51
|
Yin F, Sancheti H, Cadenas E. Mitochondrial thiols in the regulation of cell death pathways. Antioxid Redox Signal 2012; 17:1714-27. [PMID: 22530585 PMCID: PMC3474184 DOI: 10.1089/ars.2012.4639] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Regulation of mitochondrial H(2)O(2) homeostasis and its involvement in the regulation of redox-sensitive signaling and transcriptional pathways is the consequence of the concerted activities of the mitochondrial energy- and redox systems. RECENT ADVANCES The energy component of this mitochondrial energy-redox axis entails the formation of reducing equivalents and their flow through the respiratory chain with the consequent electron leak to generate [Formula: see text] and H(2)O(2). The mitochondrial redox component entails the thiol-based antioxidant system, largely accounted for by glutathione- and thioredoxin-based systems that support the activities of glutathione peroxidases, peroxiredoxins, and methionine sulfoxide reductase. The ultimate reductant for these systems is NADPH: mitochondrial sources of NADPH are the nicotinamide nucleotide transhydrogenase, isocitrate dehydrogenase-2, and malic enzyme. NADPH also supports the glutaredoxin activity that regulates the extent of S-glutathionylation of mitochondrial proteins in response to altered redox status. CRITICAL ISSUES The integrated network of these mitochondrial thiols constitute a regulatory device involved in the maintenance of steady-state levels of H(2)O(2), mitochondrial and cellular redox and metabolic homeostasis, as well as the modulation of cytosolic redox-sensitive signaling; disturbances of this regulatory device affects transcription, growth, and ultimately influences cell survival/death. FUTURE DIRECTIONS The modulation of key mitochondrial thiol proteins, which participate in redox signaling, maintenance of the bioenergetic machinery, oxidative stress responses, and cell death programming, provides a pivotal direction in developing new therapies towards the prevention and treatment of several diseases.
Collapse
Affiliation(s)
- Fei Yin
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|
52
|
He T, Banach-Latapy A, Vernis L, Dardalhon M, Chanet R, Huang ME. Peroxiredoxin 1 knockdown potentiates β-lapachone cytotoxicity through modulation of reactive oxygen species and mitogen-activated protein kinase signals. Carcinogenesis 2012; 34:760-9. [PMID: 23239746 DOI: 10.1093/carcin/bgs389] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Peroxiredoxin (Prx) 1 is a member of the thiol-specific peroxidases family and plays diverse roles such as H2O2 scavenger, redox signal transducer and molecular chaperone. Prx1 has been reported to be involved in protecting cancer cells against various therapeutic challenges. We investigated how modulations of intracellular redox system affect cancer cell sensitivity to reactive oxygen species (ROS)-generating drugs. We observed that stable and transient Prx1 knockdown significantly enhanced HeLa cell sensitivity to β-lapachone (β-lap), a potential anticancer agent. Prx1 knockdown markedly potentiated 2 µM β-lap-induced cytotoxicity through ROS accumulation. This effect was largely NAD(P)H:quinone oxidoreductase 1 dependent and associated with a decrease in poly(ADP-ribose) polymerase 1 protein levels, phosphorylation of JNK, p38 and Erk proteins in mitogen-activated protein kinase (MAPK) pathways and a decrease in thioredoxin 1 (Trx1) protein levels. Trx1 serves as an electron donor for Prx1 and is overexpressed in Prx1 knockdown cells. Based on the fact that Prx1 is a major ROS scavenger and a partner of at least ASK1 and JNK, two key components of MAPK pathways, we propose that Prx1 knockdown-induced sensitization to β-lap is achieved through combined action of accumulation of ROS and enhancement of MAPK pathway activation, leading to cell apoptosis. These data support the view that modulation of intracellular redox state could be an alternative approach to enhance cancer cell sensitivity to ROS-generating drugs or to overcome some types of drug resistance.
Collapse
Affiliation(s)
- Tiantian He
- Centre National de la Recherche Scientifique, UMR 3348 Genotoxic Stress and Cancer, Orsay, France
| | | | | | | | | | | |
Collapse
|
53
|
Dimauro I, Pearson T, Caporossi D, Jackson MJ. In vitro susceptibility of thioredoxins and glutathione to redox modification and aging-related changes in skeletal muscle. Free Radic Biol Med 2012; 53:2017-27. [PMID: 23022873 PMCID: PMC3657158 DOI: 10.1016/j.freeradbiomed.2012.09.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 09/20/2012] [Accepted: 09/21/2012] [Indexed: 12/22/2022]
Abstract
Thioredoxins (Trx's) regulate redox signaling and are localized to various cellular compartments. Specific redox-regulated pathways for adaptation of skeletal muscle to contractions are attenuated during aging, but little is known about the roles of Trx's in regulating these pathways. This study investigated the susceptibility of Trx1 and Trx2 in skeletal muscle to oxidation and reduction in vitro and the effects of aging and contractions on Trx1, Trx2, and thioredoxin reductase (TrxR) 1 and 2 contents and nuclear and cytosolic Trx1 and mitochondrial Trx2 redox potentials in vivo. The proportions of cytosolic and nuclear Trx1 and mitochondrial Trx2 in the oxidized or reduced forms were analyzed using redox Western blotting. In myotubes, the mean redox potentials were nuclear Trx1, -251 mV; cytosolic Trx1, -242mV; mitochondrial Trx2, -346mV, data supporting the occurrence of differing redox potentials between cell compartments. Exogenous treatment of myoblasts and myotubes with hydrogen peroxide or dithiothreitol modified glutathione redox status and nuclear and cytosolic Trx1, but mitochondrial Trx2 was unchanged. Tibialis anterior muscles from young and old mice were exposed to isometric muscle contractions in vivo. Aging increased muscle contents of Trx1, Trx2, and TrxR2, but neither aging nor endogenous ROS generated during contractions modified Trx redox potentials, although oxidation of glutathione and other thiols occurred. We conclude that glutathione redox couples in skeletal muscle are more susceptible to oxidation than Trx and that Trx proteins are upregulated during aging, but do not appear to modulate redox-regulated adaptations to contractions that fail during aging.
Collapse
Affiliation(s)
- Ivan Dimauro
- Department of Health Sciences, University of Rome “Foro Italico,” 00194 Rome, Italy
| | - Timothy Pearson
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L69 3 GA, UK
| | - Daniela Caporossi
- Department of Health Sciences, University of Rome “Foro Italico,” 00194 Rome, Italy
| | - Malcolm J. Jackson
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L69 3 GA, UK
- Corresponding author. Fax: +44 (0) 151706580.
| |
Collapse
|
54
|
Lopert P, Day BJ, Patel M. Thioredoxin reductase deficiency potentiates oxidative stress, mitochondrial dysfunction and cell death in dopaminergic cells. PLoS One 2012; 7:e50683. [PMID: 23226354 PMCID: PMC3511321 DOI: 10.1371/journal.pone.0050683] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 10/25/2012] [Indexed: 01/06/2023] Open
Abstract
Mitochondria are considered major generators of cellular reactive oxygen species (ROS) which are implicated in the pathogenesis of neurodegenerative diseases such as Parkinson's disease (PD). We have recently shown that isolated mitochondria consume hydrogen peroxide (H₂O₂) in a substrate- and respiration-dependent manner predominantly via the thioredoxin/peroxiredoxin (Trx/Prx) system. The goal of this study was to determine the role of Trx/Prx system in dopaminergic cell death. We asked if pharmacological and lentiviral inhibition of the Trx/Prx system sensitized dopaminergic cells to mitochondrial dysfunction, increased steady-state H₂O₂ levels and death in response to toxicants implicated in PD. Incubation of N27 dopaminergic cells or primary rat mesencephalic cultures with the Trx reductase (TrxR) inhibitor auranofin in the presence of sub-toxic concentrations of parkinsonian toxicants paraquat; PQ or 6-hydroxydopamine; 6OHDA (for N27 cells) resulted in a synergistic increase in H₂O₂ levels and subsequent cell death. shRNA targeting the mitochondrial thioredoxin reductase (TrxR2) in N27 cells confirmed the effects of pharmacological inhibition. A synergistic decrease in maximal and reserve respiratory capacity was observed in auranofin treated cells and TrxR2 deficient cells following incubation with PQ or 6OHDA. Additionally, TrxR2 deficient cells showed decreased basal mitochondrial oxygen consumption rates. These data demonstrate that inhibition of the mitochondrial Trx/Prx system sensitizes dopaminergic cells to mitochondrial dysfunction, increased steady-state H₂O₂, and cell death. Therefore, in addition to their role in the production of cellular H₂O₂ the mitochondrial Trx/Prx system serve as a major sink for cellular H₂O₂ and its disruption may contribute to dopaminergic pathology associated with PD.
Collapse
Affiliation(s)
- Pamela Lopert
- Neuroscience Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Brian J. Day
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Manisha Patel
- Neuroscience Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
55
|
Lee MH, Han JH, Lee JH, Choi HG, Kang C, Kim JS. Mitochondrial Thioredoxin-Responding Off–On Fluorescent Probe. J Am Chem Soc 2012; 134:17314-9. [DOI: 10.1021/ja308446y] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Min Hee Lee
- Department of Chemistry, Korea University, Seoul, 136-701, Korea
| | - Ji Hye Han
- The School of East-West Medical
Science, Kyung Hee University, Yongin,
446-701, Korea
| | - Jae-Hong Lee
- Department of Chemistry, Korea University, Seoul, 136-701, Korea
| | - Hyo Gil Choi
- Protected
Horticulture Research
Station, National Institute of Horticultural and Herbal Science, Rural Development Administration, Busan, 618-800, Korea
| | - Chulhun Kang
- The School of East-West Medical
Science, Kyung Hee University, Yongin,
446-701, Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 136-701, Korea
| |
Collapse
|
56
|
Siore AM, Parker RE, Cuppels C, Thorn N, Hansen JM, Stecenko AA, Brigham KL. The role of mitochondrial oxidation in endotoxin-induced liver-dependent swine pulmonary edema. Pulm Pharmacol Ther 2012; 25:407-12. [PMID: 22925572 DOI: 10.1016/j.pupt.2012.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/23/2012] [Accepted: 08/09/2012] [Indexed: 01/11/2023]
Abstract
UNLABELLED We reported previously studies in an in situ perfused swine preparation demonstrating that endotoxemia induced lung injury required the presence of the liver and that the response was accompanied by oxidative stress. To determine whether lung and liver mitochondrial oxidative stress was important to the response, we compared the effects of equimolar amounts of two antioxidants, n-acetylcysteine, which does not replenish mitochondrial glutathione, and procysteine which does, on endotoxemia induced lung injury in the swine preparation. In a swine perfused liver-lung preparation, we measured physiologic, biochemical and cellular responses of liver and lung to endotoxemia with and without the drugs. Endotoxemia caused oxidation of the mitochondria-specific protein, thioredoxin-2, in both the lungs and the liver. Procysteine reduced thioredoxin-2 oxidation, attenuated hemodynamic, gas exchange, hepatocellular dysfunction, and cytokine responses and prevented lung edema. n-acetylcysteine had more modest effects and did not prevent lung edema. CONCLUSIONS We conclude that mitochondrial oxidation may be critical to the pathogenesis of endotoxemia-induced liver-dependent lung injury and that choices of antioxidant therapy for such conditions must consider the desired subcellular target in order to be optimally effective.
