60
|
Felizola SJ, Nakamura Y, Hui XG, Satoh F, Morimoto R, Midorikawa S, Suzuki S, Rainey WE, Sasano H. Estrogen-related receptor α in normal adrenal cortex and adrenocortical tumors: involvement in development and oncogenesis. Mol Cell Endocrinol 2013; 365:207-11. [PMID: 23123734 PMCID: PMC4097865 DOI: 10.1016/j.mce.2012.10.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/16/2012] [Accepted: 10/19/2012] [Indexed: 12/20/2022]
Abstract
AIMS The nuclear hormone receptor estrogen-related receptor α (ERRα) regulates the activation of mitochondrial genes in various human tissues, but its role in the adrenal gland and its disorders has not been defined. Therefore, we examined ERRα expression in both normal adrenal cortex (NAC) and adrenocortical tumor (ACT) in order to study the possible correlation of ERRα with adrenal development and tumor development. METHODS Human adrenal specimens (non-pathological fetal n=7; non-pathological post-birth n=40; aldosterone producing adenoma (APA) n=11; cortisol producing adenoma (CPA) n=11; adrenocortical carcinoma (ACC) n=8) were immunohistochemically examined in this study. NAC (n=13) and ACT (n=28) frozen tissue specimens were also available for studying ERRα mRNA levels. KEY FINDINGS In fetal NAC tissues, ERRα labeling index (LI) in fetal zone (FZ) was significantly higher that that in neocortex (NC), and the differences among age groups for overall mean LI was statistically significant when analyzed according to individual cortical layers. ERRα LI was also significantly higher in ACC than in other types of ACT. ERRα mRNA was detected in NAC and all types of ACT. SIGNIFICANCE Results of our present study suggest a possible role of ERRα in adrenal development and ACC.
Collapse
Affiliation(s)
- Saulo J.A. Felizola
- Tohoku University Graduate School of Medicine, Department of Pathology, Sendai, Japan
| | - Yasuhiro Nakamura
- Tohoku University Graduate School of Medicine, Department of Pathology, Sendai, Japan
| | - Xiao-Gang Hui
- Tohoku University Graduate School of Medicine, Department of Pathology, Sendai, Japan
| | - Fumitoshi Satoh
- Tohoku University Hospital, Division of Nephrology and Hypertension, Sendai, Japan
| | - Ryo Morimoto
- Tohoku University Hospital, Division of Nephrology and Hypertension, Sendai, Japan
| | - Sanae Midorikawa
- Fukushima Medical University, Department of Radiation Health Management, Fukushima, Japan
| | - Shinichi Suzuki
- Fukushima Medical University, Department of Organ Regulatory Surgery, Fukushima, Japan
| | - William E. Rainey
- University of Michigan, Department of Physiology and Medicine, Ann Arbor, Michigan, USA
| | - Hironobu Sasano
- Tohoku University Graduate School of Medicine, Department of Pathology, Sendai, Japan
| |
Collapse
|
61
|
Gallet M, Saïdi S, Haÿ E, Photsavang J, Marty C, Sailland J, Carnesecchi J, Tribollet V, Barenton B, Forcet C, Birling MC, Sorg T, Chassande O, Cohen-Solal M, Vanacker JM. Repression of osteoblast maturation by ERRα accounts for bone loss induced by estrogen deficiency. PLoS One 2013; 8:e54837. [PMID: 23359549 PMCID: PMC3554601 DOI: 10.1371/journal.pone.0054837] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 12/17/2012] [Indexed: 01/09/2023] Open
Abstract
ERRα is an orphan member of the nuclear receptor family, the complete inactivation of which confers resistance to bone loss induced by ageing and estrogen withdrawal to female mice in correlation with increased bone formation in vivo. Furthermore ERRα negatively regulates the commitment of mesenchymal cells to the osteoblast lineage ex vivo as well as later steps of osteoblast maturation. We searched to determine whether the activities of ERRα on osteoblast maturation are responsible for one or both types of in vivo induced bone loss. To this end we have generated conditional knock out mice in which the receptor is normally present during early osteoblast differentiation but inactivated upon osteoblast maturation. Bone ageing in these animals was similar to that observed for control animals. In contrast conditional ERRαKO mice were completely resistant to bone loss induced by ovariectomy. We conclude that the late (maturation), but not early (commitment), negative effects of ERRα on the osteoblast lineage contribute to the reduced bone mineral density observed upon estrogen deficiency.
