51
|
Soliakov A, Kelly IF, Lakey JH, Watkinson A. Anthrax sub-unit vaccine: the structural consequences of binding rPA83 to Alhydrogel®. Eur J Pharm Biopharm 2011; 80:25-32. [PMID: 21964315 DOI: 10.1016/j.ejpb.2011.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 09/09/2011] [Accepted: 09/15/2011] [Indexed: 12/31/2022]
Abstract
An anthrax sub-unit vaccine, comprising recombinant Protective Antigen (rPA83) and aluminium hydroxide adjuvant (Alhydrogel®) is currently being developed. Here, a series of biophysical techniques have been applied to free and adjuvant bound antigen. Limited proteolysis and fluorescence identified no changes in rPA83 tertiary structure following binding to Alhydrogel and the bound rPA83 retained two structurally important calcium ions. For adsorbed rPA83, differential scanning calorimetry revealed a small reduction in unfolding temperature but a large decrease in unfolding enthalpy whilst urea unfolding demonstrated unchanged stability but a loss of co-operativity. Overall, these results demonstrate that interactions between rPA83 and Alhydrogel have a minimal effect on the folded protein structure and suggest that antigen destabilisation is not a primary mechanism of Alhydrogel adjuvancy. This study also shows that informative structural characterisation is possible for adjuvant bound sub-unit vaccines.
Collapse
Affiliation(s)
- Andrei Soliakov
- Institute for Cell and Molecular Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | | | | | | |
Collapse
|
52
|
Monoclonal antibody therapies against anthrax. Toxins (Basel) 2011; 3:1004-19. [PMID: 22069754 PMCID: PMC3202866 DOI: 10.3390/toxins3081004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/06/2011] [Accepted: 08/10/2011] [Indexed: 12/15/2022] Open
Abstract
Anthrax is a highly lethal infectious disease caused by the spore-forming bacterium Bacillus anthracis. It not only causes natural infection in humans but also poses a great threat as an emerging bioterror agent. The lethality of anthrax is primarily attributed to the two major virulence factors: toxins and capsule. An extensive effort has been made to generate therapeutically useful monoclonal antibodies to each of the virulence components: protective antigen (PA), lethal factor (LF) and edema factor (EF), and the capsule of B. anthracis. This review summarizes the current status of anti-anthrax mAb development and argues for the potential therapeutic advantage of a cocktail of mAbs that recognize different epitopes or different virulence factors.
Collapse
|
53
|
Inhibition of anthrax toxins with a bispecific monoclonal antibody that cross reacts with edema factor as well as lethal factor of Bacillus anthracis. Mol Immunol 2011; 48:1958-65. [PMID: 21704379 DOI: 10.1016/j.molimm.2011.05.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/26/2011] [Accepted: 05/26/2011] [Indexed: 01/29/2023]
Abstract
Bacillus anthracis overwhelms its victims by way of two toxins, namely edema toxin and lethal toxin. Lethal toxin is formed by the combination of protective antigen with lethal factor while edema toxin is formed by the combination of Protective Antigen with edema factor. Overlapping regions between edema factor and lethal factor have been reported in past. For the first time, this study reports characterization of a bispecific monoclonal antibody (mAb), H10, which showed high affinity interaction with both edema factor and lethal factor of B. anthracis. H10 mAb not only neutralized the adenylate cyclase activity of edema toxin but it could also neutralize the cytotoxic activity of lethal toxin. Passive immunization with this antibody gave 100% protection to mice from in vivo challenge with lethal toxin and edema toxin. The results of this study suggest future application of this bispecific monoclonal antibody as passive immunization prophylactics in cases of B. anthracis exposure and infection.
Collapse
|
54
|
Wycoff KL, Belle A, Deppe D, Schaefer L, Maclean JM, Haase S, Trilling AK, Liu S, Leppla SH, Geren IN, Pawlik J, Peterson JW. Recombinant anthrax toxin receptor-Fc fusion proteins produced in plants protect rabbits against inhalational anthrax. Antimicrob Agents Chemother 2011; 55:132-9. [PMID: 20956592 PMCID: PMC3019684 DOI: 10.1128/aac.00592-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/03/2010] [Accepted: 10/07/2010] [Indexed: 11/20/2022] Open
Abstract
Inhalational anthrax, a zoonotic disease caused by the inhalation of Bacillus anthracis spores, has a ∼50% fatality rate even when treated with antibiotics. Pathogenesis is dependent on the activity of two toxic noncovalent complexes: edema toxin (EdTx) and lethal toxin (LeTx). Protective antigen (PA), an essential component of both complexes, binds with high affinity to the major receptor mediating the lethality of anthrax toxin in vivo, capillary morphogenesis protein 2 (CMG2). Certain antibodies against PA have been shown to protect against anthrax in vivo. As an alternative to anti-PA antibodies, we produced a fusion of the extracellular domain of human CMG2 and human IgG Fc, using both transient and stable tobacco plant expression systems. Optimized expression led to the CMG2-Fc fusion protein being produced at high levels: 730 mg/kg fresh leaf weight in Nicotiana benthamiana and 65 mg/kg in N. tabacum. CMG2-Fc, purified from tobacco plants, fully protected rabbits against a lethal challenge with B. anthracis spores at a dose of 2 mg/kg body weight administered at the time of challenge. Treatment with CMG2-Fc did not interfere with the development of the animals' own immunity to anthrax, as treated animals that survived an initial challenge also survived a rechallenge 30 days later. The glycosylation of the Fc (or lack thereof) had no significant effect on the protective potency of CMG2-Fc in rabbits or on its serum half-life, which was about 5 days. Significantly, CMG2-Fc effectively neutralized, in vitro, LeTx-containing mutant forms of PA that were not neutralized by anti-PA monoclonal antibodies.