Collapse
Affiliation(s)
- Amsel M Siore
- Center for Translational Research in the Lungs, McKelvey Center for Lung Transplantation, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine and Predictive Health Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
57
|
Cacho-Valadez B, Muñoz-Lobato F, Pedrajas JR, Cabello J, Fierro-González JC, Navas P, Swoboda P, Link CD, Miranda-Vizuete A. The characterization of the Caenorhabditis elegans mitochondrial thioredoxin system uncovers an unexpected protective role of thioredoxin reductase 2 in β-amyloid peptide toxicity. Antioxid Redox Signal 2012; 16:1384-400. [PMID: 22220943 PMCID: PMC3329951 DOI: 10.1089/ars.2011.4265] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIM Functional in vivo studies on the mitochondrial thioredoxin system are hampered by the embryonic or larval lethal phenotypes displayed by murine or Drosophila knock-out models. Thus, the access to alternative metazoan knock-out models for the mitochondrial thioredoxin system is of critical importance. RESULTS We report here the characterization of the mitochondrial thioredoxin system of Caenorhabditis elegans that is composed of the genes trx-2 and trxr-2. We demonstrate that the proteins thioredoxin 2 (TRX-2) and thioredoxin reductase 2 (TRXR-2) localize to the mitochondria of several cells and tissues of the nematode and that trx-2 and trxr-2 are upregulated upon induction of the mitochondrial unfolded protein response. Surprisingly, C. elegans trx-2 (lof ) and trxr-2 (null) single and double mutants are viable and display similar growth rates as wild-type controls. Moreover, the lack of the mitochondrial thioredoxin system does not affect longevity, reactive oxygen species production or the apoptotic program. Interestingly, we found a protective role of TRXR-2 in a transgenic nematode model of Alzheimer's disease (AD) that expresses human β-amyloid peptide and causes an age-dependent progressive paralysis. Hence, trxr-2 downregulation enhanced the paralysis phenotype, while a strong decrease of β-amyloid peptide and amyloid deposits occurred when TRXR-2 was overexpressed. INNOVATION C. elegans provides the first viable metazoan knock-out model for the mitochondrial thioredoxin system and identifies a novel role of this system in β-amyloid peptide toxicity and AD. CONCLUSION The nematode strains characterized in this work make C. elegans an ideal model organism to study the pathophysiology of the mitochondrial thioredoxin system at the level of a complete organism.
Collapse
Affiliation(s)
- Briseida Cacho-Valadez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC), Depto. de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Schuh E, Pflüger C, Citta A, Folda A, Rigobello MP, Bindoli A, Casini A, Mohr F. Gold(I) carbene complexes causing thioredoxin 1 and thioredoxin 2 oxidation as potential anticancer agents. J Med Chem 2012; 55:5518-28. [PMID: 22621714 DOI: 10.1021/jm300428v] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold(I) complexes with 1,3-substituted imidazole-2-ylidene and benzimidazole-2-ylidene ligands of the type NHC-Au-L (NHC = N-heterocyclic carbene L = Cl or 2-mercapto-pyrimidine) have been synthesized and structurally characterized. The compounds were evaluated for their antiproliferative properties in human ovarian cancer cells sensitive and resistant to cisplatin (A2780S/R), as well in the nontumorigenic human embryonic kidney cell line (HEK-293T), showing in some cases important cytotoxic effects. Some of the complexes were comparatively tested as thioredoxin reductase (TrxR) and glutathione reductase (GR) inhibitors, directly against the purified proteins or in cell extracts. The compounds showed potent and selective TrxR inhibition properties in particular in cancer cell lines. Remarkably, the most effective TrxR inhibitors induced extensive oxidation of thioredoxins (Trxs), which was more relevant in the cancerous cells than in HEK-293T cells. Additional biochemical assays on glutathione systems and reactive oxygen species formation evidenced important differences with respect to the classical cytotoxic Au(I)-phosphine compound auranofin.
Collapse
Affiliation(s)
- Esther Schuh
- Fachbereich C, Anorganische Chemie, Bergische Universität Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Tetrahydrocurcumin ameliorates homocysteinylated cytochrome-c mediated autophagy in hyperhomocysteinemia mice after cerebral ischemia. J Mol Neurosci 2012; 47:128-38. [PMID: 22212488 DOI: 10.1007/s12031-011-9695-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 12/08/2011] [Indexed: 12/21/2022]
Abstract
High levels of homocysteine (Hcy) known as hyperhomocysteinemia (HHcy), contribute to autophagy and ischemia/reperfusion injury (I/R). Previous studies have shown that I/R injury and HHcy cause increased cerebrovascular permeability; however, the associated mechanism remains obscure. Interestingly, during HHcy, cytochome-c becomes homocysteinylated (Hcy-cyto-c). Cytochrome-c (cyto-c) transports electrons and facilitates bioenergetics in the system. However, its role in autophagy during ischemia/reperfusion injury is unclear. Tetrahydrocurcumin (THC) is a major herbal antioxidant and anti-inflammatory agent. Therefore, the objective of this study was to determine whether THC ameliorates autophagy during ischemia/reperfusion injury by reducing homocysteinylation of cyto-c in hyperhomocysteinemia pathological condition. To test this hypothesis, we employed 8-10-week-old male cystathionine-beta-synthase heterozygote knockout (CBS⁺/⁻) mice (genetically hyperhomocystemic mice). Experimental group was: CBS⁺/⁻, CBS⁺/⁻ + THC (25 mg/kg in 0.1% DMSO dose); CBS ⁺/⁻/I/R, and CBS⁺/⁻/I/R + THC (25 mg/kg in 0.1% DMSO dose). Ischemia was performed for 30 min and reperfusion for 72 h. THC was injected intra-peritoneally (I.P.) once daily for a period of 3 days after 30 min of ischemia. The infarct area was measured using 2,3,5-triphenyltetrazolium chloride staining. Permeability was determined by brain edema and Evans Blue extravasation. The brain tissues were analyzed for oxidative stress, matrix metalloproteinase-9 (MMP-9), damage-regulated autophagy modulator (DRAM), and microtubule-associated protein 1 light chain 3 (LC3) by Western blot. The mRNA levels of S-adenosyl-L-homocysteine hydrolases (SAHH) and methylenetetrahydrofolate reductase (MTHFR) genes were measured by quantitative real-time polymerase chain reaction. Co-immunoprecipitation was used to determine the homocysteinylation of cyto-c. We found that brain edema and Evans Blue leakage were reduced in I/R + THC-treated groups as compared to sham-operated groups along with reduced brain infarct size. THC also decreased oxidative damage and ameliorated the homocysteinylation of cyto-c in-part by MMP-9 activation which leads to autophagy in I/R groups as compared to sham-operated groups. This study suggests a potential therapeutic role of dietary THC in cerebral ischemia.
Collapse
|
60
|
Revathy KS, Umasuthan N, Lee Y, Whang I, Kim HC, Lee J. Cytosolic thioredoxin from Ruditapes philippinarum: molecular cloning, characterization, expression and DNA protection activity of the recombinant protein. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 36:85-92. [PMID: 21740925 DOI: 10.1016/j.dci.2011.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/06/2011] [Accepted: 06/13/2011] [Indexed: 05/31/2023]
Abstract
Thioredoxin (TRx) is a small redox protein that plays significant roles in protection against oxidative stress and in cell homeostasis by maintaining oxidized proteins in a reduced state. Here, we describe the isolation and characterization of a full-length TRx cDNA sequence from manila clam, Ruditapes philippinarum and named it as RpTRx. The full length sequence consists of 1416 bp with an open reading frame of 318 bp encoding for 106 amino acids. RpTRx protein harbors evolutionarily-conserved TRx active site (32)WCGPC(36). Phylogenetic analysis revealed a close proximity of RpTRx with the orthologue in Japanese scallop, Chlamys farreri. RpTRx was found to be constitutively expressed in hemocyte, gill, mantle, foot and siphon indicating a general role in physiological processes in various tissues. With regard to a potential role in immune responses, the RpTRx mRNA was found to be up-regulated in hemocytes after bacterial (Vibrio tapetis) and lipopolysaccharide (LPS) challenge at 3h post-infection (p.i.); a wavering increase was observed up to 96 h p.i. for LPS challenge and 48 h p.i. for bacterial challenge. Thus, RpTRx may function as an intracellular antioxidant to protect the cells against ROS induced by LPS and bacterial challenges. Indeed, when recombinant RpTRx protein (rRpTRx) was over-expressed in Escherichiacoli Rosetta gami(TM) (DE3) cells, it was able to scavenge free radicals and protect super-coiled DNA from oxidative damage induced by a metal-ion catalyzed oxidation reaction. In summary, RpTRx plays an essential role in cellular defense and maintenance of homeostasis in the manila clam.
Collapse
Affiliation(s)
- Kasthuri Saranya Revathy
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | | | | | | | | | | |
Collapse
|
61
|
Zhang H, Limphong P, Pieper J, Liu Q, Rodesch CK, Christians E, Benjamin IJ. Glutathione-dependent reductive stress triggers mitochondrial oxidation and cytotoxicity. FASEB J 2011; 26:1442-51. [PMID: 22202674 DOI: 10.1096/fj.11-199869] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
To investigate the effects of the predominant nonprotein thiol, glutathione (GSH), on redox homeostasis, we employed complementary pharmacological and genetic strategies to determine the consequences of both loss- and gain-of-function GSH content in vitro. We monitored the redox events in the cytosol and mitochondria using reduction-oxidation sensitive green fluorescent protein (roGFP) probes and the level of reduced/oxidized thioredoxins (Trxs). Either H(2)O(2) or the Trx reductase inhibitor 1-chloro-2,4-dinitrobenzene (DNCB), in embryonic rat heart (H9c2) cells, evoked 8 or 50 mV more oxidizing glutathione redox potential, E(hc) (GSSG/2GSH), respectively. In contrast, N-acetyl-L-cysteine (NAC) treatment in H9c2 cells, or overexpression of either the glutamate cysteine ligase (GCL) catalytic subunit (GCLC) or GCL modifier subunit (GCLM) in human embryonic kidney 293 T (HEK293T) cells, led to 3- to 4-fold increase of GSH and caused 7 or 12 mV more reducing E(hc), respectively. This condition paradoxically increased the level of mitochondrial oxidation, as demonstrated by redox shifts in mitochondrial roGFP and Trx2. Lastly, either NAC treatment (EC(50) 4 mM) or either GCLC or GCLM overexpression exhibited increased cytotoxicity and the susceptibility to the more reducing milieu was achieved at decreased levels of ROS. Taken together, our findings reveal a novel mechanism by which GSH-dependent reductive stress triggers mitochondrial oxidation and cytotoxicity.
