51
|
Ectodomain shedding of Limbic System-Associated Membrane Protein (LSAMP) by ADAM Metallopeptidases promotes neurite outgrowth in DRG neurons. Sci Rep 2017; 7:7961. [PMID: 28801670 PMCID: PMC5554145 DOI: 10.1038/s41598-017-08315-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/07/2017] [Indexed: 11/25/2022] Open
Abstract
IgLONs are members of the immunoglobulin superfamily of cell adhesion proteins implicated in the process of neuronal outgrowth, cell adhesion and subdomain target recognition. IgLONs form homophilic and heterophilic complexes on the cell surface that repress or promote growth depending on the neuronal population, the developmental stage and surface repertoire of IgLON family members. In the present study, we identified a metalloproteinase-dependent mechanism necessary to promote growth in embryonic dorsal root ganglion cells (DRGs). Treatment of embryonic DRG neurons with pan-metalloproteinase inhibitors, tissue inhibitor of metalloproteinase-3, or an inhibitor of ADAM Metallopeptidase Domain 10 (ADAM10) reduces outgrowth from DRG neurons indicating that metalloproteinase activity is important for outgrowth. The IgLON family members Neurotrimin (NTM) and Limbic System-Associated Membrane Protein (LSAMP) were identified as ADAM10 substrates that are shed from the cell surface of DRG neurons. Overexpression of LSAMP and NTM suppresses outgrowth from DRG neurons. Furthermore, LSAMP loss of function decreases the outgrowth sensitivity to an ADAM10 inhibitor. Together our findings support a role for ADAM-dependent shedding of cell surface LSAMP in promoting outgrowth from DRG neurons.
Collapse
|
52
|
Bonello M, Jacob A, Ellul MA, Barker E, Parker R, Jefferson S, Alusi S. IgLON5 disease responsive to immunotherapy. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2017; 4:e383. [PMID: 28840176 PMCID: PMC5567142 DOI: 10.1212/nxi.0000000000000383] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/02/2017] [Indexed: 11/15/2022]
Affiliation(s)
- Michael Bonello
- Department of Neurology (M.B., A.J., M.A.E., S.A.), and Department of Neurophysiology (S.J.), The Walton Centre NHS Foundation Trust; and Department of Respiratory and Sleep Medicine (E.B., R.P.), Aintree University Hospital NHS Foundation Trust, Liverpool, United Kingdom
| | - Anu Jacob
- Department of Neurology (M.B., A.J., M.A.E., S.A.), and Department of Neurophysiology (S.J.), The Walton Centre NHS Foundation Trust; and Department of Respiratory and Sleep Medicine (E.B., R.P.), Aintree University Hospital NHS Foundation Trust, Liverpool, United Kingdom
| | - Mark A Ellul
- Department of Neurology (M.B., A.J., M.A.E., S.A.), and Department of Neurophysiology (S.J.), The Walton Centre NHS Foundation Trust; and Department of Respiratory and Sleep Medicine (E.B., R.P.), Aintree University Hospital NHS Foundation Trust, Liverpool, United Kingdom
| | - Erandi Barker
- Department of Neurology (M.B., A.J., M.A.E., S.A.), and Department of Neurophysiology (S.J.), The Walton Centre NHS Foundation Trust; and Department of Respiratory and Sleep Medicine (E.B., R.P.), Aintree University Hospital NHS Foundation Trust, Liverpool, United Kingdom
| | - Robert Parker
- Department of Neurology (M.B., A.J., M.A.E., S.A.), and Department of Neurophysiology (S.J.), The Walton Centre NHS Foundation Trust; and Department of Respiratory and Sleep Medicine (E.B., R.P.), Aintree University Hospital NHS Foundation Trust, Liverpool, United Kingdom
| | - Samantha Jefferson
- Department of Neurology (M.B., A.J., M.A.E., S.A.), and Department of Neurophysiology (S.J.), The Walton Centre NHS Foundation Trust; and Department of Respiratory and Sleep Medicine (E.B., R.P.), Aintree University Hospital NHS Foundation Trust, Liverpool, United Kingdom
| | - Sundus Alusi
- Department of Neurology (M.B., A.J., M.A.E., S.A.), and Department of Neurophysiology (S.J.), The Walton Centre NHS Foundation Trust; and Department of Respiratory and Sleep Medicine (E.B., R.P.), Aintree University Hospital NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
53
|
Abstract
PURPOSE OF REVIEW We will describe the success of recent genome-wide association studies that identify genetic variants associated with depression and outline the strategies used to reduce heterogeneity and increase sample size. RECENT FINDINGS The CONVERGE consortium identified two genetic associations by focusing on a sample of Chinese women with recurrent severe depression. Three other loci have been found in Europeans by combining cohorts with clinical diagnosis and measures of depressive symptoms to increase sample size. 23andMe identified 15 loci associated with depression using self-report of clinical diagnosis in a study of over 300,000 individuals. The first genetic associations with depression have been identified, and this number is now expected to increase linearly with sample size, as seen in other polygenic disorders. These loci provide invaluable insights into the biology of depression and exciting opportunities to develop new biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Niamh Mullins
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK.