Collapse
|
55
|
Vaccination of rhesus macaques with the anthrax vaccine adsorbed vaccine produces a serum antibody response that effectively neutralizes receptor-bound protective antigen in vitro. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1753-62. [PMID: 20739500 DOI: 10.1128/cvi.00174-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Anthrax toxin (ATx) is composed of the binary exotoxins lethal toxin (LTx) and edema toxin (ETx). They have separate effector proteins (edema factor and lethal factor) but have the same binding protein, protective antigen (PA). PA is the primary immunogen in the current licensed vaccine anthrax vaccine adsorbed (AVA [BioThrax]). AVA confers protective immunity by stimulating production of ATx-neutralizing antibodies, which could block the intoxication process at several steps (binding of PA to the target cell surface, furin cleavage, toxin complex formation, and binding/translocation of ATx into the cell). To evaluate ATx neutralization by anti-AVA antibodies, we developed two low-temperature LTx neutralization activity (TNA) assays that distinguish antibody blocking before and after binding of PA to target cells (noncomplexed [NC] and receptor-bound [RB] TNA assays). These assays were used to investigate anti-PA antibody responses in AVA-vaccinated rhesus macaques (Macaca mulatta) that survived an aerosol challenge with Bacillus anthracis Ames spores. Results showed that macaque anti-AVA sera neutralized LTx in vitro, even when PA was prebound to cells. Neutralization titers in surviving versus nonsurviving animals and between prechallenge and postchallenge activities were highly correlated. These data demonstrate that AVA stimulates a myriad of antibodies that recognize multiple neutralizing epitopes and confirm that change, loss, or occlusion of epitopes after PA is processed from PA83 to PA63 at the cell surface does not significantly affect in vitro neutralizing efficacy. Furthermore, these data support the idea that the full-length PA83 monomer is an appropriate immunogen for inclusion in next-generation anthrax vaccines.
Collapse
|
56
|
A chimeric protein that functions as both an anthrax dual-target antitoxin and a trivalent vaccine. Antimicrob Agents Chemother 2010; 54:4750-7. [PMID: 20713663 DOI: 10.1128/aac.00640-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Effective measures for the prophylaxis and treatment of anthrax are still required for counteracting the threat posed by inhalation anthrax. In this study, we first demonstrated that the chimeric protein LFn-PA, created by fusing the protective antigen (PA)-binding domain of lethal factor (LFn) to PA, retained the functions of the respective molecules. On the basis of this observation, we attempted to develop an antitoxin that targets the binding of lethal factor (LF) and/or edema factor (EF) to PA and the transportation of LF/EF. Therefore, we replaced PA in LFn-PA with a dominant-negative inhibitory PA (DPA), i.e., PA(F427D). In in vitro models of anthrax intoxication, the LFn-DPA chimera showed 3-fold and 2-fold higher potencies than DPA in protecting sensitive cells against anthrax lethal toxin (LeTx) and edema toxin (EdTx), respectively. In animal models, LFn-DPA exhibited strong potency in rescuing mice from lethal challenge with LeTx. We also evaluated the immunogenicity and immunoprotective efficacy of LFn-DPA as an anthrax vaccine candidate. In comparison with recombinant PA, LFn-DPA induced significantly higher levels of the anti-PA immune response. Moreover, LFn-DPA elicited an anti-LF antibody response that could cross-react with EF. Mice immunized with LFn-DPA tolerated a LeTx challenge that was 5 times its 50% lethal dose. Thus, LFn-DPA represents a highly effective trivalent vaccine candidate for both preexposure and postexposure vaccination. Overall, we have developed a novel and dually functional reagent for the prophylaxis and treatment of anthrax.
Collapse
|
57
|
Oscherwitz J, Yu F, Cease KB. A synthetic peptide vaccine directed against the 2ß2-2ß3 loop of domain 2 of protective antigen protects rabbits from inhalation anthrax. THE JOURNAL OF IMMUNOLOGY 2010; 185:3661-8. [PMID: 20696862 DOI: 10.4049/jimmunol.1001749] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The current vaccines for anthrax in the United States and United Kingdom are efficacious in the two most accepted animal models of inhalation anthrax, nonhuman primates and rabbits, but require extensive immunization protocols. We previously demonstrated that a linear determinant in domain 2 of Bacillus anthracis protective Ag (PA) is a potentially important target for an epitope-specific vaccine for anthrax, as Abs specific for this site, referred to as the loop-neutralizing determinant (LND), neutralize lethal toxin in vitro, yet are virtually absent in PA-immunized rabbits. In this study, we evaluated the immunogenicity and protective efficacy in rabbits of multiple antigenic peptides (MAPs) consisting of aa 304-319 from the LND of PA colinearly synthesized at the C terminus (T-B MAP) or N terminus (B-T MAP) with a heterologous T cell epitope from Plasmodium falciparum. Immunogenicity studies demonstrated that both MAPs elicited toxin-neutralizing Ab in rabbits. To evaluate the MAPs as potential anthrax vaccines, we immunized groups of rabbits (n = 7) with each MAP in Freund's adjuvant and then exposed all rabbits to a 200-LD(50) challenge with aerosolized spores of B. anthracis Ames strain. All seven rabbits immunized with the B-T MAP and 89% (six of seven) of rabbits immunized with the T-B MAP survived the spore challenge. Corollary studies with reference sera from human vaccinees immunized with rPA or anthrax vaccine absorbed and nonhuman primates immunized with PA revealed no detectable Ab with specificity for the LND. We conclude that a synthetic peptide vaccine targeting the LND would be a potentially efficacious vaccine for anthrax.
Collapse
Affiliation(s)
- Jon Oscherwitz
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA.
| | | | | |
Collapse
|
58
|
Baillie LW, Huwar TB, Moore S, Mellado-Sanchez G, Rodriguez L, Neeson BN, Flick-Smith HC, Jenner DC, Atkins HS, Ingram RJ, Altmann DM, Nataro JP, Pasetti MF. An anthrax subunit vaccine candidate based on protective regions of Bacillus anthracis protective antigen and lethal factor. Vaccine 2010; 28:6740-8. [PMID: 20691267 DOI: 10.1016/j.vaccine.2010.07.075] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 07/08/2010] [Accepted: 07/21/2010] [Indexed: 10/19/2022]
Abstract
Studies have confirmed the key role of Bacillus anthracis protective antigen (PA) in the US and UK human anthrax vaccines. However, given the tripartite nature of the toxin, other components, including lethal factor (LF), are also likely to contribute to protection. We examined the antibody and T cell responses to PA and LF in human volunteers immunized with the UK anthrax vaccine (AVP). Individual LF domains were assessed for immunogenicity in mice when given alone or with PA. Based on the results obtained, a novel fusion protein comprising D1 of LF and the host cell-binding domain of PA (D4) was assessed for protective efficacy. Murine protection studies demonstrated that both full-length LF and D1 of LF conferred complete protection against a lethal intraperitoneal challenge with B. anthracis STI spores. Subsequent studies with the LFD1-PAD4 fusion protein showed a similar level of protection. LF is immunogenic in humans and is likely to contribute to the protection stimulated by AVP. A single vaccine comprising protective regions from LF and PA would simplify production and confer a broader spectrum of protection than that seen with PA alone.