Collapse
Affiliation(s)
- Huali Zhang
- Laboratory of Cardiac Disease, Redox Signaling, and Cell Regeneration, Division of Cardiology, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA
| | | | | | | | | | | | | |
Collapse
|
62
|
Yoshioka J, Chutkow WA, Lee S, Kim JB, Yan J, Tian R, Lindsey ML, Feener EP, Seidman CE, Seidman JG, Lee RT. Deletion of thioredoxin-interacting protein in mice impairs mitochondrial function but protects the myocardium from ischemia-reperfusion injury. J Clin Invest 2011; 122:267-79. [PMID: 22201682 DOI: 10.1172/jci44927] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 10/12/2011] [Indexed: 12/11/2022] Open
Abstract
Classic therapeutics for ischemic heart disease are less effective in individuals with the metabolic syndrome. As the prevalence of the metabolic syndrome is increasing, better understanding of cardiac metabolism is needed to identify potential new targets for therapeutic intervention. Thioredoxin-interacting protein (Txnip) is a regulator of metabolism and an inhibitor of the antioxidant thioredoxins, but little is known about its roles in the myocardium. We examined hearts from Txnip-KO mice by polony multiplex analysis of gene expression and an independent proteomic approach; both methods indicated suppression of genes and proteins participating in mitochondrial metabolism. Consistently, Txnip-KO mitochondria were functionally and structurally altered, showing reduced oxygen consumption and ultrastructural derangements. Given the central role that mitochondria play during hypoxia, we hypothesized that Txnip deletion would enhance ischemia-reperfusion damage. Surprisingly, Txnip-KO hearts had greater recovery of cardiac function after an ischemia-reperfusion insult. Similarly, cardiomyocyte-specific Txnip deletion reduced infarct size after reversible coronary ligation. Coordinated with reduced mitochondrial function, deletion of Txnip enhanced anaerobic glycolysis. Whereas mitochondrial ATP synthesis was minimally decreased by Txnip deletion, cellular ATP content and lactate formation were higher in Txnip-KO hearts after ischemia-reperfusion injury. Pharmacologic inhibition of glycolytic metabolism completely abolished the protection afforded the heart by Txnip deficiency under hypoxic conditions. Thus, although Txnip deletion suppresses mitochondrial function, protection from myocardial ischemia is enhanced as a result of a coordinated shift to enhanced anaerobic metabolism, which provides an energy source outside of mitochondria.
Collapse
Affiliation(s)
- Jun Yoshioka
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Hirasaka K, Lago CU, Kenaston MA, Fathe K, Nowinski SM, Nikawa T, Mills EM. Identification of a redox-modulatory interaction between uncoupling protein 3 and thioredoxin 2 in the mitochondrial intermembrane space. Antioxid Redox Signal 2011; 15:2645-61. [PMID: 21619484 PMCID: PMC3183655 DOI: 10.1089/ars.2011.3888] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
UNLABELLED Uncoupling protein 3 (UCP3) is a member of the mitochondrial solute carrier superfamily that is enriched in skeletal muscle and controls mitochondrial reactive oxygen species (ROS) production, but the mechanisms underlying this function are unclear. AIMS The goal of this work focused on the identification of mechanisms underlying UCP3 functions. RESULTS Here we report that the N-terminal, intermembrane space (IMS)-localized hydrophilic domain of mouse UCP3 interacts with the N-terminal mitochondrial targeting signal of thioredoxin 2 (Trx2), a mitochondrial thiol reductase. Cellular immunoprecipitation and in vitro pull-down assays show that the UCP3-Trx2 complex forms directly, and that the Trx2 N-terminus is both necessary and sufficient to confer UCP3 binding. Mutation studies show that neither a catalytically inactivated Trx2 mutant, nor a mutant Trx2 bearing the N-terminal targeting sequence of cytochrome c oxidase (COXMTS-Trx2) bind UCP3. Biochemical analyses using permeabilized mitochondria, and live cell experiments using bimolecular fluorescence complementation show that the UCP3-Trx2 complex forms specifically in the IMS. Finally, studies in C2C12 myocytes stably overexpressing UCP3 (2.5-fold) and subjected to Trx2 knockdown show that Trx2 is required for the UCP3-dependent mitigation of complex III-driven mitochondrial ROS generation. UCP3 expression was increased in mice fed a high fat diet, leading to increased localization of Trx2 to the IMS. UCP3 overexpression also increased expression of the glucose transporter GLUT4 in a Trx2-dependent fashion. INNOVATION This is the first report of a mitochondrial protein-protein interaction with UCP3 and the first demonstration that UCP3 binds directly, and in cells and tissues with mitochondrial thioredoxin 2. CONCLUSION These studies identify a novel UCP3-Trx2 complex, a novel submitochondrial localization of Trx2, and a mechanism underlying UCP3-regulated mitochondrial ROS production.
Collapse
Affiliation(s)
- Katsuya Hirasaka
- Division of Pharmacology/Toxicology, University of Texas at Austin, Austin, Texas 78714, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Lagoda G, Xie Y, Sezen SF, Hurt KJ, Liu L, Musicki B, Burnett AL. FK506 neuroprotection after cavernous nerve injury is mediated by thioredoxin and glutathione redox systems. J Sex Med 2011; 8:3325-34. [PMID: 21995851 DOI: 10.1111/j.1743-6109.2011.02500.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Immunophilin ligands such as FK506 (FK) preserve erectile function (EF) following cavernous nerve injury (CNI), although the precise mechanisms are unclear. We examined whether the thioredoxin (Trx) and glutathione (GSH) redox systems mediate this effect after CNI. AIM To investigate the roles of Trx reductase 2 (TrxR2) and S-Nitrosoglutathione reductase (GSNOR) as antioxidative/nitrosative and antiapoptotic mediators of the neuroprotective effect of FK in the penis after CNI. METHODS Adult male rats, wild-type (WT) mice, and GSNOR deficient (GSNOR -/-) mice were divided into four groups: sham surgery (CN [cavernous nerves] exposure only) + vehicle; sham surgery + FK (5 mg/kg/day/rat or 2 mg/kg/day/mouse, for 2 days, subcutaneous); CNI + vehicle; and CNI + FK. At day 4 after injury, electrically stimulated changes in intracavernosal pressure (ICP) were measured. Penises were collected for Western blot analysis of TrxR2, GSNOR, and Bcl-2, and for immunolocalization of TrxR2 and GSNOR. MAIN OUTCOME MEASURES EF assessment represented by maximal ICP and total ICP in response to electrical stimulation. Evaluation of protein expression levels and distribution patterns of antioxidative/nitrosative and antiapoptotic factors in penile tissue. RESULTS EF decreased after CNI compared with sham surgery values in both rats (P < 0.01) and WT and GSNOR -/- mice (P < 0.05). FK treatment preserved EF after CNI compared with vehicle treatment in rats (P < 0.01) and WT mice (P < 0.05) but not in GSNOR -/- mice. In rats, GSNOR (P < 0.01) and Bcl-2 (P < 0.05) expressions were significantly decreased after CNI. FK treatment in CN-injured rats restored expression of GSNOR and upregulated TrxR2 (P < 0.001) and Bcl-2 (P < 0.001) expressions compared with vehicle treatment. Localizations of proteins in the penis were observed for TrxR2 (endothelium, smooth muscle) and for GSNOR (nerves, endothelium, smooth muscle). CONCLUSIONS The neuroprotective effect of FK in preserving EF after CNI involves antioxidative/nitrosative and antiapoptotic mechanisms mediated, to some extent, by Trx and GSH systems.
Collapse
Affiliation(s)
- Gwen Lagoda
- Department of Urology, The James Buchanan Brady Urological Institute, The Johns Hopkins Hospital and The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
65
|
Long-term ursodeoxycholate improves circulating redox changes in primary biliary cirrhotic patients. Clin Biochem 2011; 44:1400-4. [PMID: 21963381 DOI: 10.1016/j.clinbiochem.2011.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Cholestasis is associated with systemic and hepatic oxidative and nitrosative stress; in this scenario, the conjugated hydrophilic bile salt ursodeoxycholate (UDCA) might play a protective role. METHODS Circulating oxidative and nitrosative stress markers were assessed in patients with primary biliary cirrhosis (PBC) before and during UDCA (15-20mg/kg/day) therapy. RESULTS In patients with stage I-II PBC, UDCA improved ALT and alkaline phosphatase levels and near normalized serum thioredoxin (1.97 ± 0.37 vs 2.41 ± 0.39 nmol/L), nitrotyrosine (15 ± 4 vs 22 ± 7 nmol/L), nitrosothiols (144 ± 28 vs 205 ± 84 nmol/L) and K-18 levels (162 ± 21 vs 228 ± 33 U/L). Conversely, less marked changes were noted in patients with stages III-IV who showed lower thioredoxin (1.01 ± 0.31 nmol/L), higher nitrosothiols (605 ± 64 nmol/L), nitrotyrosine (62 ± 13 nmol/L) and K-18 levels (521 ± 57 U/L). Overall, thioredoxin was inversely related with nitrotyrosine (r=-0.838, P<0.001) and K-18 (r=-0.838, P<0.001) levels. Nitrosothiols and K-18 were linearly and significantly related with nitrotyrosine (r=0.862, P<0.001; r=0.894, P<0.001, respectively). CONCLUSIONS Oxidative and nitrosative changes in patients with PBC are effectively counteracted by UDCA. The protective effect of UDCA, however, are limited to early disease stages and progressively diminishes with ongoing cholestasis.