| | - Cathryn M Lewis
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
- Division of Genetics and Molecular Medicine, King's College London, London, SE1 9RT, UK
| |
Collapse
|
54
|
Honorat JA, Komorowski L, Josephs KA, Fechner K, St Louis EK, Hinson SR, Lederer S, Kumar N, Gadoth A, Lennon VA, Pittock SJ, McKeon A. IgLON5 antibody: Neurological accompaniments and outcomes in 20 patients. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2017; 4:e385. [PMID: 28761904 PMCID: PMC5515599 DOI: 10.1212/nxi.0000000000000385] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/08/2017] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To describe the phenotypes, treatment response, and outcome of IgLON5 autoimmunity. METHODS Archived serum and CSF specimens from 367 patients known to harbor unclassified antibodies which stained neural synapses diffusely (mimicking amphiphysin-IgG) were reevaluated by indirect immunofluorescence assay (IFA) using a composite of mouse tissues and recombinant IgLON5-transfected cell-based assay (CBA, Euroimmun). RESULTS Available specimens (serum, 25; CSF, 9) from 26/367 patients (7%) had identical IFA appearance and robust IgLON5 CBA positivity. Clinical information was available for 20/26 patients; 13 were women. Median disease-onset age was 62 years (range, 46-75 years). Most patients had insidious onset and progression of neurological symptoms affecting movement and sleep predominantly. Sleep disorders were sleep-disordered breathing (11) and parasomnias (3). Brainstem disorders were gait instability (14), dysphagia (10), abnormal eye movements (7), respiratory dysfunction (6), ataxia (5), craniocervical dystonia (3), and dysarthria (3). Findings compatible with hyperexcitability included myoclonus (3), cramps (3), fasciculations (2), and exaggerated startle (2). Neuropsychiatric disorders included cognitive dysfunction (6), psychiatric symptoms (5), and seizures (1). Dysautonomia, in 9, affected bladder function (7), gastrointestinal motility (3), thermoregulation (3), and orthostatic tolerance (1). Just 2 patients had coexisting autoimmune disease. Brain MRI findings were nonspecific and CSF was noninflammatory in all tested. Seven of 9 immunotherapy-treated patients improved: 6 of those 7 were stable at last follow-up. Three untreated patients died. Each IgLON5-IgG subclass (1-4) was readily detectable in ≥80% of specimens using CBA. CONCLUSIONS IgLON5-IgG is diagnostic of a potentially treatable neurological disorder, where autoimmune clues are otherwise lacking.
Collapse
Affiliation(s)
- Josephe A Honorat
- Department of Laboratory Medicine and Pathology (J.A.H., S.R.H., V.A.L., S.J.P., A.M.), Department of Neurology (K.A.J., E.K.S.L., N.K., A.G., V.A.L., S.J.P., A.M.), Department of Medicine (E.K.S.L.), Department of Immunology (V.A.L.), and Center for Sleep Medicine (E.K.S.L.), College of Medicine, Mayo Clinic, Rochester, MN; and Institute of Experimental Immunology (L.K., K.F., S.L.), Euroimmun AG, Lubeck, Germany
| | - Lars Komorowski
- Department of Laboratory Medicine and Pathology (J.A.H., S.R.H., V.A.L., S.J.P., A.M.), Department of Neurology (K.A.J., E.K.S.L., N.K., A.G., V.A.L., S.J.P., A.M.), Department of Medicine (E.K.S.L.), Department of Immunology (V.A.L.), and Center for Sleep Medicine (E.K.S.L.), College of Medicine, Mayo Clinic, Rochester, MN; and Institute of Experimental Immunology (L.K., K.F., S.L.), Euroimmun AG, Lubeck, Germany
| | - Keith A Josephs
- Department of Laboratory Medicine and Pathology (J.A.H., S.R.H., V.A.L., S.J.P., A.M.), Department of Neurology (K.A.J., E.K.S.L., N.K., A.G., V.A.L., S.J.P., A.M.), Department of Medicine (E.K.S.L.), Department of Immunology (V.A.L.), and Center for Sleep Medicine (E.K.S.L.), College of Medicine, Mayo Clinic, Rochester, MN; and Institute of Experimental Immunology (L.K., K.F., S.L.), Euroimmun AG, Lubeck, Germany
| | - Kai Fechner
- Department of Laboratory Medicine and Pathology (J.A.H., S.R.H., V.A.L., S.J.P., A.M.), Department of Neurology (K.A.J., E.K.S.L., N.K., A.G., V.A.L., S.J.P., A.M.), Department of Medicine (E.K.S.L.), Department of Immunology (V.A.L.), and Center for Sleep Medicine (E.K.S.L.), College of Medicine, Mayo Clinic, Rochester, MN; and Institute of Experimental Immunology (L.K., K.F., S.L.), Euroimmun AG, Lubeck, Germany
| | - Erik K St Louis
- Department of Laboratory Medicine and Pathology (J.A.H., S.R.H., V.A.L., S.J.P., A.M.), Department of Neurology (K.A.J., E.K.S.L., N.K., A.G., V.A.L., S.J.P., A.M.), Department of Medicine (E.K.S.L.), Department of Immunology (V.A.L.), and Center for Sleep Medicine (E.K.S.L.), College of Medicine, Mayo Clinic, Rochester, MN; and Institute of Experimental Immunology (L.K., K.F., S.L.), Euroimmun AG, Lubeck, Germany
| | - Shannon R Hinson
- Department of Laboratory Medicine and Pathology (J.A.H., S.R.H., V.A.L., S.J.P., A.M.), Department of Neurology (K.A.J., E.K.S.L., N.K., A.G., V.A.L., S.J.P., A.M.), Department of Medicine (E.K.S.L.), Department of Immunology (V.A.L.), and Center for Sleep Medicine (E.K.S.L.), College of Medicine, Mayo Clinic, Rochester, MN; and Institute of Experimental Immunology (L.K., K.F., S.L.), Euroimmun AG, Lubeck, Germany
| | - Sabine Lederer
- Department of Laboratory Medicine and Pathology (J.A.H., S.R.H., V.A.L., S.J.P., A.M.), Department of Neurology (K.A.J., E.K.S.L., N.K., A.G., V.A.L., S.J.P., A.M.), Department of Medicine (E.K.S.L.), Department of Immunology (V.A.L.), and Center for Sleep Medicine (E.K.S.L.), College of Medicine, Mayo Clinic, Rochester, MN; and Institute of Experimental Immunology (L.K., K.F., S.L.), Euroimmun AG, Lubeck, Germany