Collapse
Affiliation(s)
- Les W Baillie
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, Wales, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Klinman DM, Yamamoto M, Tross D, Tomaru K. Anthrax prevention and treatment: utility of therapy combining antibiotic plus vaccine. Expert Opin Biol Ther 2010; 9:1477-86. [PMID: 19769541 DOI: 10.1517/14712590903307347] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The intentional release of anthrax spores in 2001 confirmed this pathogen's ability to cause widespread panic, morbidity and mortality. While individuals exposed to anthrax can be successfully treated with antibiotics, pre-exposure vaccination can reduce susceptibility to infection-induced illness. Concern over the safety and immunogenicity of the licensed US vaccine (Anthrax Vaccine Adsorbed (AVA)) has fueled research into alternatives. Second-generation anthrax vaccines based on purified recombinant protective antigen (rPA) have entered clinical trials. These rPA vaccines induce neutralizing antibodies that prevent illness, but the magnitude and duration of the resultant protective response is modest. Efforts are underway to bolster the immunogenicity of rPA by combining it with adjuvants and other immunostimulatory agents. Third generation vaccines are under development that utilize a wide variety of immunization platforms, antigens, adjuvants, delivery methods and routes of delivery to optimize the induction of a protective immunity. For the foreseeable future, vaccination will rely on first and second generation vaccines co-administered with immune adjuvants. Optimal post-exposure treatment of immunologically naive individuals should include a combination of vaccine plus antibiotic therapy.
Collapse
Affiliation(s)
- Dennis M Klinman
- National Cancer Institute (NCI), NCI, NIH, Frederick, MD 21702, USA.
| | | | | | | |
Collapse
|
60
|
A heterologous helper T-cell epitope enhances the immunogenicity of a multiple-antigenic-peptide vaccine targeting the cryptic loop-neutralizing determinant of Bacillus anthracis protective antigen. Infect Immun 2009; 77:5509-18. [PMID: 19805525 DOI: 10.1128/iai.00899-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously showed that a multiple antigenic peptide (MAP) displaying amino acids (aa) 305 to 319 from the 2beta2-2beta3 loop of protective antigen (PA) can elicit high-titered antibody that neutralizes lethal toxin (LeTx) in vitro and that this loop-neutralizing determinant (LND) specificity is absent in PA-immune rabbits. Some immune rabbits were, however, nonresponders to the MAP. We hypothesized that the immunogen elicited suboptimal major histocompatibility complex (MHC) class II-restricted T-cell help and that introduction of a functional helper T-cell epitope would increase MHC-restricted responsiveness and the magnitude and affinity of the antibody responses. In the current study, we characterized the T- and B-cell responses to LND peptides in mice, then designed second-generation MAP immunogens for eliciting LND-specific immunity, and tested them in rabbits. The 305-319 sequence was devoid of helper T-cell epitopes in three strains of mice; however, a T-B peptide comprising aa 305 to 319, colinearly synthesized with the P30 helper epitope of tetanus toxin, elicited robust LeTx-neutralizing immunity in mice. T-B MAPs displaying B-cell epitopes 304 to 319 (MAP304) or 305 to 319 (MAP305) elicited high-titer, durable antibody responses in rabbits which exhibited potent neutralization of LeTx in vitro. All MAP304-immune rabbits demonstrated neutralization titers exceeding that of hyperimmune sera of rabbits immunized with PA in Freund's adjuvant, with peak neutralization titers 23-, 6-, and 3-fold higher than that of the PA antiserum. Overall, immunization with MAPs containing the P30 epitope elicited higher antibody and toxin neutralization titers and peptide-specific affinity than immunization with an LND MAP lacking a helper epitope. P30-containing MAP304 represents a promising LND-specific vaccine for anthrax.
Collapse
|
61
|
Neutralizing monoclonal antibodies directed against defined linear epitopes on domain 4 of anthrax protective antigen. Infect Immun 2009; 77:4859-67. [PMID: 19703971 DOI: 10.1128/iai.00117-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The anthrax protective antigen (PA) is the receptor-binding subunit common to lethal toxin (LT) and edema toxin (ET), which are responsible for the high mortality rates associated with inhalational Bacillus anthracis infection. Although recombinant PA (rPA) is likely to be an important constituent of any future anthrax vaccine, evaluation of the efficacies of the various candidate rPA vaccines is currently difficult, because the specific B-cell epitopes involved in toxin neutralization have not been completely defined. In this study, we describe the identification and characterization of two murine monoclonal immunoglobulin G1 antibodies (MAbs), 1-F1 and 2-B12, which recognize distinct linear neutralizing epitopes on domain 4 of PA. 1-F1 recognized a 12-mer peptide corresponding to residues 692 to 703; this epitope maps to a region of domain 4 known to interact with the anthrax toxin receptor CMG-2 and within a conformation-dependent epitope recognized by the well-characterized neutralizing MAb 14B7. As expected, 1-F1 blocked PA's ability to associate with CMG-2 in an in vitro solid-phase binding assay, and it protected murine macrophage cells from intoxication with LT. 2-B12 recognized a 12-mer peptide corresponding to residues 716 to 727, an epitope located immediately adjacent to the core 14B7 binding site and a stretch of amino acids not previously identified as a target of neutralizing antibodies. 2-B12 was as effective as 1-F1 in neutralizing LT in vitro, although it only partially inhibited PA binding to its receptor. Mice passively administered 1-F1 or 2-B12 were partially protected against a lethal challenge with LT. These results advance our fundamental understanding of the mechanisms by which antibodies neutralize anthrax toxin and may have future application in the evaluation of candidate rPA vaccines.