Collapse
|
66
|
Choksi S, Lin Y, Pobezinskaya Y, Chen L, Park C, Morgan M, Li T, Jitkaew S, Cao X, Kim YS, Kim HS, Levitt P, Shih G, Birre M, Deng CX, Liu ZG. A HIF-1 target, ATIA, protects cells from apoptosis by modulating the mitochondrial thioredoxin, TRX2. Mol Cell 2011; 42:597-609. [PMID: 21658601 DOI: 10.1016/j.molcel.2011.03.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 02/04/2011] [Accepted: 03/23/2011] [Indexed: 10/18/2022]
Abstract
The regulation of apoptosis is critical for controlling tissue homeostasis and preventing tumor formation and growth. Reactive oxygen species (ROS) generation plays a key role in such regulation. Here, we describe a HIF-1 target, Vasn/ATIA (anti-TNFα-induced apoptosis), which protects cells against TNFα- and hypoxia-induced apoptosis. Through the generation of ATIA knockout mice, we show that ATIA protects cells from apoptosis through regulating the function of the mitochondrial antioxidant, thioredoxin-2, and ROS generation. ATIA is highly expressed in human glioblastoma, and ATIA knockdown in glioblastoma cells renders them sensitive to hypoxia-induced apoptosis. Therefore, ATIA is not only a HIF-1 target that regulates mitochondrial redox pathways but also a potentially diagnostic marker and therapeutic target in human glioblastoma.
Collapse
Affiliation(s)
- Swati Choksi
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Engelhard J, Christian BE, Weingarten L, Kuntz G, Spremulli LL, Dick TP. In situ kinetic trapping reveals a fingerprint of reversible protein thiol oxidation in the mitochondrial matrix. Free Radic Biol Med 2011; 50:1234-41. [PMID: 21295137 DOI: 10.1016/j.freeradbiomed.2011.01.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 01/25/2011] [Accepted: 01/26/2011] [Indexed: 12/21/2022]
Abstract
Reactive oxygen species (ROS) are released at the mitochondrial inner membrane by the electron transport chain (ETC). Increasing evidence suggests that mitochondrial H2O2 acts as a signaling molecule and participates in the (feedback) regulation of mitochondrial activity and turnover. It seems likely that key mitochondrial components contain redox-sensitive thiols that help to adapt protein function to changes in electron flow. However, the identity of most redox-regulated mitochondrial proteins remains to be defined. Thioredoxin 2 (Trx2) is the major protein-thiol-reducing oxidoreductase in the mitochondrial matrix. We used in situ mechanism-based kinetic trapping to identify disulfide-exchange interactions of Trx2 within functional mitochondria of intact cells. Mass spectrometry successfully identified known and suspected Trx2 target proteins and, in addition, revealed a set of new candidate target proteins. Our results suggest that the mitochondrial protein biosynthesis machinery is a major target of ETC-derived ROS. In particular, we identified mitochondrial methionyl-tRNA synthetase (mtMetRS) as one of the most prominent Trx2 target proteins. We show that an increase in ETC-derived oxidants leads to an increase in mtMetRS oxidation in intact cells. In conclusion, we find that in situ kinetic trapping provides starting points for future functional studies of intramitochondrial redox regulation.
Collapse
Affiliation(s)
- Johanna Engelhard
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
68
|
Mitochondrial protection by the thioredoxin-2 and glutathione systems in an in vitro endothelial model of sepsis. Biochem J 2011; 436:123-32. [DOI: 10.1042/bj20102135] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Oxidative stress and mitochondrial dysfunction are common features in patients with sepsis and organ failure. Within mitochondria, superoxide is converted into hydrogen peroxide by MnSOD (manganese-containing superoxide dismutase), which is then detoxified by either the mGSH (mitochondrial glutathione) system, using the enzymes mGPx-1 (mitochondrial glutathione peroxidase-1), GRD (glutathione reductase) and mGSH, or the TRX-2 (thioredoxin-2) system, which uses the enzymes PRX-3 (peroxiredoxin-3) and TRX-2R (thioredoxin reductase-2) and TRX-2. In the present paper we investigated the relative contribution of these two systems, using selective inhibitors, in relation to mitochondrial dysfunction in endothelial cells cultured with LPS (lipopolysaccharide) and PepG (peptidoglycan). Specific inhibition of both the TRX-2 and mGSH systems increased the intracellular total radical production (P<0.05) and reduced mitochondrial membrane potentials (P<0.05). Inhibition of the TRX-2 system, but not mGSH, resulted in lower ATP production (P<0.001) with high metabolic activity (P<0.001), low oxygen consumption (P<0.001) and increased lactate production (P<0.001) and caspase 3/7 activation (P<0.05). Collectively these results show that the TRX-2 system appears to have a more important role in preventing mitochondrial dysfunction than the mGSH system in endothelial cells under conditions that mimic a septic insult.
Collapse
|
69
|
Zhang X, Zheng Y, Fried LE, Du Y, Montano SJ, Sohn A, Lefkove B, Holmgren L, Arbiser JL, Holmgren A, Lu J. Disruption of the mitochondrial thioredoxin system as a cell death mechanism of cationic triphenylmethanes. Free Radic Biol Med 2011; 50:811-20. [PMID: 21215310 PMCID: PMC3047390 DOI: 10.1016/j.freeradbiomed.2010.12.036] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 12/23/2010] [Accepted: 12/27/2010] [Indexed: 11/30/2022]
Abstract
Alterations in mitochondrial structure and function are a hallmark of cancer cells compared to normal cells and thus targeting mitochondria has emerged as an novel approach to cancer therapy. The mitochondrial thioredoxin 2 (Trx2) system is critical for cell viability, but its role in cancer biology is not well understood. Recently some cationic triphenylmethanes such as brilliant green (BG) and gentian violet were shown to have antitumor and antiangiogenic activity with unknown mechanisms. Here we demonstrate that BG killed cells at nanomolar concentrations and targeted mitochondrial Trx2, which was oxidized and degraded. HeLa cells were more sensitive to BG than fibroblasts. In HeLa cells, Trx2 down-regulation by siRNA resulted in increased sensitivity to BG, whereas for fibroblasts, the same treatments had no effect. BG was observed to accumulate in mitochondria and cause a rapid and dramatic decrease in mitochondrial Trx2 protein. With a redox Western blot method, we found that treatment with BG caused oxidation of both Trx1 and Trx2, followed by release of cytochrome c and apoptosis-inducing factor from the mitochondria into the cytosol. Moreover, this treatment resulted in an elevation of the mRNA level of Lon protease, a protein quality control enzyme in the mitochondrial matrix, suggesting that the oxidized Trx2 may be degraded by Lon protease.
Collapse
Affiliation(s)
- Xu Zhang
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Yujuan Zheng
- Department of Oncology and Pathology, Cancer Centrum Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Levi E Fried
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yatao Du
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Sergio J. Montano
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Allie Sohn
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Benjamin Lefkove
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lars Holmgren
- Department of Oncology and Pathology, Cancer Centrum Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Jack L. Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA
- Atlanta VA Medical Center, Atlanta, Georgia, USA
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Correspondence to: Arne Holmgren, MD, PhD Professor of Biochemistry Division of Biochemistry Department of Medical Biochemistry and Biophysics Karolinska Institutet, SE 171 77 Stockholm, Sweden. Phone: +46 8 52487686; Fax: +46 8 7284716
| | - Jun Lu
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Jun Lu, Ph. D Division of Biochemistry Department of Medical Biochemistry and Biophysics Karolinska Institute SE-171 77 Stockholm, Sweden Phone: +46 8 52487005 Fax: +46 8 305193
| |
Collapse
|
70
|
Song JS, Cho HH, Lee BJ, Bae YC, Jung JS. Role of thioredoxin 1 and thioredoxin 2 on proliferation of human adipose tissue-derived mesenchymal stem cells. Stem Cells Dev 2011; 20:1529-37. [PMID: 21158569 DOI: 10.1089/scd.2010.0364] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Thioredoxin (TRX) is a ubiquitous redox protein that is involved in numerous biological functions, including the first unique step in DNA synthesis. TRX provides control over a number of transcription factors affecting cell proliferation and death through a mechanism referred to as redox regulation. In mammals, there are at least 3 members of the TRX family: TRX1, TRX2, and sperm TRX. To investigate the role of TRX1 and TRX2 in human adipose tissue-derived mesenchymal stem cells (hADSC), we modulated TRX1 and TRX2 expressions in hADSC using a lentiviral gene transfer system and small interfering RNA technique. Reverse transcription-polymerase chain reaction analysis confirmed the changes in expression of TRX1 and TRX2 in lentivirus-transduced or small interfering RNA-transfected cells. Although overexpression of TRX1 and TRX2 did not affect the differentiation of hADSC into adipogenic and osteogenic lineages, it increased the proliferation of hADSC compared with control lentivirus-transduced cells, decreased reactive oxygen species production, and inhibited oxidant-induced cell death. Downregulation of TRX1 and TRX2 inhibited cell proliferation. The treatment of U0126 blocked TRX-induced increase in cell proliferation. Overexpression of TRX1 and TRX2 increased ERK1/2 phosphorylation, nuclear factor-kappaB activation, and β-catenin/Tcf promoter activities and inhibited lucine zipper tumor suppressor 2 expression. On the contrary, downregulation of TRX1 and TRX2 expression induced inhibition of ERK1/2 phosphorylation, nuclear factor-kappaB activation, and β-catenin/Tcf promoter activities and increased lucine zipper tumor suppressor 2 expression. Activation of Wnt signal increased ERK1/2 activities in hADSC. These results indicated that TRX1 and TRX2 regulate the proliferation and survival of hADSC; these processes are mediated by the activation of ERK1/2.
Collapse
Affiliation(s)
- Ji Sun Song
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, Korea
| | | | | | | | | |
Collapse
|
71
|
Li J, Chen X, Xiao W, Ma W, Li T, Huang J, Liu X, Liang X, Tang S, Luo Y. Mitochondria-targeted antioxidant peptide SS31 attenuates high glucose-induced injury on human retinal endothelial cells. Biochem Biophys Res Commun 2011; 404:349-56. [DOI: 10.1016/j.bbrc.2010.11.122] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 11/24/2010] [Indexed: 12/15/2022]
|
72
|
Deng ZH, Cao HQ, Hu YB, Wen JF, Zhou JH. TRX is up-regulated by fibroblast growth factor-2 in lung carcinoma. APMIS 2010; 119:57-65. [PMID: 21143527 DOI: 10.1111/j.1600-0463.2010.02692.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We have previously shown that exogenous fibroblast growth factor-2 (FGF-2) inhibits apoptosis of the small-cell lung cancer (SCLC) cell line NCI-H446, but the underlying mechanism remains unknown. In this study, the protein profiles of FGF-2-treated and untreated NCI-H446 cells were determined by 2-D gel electrophoresis combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and bioinformatics. Differential expression analysis of the protein profiles after FGF-2 treatment identified a total of 24 protein spots, of which nine were up-regulated and 15 were down-regulated. Four proteins were identified by MALDI-TOF-MS: thioredoxin (TRX), visfatin, ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) and Cu/Zn superoxide dismutase (CuZn-SOD). Western blotting revealed that TRX was up-regulated in NCI-H446 and A549 cells treated with FGF-2. Furthermore, immunohistochemical staining confirmed that both FGF-2 and TRX were overexpressed in lung cancer tissues and could be correlated with both lymph node metastasis and clinical stage. These data indicate that TRX may be involved in the FGF-2 signaling pathway.