Collapse
Affiliation(s)
- Marlène Gallet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Centre national de la recherche scientifique UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Soraya Saïdi
- Institut National de la Santé et de la Recherche Médicale U606, Hôpital Lariboisière, Paris, France
| | - Eric Haÿ
- Institut National de la Santé et de la Recherche Médicale U606, Hôpital Lariboisière, Paris, France
| | - Johann Photsavang
- Institut National de la Santé et de la Recherche Médicale U1026, Bordeaux, France
| | - Caroline Marty
- Institut National de la Santé et de la Recherche Médicale U606, Hôpital Lariboisière, Paris, France
| | - Juliette Sailland
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Centre national de la recherche scientifique UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Julie Carnesecchi
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Centre national de la recherche scientifique UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Violaine Tribollet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Centre national de la recherche scientifique UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Bruno Barenton
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Centre national de la recherche scientifique UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Christelle Forcet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Centre national de la recherche scientifique UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | - Tania Sorg
- Institut Clinique de la Souris, Illkirch-Graffenstaden, France
| | - Olivier Chassande
- Institut National de la Santé et de la Recherche Médicale U1026, Bordeaux, France
| | - Martine Cohen-Solal
- Institut National de la Santé et de la Recherche Médicale U606, Hôpital Lariboisière, Paris, France
| | - Jean-Marc Vanacker
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Centre national de la recherche scientifique UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
62
|
Deblois G, Giguère V. Oestrogen-related receptors in breast cancer: control of cellular metabolism and beyond. Nat Rev Cancer 2013; 13:27-36. [PMID: 23192231 DOI: 10.1038/nrc3396] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oestrogen-related receptors (ERRs) are orphan nuclear receptors that were initially investigated in breast cancer because of their structural relationship to oestrogen receptors. Recent data have shown that the ERRs control vast gene networks that are involved in glycolysis, glutaminolysis, oxidative phosphorylation, nutrient sensing and biosynthesis pathways. In the context of breast cancer, the ERRs affect cellular metabolism in a manner that promotes a Warburg-like phenotype. The ERRs also modulate breast cancer cell metabolism, growth and proliferation through the regulation of key oncoproteins. We discuss the value but also the implications of the complexity of targeting the ERRs for the development of cancer therapeutics.
Collapse
Affiliation(s)
- Geneviève Deblois
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | | |
Collapse
|
63
|
Hulleman JD, Brown SJ, Rosen H, Kelly JW. A high-throughput cell-based Gaussia luciferase reporter assay for identifying modulators of fibulin-3 secretion. ACTA ACUST UNITED AC 2012; 18:647-58. [PMID: 23230284 DOI: 10.1177/1087057112469405] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
An R345W mutation in fibulin-3 causes its inefficient secretion, increased intracellular steady-state levels, and the macular dystrophy, Malattia Leventinese (ML), a disease similar to age-related macular degeneration. It is unknown whether R345W causes ML through increased intracellular levels, by the secretion of a potentially aggregation-prone protein, or both. To identify small molecules that alter the secretion of fibulin-3, we developed ARPE19 retinal cell lines that inducibly express wild-type (WT) or R345W fibulin-3 fused to an enhanced Gaussia luciferase (eGLuc2). Screening of the Library of Pharmacologically Active Compounds demonstrated that these cell lines and the GLuc assay are suitable for high-throughput chemical screening. Two estrogen-related compounds enhanced fibulin-3 secretion, whereas a diverse series of small molecules reduced fibulin-3 secretion. A counterscreen identified compounds that did not substantially alter the secretion of unfused eGLuc2, demonstrating at least partial selectivity for fibulin-3. A secondary assay using untagged fibulin-3 confirmed that the top three inhibitory compounds reduced R345W fibulin-3 secretion. Interestingly, in untagged fibulin-3 studies, one compound, phorbol 12-myristate 13-acetate, reduced R345W fibulin-3 secretion while minimally enhancing WT fibulin-3 secretion, the desired activity and selectivity we sought for ML. The identified compounds could serve as tools for probing the etiology of fibulin-3-related diseases.
Collapse
Affiliation(s)
- John D Hulleman
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | | | | | | |
Collapse
|
64
|
Chang CY, McDonnell DP. Molecular pathways: the metabolic regulator estrogen-related receptor α as a therapeutic target in cancer. Clin Cancer Res 2012; 18:6089-95. [PMID: 23019305 PMCID: PMC3500439 DOI: 10.1158/1078-0432.ccr-11-3221] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The estrogen-related receptor α (ERRα) is an orphan member of the nuclear receptor superfamily of transcription factors whose activity is regulated by the expression level and/or activity of its obligate coregulators, peroxisome proliferator-activated receptor γ coactivator-1 α and β (PGC-1α or PGC-1β). Under normal physiologic conditions, and in responding to different environmental stimuli, the ERRα/PGC-1 complex is involved in regulating metabolic homeostasis under conditions of high energy demand in brown adipocytes, proliferating T cells, and muscle. Interestingly, increased expression and activity of the ERRα/PGC-1 axis has also been shown to correlate with unfavorable clinical outcomes in both breast and ovarian tumors. The observation that ERRα activity is manifest in all breast tumor subtypes with particularly high activity being evident in ERα-negative, HER2-positive, and triple-negative breast cancers has raised significant interest in targeting this receptor for the treatment of those breast cancers for which therapeutic options are limited.