Collapse
|
62
|
Investigation of new dominant-negative inhibitors of anthrax protective antigen mutants for use in therapy and vaccination. Infect Immun 2009; 77:4679-87. [PMID: 19620345 DOI: 10.1128/iai.00264-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The lethal toxin (LeTx) of Bacillus anthracis plays a key role in the pathogenesis of anthrax. The protective antigen (PA) is a primary part of the anthrax toxin and forms LeTx by combination with lethal factor (LF). Phenylalanine-427 (F427) is crucial for PA function. This study was designed to discover potential novel therapeutic agents and vaccines for anthrax. This was done by screening PA mutants that were mutated at the F427 residue for a dominant-negative inhibitory (DNI) phenotype which was nontoxic but inhibited the toxicity of the wild-type LeTx. For this, PA residue F427 was first mutated to each of the other 19 naturally occurring amino acids. The cytotoxicity and DNI phenotypes of the mutated PA proteins were tested in the presence of 1 microg/ml LF in RAW264.7 cells and were shown to be dependent on the individual amino acid replacements. A total of 16 nontoxic mutants with various levels of DNI activity were identified in vitro. Among them, F427D and F427N mutants had the highest DNI activities in RAW264.7 cells. Both mutants inhibited LeTx intoxication in mice in a dose-dependent way. Furthermore, they induced a Th2-predominant immune response and protected mice against a challenge with five 50% lethal doses of LeTx. The protection was correlated mainly with a low level of interleukin-1 beta (IL-1 beta) and with high levels of PA-specific immunoglobulin G1, IL-6, and tumor necrosis factor alpha. Thus, PA DNI mutants, such as F427D and F427N mutants, may serve in the development of novel therapeutic agents and vaccines to fight B. anthracis infections.
Collapse
|
63
|
Abboud N, De Jesus M, Nakouzi A, Cordero RJB, Pujato M, Fiser A, Rivera J, Casadevall A. Identification of linear epitopes in Bacillus anthracis protective antigen bound by neutralizing antibodies. J Biol Chem 2009; 284:25077-86. [PMID: 19617628 DOI: 10.1074/jbc.m109.022061] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Protective antigen (PA), the binding subunit of anthrax toxin, is the major component in the current anthrax vaccine, but the fine antigenic structure of PA is not well defined. To identify linear neutralizing epitopes of PA, 145 overlapping peptides covering the entire sequence of the protein were synthesized. Six monoclonal antibodies (mAbs) and antisera from mice specific for PA were tested for their reactivity to the peptides by enzyme-linked immunosorbent assays. Three major linear immunodominant B-cell epitopes were mapped to residues Leu(156) to Ser(170), Val(196) to Ile(210), and Ser(312) to Asn(326) of the PA protein. Two mAbs with toxin-neutralizing activity recognized two different epitopes in close proximity to the furin cleavage site in domain 1. The three-dimensional complex structure of PA and its neutralizing mAbs 7.5G and 19D9 were modeled using the molecular docking method providing models for the interacting epitope and paratope residues. For both mAbs, LeTx neutralization was associated with interference with furin cleavage, but they differed in effectiveness depending on whether they bound on the N- or C-terminal aspect of the cleaved products. The two peptides containing these epitopes that include amino acids Leu(156)-Ser(170) and Val(196)-Ile(210) were immunogenic and elicited neutralizing antibody responses to PA. These results identify the first linear neutralizing epitopes of PA and show that peptides containing epitope sequences can elicit neutralizing antibody responses, a finding that could be exploited for vaccine design.
Collapse
Affiliation(s)
- Nareen Abboud
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Capillary morphogenesis protein-2 is the major receptor mediating lethality of anthrax toxin in vivo. Proc Natl Acad Sci U S A 2009; 106:12424-9. [PMID: 19617532 DOI: 10.1073/pnas.0905409106] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Anthrax toxin, a major virulence factor of Bacillus anthracis, gains entry into target cells by binding to either of 2 von Willebrand factor A domain-containing proteins, tumor endothelium marker-8 (TEM8) and capillary morphogenesis protein-2 (CMG2). The wide tissue expression of TEM8 and CMG2 suggest that both receptors could play a role in anthrax pathogenesis. To explore the roles of TEM8 and CMG2 in normal physiology, as well as in anthrax pathogenesis, we generated TEM8- and CMG2-null mice and TEM8/CMG2 double-null mice by deleting TEM8 and CMG2 transmembrane domains. TEM8 and CMG2 were found to be dispensable for mouse development and life, but both are essential in female reproduction in mice. We found that the lethality of anthrax toxin for mice is mostly mediated by CMG2 and that TEM8 plays only a minor role. This is likely because anthrax toxin has approximately 11-fold higher affinity for CMG2 than for TEM8. Finally, the CMG2-null mice are also shown to be highly resistant to B. anthracis spore infection, attesting to the importance of both anthrax toxin and CMG2 in anthrax infections.
Collapse
|
65
|
Synthetic peptide vaccine targeting a cryptic neutralizing epitope in domain 2 of Bacillus anthracis protective antigen. Infect Immun 2009; 77:3380-8. [PMID: 19487468 DOI: 10.1128/iai.00358-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Current evidence suggests that protective antigen (PA)-based anthrax vaccines may elicit a narrow neutralizing antibody repertoire, and this may represent a vulnerability with PA-based vaccines. In an effort to identify neutralizing specificities which may complement those prevalent in PA antiserum, we evaluated whether sequences within the 2beta2-2beta3 loop of PA, which are apparent in the crystal structure of heptameric but not monomeric PA, might represent a target for an epitope-specific vaccine for anthrax and, further, whether antibodies to these sequences are induced in rabbits immunized with monomeric PA. We evaluated the immunogenicity in rabbits of a multiple antigenic peptide (MAP) displaying copies of amino acids (aa) 305 to 319 of this region. Overall, four out of six rabbits vaccinated with the MAP peptide in Freund's adjuvant developed high-titer, high-avidity antibody responses which cross-reacted with the immobilized peptide sequence comprising aa 305 to 319 and with PA, as determined by an enzyme-linked immunosorbent assay, and which displayed potent and durable neutralization of lethal toxin (LeTx) in vitro, with peak titers which were 452%, 100%, 67%, and 41% of the peak neutralization titers observed in positive-control rabbits immunized with PA. Importantly, analysis of sera from multiple cohorts of rabbits with high-titer immunity to PA demonstrated a virtual absence of this potent antibody specificity, and work by others suggests that this specificity may be present at only low levels in primate PA antiserum. These results highlight the potential importance of this immunologically cryptic neutralizing epitope from PA as a target for alternative and adjunctive vaccines for anthrax.