Collapse
Affiliation(s)
- Zheng-Hao Deng
- Department of Pathology, XiangYa School of Medicine, Central South University, Changsha, Hunan Province, China
| | | | | | | | | |
Collapse
|
73
|
Munemasa Y, Kitaoka Y, Kuribayashi J, Ueno S. Modulation of mitochondria in the axon and soma of retinal ganglion cells in a rat glaucoma model. J Neurochem 2010; 115:1508-19. [DOI: 10.1111/j.1471-4159.2010.07057.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
74
|
Abstract
Mammalian cells are highly organized to optimize function. For instance, oxidative energy-producing processes in mitochondria are sequestered away from plasma membrane redox signalling complexes and also from nuclear DNA, which is subject to oxidant-induced mutation. Proteins are unique among macromolecules in having reversible oxidizable elements, 'sulphur switches', which support dynamic regulation of structure and function. Accumulating evidence shows that redox signalling and control systems are maintained under kinetically limited steady states, which are highly displaced from redox equilibrium and distinct among organelles. Mitochondria are most reducing and susceptible to oxidation under stressed conditions, while nuclei are also reducing but relatively resistant to oxidation. Within compartments, the glutathione and thioredoxin systems serve parallel and non-redundant functions to maintain the dynamic redox balance of subsets of protein cysteines, which function in redox signalling and control. This organization allows cells to be poised to respond to cell stress but also creates sites of vulnerability. Importantly, disruption of redox organization is a common basis for disease. Research tools are becoming available to elucidate details of subcellular redox organization, and this development highlights an opportunity for a new generation of targeted antioxidants to enhance and restore redox signalling and control in disease prevention.
Collapse
Affiliation(s)
- D P Jones
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA 30322, USA.
| | | |
Collapse
|
75
|
Wang X, Ling S, Zhao D, Sun Q, Li Q, Wu F, Nie J, Qu L, Wang B, Shen X, Bai Y, Li Y, Li Y. Redox regulation of actin by thioredoxin-1 is mediated by the interaction of the proteins via cysteine 62. Antioxid Redox Signal 2010; 13:565-73. [PMID: 20218863 DOI: 10.1089/ars.2009.2833] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Actin is a highly conserved protein in eukaryotic cells, and has been identified as one of the main redox targets by redox proteomics under oxidative stress. However, little is known about the mechanisms of regulation of the redox state of actin. In this study, we investigated how thioredoxin-1 (Trx1) affected the redox state of actin and its polymerization under oxidative stress in SH-SY5Y cells. Trx1 decreased the levels of reactive oxygen species (ROS) in the cells, and cysteine residues at positions 32, 35, and 69 of the Trx1 protein were active sites for redox regulation. Actin could be kept in a reduced state by Trx1 under H(2)O(2) stimulation. A physical interaction was found to exist between actin and Trx1. Cysteine 62 in Trx1 was the key site that interacted with actin, and it was required to maintain cellular viability and anti-apoptotic function. Taken together, these results suggested that Trx1 could protect cells from apoptosis under oxidative stress not only by increasing the total antioxidant capability and decreasing the ROS levels, but also by stabilizing the actin cytoskeletal system, which cooperatively contributed to the enhancement of cell viability and worked against apoptosis.
Collapse
Affiliation(s)
- Xiaogang Wang
- Department of Cellular and Molecular Biology, State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Aon-Bertolino ML, Romero JI, Galeano P, Holubiec M, Badorrey MS, Saraceno GE, Hanschmann EM, Lillig CH, Capani F. Thioredoxin and glutaredoxin system proteins-immunolocalization in the rat central nervous system. Biochim Biophys Acta Gen Subj 2010; 1810:93-110. [PMID: 20620191 DOI: 10.1016/j.bbagen.2010.06.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 06/21/2010] [Accepted: 06/28/2010] [Indexed: 01/20/2023]
Abstract
BACKGROUND The oxidoreductases of the thioredoxin (Trx) family of proteins play a major role in the cellular response to oxidative stress. Redox imbalance is a major feature of brain damage. For instance, neuronal damage and glial reaction induced by a hypoxic-ischemic episode is highly related to glutamate excitotoxicity, oxidative stress and mitochondrial dysfunction. Most animal models of hypoxia-ischemia in the central nervous system (CNS) use rats to study the mechanisms involved in neuronal cell death, however, no comprehensive study on the localization of the redox proteins in the rat CNS was available. METHODS The aim of this work was to study the distribution of the following proteins of the thioredoxin and glutathione/glutaredoxin (Grx) systems in the rat CNS by immunohistochemistry: Trx1, Trx2, TrxR1, TrxR2, Txnip, Grx1, Grx2, Grx3, Grx5, and γ-GCS, peroxiredoxin 1 (Prx1), Prx2, Prx3, Prx4, Prx5, and Prx6. We have focused on areas most sensitive to a hypoxia-ischemic insult: Cerebellum, striatum, hippocampus, spinal cord, substantia nigra, cortex and retina. RESULTS AND CONCLUSIONS Previous studies implied that these redox proteins may be distributed in most cell types and regions of the CNS. Here, we have observed several remarkable differences in both abundance and regional distribution that point to a complex interplay and crosstalk between the proteins of this family. GENERAL SIGNIFICANCE We think that these data might be helpful to reveal new insights into the role of thiol redox pathways in the pathogenesis of hypoxia-ischemia insults and other disorders of the CNS. This article is part of a Special Issue entitled Human and Murine Redox Protein Atlases.
Collapse
Affiliation(s)
- Maria Laura Aon-Bertolino
- Universidad de Buenos Aires Facultad de Medicina and Comisión Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Kim A, Joseph S, Khan A, Epstein CJ, Sobel R, Huang TT. Enhanced expression of mitochondrial superoxide dismutase leads to prolonged in vivo cell cycle progression and up-regulation of mitochondrial thioredoxin. Free Radic Biol Med 2010; 48:1501-12. [PMID: 20188820 PMCID: PMC2945707 DOI: 10.1016/j.freeradbiomed.2010.02.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 02/06/2010] [Accepted: 02/19/2010] [Indexed: 02/09/2023]
Abstract
Mn superoxide dismutase (MnSOD) is an important mitochondrial antioxidant enzyme, and elevated MnSOD levels have been shown to reduce tumor growth in part by suppressing cell proliferation. Studies with fibroblasts have shown that increased MnSOD expression prolongs cell cycle transition time in G1/S and favors entrance into the quiescent state. To determine if the same effect occurs during tissue regeneration in vivo, we used a transgenic mouse system with liver-specific MnSOD expression and a partial hepatectomy paradigm to induce synchronized in vivo cell proliferation during liver regeneration. We show in this experimental system that a 2.6-fold increase in MnSOD activity leads to delayed entry into S phase, as measured by reduction in bromodeoxyuridine (BrdU) incorporation and decreased expression of proliferative cell nuclear antigen (PCNA). Thus, compared to control mice with baseline MnSOD levels, transgenic mice with increased MnSOD expression in the liver have 23% fewer BrdU-positive cells and a marked attenuation of PCNA expression. The increase in MnSOD activity also leads to an increase in the mitochondrial form of thioredoxin (thioredoxin 2), but not in several other peroxidases examined, suggesting the importance of thioredoxin 2 in maintaining redox balance in mitochondria with elevated levels of MnSOD.
Collapse
Affiliation(s)
- Aekyong Kim
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Suman Joseph
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Aslam Khan
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Charles J Epstein
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Raymond Sobel
- Department of Pathology, Stanford University, Stanford, CA, USA
- Laboratory Service, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Ting-Ting Huang
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- GRECC, VA Palo Alto Health Care System, Palo Alto, CA, USA
- Corresponding author: Ting-Ting Huang, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, and GRECC, VA Palo Alto Health Care System, 3801 Miranda Ave. Building 100, D3-101, Palo Alto, CA 94304, USA, Phone 650-496-2581, Fax 650-849-0457
| |
Collapse
|
78
|
Hwang IK, Yoo KY, Kim DW, Lee CH, Choi JH, Kwon YG, Kim YM, Choi SY, Won MH. Changes in the expression of mitochondrial peroxiredoxin and thioredoxin in neurons and glia and their protective effects in experimental cerebral ischemic damage. Free Radic Biol Med 2010; 48:1242-51. [PMID: 20156553 DOI: 10.1016/j.freeradbiomed.2010.02.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 01/25/2010] [Accepted: 02/07/2010] [Indexed: 11/19/2022]
Abstract
We observed chronological changes in the mitochondrial-specific antioxidant enzymes peroxiredoxin 3 (Prx3) and thioredoxin 2 (Trx2) and their neuroprotective effects in the hippocampal CA1 region after 5 min of transient cerebral ischemia in gerbils. In the sham-operated group, weak Prx3 and Trx2 immunoreactivity was detected in the stratum pyramidale. Prx3 immunoreactivity was increased in pyramidal neurons and expressed in microglia 1 and 3 days, respectively, after ischemia/reperfusion (I/R). Trx2 immunoreactivity in pyramidal neurons increased 30 min and 1 day after I/R and decreased 6 h after I/R. Trx2 immunoreaction was expressed in astrocytes at 3 days postischemia. The intraventricular administration of Prx3 or Prx3/Trx2 (16 microg/20 microl, icv) using an osmotic pump significantly reduced ischemia-induced hyperactivity in a spontaneous motor test and protected CA1 pyramidal neurons from the ischemic damage. In addition, the activation of astrocytes and microglia was decreased in the ischemic CA1 region after Prx3/Trx2 treatment. In addition, treatment with Prx3 or Prx3/Trx2 significantly reduced lipid peroxidation and the release of cytochrome c from mitochondria and cytoplasm in the ischemic CA1 region. These results suggest that changes in the expression of Prx3 and Trx2 in the hippocampal CA1 region after I/R may be associated with the delayed neuronal death of CA1 pyramidal cells induced by transient cerebral ischemia, and that treatment with Prx3 or Prx3/Trx2 in ischemic brains shows a potent neuroprotective effect against ischemic damage by reducing lipid peroxidation and mitochondrial-mediated apoptosis by I/R.
Collapse
Affiliation(s)
- In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
|
80
|
Abstract
OBJECTIVE The potential relation between metabolic activity within the central nervous system and retention of cognitive functioning capacity was assessed. METHODS A detailed literature review was conducted and summarized. RESULTS A large body of scientific evidence describes the interactions among cognitive activity, oxidative stress, neurodegeneration, neuroprotection, cognitive aging, and retention of cognitive functioning ability. CONCLUSION Maintenance of redox balance within the central nervous system can forestall cognitive decline and promote cognitive longevity.