| | - Neeraj Kumar
- Department of Laboratory Medicine and Pathology (J.A.H., S.R.H., V.A.L., S.J.P., A.M.), Department of Neurology (K.A.J., E.K.S.L., N.K., A.G., V.A.L., S.J.P., A.M.), Department of Medicine (E.K.S.L.), Department of Immunology (V.A.L.), and Center for Sleep Medicine (E.K.S.L.), College of Medicine, Mayo Clinic, Rochester, MN; and Institute of Experimental Immunology (L.K., K.F., S.L.), Euroimmun AG, Lubeck, Germany
| | - Avi Gadoth
- Department of Laboratory Medicine and Pathology (J.A.H., S.R.H., V.A.L., S.J.P., A.M.), Department of Neurology (K.A.J., E.K.S.L., N.K., A.G., V.A.L., S.J.P., A.M.), Department of Medicine (E.K.S.L.), Department of Immunology (V.A.L.), and Center for Sleep Medicine (E.K.S.L.), College of Medicine, Mayo Clinic, Rochester, MN; and Institute of Experimental Immunology (L.K., K.F., S.L.), Euroimmun AG, Lubeck, Germany
| | - Vanda A Lennon
- Department of Laboratory Medicine and Pathology (J.A.H., S.R.H., V.A.L., S.J.P., A.M.), Department of Neurology (K.A.J., E.K.S.L., N.K., A.G., V.A.L., S.J.P., A.M.), Department of Medicine (E.K.S.L.), Department of Immunology (V.A.L.), and Center for Sleep Medicine (E.K.S.L.), College of Medicine, Mayo Clinic, Rochester, MN; and Institute of Experimental Immunology (L.K., K.F., S.L.), Euroimmun AG, Lubeck, Germany
| | - Sean J Pittock
- Department of Laboratory Medicine and Pathology (J.A.H., S.R.H., V.A.L., S.J.P., A.M.), Department of Neurology (K.A.J., E.K.S.L., N.K., A.G., V.A.L., S.J.P., A.M.), Department of Medicine (E.K.S.L.), Department of Immunology (V.A.L.), and Center for Sleep Medicine (E.K.S.L.), College of Medicine, Mayo Clinic, Rochester, MN; and Institute of Experimental Immunology (L.K., K.F., S.L.), Euroimmun AG, Lubeck, Germany
| | - Andrew McKeon
- Department of Laboratory Medicine and Pathology (J.A.H., S.R.H., V.A.L., S.J.P., A.M.), Department of Neurology (K.A.J., E.K.S.L., N.K., A.G., V.A.L., S.J.P., A.M.), Department of Medicine (E.K.S.L.), Department of Immunology (V.A.L.), and Center for Sleep Medicine (E.K.S.L.), College of Medicine, Mayo Clinic, Rochester, MN; and Institute of Experimental Immunology (L.K., K.F., S.L.), Euroimmun AG, Lubeck, Germany
| |
Collapse
|
55
|
Zinn K, Özkan E. Neural immunoglobulin superfamily interaction networks. Curr Opin Neurobiol 2017; 45:99-105. [PMID: 28558267 DOI: 10.1016/j.conb.2017.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/24/2017] [Accepted: 05/15/2017] [Indexed: 12/31/2022]
Abstract
The immunoglobulin superfamily (IgSF) encompasses hundreds of cell surface proteins containing multiple immunoglobulin-like (Ig) domains. Among these are neural IgCAMs, which are cell adhesion molecules that mediate interactions between cells in the nervous system. IgCAMs in some vertebrate IgSF subfamilies bind to each other homophilically and heterophilically, forming small interaction networks. In Drosophila, a global 'interactome' screen identified two larger networks in which proteins in one IgSF subfamily selectively interact with proteins in a different subfamily. One of these networks, the 'Dpr-ome', includes 30 IgSF proteins, each of which is expressed in a unique subset of neurons. Recent evidence shows that one interacting protein pair within the Dpr-ome network is required for development of the brain and neuromuscular system.
Collapse
Affiliation(s)
- Kai Zinn
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, United States
| |
Collapse
|
56
|
Galloway DA, Williams JB, Moore CS. Effects of fumarates on inflammatory human astrocyte responses and oligodendrocyte differentiation. Ann Clin Transl Neurol 2017; 4:381-391. [PMID: 28589165 PMCID: PMC5454401 DOI: 10.1002/acn3.414] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 12/30/2022] Open
Abstract
Objective Dimethyl fumarate (DMF) is a fumaric acid ester approved for the treatment of relapsing‐remitting multiple sclerosis (RRMS). In both the brain and periphery, DMF and its metabolite monomethyl fumarate (MMF) exert anti‐inflammatory and antioxidant effects. Our aim was to compare the effects of DMF and MMF on inflammatory and antioxidant pathways within astrocytes, a critical supporting glial cell in the central nervous system (CNS). Direct effects of fumarates on neural progenitor cell (NPC) differentiation toward the oligodendrocyte lineage were also assessed. Methods Primary astrocyte cultures were derived from both murine and human brains. Following pretreatment with MMF, DMF, or vehicle, astrocytes were stimulated with IL‐1β for 24 h; gene and microRNA expression were measured by qPCR. Cytokine production and reactive oxygen species (ROS) generation were also measured. NPCs were differentiated into the oligodendrocyte lineage in the presence of fumarates and immunostained using early oligodendrocyte markers. Results In both murine and human astrocytes, DMF, but not MMF, significantly reduced secretion of IL‐6, CXCL10, and CCL2; neither fumarate promoted a robust increase in antioxidant gene expression, although both MMF and DMF prevented intracellular ROS production. Pretreatment with fumarates reduced microRNAs ‐146a and ‐155 upon stimulation. In NPC cultures, DMF increased the number of O4+ and NG2+ cells. Interpretation These results suggest that DMF, and to a lesser extent MMF, mediates the anti‐inflammatory effects within astrocytes. This is supported by recent observations that in the inflamed CNS, DMF may be the active compound mediating the anti‐inflammatory effects independent from altered antioxidant gene expression.