Collapse
|
66
|
Vuyisich M, Gnanakaran S, Lovchik JA, Lyons CR, Gupta G. A dual-purpose protein ligand for effective therapy and sensitive diagnosis of anthrax. Protein J 2009; 27:292-302. [PMID: 18649128 DOI: 10.1007/s10930-008-9137-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This article reports the design of a bivalent protein ligand with dual use in therapy and diagnosis of anthrax caused by Bacillus anthracis. The ligand specifically binds to PA and thereby blocks the intracellular delivery of LF and EF toxins that, respectively, cause cell lysis and edema. The ligand is a chimeric scaffold with two PA-binding domains (called VWA) linked to an IgG-Fc frame. Molecular modeling and binding measurements reveal that the VWA-Fc dimer binds to PA with high affinity (K(D)=0.2 nM). An in vitro bio-luminescence assay shows that VWA-Fc (at nanomolar concentration) protects mouse macrophages from lysis by PA/LF. In vivo studies demonstrate that VWA-Fc at low doses (approximately 50 microg/animal) are able to rescue animals from lethal doses of PA/LF and B. anthracis spores. Finally, VWA-Fc is utilized as the capture molecule in the sensitive (down to 30 picomolar) detection of PA using surface plasmon resonance.
Collapse
Affiliation(s)
- Momchilo Vuyisich
- Biosciences Division, Group B-7, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | | | | | |
Collapse
|
67
|
Frequency and domain specificity of toxin-neutralizing paratopes in the human antibody response to anthrax vaccine adsorbed. Infect Immun 2009; 77:2030-5. [PMID: 19223482 DOI: 10.1128/iai.01254-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protective antigen (PA) is the cell surface recognition unit of the binary anthrax toxin system and the primary immunogenic component in both the current and proposed "next-generation" anthrax vaccines. Several studies utilizing animal models have indicated that PA-specific antibodies, acquired by either active or passive immunization, are sufficient to protect against infection with Bacillus anthracis. To investigate the human antibody response to anthrax immunization, we have established a large panel of human PA-specific monoclonal antibodies derived from multiple individuals vaccinated with the currently approved anthrax vaccine BioThrax. We have determined that although these antibodies bind PA in standard binding assays such as enzyme-linked immunosorbent assay, Western blotting, capture assays, and dot blots, less than 25% are capable of neutralizing lethal toxin (LT) in vitro. Nonneutralizing antibodies also fail to neutralize toxin when present in combination with other nonneutralizing paratopes. Although neutralizing antibodies recognize determinants throughout the PA monomer, they are significantly less common among those paratopes that bind to the immunodominant amino-terminal portion of the molecule. These findings demonstrate that PA binding alone is not sufficient to neutralize LT and suggest that for an antibody to effectively block PA-mediated toxicity, it must bind to PA such that one of the requisite toxin functions is disrupted. A vaccine design strategy that directed a higher percentage of the antibody response toward neutralizing epitopes may result in a more efficacious vaccine for the prevention of anthrax infection.
Collapse
|
68
|
Crystal structure of the engineered neutralizing antibody M18 complexed to domain 4 of the anthrax protective antigen. J Mol Biol 2009; 387:680-93. [PMID: 19361425 DOI: 10.1016/j.jmb.2009.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 02/03/2009] [Accepted: 02/03/2009] [Indexed: 11/24/2022]
Abstract
The virulence of Bacillus anthracis is critically dependent on the cytotoxic components of the anthrax toxin, lethal factor (LF) and edema factor (EF). LF and EF gain entry into host cells through interactions with the protective antigen (PA), which binds to host cellular receptors such as CMG2. Antibodies that neutralize PA have been shown to confer protection in animal models and are undergoing intense clinical development. A murine monoclonal antibody, 14B7, has been reported to interact with domain 4 of PA (PAD4) and block its binding to CMG2. More recently, the 14B7 antibody was used as the platform for the selection of very high affinity, single-chain antibodies that have tremendous potential as a combination anthrax prophylactic and treatment. Here, we report the high-resolution X-ray structures of three high-affinity, single-chain antibodies in the 14B7 family; 14B7 and two high-affinity variants 1H and M18. In addition, we present the first neutralizing antibody-PA structure, M18 in complex with PAD4 at 3.8 A resolution. These structures provide insights into the mechanism of neutralization, and the effect of various mutations on antibody affinity, and enable a comparison between the binding of the M18 antibody and CMG2 with PAD4.
Collapse
|
69
|
Efficient neutralization of antibody-resistant forms of anthrax toxin by a soluble receptor decoy inhibitor. Antimicrob Agents Chemother 2008; 53:1210-2. [PMID: 19075066 DOI: 10.1128/aac.01294-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A soluble receptor decoy inhibitor (RDI), comprised of the extracellular I domain of ANTXR2, is a candidate anthrax therapeutic. Here we show that RDI can effectively neutralize altered forms of the protective antigen toxin subunit that are resistant to 14B7 monoclonal antibody neutralization. These data highlight the potential of RDI to act as an adjunct to existing antibody-based therapies and indicate that inhibitors based on RDI might be useful as a stand-alone treatment against specifically engineered strains of Bacillus anthracis.
Collapse
|
70
|
Belova EV, Kolesnikov AV, Zakharova MI, Dubileĭ SA, Diatlov IA, Shemiakin IG. [Characteristics of the immune response to the lethal toxin of Bacillus anthracis]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2008; 34:639-44. [PMID: 19060938 DOI: 10.1134/s1068162008050063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We and other authors have recently shown that the pattern of the immune response to components of anthrax, the Bacillus anthracis lethal toxin, is complex. In addition to neutralizing antibodies, the antitoxin antibody pool contains antibodies enhancing the toxin lethal action. We mapped the epitopes in the protective antigen that are responsible for the induction of both antibody types. In this study, we obtained new data on the cytotoxicity of the B. anthracis lethal toxin toward the J774 A.1 cell line in the presence of monoclonal antibodies to various domains of the protective antigen and the lethal factor. The role of the Fc fragment of immunoglobulins in enhancing the lethal toxin action was shown. These results may serve as a basis for the development of a new generation vaccine for anthrax.