Collapse
|
81
|
Extracellular redox status regulates Nrf2 activation through mitochondrial reactive oxygen species. Biochem J 2009; 424:491-500. [PMID: 19778293 DOI: 10.1042/bj20091286] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The redox status of the extracellular compartment has only just been elucidated as a mechanism controlling intracellular signal transduction and correlates with aging, diabetes, heart disease and lung fibrosis. In the present paper, we describe a mechanism by which oxidizing extracellular environments, as maintained by the cysteine/cystine (Cys/CySS) redox couple, induce mitochondria-derived ROS (reactive oxygen species) generation and cause the activation of Nrf2 (nuclear factor-erythroid 2-related factor 2), inducing an antioxidant response. NIH 3T3 cells were cultured in medium with extracellular Cys/CySS redox potentials (Eh), ranging from 0 to -150 mV. Cellular and mitochondrial ROS production significantly increased in cells incubated under more oxidizing extracellular conditions (0 and -46 mV). Trx2 (thioredoxin-2) is a mitochondrial-specific oxidoreductase and antioxidant and became oxidized in cells incubated at 0 or -46 mV. MEFs (mouse embryonic fibroblasts) from Trx2-overexpressing transgenic (Trx2 Tg) mice produced less intracellular ROS compared with WT (wild-type) MEFs at the more oxidizing extracellular conditions. Nrf2 activity was increased in WT MEFs at the 0 or -46 mV conditions, but was inhibited in Trx2 Tg MEFs under the same conditions. Furthermore, Nrf2-regulated gene expression was significantly increased in the WT MEFs, but not in the Trx2 Tg MEFs. These results show that the Cys/CySS redox status in the extracellular compartment regulates intracellular ROS generated primarily in the mitochondria, which play an important role in the activation of Nrf2 and up-regulation of antioxidant and detoxification systems.
Collapse
|
82
|
Saxena G, Chen J, Shalev A. Intracellular shuttling and mitochondrial function of thioredoxin-interacting protein. J Biol Chem 2009; 285:3997-4005. [PMID: 19959470 DOI: 10.1074/jbc.m109.034421] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The thioredoxin-interacting protein TXNIP is a ubiquitously expressed redox protein that promotes apoptosis. Recently, we found that TXNIP deficiency protects against type 1 and 2 diabetes by inhibiting beta cell apoptosis and maintaining pancreatic beta cell mass, indicating that TXNIP plays a key role in beta cell biology. However, very little is known about the intracellular localization and function of TXNIP, and although TXNIP has been thought to be a cytoplasmic protein, our immunohistochemistry studies in beta cells surprisingly revealed a nuclear TXNIP localization, suggesting that TXNIP may shuttle within the cell. Using immunohistochemistry/confocal imaging and cell fractionation/co-immunoprecipitation, we found that, under physiological conditions, TXNIP is localized primarily in the nucleus of pancreatic beta cells, whereas oxidative stress leads to TXNIP shuttling into the mitochondria. In mitochondria, TXNIP binds to and oxidizes Trx2, thereby reducing Trx2 binding to ASK1 and allowing for ASK1 phosphorylation/activation, resulting in induction of the mitochondrial pathway of apoptosis with cytochrome c release and caspase-3 cleavage. TXNIP overexpression and Trx2 (but not cytosolic Trx1) silencing mimic these effects. Thus, we discovered that TXNIP shuttles between subcellular compartments in response to oxidative stress and identified a novel redox-sensitive mitochondrial TXNIP-Trx2-ASK1 signaling cascade.
Collapse
Affiliation(s)
- Geetu Saxena
- From the Department of Medicine, University of Wisconsin, and the William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53792
| | - Junqin Chen
- From the Department of Medicine, University of Wisconsin, and the William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53792
| | - Anath Shalev
- From the Department of Medicine, University of Wisconsin, and the William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53792.
| |
Collapse
|
83
|
Ahsan MK, Lekli I, Ray D, Yodoi J, Das DK. Redox regulation of cell survival by the thioredoxin superfamily: an implication of redox gene therapy in the heart. Antioxid Redox Signal 2009; 11:2741-58. [PMID: 19583492 PMCID: PMC2821134 DOI: 10.1089/ars.2009.2683] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Reactive oxygen species (ROS) are the key mediators of pathogenesis in cardiovascular diseases. Members of the thioredoxin superfamily take an active part in scavenging reactive oxygen species, thus playing an essential role in maintaining the intracellular redox status. The alteration in the expression levels of thioredoxin family members and related molecules constitute effective biomarkers in various diseases, including cardiovascular complications that involve oxidative stress. Thioredoxin, glutaredoxin, peroxiredoxin, and glutathione peroxidase, along with their isoforms, are involved in interaction with the members of metabolic and signaling pathways, thus making them attractive targets for clinical intervention. Studies with cells and transgenic animals have supported this notion and raised the hope for possible gene therapy as modern genetic medicine. Of all the molecules, thioredoxins, glutaredoxins, and peroxiredoxins are emphasized, because a growing body of evidence reveals their essential and regulatory role in several steps of redox regulation. In this review, we discuss some pertinent observations regarding their distribution, structure, functions, and interactions with the several survival- and death-signaling pathways, especially in the myocardium.
Collapse
Affiliation(s)
- Md Kaimul Ahsan
- Cardiovascular Research Center, Department of Surgery, School of Medicine, University of Connecticut Health Center , Farmington, CT 06030-1110, USA.
| | | | | | | | | |
Collapse
|
84
|
Interaction of mitochondrial thioredoxin with glucocorticoid receptor and NF-kappaB modulates glucocorticoid receptor and NF-kappaB signalling in HEK-293 cells. Biochem J 2009; 422:521-31. [PMID: 19570036 DOI: 10.1042/bj20090107] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Trx2 (mitochondrial thioredoxin) is an antioxidant and anti-apoptotic factor essential for cell viability. Trx1 (cytoplasmic thioredoxin) is a co-factor and regulator of redox-sensitive transcription factors such as the GR (glucocorticoid receptor) and NF-kappaB (nuclear factor kappaB). Both transcription factors have been detected in mitochondria and a role in mitochondrial transcription regulation and apoptosis has been proposed. In the present study, we show using SPR (surface plasmon resonance) and immunoprecepitation that GR and the p65 subunit of NF-kappaB are Trx2-interacting proteins. The interaction of Trx2 with GR is independent of the presence of GR ligand and of redox conditions. The p65 subunit of NF-kappaB can interact with Trx2 in the oxidized, but not the reduced, form. Using HEK (human embryonic kidney)-293 cell lines with increased or decreased expression of Trx2, we show that Trx2 modulates transcription of GR and NF-kappaB reporter genes. Moreover, Trx2 overexpression modulates the mRNA levels of the COX1 (cytochrome oxidase subunit I) and Cytb (cytochrome b), which are known to be regulated by GR and NF-kappaB. Increased expression of Trx2 differentially affects the expression of Cytb. The glucocorticoid dexamethasone potentiates the expression of Cytb, whereas TNFalpha (tumour necrosis factor alpha) down-regulates it. These results suggest a regulatory role for Trx2 in GR and NF-kappaB signalling pathways.
Collapse
|
85
|
Perez-Jimenez R, Li J, Kosuri P, Sanchez-Romero I, Wiita AP, Rodriguez-Larrea D, Chueca A, Holmgren A, Miranda-Vizuete A, Becker K, Cho SH, Beckwith J, Gelhaye E, Jacquot JP, Gaucher EA, Gaucher E, Sanchez-Ruiz JM, Berne BJ, Fernandez JM. Diversity of chemical mechanisms in thioredoxin catalysis revealed by single-molecule force spectroscopy. Nat Struct Mol Biol 2009; 16:890-6. [PMID: 19597482 PMCID: PMC2745927 DOI: 10.1038/nsmb.1627] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 05/27/2009] [Indexed: 11/09/2022]
Abstract
Thioredoxins (Trxs) are oxidoreductase enzymes, present in all organisms, that catalyze the reduction of disulfide bonds in proteins. By applying a calibrated force to a substrate disulfide, the chemical mechanisms of Trx catalysis can be examined in detail at the single-molecule level. Here we use single-molecule force-clamp spectroscopy to explore the chemical evolution of Trx catalysis by probing the chemistry of eight different Trx enzymes. All Trxs show a characteristic Michaelis-Menten mechanism that is detected when the disulfide bond is stretched at low forces, but at high forces, two different chemical behaviors distinguish bacterial-origin from eukaryotic-origin Trxs. Eukaryotic-origin Trxs reduce disulfide bonds through a single-electron transfer reaction (SET), whereas bacterial-origin Trxs show both nucleophilic substitution (S(N)2) and SET reactions. A computational analysis of Trx structures identifies the evolution of the binding groove as an important factor controlling the chemistry of Trx catalysis.
Collapse
Affiliation(s)
- Raul Perez-Jimenez
- Department of Biological Sciences, Columbia University, New York, New York, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Tonissen KF, Di Trapani G. Thioredoxin system inhibitors as mediators of apoptosis for cancer therapy. Mol Nutr Food Res 2009; 53:87-103. [PMID: 18979503 DOI: 10.1002/mnfr.200700492] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The thioredoxin (Trx) system is a major antioxidant system integral to maintaining the intracellular redox state. It contains Trx, a redox active protein, which regulates the activity of various enzymes including those that function to counteract oxidative stress within the cell. Trx can also scavenge reactive oxygen species (ROS) and directly inhibits proapoptotic proteins such as apoptosis signal-regulating kinase 1 (ASK1). The oxidized form of Trx is reduced by thioredoxin reductase (TrxR). The cytoplasm and mitochondria contain equivalent Trx systems and inhibition of either system can lead to activation of apoptotic signaling pathways. There are a number of inhibitors with chemotherapy applications that target either Trx or TrxR to induce apoptosis in cancer cells. Suberoylanilide hydroxamic acid (SAHA) is effective against many cancer cells and functions by up-regulating an endogenous inhibitor of Trx. Other compounds target the selenocysteine-containing active site of TrxR. These include gold compounds, platinum compounds, arsenic trioxide, motexafin gadolinium, nitrous compounds, and various flavonoids. Inhibition of TrxR leads to an accumulation of oxidized Trx resulting in cellular conditions that promote apoptosis. In addition, some compounds also convert TrxR to a ROS generating enzyme. The role of Trx system inhibitors in cancer therapy is discussed in this review.