Collapse
Affiliation(s)
- Ching-yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | | |
Collapse
|
65
|
Bianco S, Sailland J, Vanacker JM. ERRs and cancers: effects on metabolism and on proliferation and migration capacities. J Steroid Biochem Mol Biol 2012; 130:180-5. [PMID: 21414406 DOI: 10.1016/j.jsbmb.2011.03.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 01/20/2011] [Accepted: 03/07/2011] [Indexed: 01/06/2023]
Abstract
ERRs are orphan members of the nuclear receptor superfamily which, at least for ERRα and ERRγ display important roles in the control of various metabolic processes. On other hand, correlations have been found between the expression of ERRα and γ and diverse parameters of tumor progression in human cancers. Whereas it is tempting to speculate that ERR receptors act in tumors through the regulation of metabolism, recent data have suggested that they also may directly regulate tumor proliferation and progression independently of their effects on metabolism. The two aspects of tumoral functions of ERR receptors are the purpose of the present review.
Collapse
Affiliation(s)
- Stéphanie Bianco
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon cedex 07, France
| | | | | |
Collapse
|
66
|
Lee VHY, Lam IPY, Choi HS, Chow BKC, Lee LTO. The estrogen-related receptor alpha upregulates secretin expressions in response to hypertonicity and angiotensin II stimulation. PLoS One 2012; 7:e39913. [PMID: 22761926 PMCID: PMC3382582 DOI: 10.1371/journal.pone.0039913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 06/03/2012] [Indexed: 01/17/2023] Open
Abstract
Osmoregulation via maintenance of water and salt homeostasis is a vital process. In the brain, a functional secretin (SCT) and secretin receptor (SCTR) axis has recently been shown to mediate central actions of angiotensin II (ANGII), including initiation of water intake and stimulation of vasopressin (VP) expression and release. In this report, we provide evidence that estrogen-related receptor α (ERRα, NR3B1), a transcription factor mainly involved in metabolism, acts as an upstream activator of the SCT gene. In vitro studies using mouse hypothalamic cell line N-42 show that ERRα upregulates SCT promoter and gene expression. More importantly, knockdown of endogenous ERRα abolishes SCT promoter activation in response to hypertonic and ANGII stimulations. In mouse brain, ERRα coexpresses with SCT in various osmoregulatory brain regions, including the lamina terminalis and the paraventricular nucleus of the hypothalamus, and its expression is induced by hyperosmotic and ANGII treatments. Based on our data, we propose that both the upregulation of ERRα and/or the increased binding of ERRα to the mouse SCT promoter are two possible mechanisms for the elevated SCT expression upon hyperosmolality and central ANGII stimulation.
Collapse
Affiliation(s)
- Vien H. Y. Lee
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ian P. Y. Lam
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hueng-Sik Choi
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Billy K. C. Chow
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Leo T. O. Lee
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
67
|
Zhao Y, Li Y, Lou G, Zhao L, Xu Z, Zhang Y, He F. MiR-137 targets estrogen-related receptor alpha and impairs the proliferative and migratory capacity of breast cancer cells. PLoS One 2012; 7:e39102. [PMID: 22723937 PMCID: PMC3377602 DOI: 10.1371/journal.pone.0039102] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 05/16/2012] [Indexed: 12/05/2022] Open
Abstract
ERRα is an orphan nuclear receptor emerging as a novel biomarker of breast cancer. Over-expression of ERRα in breast tumor is considered as a prognostic factor of poor clinical outcome. The mechanisms underlying the dysexpression of this nuclear receptor, however, are poorly understood. MicroRNAs (miRNAs) regulate gene expression at the post-transcriptional level and play important roles in tumor initiation and progression. In the present study, we have identified that the expression of ERRα is regulated by miR-137, a potential tumor suppressor microRNA. The bioinformatics search revealed two putative and highly conserved target-sites for miR-137 located within the ERRα 3'UTR at nt 480-486 and nt 596-602 respectively. Luciferase-reporter assay demonstrated that the two predicted target sites were authentically functional. They mediated the repression of reporter gene expression induced by miR-137 in an additive manner. Moreover, ectopic expression of miR-137 down-regulated ERRα expression at both protein level and mRNA level, and the miR-137 induced ERRα-knockdown contributed to the impaired proliferative and migratory capacity of breast cancer cells. Furthermore, transfection with miR-137 mimics suppressed at least two downstream target genes of ERRα-CCNE1 and WNT11, which are important effectors of ERRα implicated in tumor proliferation and migration. Taken together, our results establish a role of miR-137 in negatively regulating ERRα expression and breast cancer cell proliferation and migration. They suggest that manipulating the expression level of ERRα by microRNAs has the potential to influence breast cancer progression.