Collapse
Affiliation(s)
- Dylan A Galloway
- Division of Bio Medical Sciences Faculty of Medicine Memorial University of Newfoundland St. John's Newfoundland Canada
| | - John B Williams
- Division of Bio Medical Sciences Faculty of Medicine Memorial University of Newfoundland St. John's Newfoundland Canada
| | - Craig S Moore
- Division of Bio Medical Sciences Faculty of Medicine Memorial University of Newfoundland St. John's Newfoundland Canada
| |
Collapse
|
57
|
Woodward EL, Biloglav A, Ravi N, Yang M, Ekblad L, Wennerberg J, Paulsson K. Genomic complexity and targeted genes in anaplastic thyroid cancer cell lines. Endocr Relat Cancer 2017; 24:209-220. [PMID: 28235956 DOI: 10.1530/erc-16-0522] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 12/14/2022]
Abstract
Anaplastic thyroid cancer (ATC) is a highly malignant disease with a very short median survival time. Few studies have addressed the underlying somatic mutations, and the genomic landscape of ATC thus remains largely unknown. In the present study, we have ascertained copy number aberrations, gene fusions, gene expression patterns, and mutations in early-passage cells from ten newly established ATC cell lines using single nucleotide polymorphism (SNP) array analysis, RNA sequencing and whole exome sequencing. The ATC cell line genomes were highly complex and displayed signs of replicative stress and genomic instability, including massive aneuploidy and frequent breakpoints in the centromeric regions and in fragile sites. Loss of heterozygosity involving whole chromosomes was common, but there were no signs of previous near-haploidisation events or chromothripsis. A total of 21 fusion genes were detected, including six predicted in-frame fusions; none were recurrent. Global gene expression analysis showed 661 genes to be differentially expressed between ATC and papillary thyroid cancer cell lines, with pathway enrichment analyses showing downregulation of TP53 signalling as well as cell adhesion molecules in ATC. Besides previously known driver events, such as mutations in BRAF, NRAS, TP53 and the TERT promoter, we identified PTPRD and NEGR1 as putative novel target genes in ATC, based on deletions in six and four cell lines, respectively; the latter gene also carried a somatic mutation in one cell line. Taken together, our data provide novel insights into the tumourigenesis of ATC and may be used to identify new therapeutic targets.
Collapse
Affiliation(s)
- Eleanor L Woodward
- Division of Clinical GeneticsDepartment of Laboratory Medicine, Lund University, Lund, Sweden
| | - Andrea Biloglav
- Division of Clinical GeneticsDepartment of Laboratory Medicine, Lund University, Lund, Sweden
| | - Naveen Ravi
- Division of Clinical GeneticsDepartment of Laboratory Medicine, Lund University, Lund, Sweden
| | - Minjun Yang
- Division of Clinical GeneticsDepartment of Laboratory Medicine, Lund University, Lund, Sweden
| | - Lars Ekblad
- Division of Oncology and PathologyClinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
| | - Johan Wennerberg
- Division of Otorhinolaryngology/Head and Neck SurgeryClinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
| | - Kajsa Paulsson
- Division of Clinical GeneticsDepartment of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
58
|
Tien WS, Chen JH, Wu KP. SheddomeDB: the ectodomain shedding database for membrane-bound shed markers. BMC Bioinformatics 2017; 18:42. [PMID: 28361715 PMCID: PMC5374707 DOI: 10.1186/s12859-017-1465-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND A number of membrane-anchored proteins are known to be released from cell surface via ectodomain shedding. The cleavage and release of membrane proteins has been shown to modulate various cellular processes and disease pathologies. Numerous studies revealed that cell membrane molecules of diverse functional groups are subjected to proteolytic cleavage, and the released soluble form of proteins may modulate various signaling processes. Therefore, in addition to the secreted protein markers that undergo secretion through the secretory pathway, the shed membrane proteins may comprise an additional resource of noninvasive and accessible biomarkers. In this context, identifying the membrane-bound proteins that will be shed has become important in the discovery of clinically noninvasive biomarkers. Nevertheless, a data repository for biological and clinical researchers to review the shedding information, which is experimentally validated, for membrane-bound protein shed markers is still lacking. RESULTS In this study, the database SheddomeDB was developed to integrate publicly available data of the shed membrane proteins. A comprehensive literature survey was performed to collect the membrane proteins that were verified to be cleaved or released in the supernatant by immunological-based validation experiments. From 436 studies on shedding, 401 validated shed membrane proteins were included, among which 199 shed membrane proteins have not been annotated or validated yet by existing cleavage databases. SheddomeDB attempted to provide a comprehensive shedding report, including the regulation of shedding machinery and the related function or diseases involved in the shedding events. In addition, our published tool ShedP was embedded into SheddomeDB to support researchers for predicting the shedding event on unknown or unrecorded membrane proteins. CONCLUSIONS To the best of our knowledge, SheddomeDB is the first database for the identification of experimentally validated shed membrane proteins and currently may provide the most number of membrane proteins for reviewing the shedding information. The database included membrane-bound shed markers associated with numerous cellular processes and diseases, and some of these markers are potential novel markers because they are not annotated or validated yet in other databases. SheddomeDB may provide a useful resource for discovering membrane-bound shed markers. The interactive web of SheddomeDB is publicly available at http://bal.ym.edu.tw/SheddomeDB/ .