Collapse
Affiliation(s)
- Kathryn F Tonissen
- School of Biomolecular and Physical Sciences, Griffith University, Nathan, Qld, Australia.
| | | |
Collapse
|
87
|
Thomas S, Mayer L, Sperber K. Mitochondria influence Fas expression in gp120-induced apoptosis of neuronal cells. Int J Neurosci 2009; 119:157-65. [PMID: 19125371 DOI: 10.1080/00207450802335537] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The human immunodeficiency virus-1 (HIV-1) destroys the immune system and also induces neurological disease culminating into dementia (HIV-associated dementia). Though the HIV viral protein gp120 induces apoptosis in neuronal cells, the mechanism of action is still poorly defined. Recent studies show that cells die during apoptosis by Fas aggregation aided by the mitochondrial proapoptotic proteins. Our studies show an increase in expression of Fas and its associated downstream proteins after treatment of the neuroblastoma cells, SH-SY5Y, with gp120. Fas and its associated death proteins, FADD and caspase-8 (DISC), are downregulated when treated with the caspase inhibitors. The results indicate that mitochondrial-death proteins like caspases may influence the upregulation of the death receptor Fas, and the inhibition of caspases prevents gp120-induced apoptosis.
Collapse
Affiliation(s)
- Sunil Thomas
- Immunobiology Center, Mount Sinai School of Medicine, New York, NY, USA.
| | | | | |
Collapse
|
88
|
Wen S, Lu W, Zhu H, Yang W, Shaw GM, Lammer EJ, Islam A, Finnell RH. Genetic polymorphisms in the thioredoxin 2 (TXN2) gene and risk for spina bifida. Am J Med Genet A 2009; 149A:155-60. [PMID: 19165900 DOI: 10.1002/ajmg.a.32589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
TXN2 encodes human thioredoxin 2, a small redox protein important in cellular antioxidant defenses, as well as in the regulation of apoptosis. Txn2 knockout mice fail to complete neural tube closure by E10.5 and die in utero. We hypothesized that genetic variation in human TXN2 gene may alter the function of the encoded protein in a manner associated with an increased risk for neural tube defects (NTDs). A DNA re-sequencing effort of the human TXN2 gene was taken. After a variation in the promoter was identified, the transcriptional activity of different alleles was investigated. The possible association between these variations and the risk of spina bifida was further evaluated in a subset of samples obtained from a large population-based case-control study in California in two different ethnicity groups, non-Hispanic white and Hispanic white. We identified a novel promoter insertion polymorphism located 9 base pairs upstream of the transcription start site of exon 1(-9 insertion). The GA, G and GGGA insertions were associated with a marked decrease of transcriptional activity when overexpressed in both U2-OS (an osteosarcoma cell line) and 293 cells (derived from human embryonic kidney). Further analysis revealed that the GA insertion was associated with increased spina bifida risk for Hispanic whites. Our study revealed a novel Ins/Del polymorphism in the human TXN2 gene proximal promoter region that altered the transcriptional activity and is associated with spina bifida risk. This polymorphism may be a genetic modifier of spina bifida risk in this California population.
Collapse
Affiliation(s)
- Shu Wen
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Di Virgilio F, Ferrari D, Adinolfi E. P2X(7): a growth-promoting receptor-implications for cancer. Purinergic Signal 2009; 5:251-6. [PMID: 19263244 DOI: 10.1007/s11302-009-9145-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 07/30/2008] [Indexed: 12/31/2022] Open
Abstract
The P2X(7) receptor is widely referred to as the paradigmatic cytotoxic nucleotide receptor, and is often taken as an epitome of cytotoxic receptors as a whole. However, cytotoxicity is the result of sustained pharmacological stimulation, which is likely to occur in vivo only under severe pathological conditions. Over the years, we have gathered robust experimental proof that led us to adopt an entirely different view, pointing to P2X(7) as a survival/growth-promoting rather than death-inducing receptor. Evidence in favour of this role is manifold: (1) extracellular ATP and benzoyl ATP support cell proliferation in peripheral T lymphocytes via a P2X(7)-like receptor; (2) P2X(7) transfection into several cell lines confers growth advantage; (3) HEK293 cells transfected with P2X(7) show enhanced mitochondrial metabolic activity and growth; (4) lipopolysaccharide (LPS)-dependent growth arrest of microglia is mediated via P2X(7) down-modulation; (5) several malignant tumours express high P2X(7) levels and (6) the ATP concentration in tumour interstitium is several-fold higher than in healthy tissues, to a level in principle sufficient to activate the P2X(7) receptor. The molecular basis of P2X(7)-mediated growth-promoting activity is poorly known, but mitochondria appear to play a central role. A deeper understanding of the role played by P2X(7) in cell proliferation might provide an insight into the mechanism of normal and malignant cell growth and suggest novel anti-tumour therapies.
Collapse
Affiliation(s)
- Francesco Di Virgilio
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, and Interdisciplinary Center for the Study of Inflammation (ICSI), University of Ferrara, Via Borsari 46, Ferrara, 44100, Italy,
| | | | | |
Collapse
|
90
|
Zhong GW, Li W, Luo YH, Chen GL, Yi ZJ, Hu JJ, Zhang Y, Yin YH, Zhang L. [Herbs for calming liver and suppressing liver-yang in treatment of migraine with hyperactive liver-yang syndrome and its effects on lymphocyte protein expression: a randomized controlled trial]. ACTA ACUST UNITED AC 2009; 7:25-33. [PMID: 19134454 DOI: 10.3736/jcim20090104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To observe the efficacy of herbs for calming liver and suppressing liver-yang in treatment of migraine patients with hyperactivity of liver-yang syndrome and to investigate its effects on the lymphocyte protein expression. This approach may lay a foundation for the further investigation of pathogenic mechanisms in migraine with hyperactive liver-yang syndrome and the curative mechanisms of calming liver and suppressing liver-yang treatment. METHODS A total of 32 migraine patients with hyperactivity of liver-yang syndrome were randomly divided into treatment group (16 cases) and control group (16 cases). The patients in the treatment group were treated with herbs for calming liver and suppressing liver-yang in accordance with traditional Chinese medicine (TCM) theory and the patients in the control group were treated with Flunarizine Capsules for two courses of treatment. The therapeutic effects, the score of TCM symptom and the changes of headache attack were observed in both groups before and after the treatment. The side effects were also observed in both groups. The level of differential protein expression was analyzed by two-dimensional electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). RESULTS The herbs for calming liver and suppressing liver-yang had better effects on headache improvement than the Flunarizine Capsules (P<0.01). The cure rates in the treatment and control groups were 87.5% and 75.0% respectively. Vertigo, restlessness and tantrum, and prosopo-heat in the treatment group were also improved as compared with those in the control group (P<0.05). After treatment, the score of TCM symptom in the two groups were all decreased (P<0.01), and there was a significant difference between the treatment group and the control group (P<0.01). The herbs for calming liver and suppressing liver-yang had no side effects. The average protein spots in the blood lymphocyte of normal people, migraine patients with hyperactivity of liver-yang syndrome in the treatment group before and after the treatment were (534+/-42), (552+/-54) and (529+/-55) spots respectively. Six down-regulated protein expressions and 14 up-regulated protein expressions were obtained in the treatment group. Four strengthened protein expressions in the six down-regulated proteins and 11 low protein expressions in the 14 up-regulated proteins were also obtained after treatment. Ten of the total 12 differential protein spots were successfully identified by MALDI-TOF-MS. The functions of these proteins were involved in metabolism, energy generation, transportation, antioxidation, signal transduction and immune, etc. According to information provided by NCBI and MSDB database, there were some proteins closely related to migraine with hyperactivity of liver-yang syndrome, such as peroxiredoxin 2, heat shock protein 27 and annexin A1. CONCLUSION Herbs for calming liver and suppressing liver-yang is effective in treating migraine, and can improve TCM symptoms. The effects on migraine patients with hyperactivity of liver-yang syndrome may be related to regulating the blood lymphocyte protein expression.
Collapse
Affiliation(s)
- Guang-wei Zhong
- Central South University, Changsha, Hunan Province 410008, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Kalinina EV, Chernov NN, Saprin AN. Involvement of thio-, peroxi-, and glutaredoxins in cellular redox-dependent processes. BIOCHEMISTRY (MOSCOW) 2009; 73:1493-510. [DOI: 10.1134/s0006297908130099] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
92
|
Thiol-independent action of mitochondrial thioredoxin to support the urea cycle of arginine biosynthesis in Schizosaccharomyces pombe. EUKARYOTIC CELL 2008; 7:2160-7. [PMID: 18849471 DOI: 10.1128/ec.00106-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Thioredoxins usually perform a role as a thiol-disulfide oxidoreductase using their active-site cysteines. The fission yeast Schizosaccharomyces pombe contains two thioredoxins: Trx1 for general stress protection and Trx2 for mitochondrial functions. The Deltatrx2 mutant grows as well as the wild type on complex media containing glucose. However, on nonfermentable carbon source such as glycerol, the mutant did not grow, indicating a defect in mitochondrial function. The mutant also exhibited auxotrophy for arginine and cysteine on minimal medium. In order to find the reason for the unexpected arginine auxotrophy, we searched for multicopy suppressors and found that the arg3(+) gene encoding ornithine carbamoyltransferase (OCTase) in the urea cycle of the arginine biosynthetic pathway rescued the arginine auxotrophy. The levels of arg3(+) transcript, Arg3 protein, and OCTase activity were all decreased in Deltatrx2. Through immunocoprecipitation, we observed a direct interaction between Trx2 and Arg3 in cell extracts. The mutant forms of Trx2 lacking either one or both of the active site cysteines through substitution to serines also rescued the arginine auxotrophy and restored the decreased OCTase activity. They also rescued the growth defect of Deltatrx2 on glycerol medium. This contrasts with the thiol-dependent action of overproduced Trx2 in complementing glutathione reductase. Therefore, Trx2 serves multiple functions in mitochondria, protecting mitochondrial components against thiol-oxidative damage as a thiol-disulfide oxidoreductase, and supporting urea cycle and respiration in mitochondria in a manner independent of active site thiols.
Collapse
|
93
|
Hildebrandt TM, Grieshaber MK. Redox regulation of mitochondrial sulfide oxidation in the lugworm, Arenicola marina. ACTA ACUST UNITED AC 2008; 211:2617-23. [PMID: 18689415 DOI: 10.1242/jeb.019729] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sulfide oxidation in the lugworm, Arenicola marina (L.), is most likely localized in the mitochondria, which can either produce ATP with sulfide as a substrate or detoxify it via an alternative oxidase. The present study identified selective activators of the energy-conserving and the detoxifying sulfide oxidation pathways respectively. In the presence of the ROS scavengers glutathione (GSH) and ascorbate, isolated lugworm mitochondria rapidly oxidized up to 100 micromoll(-1) sulfide with maximal oxygen consumption rates but did not produce any ATP in the process. Under these conditions, salicylhydroxamic acid (SHAM), which is an inhibitor of the alternative oxidase of plant mitochondria, completely blocked oxygen consumption whereas inhibitors of complex III and IV had hardly any effect. By contrast, dehydroascorbate (DHA) enabled the mitochondria to gain ATP from sulfide oxidation even if the sulfide concentration far exceeded the threshold for inhibition of cytochrome oxidase. In the presence of dehydroascorbate, respiratory rates were independent of sulfide concentrations, with a respiratory control ratio of 2.1+/-0.2, and both oxygen consumption and ATP production were completely inhibited by myxothiazol and sodium azide but only marginally by SHAM. The present data indicate that a redox mechanism may contribute to the regulation of sulfide oxidation in lugworm mitochondria in vivo. Thus, mitochondria are presumably much more sulfide resistant in a cellular context than previously thought.