Collapse
Affiliation(s)
- Yuanyin Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Yuping Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Guiyu Lou
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Li Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Zhizhen Xu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Yan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| |
Collapse
|
68
|
Ju D, He J, Zhao L, Zheng X, Yang G. Estrogen related receptor α-induced adipogenesis is PGC-1β-dependent. Mol Biol Rep 2012; 39:3343-54. [PMID: 21732060 DOI: 10.1007/s11033-011-1104-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Accepted: 06/15/2011] [Indexed: 11/25/2022]
Abstract
Previous report showed that Estrogen related receptor α (ERRα) knockout mice had a significant reduction in adipose tissue deposition. Although it was reported that ERRα could promote adipogenesis in several immortalized preadipocytes cell lines, the mechanism behind which is still unclear to date. Besides, the expression pattern of ERRα in white adipose tissue is rarely examined. Here, we show that the expression of ERRα in primary cultured adipocytes is closely associated with adipogenesis. Besides, we found that peroxisome proliferator-activated receptor-γ coactivator 1β (PGC-1β) play an important role in regulating ERRα-induced adipogenesis. ERRα-induced adipogenesis was greatly attenuated when knocking down PGC-1β expression, while rescued by overexpression of PGC-1β. However, PGC-1β could still promote adipogenesis when suppressing ERRα expression. Furthermore, we demonstrated that ERRα could transcriptionally active PGC-1β expression and then enhance the formation of sterol-regulatory-element-binding protein-1c (SREBP-1c)/PGC-1β complex and peroxisome proliferator-activated receptor-γ (PPARγ)/PGC-1β complex. Taken together, these results indicate that ERRα-induced adipogenesis is triggered by modulating the expression of PGC-1β.
Collapse
Affiliation(s)
- Dapeng Ju
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, People's Republic of China
| | | | | | | | | |
Collapse
|
69
|
Ranhotra HS. The estrogen-related receptors: orphans orchestrating myriad functions. J Recept Signal Transduct Res 2012; 32:47-56. [PMID: 22268851 DOI: 10.3109/10799893.2011.647350] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Coordinated and tight regulation of gene expression in metazoans is essential for cellular homeostasis and functions. Tissue- and cell-specific regulatory factors are indispensable and a wide variety of them exist to regulate genes. A family of transcriptional factors was identified in the past two decades through gene cloning studies and was informally referred as "orphan receptors", as appropriate endogenous ligands for such receptors were unknown. One of the subclasses of such receptors is known as the estrogen-related receptors (ERRs), which include three isoforms, namely ERRα, ERRβ and ERRγ. Over the past one decade, unprecedented knowledge about the ERRs biology has been generated, indicating their vital roles in various metabolic and physiological activities in animals. The ERRs cellular action is largely attributed to its interaction with a wide variety of other nuclear receptors, including some orphan nuclear receptors, and thereby can modulate diverse array of genes involved in metabolism and animal physiology. Studies using genome-wide location analyses, microarray and functional genomics, including ERR-specific null mice have revealed a number of pathways controlled by the ERRs. In this context, new and recent information on the biological functions of ERRs are being reviewed.
Collapse
Affiliation(s)
- Harmit S Ranhotra
- Department of Biochemistry, Orphan Nuclear Receptors Laboratory, St. Edmund's College, Shillong, India.
| |
Collapse
|
70
|
Chang CY, Kazmin D, Jasper JS, Kunder R, Zuercher WJ, McDonnell DP. The metabolic regulator ERRα, a downstream target of HER2/IGF-1R, as a therapeutic target in breast cancer. Cancer Cell 2011; 20:500-10. [PMID: 22014575 PMCID: PMC3199323 DOI: 10.1016/j.ccr.2011.08.023] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 01/27/2011] [Accepted: 08/26/2011] [Indexed: 01/28/2023]
Abstract
A genomic signature designed to assess the activity of the estrogen-related receptor alpha (ERRα) was used to profile more than 800 breast tumors, revealing a shorter disease-free survival in patients with tumors exhibiting elevated receptor activity. Importantly, this signature also predicted the ability of an ERRα antagonist, XCT790, to inhibit proliferation in cellular models of breast cancer. Using a chemical genomic approach, it was determined that activation of the Her2/IGF-1R signaling pathways and subsequent C-MYC stabilization upregulate the expression of peroxisome proliferator-activated receptor gamma coactivator-1 beta (PGC-1β), an obligate cofactor for ERRα activity. PGC-1β knockdown in breast cancer cells impaired ERRα signaling and reduced cell proliferation, implicating a functional role for PGC-1β/ERRα in the pathogenesis of breast cancers.