Collapse
Affiliation(s)
- Wei-Sheng Tien
- Institute of Biomedical Informatics, National Yang Ming University, Taipei, 112, Taiwan.,Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
| | - Jun-Hong Chen
- Department of Computer Science, National Taipei University of Education, Taipei, 106, Taiwan
| | - Kun-Pin Wu
- Institute of Biomedical Informatics, National Yang Ming University, Taipei, 112, Taiwan.
| |
Collapse
|
59
|
Close JL, Yao Z, Levi BP, Miller JA, Bakken TE, Menon V, Ting JT, Wall A, Krostag AR, Thomsen ER, Nelson AM, Mich JK, Hodge RD, Shehata SI, Glass IA, Bort S, Shapovalova NV, Ngo NK, Grimley JS, Phillips JW, Thompson CL, Ramanathan S, Lein E. Single-Cell Profiling of an In Vitro Model of Human Interneuron Development Reveals Temporal Dynamics of Cell Type Production and Maturation. Neuron 2017; 93:1035-1048.e5. [PMID: 28279351 PMCID: PMC5480972 DOI: 10.1016/j.neuron.2017.02.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/12/2016] [Accepted: 01/30/2017] [Indexed: 12/31/2022]
Abstract
GABAergic interneurons are essential for neural circuit function, and their loss or dysfunction is implicated in human neuropsychiatric disease. In vitro methods for interneuron generation hold promise for studying human cellular and functional properties and, ultimately, for therapeutic cell replacement. Here we describe a protocol for generating cortical interneurons from hESCs and analyze the properties and maturation time course of cell types using single-cell RNA-seq. We find that the cell types produced mimic in vivo temporal patterns of neuron and glial production, with immature progenitors and neurons observed early and mature cortical neurons and glial cell types produced late. By comparing the transcriptomes of immature interneurons to those of more mature neurons, we identified genes important for human interneuron differentiation. Many of these genes were previously implicated in neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jennie L Close
- Allen Institute for Brain Science, Seattle, WA 98109, USA.
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Boaz P Levi
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Vilas Menon
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Abigail Wall
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Angel M Nelson
- Allen Institute for Cell Science, Seattle, WA 98109, USA
| | - John K Mich
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Ian A Glass
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Susan Bort
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - N Kiet Ngo
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | | | - Sharad Ramanathan
- Molecular and Cellular Biology Department, Harvard University, Cambridge, MA 02138, USA
| | - Ed Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| |
Collapse
|
60
|
Sartore RC, Cardoso SC, Lages YVM, Paraguassu JM, Stelling MP, Madeiro da Costa RF, Guimaraes MZ, Pérez CA, Rehen SK. Trace elements during primordial plexiform network formation in human cerebral organoids. PeerJ 2017; 5:e2927. [PMID: 28194309 PMCID: PMC5301978 DOI: 10.7717/peerj.2927] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/20/2016] [Indexed: 12/03/2022] Open
Abstract
Systematic studies of micronutrients during brain formation are hindered by restrictions to animal models and adult post-mortem tissues. Recently, advances in stem cell biology have enabled recapitulation of the early stages of human telencephalon development in vitro. In the present work, we analyzed cerebral organoids derived from human pluripotent stem cells by synchrotron radiation X-ray fluorescence in order to measure biologically valuable micronutrients incorporated and distributed into the exogenously developing brain. Our findings indicate that elemental inclusion in organoids is consistent with human brain tissue and involves P, S, K, Ca, Fe and Zn. Occurrence of different concentration gradients also suggests active regulation of elemental transmembrane transport. Finally, the analysis of pairs of elements shows interesting elemental interaction patterns that change from 30 to 45 days of development, suggesting short- or long-term associations, such as storage in similar compartments or relevance for time-dependent biological processes. These findings shed light on which trace elements are important during human brain development and will support studies aimed to unravel the consequences of disrupted metal homeostasis for neurodevelopmental diseases, including those manifested in adulthood.