Collapse
|
71
|
Gorshkova II, Svitel J, Razjouyan F, Schuck P. Bayesian analysis of heterogeneity in the distribution of binding properties of immobilized surface sites. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:11577-86. [PMID: 18816013 PMCID: PMC2574969 DOI: 10.1021/la801186w] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Once a homogeneous ensemble of a protein ligand is taken from solution and immobilized to a surface, for many reasons the resulting ensemble of surface binding sites to soluble analytes may be heterogeneous. For example, this can be due to the intrinsic surface roughness causing variations in the local microenvironment, nonuniform density distribution of polymeric linkers, or nonuniform chemical attachment producing different protein orientations and conformations. We previously described a computational method for determining the distribution of affinity and rate constants of surface sites from analysis of experimental surface binding data. It fully exploits the high signal/noise ratio and reproducibility provided by optical biosensor technology, such as surface plasmon resonance. Since the computational analysis is ill conditioned, the previous approach used a regularization strategy assuming a priori all binding parameters to be equally likely, resulting in the broadest possible parameter distribution consistent with the experimental data. We now extended this method in a Bayesian approach to incorporate the opposite assumption, i.e., that the surface sites a priori are expected to be uniform (as one would expect in free solution). This results in a distribution of binding parameters as close to monodispersity as possible given the experimental data. Using several model protein systems immobilized on a carboxymethyl dextran surface and probed with surface plasmon resonance, we show microheterogeneity of the surface sites in addition to broad populations of significantly altered affinity. The distributions obtained are highly reproducible. Immobilization conditions and the total surface density of immobilized sites can have a substantial impact on the functional distribution of the binding sites.
Collapse
Affiliation(s)
- Inna I. Gorshkova
- Dynamics of Macromolecular Assembly Section, Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | | | - Faezeh Razjouyan
- Dynamics of Macromolecular Assembly Section, Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
72
|
The cytoplasmic domain of anthrax toxin receptor 1 affects binding of the protective antigen. Infect Immun 2008; 77:52-9. [PMID: 18936178 DOI: 10.1128/iai.01073-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protective antigen (PA) component of anthrax toxin binds the I domain of the receptor ANTXR1. Integrin I domains convert between open and closed conformations that bind ligand with high and low affinities, respectively; this process is regulated by signaling from the cytoplasmic domains. To assess whether intracellular signals might influence the interaction between ANTXR1 and PA, we compared two splice variants of ANTXR1 that differ only in their cytoplasmic domains. We found that cells expressing ANTXR1 splice variant 1 (ANTXR1-sv1) bound markedly less PA than did cells expressing a similar level of the shorter splice variant ANTXR1-sv2. ANTXR1-sv1 but not ANTXR1-sv2 associated with the actin cytoskeleton, although disruption of the cytoskeleton did not affect binding of ANTXR-sv1 to PA. Introduction of a cytoplasmic domain missense mutation found in the related receptor ANTXR2 in a patient with juvenile hyaline fibromatosis impaired actin association and increased binding of PA to ANTXR1-sv1. These results suggest that ANTXR1 has two affinity states that may be modulated by cytoplasmic signals.
Collapse
|
73
|
Zarebski LM, Vaughan K, Sidney J, Peters B, Grey H, Janda KD, Casadevall A, Sette A. Analysis of epitope information related to Bacillus anthracis and Clostridium botulinum. Expert Rev Vaccines 2008; 7:55-74. [PMID: 18251694 DOI: 10.1586/14760584.7.1.55] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have reviewed the information about epitopes of immunological interest from Clostridium botulinum and Bacillus anthracis, by mining the Immune Epitope Database and Analysis Resource. For both pathogens, the vast majority of epitopes reported to date are derived from a single protein: the protective antigen of B. anthracis and the neurotoxin type A of C. botulinum. A detailed analysis of the data was performed to characterize the function, localization and conservancy of epitopes identified as neutralizing and/or protective. In order to broaden the scope of this analysis, we have also included data describing immune responses against defined fragments (over 50 amino acids long) of the relevant antigens. The scarce information on T-cell determinants and on epitopes from other antigens besides the toxins, highlights a gap in our knowledge and identifies areas for future research. Despite this, several distinct structures at the epitope and fragment level are described herein, which could be potential additions to future vaccines or targets of novel immunotherapeutics and diagnostic reagents.
Collapse
Affiliation(s)
- Laura M Zarebski
- Immune Epitope Database and Analysis Resource, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 9203,7 USA.
| | | | | | | | | | | | | | | |
Collapse
|
74
|
GroEL as a molecular scaffold for structural analysis of the anthrax toxin pore. Nat Struct Mol Biol 2008; 15:754-60. [PMID: 18568038 PMCID: PMC2504863 DOI: 10.1038/nsmb.1442] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 05/09/2008] [Indexed: 11/16/2022]
Abstract
We analyzed the 440-kDa transmembrane pore formed by the protective antigen (PA) moiety of anthrax toxin in the presence of GroEL by negative-stain electron microscopy. GroEL binds both the heptameric PA prepore and the PA pore. The latter interaction retards aggregation of the pore, prolonging its insertion-competent state. Two populations of unaggregated pores were visible: GroEL-bound pores and unbound pores. This allowed two virtually identical structures to be reconstructed, at 25-Å and 28-Å resolution, respectively. The structures were mushroom-shaped objects with a 125-Å-diameter cap and a 100-Å-long stem, consistent with earlier biochemical data. Thus, GroEL provides a platform for obtaining initial glimpses of a membrane protein structure in the absence of lipids or detergents and can function as a scaffold for higher-resolution structural analysis of the PA pore.
Collapse
|
75
|
Domain specificity of the human antibody response to Bacillus anthracis protective antigen. Vaccine 2008; 26:4041-7. [PMID: 18565627 DOI: 10.1016/j.vaccine.2008.05.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 05/01/2008] [Accepted: 05/09/2008] [Indexed: 11/22/2022]
Abstract
Protective antigen (PA) is the cell surface recognition moiety of the Bacillus anthracis A-B toxin system, and the active immunogenic component in the currently licensed human anthrax vaccine (BioThrax, or AVA). The serum antibody response to the PA protein is polyclonal and complex both in terms of the antibody combining sites utilized to bind PA and the PA-associated epitopes recognized. We have cloned, sequenced, and expressed a large panel of PA-specific human monoclonal antibodies from seven AVA-immunized donors. Dot blots, Western blots, and radiolabeled antigen capture assays employing both proteolytic fragments of PA and engineered PA sub-domain fusion proteins were used to determine the region (domain) of the PA monomer to which each of the cloned human antibodies bound. The domain specificity of the isolated monoclonals was highly biased towards the amino-terminal 20kDa fragment of PA (PA(20)), with the majority (62%) of independently arising antibody clones reacting with determinants located on this PA fragment. A similar bias in domain specificity was also demonstrated in the serum response of AVA-vaccinated donors. Since PA(20) is cleaved from the remainder of the monomer rapidly following cell surface binding and has no known role in the intoxication process, the immunodominance of PA(20)-associated epitopes may directly affect the efficacy of PA-based anthrax vaccines.