Collapse
Affiliation(s)
- Ching-yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dmitri Kazmin
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jeff S. Jasper
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rebecca Kunder
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - William J. Zuercher
- Department of Chemical Biology, GlaxoSmithKline, Research Triangle Park, NC 27709, USA
| | - Donald P. McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
71
|
Gao M, Wang J, Lu N, Fang F, Liu J, Wong CW. Mitogen-activated protein kinase kinases promote mitochondrial biogenesis in part through inducing peroxisome proliferator-activated receptor γ coactivator-1β expression. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:1239-44. [PMID: 21458501 DOI: 10.1016/j.bbamcr.2011.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/22/2011] [Accepted: 03/23/2011] [Indexed: 01/08/2023]
Abstract
Growth factor activates mitogen-activated protein kinase kinases to promote cell growth. Mitochondrial biogenesis is an integral part of cell growth. How growth factor regulates mitochondrial biogenesis is not fully understood. In this study, we found that mitochondrial mass was specifically reduced upon serum starvation and induced upon re-feeding with serum. Using mitogen-activated protein kinase kinases inhibitor U0126, we found that the mRNA expression levels of ATP synthase, cytochrome-C, mitochondrial transcription factor A, and mitofusin 2 were reduced. Since the transcriptional levels of these genes are under the control of peroxisome proliferator-activated receptor γ coactivator-1α and -1β (PGC-1α and PGC-1β), we examined and found that only the mRNA and protein levels of PGC-1β were suppressed. Importantly, over-expression of PGC-1β partially reversed the reduction of mitochondrial mass upon U0126 treatment. Thus, we conclude that mitogen-activated protein kinase kinases direct mitochondrial biogenesis through selectively inducing PGC-1β expression.
Collapse
Affiliation(s)
- Minghui Gao
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 510530 China
| | | | | | | | | | | |
Collapse
|
72
|
Fisher KW, Das B, Kortum RL, Chaika OV, Lewis RE. Kinase suppressor of ras 1 (KSR1) regulates PGC1α and estrogen-related receptor α to promote oncogenic Ras-dependent anchorage-independent growth. Mol Cell Biol 2011; 31:2453-61. [PMID: 21518958 PMCID: PMC3133429 DOI: 10.1128/mcb.05255-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/08/2011] [Indexed: 12/20/2022] Open
Abstract
Kinase suppressor of ras 1 (KSR1) is a molecular scaffold of the Raf/MEK/extracellular signal-regulated kinase (ERK) cascade that enhances oncogenic Ras signaling. Here we show KSR1-dependent, but ERK-independent, regulation of metabolic capacity is mediated through the expression of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α) and estrogen-related receptor α (ERRα). This KSR1-regulated pathway is essential for the transformation of cells by oncogenic Ras. In mouse embryo fibroblasts (MEFs) expressing H-Ras(V12), ectopic PGC1α was sufficient to rescue ERRα expression, metabolic capacity, and anchorage-independent growth in the absence of KSR1. The ability of PGC1α to promote anchorage-independent growth required interaction with ERRα, and treatment with an inhibitor of ERRα impeded anchorage-independent growth. In contrast to PGC1α, the expression of constitutively active ERRα (CA-ERRα) was sufficient to enhance metabolic capacity but not anchorage-independent growth in the absence of KSR1. These data reveal KSR1-dependent control of PGC1α- and ERRα-dependent pathways that are necessary and sufficient for signaling by oncogenic H-Ras(V12) to regulate metabolism and anchorage-independent growth, providing novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Kurt W. Fisher
- Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Binita Das
- Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | | | - Oleg V. Chaika
- Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Robert E. Lewis
- Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198
| |
Collapse
|
73
|
Mori T, Sawada M, Kuroboshi H, Tatsumi H, Katsuyama M, Iwasaku K, Kitawaki J. Estrogen-related receptor α expression and function are associated with vascular endothelial growth factor in human cervical cancer. Int J Gynecol Cancer 2011; 21:609-15. [PMID: 21546870 DOI: 10.1097/igc.0b013e3182017e9b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Estrogen-related receptor α (ERRα), one of orphan nuclear receptors with an unknown ligand, is expressed in various types of cancer. Increased ERRα levels are associated with a higher risk of recurrence and poor clinical outcome in breast cancer, suggesting that ERRα could be a negative prognostic factor. Recently, it has been suggested that vascular endothelial growth factor (VEGF) could be one of the transcriptional targets of ERRα in breast cancer. Here, we examined the expression of ERRα and the association of ERRα with VEGF in uterine cervical cancer cells and tissues. METHODS We evaluated the expression of ERRα and VEGF by immunohistologic analysis using specimens from 40 patients with invasive cervical cancer. We also evaluated the VEGF promoter activity of ERRα in cervical cancer cell lines by transfection and luciferase assay. We overexpressed or knocked down ERRα and examined VEGF expression by real-time polymerase chain reaction. Finally, cell proliferation assay was performed to examine whether ERRα affects tumor growth in cervical cancer. RESULTS Immunohistologic analysis demonstrated that ERRα expression in cervical cancer tissues was higher than that in noncancerous tissues and that there was a positive association between ERRα and VEGF expression in cancer tissues (P < 0.05). We showed that ERRα stimulated the VEGF promoter activity in cervical cancer cell lines. We further showed the overexpression and knockdown of ERRα-regulated VEGF expression level by real-time polymerase chain reaction. Moreover, we showed that ERRα and VEGF knockdown by small interfering RNA or an inverse agonist of ERRα, XCT 790, could suppress cell growth compared with control cells in cervical cancer. CONCLUSIONS We have provided compelling evidence that ERRα affects VEGF expression and tumor growth in cervical cancer. These results justify further investigation into the use of ERRα as a therapeutic target for patients with uterine cervical cancer.