Collapse
Affiliation(s)
- Rafaela C Sartore
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Simone C Cardoso
- Physics Institute, Federal University of Rio de Janeiro , Brazil
| | - Yury V M Lages
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Julia M Paraguassu
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Mariana P Stelling
- Federal Institute of Education, Science and Technology of Rio de Janeiro , Brazil
| | | | - Marilia Z Guimaraes
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Carlos A Pérez
- Brazilian Synchrotron Light Laboratory , São Paulo , Brazil
| | - Stevens K Rehen
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| |
Collapse
|
61
|
Cervera-Juanes R, Wilhelm LJ, Park B, Grant KA, Ferguson B. Alcohol-dose-dependent DNA methylation and expression in the nucleus accumbens identifies coordinated regulation of synaptic genes. Transl Psychiatry 2017; 7:e994. [PMID: 28072409 PMCID: PMC5545731 DOI: 10.1038/tp.2016.266] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/09/2016] [Accepted: 11/13/2016] [Indexed: 12/20/2022] Open
Abstract
Alterations in DNA methylation have been associated with alcohol exposure and proposed to contribute to continued alcohol use; however, the molecular mechanisms involved remain obscure. We investigated the escalating effects of alcohol use on DNA methylation, gene expression and predicted neural effects in the nucleus accumbens of rhesus macaques that self-administered 4% alcohol for over 12 months. Using an exploratory approach to identify CpG-rich regions, followed by bisulfite sequencing, the methylation levels of 2.7 million CpGs were compared between seven low-binge drinkers and nine heavy-very heavy drinking subjects. We identified 17 significant differential methylation regions (DMRs), including 14 with methylation levels that were correlated with average daily alcohol consumption. The size of the DMRs ranged from 29 to 158 bp (mean=63.7), included 4-19 CpGs per DMR (mean=8.06) and spanned a range of average methylation values from 5 to 34%. Eight of the DMRs mapped to genes implicated in modulating synaptic plasticity. Six of the synaptic genes have not previously been linked to alcohol use. Validation studies of these eight DMRs using bisulfite amplicon sequencing and an expanded set of 30 subjects confirmed the significant alcohol-dose-associated methylation of the DMRs. Expression analysis of three of the DMR-associated genes, LRP5, GPR39 and JAKMIP1, revealed significant correlations between DMR methylation and whole-gene or alternative transcript expression, supporting a functional role in regulating gene expression. Together, these studies suggest that alcohol-associated synaptic remodeling may be regulated and coordinated at the level of DNA methylation.
Collapse
Affiliation(s)
- R Cervera-Juanes
- Department of Neurosciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - L J Wilhelm
- Department of Neurosciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - B Park
- Department of Public Health and Preventive Medicine, Oregon Health and Science University, Portland, OR, USA
| | - K A Grant
- Department of Neurosciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - B Ferguson
- Department of Neurosciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA,Department of Neurosciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA. E-mail:
| |
Collapse
|
62
|
Protease induced plasticity: matrix metalloproteinase-1 promotes neurostructural changes through activation of protease activated receptor 1. Sci Rep 2016; 6:35497. [PMID: 27762280 PMCID: PMC5071868 DOI: 10.1038/srep35497] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/30/2016] [Indexed: 11/08/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of secreted endopeptidases expressed by neurons and glia. Regulated MMP activity contributes to physiological synaptic plasticity, while dysregulated activity can stimulate injury. Disentangling the role individual MMPs play in synaptic plasticity is difficult due to overlapping structure and function as well as cell-type specific expression. Here, we develop a novel system to investigate the selective overexpression of a single MMP driven by GFAP expressing cells in vivo. We show that MMP-1 induces cellular and behavioral phenotypes consistent with enhanced signaling through the G-protein coupled protease activated receptor 1 (PAR1). Application of exogenous MMP-1, in vitro, stimulates PAR1 dependent increases in intracellular Ca2+ concentration and dendritic arborization. Overexpression of MMP-1, in vivo, increases dendritic complexity and induces biochemical and behavioral endpoints consistent with increased GPCR signaling. These data are exciting because we demonstrate that an astrocyte-derived protease can influence neuronal plasticity through an extracellular matrix independent mechanism.
Collapse
|
63
|
Mazitov T, Bregin A, Philips MA, Innos J, Vasar E. Deficit in emotional learning in neurotrimin knockout mice. Behav Brain Res 2016; 317:311-318. [PMID: 27693610 DOI: 10.1016/j.bbr.2016.09.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/04/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
Abstract
Neurotrimin (Ntm) belongs to the IgLON family of cell adhesion molecules with Lsamp, Obcam and kilon that regulate the outgrowth of neurites mostly by forming heterodimers. IgLONs have been associated with psychiatric disorders, intelligence, body weight, heart disease and tumours. This study provides an initial behavioural and pharmacological characterization of the phenotype of Ntm-deficient mice. We expected to see at least some overlap with the phenotype of Lsamp-deficient mice as Ntm and Lsamp are the main interaction partners in the IgLON family and are colocalized in some brain regions. However, Ntm-deficient mice displayed none of the deviations in behaviour that we have previously shown in Lsamp-deficient mice, but differently from Lsamp-deficient mice, had a deficit in emotional learning in the active avoidance task. The only overlap was decreased sensitivity to the locomotor stimulating effect of amphetamine in both knockout models. Thus, despite being interaction partners, on the behavioural level Lsamp seems to play a much more central role than Ntm and the roles of these two proteins seem to be complementary rather than overlapping.
Collapse
Affiliation(s)
- Timur Mazitov
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Aleksandr Bregin
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Jürgen Innos
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia.