Collapse
|
76
|
Immunogenicity of Bacillus anthracis protective antigen domains and efficacy of elicited antibody responses depend on host genetic background. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1115-23. [PMID: 18480236 DOI: 10.1128/cvi.00015-08] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Neutralizing antibodies to Bacillus anthracis protective antigen (PA), a component of anthrax toxin, mediate protection against anthrax. PA is antigenically complex and can elicit protective and nonprotective antibodies. Furthermore, vaccinated individuals demonstrate considerable variability in their antibody responses to PA. To explore the relationship between PA structure and antigenicity, we produced Escherichia coli strains expressing full-length PA (PA1-4), domains 2 to 4 (PA2-4), domain 1, (PA1), and domain 4 (PA4) and evaluated the immunogenicities and protective efficacies of the protein fractions in four mouse strains (strains A/J, BALB/c, C57BL/6, and Swiss Webster). Immunization with PA1-4 resulted in significantly higher lethal toxin-neutralizing antibody titers than immunization with any recombinant protein (rPA) fraction of PA. The magnitude and neutralizing capacity of the antibody response to full-length PA and its fragments varied depending on the mouse strain. We found no correlation between the antibody titer and the neutralizing antibody titer for A/J and Swiss Webster mice. In C57BL/6 mice, antibody titers and neutralization capacity correlated for two of four rPA domain proteins tested, while BALB/c mice displayed a similar correlation with only one rPA. By correlating the reactivity of immune sera with solvent-exposed linear peptide segments of PA, we tentatively assign the presence of four new linear B-cell epitopes in PA amino acids 121 to 150, 143 to 158, 339 to 359, and 421 to 440. We conclude that the genetic background of the host determines the relative efficacy of the antitoxin response. The results suggest that the variability observed in vaccination studies with PA-derived vaccines is a result of host heterogeneity and implies a need to develop other antigens as vaccine candidates.
Collapse
|
77
|
Sivasubramanian A, Maynard JA, Gray JJ. Modeling the structure of mAb 14B7 bound to the anthrax protective antigen. Proteins 2008; 70:218-30. [PMID: 17671962 DOI: 10.1002/prot.21595] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The anthrax protective antigen (PA) is a key component of the tripartite anthrax toxin. Monoclonal antibody (mAb) 14B7 and its engineered, affinity-matured variants have been shown to be effective in blocking PA binding to cellular receptors and mitigating anthrax toxicity. Here, we perform computational structural modeling of the mAb 14B7-PA interaction. Our objectives are to determine the structure of the 14B7-PA complex, to deduce a structural explanation for the affinity maturation from the docking models, and to study the effect of inaccuracies in the antibody homology model on docking. We used the RosettaDock program to dock PA with the mAb 14B7 crystal structure or homology model. Our simulations generate two distinct binding orientations consistent with experimental residue mutations that diminish 14B7-PA binding. Furthermore, the models suggest new site-directed mutations to positively identify one of these two solutions as the correct 14B7-PA docking orientation. The models indicate that PA regions 648-660 and 712-720 may be important for 14B7 binding in addition to the known PA epitope, and the binding interfaces are similar to that seen in the PA complex with cellular receptor CMG2. Antibody residues involved in affinity maturation do not contact the antigen in the docking models, suggesting that affinity maturation in the 14B7 family does not result from direct enhancements of antibody-antigen contacts. Docking the homology model produces low-resolution representations of the crystal structure docking orientations, but homology model docking is frustrated by antibody H3 loop conformation errors. This work demonstrates the usefulness and limitations of computational structure prediction for the development of antibody therapeutics, and reemphasizes the need for flexible backbone docking algorithms to achieve high-resolution docking using homology models.
Collapse
Affiliation(s)
- Arvind Sivasubramanian
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
78
|
Yan M, Roehrl MH, Basar E, Wang JY. Selection and evaluation of the immunogenicity of protective antigen mutants as anthrax vaccine candidates. Vaccine 2007; 26:947-55. [PMID: 18192092 DOI: 10.1016/j.vaccine.2007.11.087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 11/28/2007] [Accepted: 11/29/2007] [Indexed: 11/17/2022]
Abstract
Protective antigen (PA) is a central component of anthrax toxin and a major antigen in anthrax vaccines. However, the use of native PA as a vaccine is not optimal. If administered to people who have been freshly exposed to anthrax, PA may actually aid in anthrax toxin formation and thus may pose a serious safety concern for postexposure vaccination applications. A non-functional PA mutant may be a much safer alternative. To identify an improved anthrax vaccine antigen, we examined four non-functional mutants of PA, each being impaired in a critical step of the cellular intoxication pathway of PA. These mutants were Rec(-) (unable to bind PA-receptors), SSSR (resistant to activation by furin), Oligo(-) (unable to form oligomers), and DNI (Dominant Negative Inhibitory, unable to form endosomal transmembrane pores). When tested in mice and after three doses of immunization, all four mutants were highly potent in eliciting PA-specific, toxin-neutralizing antibodies, with immunogenicity increasing in the order of PA<Rec(-)<SSSR<Oligo(-)<DNI. While the differences between Rec(-) or SSSR and PA were small and not statistically significant, DNI and Oligo(-) were significantly more immunogenic than wild-type PA. One year after immunization and compared with PA-immunized mice, DNI-immunized mice maintained significantly higher levels of anti-PA IgG with correspondingly higher titers of toxin-neutralizing activity. In contrast, Oligo(-)-immunized mice had high levels of anti-PA IgG but lower titers of toxin-neutralizing activity, suggesting that Oligo(-) mutation sites may overlap with critical protective epitopes of PA. Our study demonstrates that PA-based vaccines could be improved both in terms of safety and efficacy by strategic mutations that not only render PA non-functional but also simultaneously enhance its immunogenic potency. Recombinant PA mutants, particularly DNI, hold great promise as better and safer antigens than wild-type PA for use in postexposure vaccination.