Collapse
Affiliation(s)
- Taisuke Mori
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kamigyo-ku, Kyoto, Japan.
| | | | | | | | | | | | | |
Collapse
|
74
|
Rossi M, Colecchia D, Iavarone C, Strambi A, Piccioni F, Verrotti di Pianella A, Chiariello M. Extracellular signal-regulated kinase 8 (ERK8) controls estrogen-related receptor α (ERRα) cellular localization and inhibits its transcriptional activity. J Biol Chem 2011; 286:8507-8522. [PMID: 21190936 PMCID: PMC3048734 DOI: 10.1074/jbc.m110.179523] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 12/03/2010] [Indexed: 11/06/2022] Open
Abstract
ERK8 (MAPK15) is a large MAP kinase already implicated in the regulation of the functions of different nuclear receptors and in cellular proliferation and transformation. Here, we identify ERRα as a novel ERK8-interacting protein. As a consequence of such interaction, ERK8 induces CRM1-dependent translocation of ERRα to the cytoplasm and inhibits its transcriptional activity. Also, we identify in ERK8 two LXXLL motifs, typical of agonist-bound nuclear receptor corepressors, as necessary features for this MAP kinase to interact with ERRα and to regulate its cellular localization and transcriptional activity. Ultimately, we demonstrate that ERK8 is able to counteract, in immortalized human mammary cells, ERRα activation induced by the EGF receptor pathway, often deregulated in breast cancer. Altogether, these results reveal a novel function for ERK8 as a bona fide ERRα corepressor, involved in control of its cellular localization by nuclear exclusion, and suggest a key role for this MAP kinase in the regulation of the biological activities of this nuclear receptor.
Collapse
Affiliation(s)
- Matteo Rossi
- From the Istituto Toscano Tumori-Core Research Laboratory, Signal Transduction Unit, Siena,; the Università degli Studi di Siena, and
| | - David Colecchia
- From the Istituto Toscano Tumori-Core Research Laboratory, Signal Transduction Unit, Siena,; the Università degli Studi di Siena, and
| | - Carlo Iavarone
- Istituto di Endocrinologia e Oncologia Sperimentale, CNR, Napoli
| | - Angela Strambi
- From the Istituto Toscano Tumori-Core Research Laboratory, Signal Transduction Unit, Siena
| | | | - Arturo Verrotti di Pianella
- the CEINGE-Biotecnologie Avanzate, Napoli,; the Dipartimento di Biochimica e Biotecnologie Mediche, Università degli Studi di Napoli, Napoli, and
| | - Mario Chiariello
- From the Istituto Toscano Tumori-Core Research Laboratory, Signal Transduction Unit, Siena,; Istituto di Endocrinologia e Oncologia Sperimentale, CNR, Napoli,; the Istituto di Fisiologia Clinica, Sede di Siena, CNR, Siena, Italy.