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| |
Collapse
|
64
|
Sabater L, Planagumà J, Dalmau J, Graus F. Cellular investigations with human antibodies associated with the anti-IgLON5 syndrome. J Neuroinflammation 2016; 13:226. [PMID: 27586161 PMCID: PMC5007989 DOI: 10.1186/s12974-016-0689-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/18/2016] [Indexed: 12/29/2022] Open
Abstract
Background Antibodies against IgLON5, a neuronal adhesion protein of unknown function, are markers of a novel neurological disorder termed anti-IgLON5 syndrome. The disorder shows a remarkable association with the HLA-DQB1*0501 and HLA-DRB1*1001 alleles, and postmortem studies demonstrate a novel neuronal tauopathy predominantly involving the hypothalamus and tegmentum of the brainstem. The role of IgLON5 antibodies in the pathogenesis of the disease is currently unknown. Here, we have determined the target epitopes of IgLON5 antibodies, the effects of the IgLON5 antibodies in rat hippocampal neurons, and the IgG subclass responsible for these effects. Methods HEK293 cells expressing several deletion constructs of IgLON5 were used to determine the epitopes recognized by the serum of 15 patients with anti-IgLON5 syndrome. The role of glycosylation in immunogenicity was tested with PNGase F treatment of transfected cells. Dissociated hippocampal neuronal cultures were used to test by immunocytochemistry the effects of total IgG, IgG1, and IgG4 subclasses of IgLON5 antibodies. Results Patients’ antibodies reacted with the immunoglobulin-like domain 2 of IgLON5. Glycosylation was not required for immunoreactivity. The predominant subclass of IgLON5 antibodies was IgG4 but all patients also had IgG1. The mean percentage of specific IgLON5 IgG4 and IgG1 of the samples analyzed by flow cytometry was 64 and 33 %, respectively. In cultures of hippocampal neurons, patients’ antibodies caused a decrease of cell surface IgLON5 clusters that was not reversed after IgLON5 antibodies were removed from the media. The decrease of surface IgLON5 clusters correlated with the rate of antibody internalization. These effects were observed with purified IgG1 but not with the IgG4 antibodies. Conclusions IgLON5 antibodies recognize the immunoglobulin-like domain 2 of the antigen, and the reactivity is not dependent on glycosylation. The effects observed on hippocampal neuronal cultures indicate an irreversible antibody-mediated internalization of surface IgLON5. These effects were mediated by specific IgLON5 IgG1 antibodies and suggest a pathogenic role of these antibodies in the disease. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0689-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lidia Sabater
- Neuroimmunology Program, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Jesús Planagumà
- Neuroimmunology Program, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Josep Dalmau
- Neuroimmunology Program, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - Francesc Graus
- Neuroimmunology Program, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Service of Neurology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
65
|
Kuhn PH, Colombo AV, Schusser B, Dreymueller D, Wetzel S, Schepers U, Herber J, Ludwig A, Kremmer E, Montag D, Müller U, Schweizer M, Saftig P, Bräse S, Lichtenthaler SF. Systematic substrate identification indicates a central role for the metalloprotease ADAM10 in axon targeting and synapse function. eLife 2016; 5. [PMID: 26802628 PMCID: PMC4786429 DOI: 10.7554/elife.12748] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/22/2016] [Indexed: 12/11/2022] Open
Abstract
Metzincin metalloproteases have major roles in intercellular communication by modulating the function of membrane proteins. One of the proteases is the a-disintegrin-and-metalloprotease 10 (ADAM10) which acts as alpha-secretase of the Alzheimer's disease amyloid precursor protein. ADAM10 is also required for neuronal network functions in murine brain, but neuronal ADAM10 substrates are only partly known. With a proteomic analysis of Adam10-deficient neurons we identified 91, mostly novel ADAM10 substrate candidates, making ADAM10 a major protease for membrane proteins in the nervous system. Several novel substrates, including the neuronal cell adhesion protein NrCAM, are involved in brain development. Indeed, we detected mistargeted axons in the olfactory bulb of conditional ADAM10-/- mice, which correlate with reduced cleavage of NrCAM, NCAM and other ADAM10 substrates. In summary, the novel ADAM10 substrates provide a molecular basis for neuronal network dysfunctions in conditional ADAM10-/- mice and demonstrate a fundamental function of ADAM10 in the brain.
Collapse
Affiliation(s)
- Peer-Hendrik Kuhn
- Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Institut für Pathologie und Pathologische Anatomie, Technische Universität München, Munich, Germany.,Institute for Advanced Study, Technische Universität München, Munich, Germany
| | - Alessio Vittorio Colombo
- Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen, Munich, Germany
| | - Benjamin Schusser
- Department of Animal Science, Institute for Animal Physiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniela Dreymueller
- Institute of Pharmacology and Toxicology, Uniklinik RWTH Aachen, Aachen, Germany
| | - Sebastian Wetzel
- Institute of Biochemistry, Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Ute Schepers
- Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Julia Herber
- Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen, Munich, Germany
| | - Andreas Ludwig
- Institute of Pharmacology and Toxicology, Uniklinik RWTH Aachen, Aachen, Germany
| | - Elisabeth Kremmer
- German Research Center for Environmental Health, Institute of Molecular Tumor immunology, Helmholtz Zentrum München, Munich, Germany
| | - Dirk Montag
- Neurogenetics, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Ulrike Müller
- Department of Functional Genomics, Institute for Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Michaela Schweizer
- Service-Gruppe für Elektronenmikroskopie, Zentrum für Molekulare Neurobiologie, Hamburg, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Stefan Bräse
- Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Stefan F Lichtenthaler
- Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Institute for Advanced Study, Technische Universität München, Munich, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen, Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| |
Collapse
|
66
|
Pischedda F, Piccoli G. The IgLON Family Member Negr1 Promotes Neuronal Arborization Acting as Soluble Factor via FGFR2. Front Mol Neurosci 2016; 8:89. [PMID: 26793057 PMCID: PMC4710852 DOI: 10.3389/fnmol.2015.00089] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/22/2015] [Indexed: 01/03/2023] Open
Abstract
IgLON proteins are GPI anchored adhesion molecules that control neurite outgrowth. In particular, Negr1 down-regulation negatively influences neuronal arborization in vitro and in vivo. In the present study, we found that the metalloprotease ADAM10 releases Negr1 from neuronal membrane. Ectodomain shedding influences several neuronal mechanisms, including survival, synaptogenesis, and the formation of neurite trees. By combining morphological analysis and virus-mediated selective protein silencing in primary murine cortical neurons, we found that pharmacologically inhibition of ADAM10 results in an impairment of neurite tree maturation that can be rescued upon treatment with soluble Negr1. Furthermore, we report that released Negr1 influences neurite outgrowth in a P-ERK1/2 and FGFR2 dependent manner. Together our findings suggest a role for Negr1 in regulating neurite outgrowth through the modulation of FGFR2 signaling pathway. Given the physiological and pathological role of ADAM10, Negr1, and FGFR2, the regulation of Negr1 shedding may play a crucial role in sustaining brain function and development.