Collapse
|
94
|
He M, Cai J, Go YM, Johnson JM, Martin WD, Hansen JM, Jones DP. Identification of thioredoxin-2 as a regulator of the mitochondrial permeability transition. Toxicol Sci 2008; 105:44-50. [PMID: 18550601 DOI: 10.1093/toxsci/kfn116] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Thioredoxin-2 (Trx2) is a multifunctional, mitochondria-specific protein, which inhibits cell death. The mitochondrial permeability transition (MPT) is a distinct mechanism for cell death activated by oxidants and linked to both necrotic and apoptotic morphologies. We studied mitochondria from Trx2 transgenic mice to determine whether Trx2 protects against oxidant-induced MPT. All experiments were performed in isolated mitochondria. Results showed that Trx2 protected against MPT induced by exogenously added peroxide. Unexpectedly, Trx2 also protected against the MPT induced by Ca(2+) in the absence of added peroxide. The results indicate that in addition to protecting against oxidative stress, Trx2 is an endogenous regulator of the MPT.
Collapse
Affiliation(s)
- Min He
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
95
|
Chen Y, Go YM, Pohl J, Reed M, Cai J, Jones DP. Increased mitochondrial thioredoxin 2 potentiates N-ethylmaleimide-induced cytotoxicity. Chem Res Toxicol 2008; 21:1205-10. [PMID: 18447393 DOI: 10.1021/tx800012p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thioredoxin 2 (Trx2) is a mitochondrially localized antioxidant and antiapoptotic protein, whose functions are mainly dependent on the conserved cysteines at its redox active center. In the current study, we showed by mass spectrometry that a thiol alkylating agent, N-ethylmaleimide (NEM), alkylated a single cysteine residue in the active center of Trx2. The interaction between NEM and Trx2 in intact cells was confirmed by redox Western analysis. Overexpression of Trx2 in cultured 143B osteosarcoma cells caused increased sensitivity to NEM. Covalent modification by NEM resulted in a dominant-negative effect and increased the interaction between Trx2 and peroxiredoxin 3 (Prx3). Our data suggest that the alkylation of the essential thiol(s) of Trx2 has profound impact on the mitochondrial redox circuitry and that such effects are distinct from the responses to agents causing reversible disulfide bond formation between the vicinal dithiols in the active center.
Collapse
Affiliation(s)
- Yan Chen
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
96
|
Mitochondrial thioredoxin-2 from disk abalone (Haliotis discus discus): Molecular characterization, tissue expression and DNA protection activity of its recombinant protein. Comp Biochem Physiol B Biochem Mol Biol 2008; 149:630-9. [DOI: 10.1016/j.cbpb.2007.12.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 12/26/2007] [Accepted: 12/28/2007] [Indexed: 11/17/2022]
|
97
|
Pérez VI, Lew CM, Cortez LA, Webb CR, Rodriguez M, Liu Y, Qi W, Li Y, Chaudhuri A, Van Remmen H, Richardson A, Ikeno Y. Thioredoxin 2 haploinsufficiency in mice results in impaired mitochondrial function and increased oxidative stress. Free Radic Biol Med 2008; 44:882-92. [PMID: 18164269 DOI: 10.1016/j.freeradbiomed.2007.11.018] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 10/31/2007] [Accepted: 11/21/2007] [Indexed: 11/16/2022]
Abstract
The mitochondrial form of thioredoxin, thioredoxin 2 (Txn2), plays an important role in redox control and protection against ROS-induced mitochondrial damage. To evaluate the effect of reduced levels of Txn2 in vivo, we measured oxidative damage and mitochondrial function using mice heterozygous for the Txn2 gene (Txn2(+/-)). The Txn2(+/-) mice showed approximately 50% decrease in Trx-2 protein expression in all tissues without upregulating the other major components of the antioxidant defense system. Reduced levels of Txn2 resulted in decreased mitochondrial function as shown by reduced ATP production by isolated mitochondria and reduced activity of electron transport chain complexes (ETCs). Mitochondria isolated from Txn2(+/-) mice also showed increased ROS production compared to wild type mice. The Txn2(+/-) mice showed increased oxidative damage to nuclear DNA, lipids, and proteins in liver. In addition, we observed an increase in apoptosis in liver from Txn2(+/-) mice compared with wild type mice after diquat treatment. Our results suggest that Txn2 plays an important role in protecting the mitochondria against oxidative stress and in sensitizing the cells to ROS-induced apoptosis.
Collapse
Affiliation(s)
- Viviana I Pérez
- The Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78229, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Go YM, Jones DP. Redox compartmentalization in eukaryotic cells. Biochim Biophys Acta Gen Subj 2008; 1780:1273-90. [PMID: 18267127 DOI: 10.1016/j.bbagen.2008.01.011] [Citation(s) in RCA: 464] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 01/11/2008] [Accepted: 01/14/2008] [Indexed: 12/21/2022]
Abstract
Diverse functions of eukaryotic cells are optimized by organization of compatible chemistries into distinct compartments defined by the structures of lipid-containing membranes, multiprotein complexes and oligomeric structures of saccharides and nucleic acids. This structural and chemical organization is coordinated, in part, through cysteine residues of proteins which undergo reversible oxidation-reduction and serve as chemical/structural transducing elements. The central thiol/disulfide redox couples, thioredoxin-1, thioredoxin-2, GSH/GSSG and cysteine/cystine (Cys/CySS), are not in equilibrium with each other and are maintained at distinct, non-equilibrium potentials in mitochondria, nuclei, the secretory pathway and the extracellular space. Mitochondria contain the most reducing compartment, have the highest rates of electron transfer and are highly sensitive to oxidation. Nuclei also have more reduced redox potentials but are relatively resistant to oxidation. The secretory pathway contains oxidative systems which introduce disulfides into proteins for export. The cytoplasm contains few metabolic oxidases and this maintains an environment for redox signaling dependent upon NADPH oxidases and NO synthases. Extracellular compartments are maintained at stable oxidizing potentials. Controlled changes in cytoplasmic GSH/GSSG redox potential are associated with functional state, varying with proliferation, differentiation and apoptosis. Variation in extracellular Cys/CySS redox potential is also associated with proliferation, cell adhesion and apoptosis. Thus, cellular redox biology is inseparable from redox compartmentalization. Further elucidation of the redox control networks within compartments will improve the mechanistic understanding of cell functions and their disruption in disease.
Collapse
Affiliation(s)
- Young-Mi Go
- Emory Clinical Biomarkers Laboratory and Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta GA 30322, USA
| | | |
Collapse
|
99
|
Maulik N, Das DK. Emerging potential of thioredoxin and thioredoxin interacting proteins in various disease conditions. Biochim Biophys Acta Gen Subj 2008; 1780:1368-82. [PMID: 18206121 DOI: 10.1016/j.bbagen.2007.12.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 12/12/2007] [Accepted: 12/17/2007] [Indexed: 12/16/2022]
Abstract
Reactive oxygen species (ROS) are known to be mediators of intracellular signaling pathways. However the excessive production of ROS may be detrimental to the cell as a result of the increased oxidative stress and loss of cell function. Hence, well tuned, balanced and responsive antioxidant systems are vital for proper regulation of the redox status of the cell. The cells are normally able to defend themselves against the oxidative stress induced damage through the use of several antioxidant systems. Even though the free radical scavenging enzymes such as superoxide dismutase (SOD) and catalase can handle huge amounts of reactive oxygen species, should these systems fail some reactive molecules will evade the detoxification process and damage potential targets. In such a scenario, cells recruit certain small molecules and proteins as 'rescue specialists' in case the 'bodyguards' fail to protect potential targets from oxidative damage. The thioredoxin (Trx) system thus plays a vital role in the maintenance of a reduced intracellular redox state which is essential for the proper functioning of each individual cell. Trx alterations have been implicated in many diseases such as cataract formation, ischemic heart diseases, cancers, AIDS, complications of diabetes, hypertension etc. The interactions of Trx with many different proteins and different metabolic and signaling pathways as well as the significant species differences make it an attractive target for therapeutic intervention in many fields of medical science. In this review, we present, the critical roles that thioredoxins play in limiting oxidant stress through either its direct effect as an antioxidant or through its interactions with other key signaling proteins (thioredoxin interacting proteins) and its implications in various disease models.
Collapse
Affiliation(s)
- Nilanjana Maulik
- Cardiovascular Research Center, University of Connecticut Health Center, Farmington, Connecticut, 06030 USA
| | | |
Collapse
|
100
|
Zhou J, Eleni C, Spyrou G, Brüne B. The mitochondrial thioredoxin system regulates nitric oxide-induced HIF-1alpha protein. Free Radic Biol Med 2008; 44:91-8. [PMID: 18045551 DOI: 10.1016/j.freeradbiomed.2007.09.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 09/18/2007] [Accepted: 09/20/2007] [Indexed: 02/07/2023]
Abstract
Hypoxia-inducible factor-1 (HIF-1), consisting of two subunits, HIF-1alpha and HIF-1beta, is a key regulator for adaptation to low oxygen availability, i.e., hypoxia. Compared to the constitutively expressed HIF-1beta, HIF-1alpha is regulated by hypoxia but also under normoxia (21% O(2)) by several stimuli, including nitric oxide (NO). In this study, we present evidence that overexpression of mitochondrial-located thioredoxin 2 (Trx2) or thioredoxin reductase 2 (TrxR2) attenuated NO-evoked HIF-1alpha accumulation and transactivation of HIF-1 in HEK293 cells. In contrast, cytosolic-located thioredoxin 1 (Trx1) enhanced HIF-1alpha protein amount and activity under NO treatments. Taking into consideration that thioredoxins affect the synthesis of HIF-1alpha by altering Akt/mTOR signaling, we herein show that p42/44 mitogen-activated protein kinase and p70S6 kinase are involved. Moreover, intracellular ATP was increased in Trx1-overexpressing cells but reduced in cells overexpressing Trx2 or TrxR2, providing thus an understanding of how protein synthesis is regulated by thioredoxins.
Collapse
Affiliation(s)
- Jie Zhou
- Institute of Biochemistry I, Faculty of Medicine, Johann Wolfgang Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | | | | | | |
Collapse
|