| |
Collapse
|
75
|
Tiraby C, Hazen BC, Gantner ML, Kralli A. Estrogen-related receptor gamma promotes mesenchymal-to-epithelial transition and suppresses breast tumor growth. Cancer Res 2011; 71:2518-28. [PMID: 21339306 DOI: 10.1158/0008-5472.can-10-1315] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Estrogen-related receptors (ERR), ERR alpha (ERRα) and ERR gamma (ERRγ), are orphan nuclear receptors implicated in breast cancer that function similarly in the regulation of oxidative metabolism genes. Paradoxically, in clinical studies, high levels of ERRα are associated with poor outcomes whereas high levels of ERRγ are associated with a favorable course. Recent studies suggest that ERRα may indeed promote breast tumor growth. The roles of ERRγ in breast cancer progression and how ERRα and ERRγ may differentially affect cancer growth are unclear. In mammary carcinoma cells that do not express endogenous ERRγ, we found that ectopic expression of ERRγ enhanced oxidative metabolism in vitro and inhibited the growth of tumor xenografts in vivo. In contrast, ectopic expression of the ERRα coactivator PGC-1α enhanced oxidative metabolism but did not affect tumor growth. Notably, ERRγ activated expression of a genetic program characteristic of mesenchymal-to-epithelial transition (MET). This program was apparent by changes in cellular morphology, upregulation of epithelial cell markers, downregulation of mesenchymal markers, and decreased cellular invasiveness. We determined that this program was also associated with upregulation of E-cadherin, which is activated directly by ERRγ. In contrast, PGC-1α activated only a subset of genes characteristic of the MET program and, unlike ERRγ, did not upregulate E-cadherin. In conclusion, these results show that ERRγ induces E-cadherin, promotes MET, and suppresses breast cancer growth. Our findings suggest that ERRγ agonists may have applications in the treatment of breast cancer.
Collapse
Affiliation(s)
- Claire Tiraby
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | | | | | | |
Collapse
|
76
|
Gallet M, Vanacker JM. ERR receptors as potential targets in osteoporosis. Trends Endocrinol Metab 2010; 21:637-41. [PMID: 20674386 DOI: 10.1016/j.tem.2010.06.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/18/2010] [Accepted: 06/28/2010] [Indexed: 01/12/2023]
Abstract
The bone fragility and increased fracture risk associated with osteoporosis in post-menopausal women is a major public health concern. Current treatments for osteoporosis relying on hormone replacement therapies are suspected to have an association with increased breast cancer risk, highlighting the need for identifying new potential targets in bone. Recent data suggest that the estrogen-related receptor (ERR)α, an orphan nuclear receptor, represses osteoblast differentiation, and that its deletion in knockout mouse models results in increased mineral density. Furthermore, modulation of ERRα activity reduces proliferation and tumorigenesis of breast cancer cells. These results indicated that inhibition of ERRα might provide a treatment for osteoporosis without displaying adverse effects in breast cancer. This review focuses on the role of the ERR receptors, and in particular ERRα, in the differentiation of bone precursor cells and its consequences on bone homeostasis, and discusses the possible grounds for the discrepancies reported in the literature.
Collapse
Affiliation(s)
- Marlène Gallet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon cedex 07, France
| | | |
Collapse
|
77
|
Riggins RB, Mazzotta MM, Maniya OZ, Clarke R. Orphan nuclear receptors in breast cancer pathogenesis and therapeutic response. Endocr Relat Cancer 2010; 17:R213-31. [PMID: 20576803 PMCID: PMC3518023 DOI: 10.1677/erc-10-0058] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors comprise a large family of highly conserved transcription factors that regulate many key processes in normal and neoplastic tissues. Most nuclear receptors share a common, highly conserved domain structure that includes a carboxy-terminal ligand-binding domain. However, a subgroup of this gene family is known as the orphan nuclear receptors because to date there are no known natural ligands that regulate their activity. Many of the 25 nuclear receptors classified as orphan play critical roles in embryonic development, metabolism, and the regulation of circadian rhythm. Here, we review the emerging role(s) of orphan nuclear receptors in breast cancer, with a particular focus on two of the estrogen-related receptors (ERRalpha and ERRgamma) and several others implicated in clinical outcome and response or resistance to cytotoxic or endocrine therapies, including the chicken ovalbumin upstream promoter transcription factors, nerve growth factor-induced B, DAX-1, liver receptor homolog-1, and retinoic acid-related orphan receptor alpha. We also propose that a clearer understanding of the function of orphan nuclear receptors in mammary gland development and normal mammary tissues could significantly improve our ability to diagnose, treat, and prevent breast cancer.