Collapse
Affiliation(s)
- Francesca Pischedda
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano Milano, Italy
| | - Giovanni Piccoli
- Department of Neuroscience, Istituto Di Neuroscienze-Consiglio Nazionale delle Ricerche, San Raffaele Scientific Park Milano, Italy
| |
Collapse
|
67
|
Leshchyns'ka I, Liew HT, Shepherd C, Halliday GM, Stevens CH, Ke YD, Ittner LM, Sytnyk V. Aβ-dependent reduction of NCAM2-mediated synaptic adhesion contributes to synapse loss in Alzheimer's disease. Nat Commun 2015; 6:8836. [PMID: 26611261 PMCID: PMC4674770 DOI: 10.1038/ncomms9836] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/09/2015] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by synapse loss due to mechanisms that remain poorly understood. We show that the neural cell adhesion molecule 2 (NCAM2) is enriched in synapses in the human hippocampus. This enrichment is abolished in the hippocampus of AD patients and in brains of mice overexpressing the human amyloid-β (Aβ) precursor protein carrying the pathogenic Swedish mutation. Aβ binds to NCAM2 at the cell surface of cultured hippocampal neurons and induces removal of NCAM2 from synapses. In AD hippocampus, cleavage of the membrane proximal external region of NCAM2 is increased and soluble extracellular fragments of NCAM2 (NCAM2-ED) accumulate. Knockdown of NCAM2 expression or incubation with NCAM2-ED induces disassembly of GluR1-containing glutamatergic synapses in cultured hippocampal neurons. Aβ-dependent disassembly of GluR1-containing synapses is inhibited in neurons overexpressing a cleavage-resistant mutant of NCAM2. Our data indicate that Aβ-dependent disruption of NCAM2 functions in AD hippocampus contributes to synapse loss. Understanding how ß-amyloid contributes to synapse loss and dysfunction is a central goal of Alzheimer's disease research. Here, Leshchyns'ka et al. identify a novel mechanism by which Aß disassembles hippocampal glutamatergic synapses via cleavage of a neural cell adhesion molecule 2 (NCAM2).
Collapse
Affiliation(s)
- Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Heng Tai Liew
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Claire Shepherd
- Neuroscience Research Australia, Sydney, New South Wales 2031, Australia
| | - Glenda M Halliday
- Neuroscience Research Australia, Sydney, New South Wales 2031, Australia
| | - Claire H Stevens
- Neuroscience Research Australia, Sydney, New South Wales 2031, Australia.,Dementia Research Unit, School of Medical Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yazi D Ke
- Dementia Research Unit, School of Medical Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Lars M Ittner
- Neuroscience Research Australia, Sydney, New South Wales 2031, Australia.,Dementia Research Unit, School of Medical Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
68
|
Conant K, Allen M, Lim ST. Activity dependent CAM cleavage and neurotransmission. Front Cell Neurosci 2015; 9:305. [PMID: 26321910 PMCID: PMC4531370 DOI: 10.3389/fncel.2015.00305] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/27/2015] [Indexed: 12/13/2022] Open
Abstract
Spatially localized proteolysis represents an elegant means by which neuronal activity dependent changes in synaptic structure, and thus experience dependent learning and memory, can be achieved. In vitro and in vivo studies suggest that matrix metalloproteinase and adamalysin activity is concentrated at the cell surface, and emerging evidence suggests that increased peri-synaptic expression, release and/or activation of these proteinases occurs with enhanced excitatory neurotransmission. Synaptically expressed cell adhesion molecules (CAMs) could therefore represent important targets for neuronal activity-dependent proteolysis. Several CAM subtypes are expressed at the synapse, and their cleavage can influence the efficacy of synaptic transmission through a variety of non-mutually exclusive mechanisms. In the following review, we discuss mechanisms that regulate neuronal activity-dependent synaptic CAM shedding, including those that may be calcium dependent. We also highlight CAM targets of activity-dependent proteolysis including neuroligin and intercellular adhesion molecule-5 (ICAM-5). We include discussion focused on potential consequences of synaptic CAM shedding, with an emphasis on interactions between soluble CAM cleavage products and specific pre- and post-synaptic receptors.
Collapse
Affiliation(s)
- Katherine Conant
- Department of Neuroscience and Interdisciplinary Program in Neuroscience, Georgetown University Medical Center Washington, DC, USA
| | - Megan Allen
- Department of Neuroscience and Interdisciplinary Program in Neuroscience, Georgetown University Medical Center Washington, DC, USA
| | - Seung T Lim
- Department of Neuroscience and Interdisciplinary Program in Neuroscience, Georgetown University Medical Center Washington, DC, USA
| |
Collapse
|
69
|
Benarroch EE. Brain-derived neurotrophic factor: Regulation, effects, and potential clinical relevance. Neurology 2015; 85:1417-27. [PMID: 25817841 DOI: 10.1212/wnl.0000000000002044] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|