Collapse
Affiliation(s)
- Rebecca B. Riggins
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington, DC 20057, USA
| | - Mary M. Mazzotta
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington, DC 20057, USA
| | - Omar Z. Maniya
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington, DC 20057, USA
| | - Robert Clarke
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington, DC 20057, USA
- Department of Physiology and Biophysics, Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington, DC 20057, USA
| |
Collapse
|
78
|
Mirebeau-Prunier D, Le Pennec S, Jacques C, Gueguen N, Poirier J, Malthiery Y, Savagner F. Estrogen-related receptor alpha and PGC-1-related coactivator constitute a novel complex mediating the biogenesis of functional mitochondria. FEBS J 2010; 277:713-25. [PMID: 20067526 DOI: 10.1111/j.1742-4658.2009.07516.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mitochondrial biogenesis, which depends on nuclear as well as mitochondrial genes, occurs in response to increased cellular ATP demand. The nuclear transcriptional factors, estrogen-related receptor alpha (ERRalpha) and nuclear respiratory factors 1 and 2, are associated with the coordination of the transcriptional machinery governing mitochondrial biogenesis, whereas coactivators of the peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family serve as mediators between the environment and this machinery. In the context of proliferating cells, PGC-1-related coactivator (PRC) is a member of the PGC-1 family, which is known to act in partnership with nuclear respiratory factors, but no functional interference between PRC and ERRalpha has been described so far. We explored three thyroid cell lines, FTC-133, XTC.UC1 and RO 82 W-1, each characterized by a different mitochondrial content, and studied their behavior towards PRC and ERRalpha in terms of respiratory efficiency. Overexpression of PRC and ERRalpha led to increased respiratory chain capacity and mitochondrial mass. The inhibition of ERRalpha decreased cell growth and respiratory chain capacity in all three cell lines. However, the inhibition of PRC and ERRalpha produced a greater effect in the oxidative cell model, decreasing the mitochondrial mass and the phosphorylating respiration, whereas the nonphosphorylating respiration remained unchanged. We therefore hypothesize that the ERRalpha-PRC complex plays a role in arresting the cell cycle through the regulation of oxidative phosphorylation in oxidative cells, and through some other pathway in glycolytic cells.
Collapse
|
79
|
Teyssier C, Gallet M, Rabier B, Monfoulet L, Dine J, Macari C, Espallergues J, Horard B, Giguère V, Cohen-Solal M, Chassande O, Vanacker JM. Absence of ERRalpha in female mice confers resistance to bone loss induced by age or estrogen-deficiency. PLoS One 2009; 4:e7942. [PMID: 19936213 PMCID: PMC2776272 DOI: 10.1371/journal.pone.0007942] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 10/13/2009] [Indexed: 01/20/2023] Open
Abstract
Background ERRα is an orphan member of the nuclear hormone receptor superfamily, which acts as a transcription factor and is involved in various metabolic processes. ERRα is also highly expressed in ossification zones during mouse development as well as in human bones and cell lines. Previous data have shown that this receptor up-modulates the expression of osteopontin, which acts as an inhibitor of bone mineralization and whose absence results in resistance to ovariectomy-induced bone loss. Altogether this suggests that ERRα may negatively regulate bone mass and could impact on bone fragility that occurs in the absence of estrogens. Methods/Principal Findings In this report, we have determined the in vivo effect of ERRα on bone, using knock-out mice. Relative to wild type animals, female ERRαKO bones do not age and are resistant to bone loss induced by estrogen-withdrawal. Strikingly male ERRαKO mice are indistinguishable from their wild type counterparts, both at the unchallenged or gonadectomized state. Using primary cell cultures originating from ERRαKO bone marrow, we also show that ERRα acts as an inhibitor of osteoblast differentiation. Conclusion/Significance Down-regulating ERRα could thus be beneficial against osteoporosis.
Collapse
Affiliation(s)
- Catherine Teyssier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Marlène Gallet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Bénédicte Rabier
- Institut National de la Santé et de la Recherche Médicale U 577, Université Victor Segalen Bordeaux II, Bordeaux, France
| | - Laurent Monfoulet
- Institut National de la Santé et de la Recherche Médicale U 577, Université Victor Segalen Bordeaux II, Bordeaux, France
| | - Julien Dine
- Institut National de la Santé et de la Recherche Médicale U 577, Université Victor Segalen Bordeaux II, Bordeaux, France
| | - Claire Macari
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Julie Espallergues
- Institut National de la Santé et de la Recherche Médicale U710, Université de Montpellier II, Montpellier, France
| | - Béatrice Horard
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS UMR5239, Ecole Normale Supérieure de Lyon, Villeurbanne, France
| | - Vincent Giguère
- The Rosalind and Morris Goodman Cancer Centre, Montréal, Canada
| | - Martine Cohen-Solal
- Institut National de la Santé et de la Recherche Médicale U606, Hôpital Lariboisière, Paris, France
| | - Olivier Chassande
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Ecole Normale Supérieure de Lyon, Lyon, France
- Institut National de la Santé et de la Recherche Médicale U 577, Université Victor Segalen Bordeaux II, Bordeaux, France
| | - Jean-Marc Vanacker
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Ecole Normale Supérieure de Lyon, Lyon, France
- * E-mail:
| |
Collapse
|