Collapse
Affiliation(s)
- Ming Yan
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | | | | | | |
Collapse
|
79
|
Rogers MS, Christensen KA, Birsner AE, Short SM, Wigelsworth DJ, Collier RJ, D'Amato RJ. Mutant anthrax toxin B moiety (protective antigen) inhibits angiogenesis and tumor growth. Cancer Res 2007; 67:9980-5. [PMID: 17942931 DOI: 10.1158/0008-5472.can-07-0829] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bacillus anthracis protective antigen (PA), the B subunit of the binary anthrax toxin, binds to the cellular receptors capillary morphogenesis gene 2 protein and tumor endothelial marker 8 with high affinity. Both receptors are expressed on endothelial cells during angiogenesis. We sought to determine whether one could inhibit angiogenesis by interfering with the binding of these receptors to their endogenous ligands. Here, we show that wild-type PA inhibits both vascular endothelial growth factor-induced and basic fibroblast growth factor-induced angiogenesis at moderate but statistically significant levels. Structure-activity studies identified a PA mutant that exhibited markedly enhanced inhibition of angiogenesis and also inhibited tumor growth in vivo. This mutant, PASSSR, is unable to undergo normal cellular processing and, thus, remains bound to the surface receptor. Further mutation of PASSSR so that it does not bind to these cell surface receptors abolished its ability to inhibit angiogenesis. We conclude that high-affinity anthrax toxin receptor (ATR) ligands, such as PA and PASSSR, are angiogenesis inhibitors and that ATRs are useful targets for antiangiogenic therapy. These results also suggest that endothelial cell-binding proteins from additional pathogens may inhibit angiogenesis and raise the question of the role of such inhibition in pathogenesis.
Collapse
Affiliation(s)
- Michael S Rogers
- Vascular Biology Program and Department of Ophthalmology, Children's Hospital, and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
80
|
Balbo A, Brown PH, Braswell EH, Schuck P. Measuring protein-protein interactions by equilibrium sedimentation. CURRENT PROTOCOLS IN IMMUNOLOGY 2007; Chapter 18:18.8.1-18.8.28. [PMID: 18432990 DOI: 10.1002/0471142735.im1808s79] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This unit describes basic principles and practice of sedimentation equilibrium analytical ultracentrifugation for the study of reversible protein interactions, such as the characterization of self-association, heterogeneous association, and binding stoichiometry, as well as the determination of association constants. Advanced tools such as mass conservation analysis, multiwavelength analysis, and global analysis are introduced and discussed in the context of the experimental design. A detailed protocol guiding the investigator through the experimental steps and the data analysis is available as an internet resource.
Collapse
Affiliation(s)
- Andrea Balbo
- National Institutes of Health, Bethesda, Maryland
| | | | | | | |
Collapse
|
81
|
Complement C3d conjugation to anthrax protective antigen promotes a rapid, sustained, and protective antibody response. PLoS One 2007; 2:e1044. [PMID: 17940608 PMCID: PMC2001179 DOI: 10.1371/journal.pone.0001044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 09/11/2007] [Indexed: 11/19/2022] Open
Abstract
B. anthracis is the causative agent of anthrax. Pathogenesis is primarily mediated through the exotoxins lethal factor and edema factor, which bind protective antigen (PA) to gain entry into the host cell. The current anthrax vaccine (AVA, Biothrax™) consists of aluminum-adsorbed cell-free filtrates of unencapsulated B. anthracis, wherein PA is thought to be the principle target of neutralization. In this study, we evaluated the efficacy of the natural adjuvant, C3d, versus alum in eliciting an anti-PA humoral response and found that C3d conjugation to PA and emulsion in incomplete Freund's adjuvant (IFA) imparted superior protection from anthrax challenge relative to PA in IFA or PA adsorbed to alum. Relative to alum-PA, immunization of mice with C3d-PA/IFA augmented both the onset and sustained production of PA-specific antibodies, including neutralizing antibodies to the receptor-binding portion (domain 4) of PA. C3d-PA/IFA was efficacious when administered either i.p. or s.c., and in adolescent mice lacking a fully mature B cell compartment. Induction of PA-specific antibodies by C3d-PA/IFA correlated with increased efficiency of germinal center formation and plasma cell generation. Importantly, C3d-PA immunization effectively protected mice from intranasal challenge with B. anthracis spores, and was approximately 10-fold more effective than alum-PA immunization or PA/IFA based on dose challenge. These data suggest that incorporation of C3d as an adjuvant may overcome shortcomings of the currently licensed aluminum-based vaccine, and may confer protection in the early days following acute anthrax exposure.
Collapse
|
82
|
Doliana R, Veljkovic V, Prljic J, Veljkovic N, De Lorenzo E, Mongiat M, Ligresti G, Marastoni S, Colombatti A. EMILINs interact with anthrax protective antigen and inhibit toxin action in vitro. Matrix Biol 2007; 27:96-106. [PMID: 17988845 DOI: 10.1016/j.matbio.2007.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 09/13/2007] [Accepted: 09/26/2007] [Indexed: 11/29/2022]
Abstract
The informational spectrum method (ISM) is a virtual spectroscopy method for the fast analysis of potential protein-protein relationships. By applying the ISM approach to the GeneBank protein database the vascular proteins EMILIN1 (Elastin Microfibril Interface Located ProteIN), EMILIN2, MMN1, and MMN2 were identified as additional anthrax PA antigen interacting molecules. This virtual molecular interaction was formally proven by solid phase assays using recombinant proteins. The interaction is independent of the presence of divalent cations and does not involve PA aspartic residue at 683, a critical residue in receptor binding. In fact, the D683A point mutation fully prevented the cell intoxication ability of PA in the presence of Lethal Factor, but it was fully ineffective on the binding of mutated PA to EMILIN1 and EMILIN2. The ISM approach also led to the identification of the potential interaction sites between PA and EMILINs. A PA mutant with a deletion at residue D425 and solid phase protein-protein interaction studies as well as deletion mutant of EMILIN2 confirmed the hypothesized interaction site. Our findings imply that the PA-cell surface receptor interaction is not likely to provide the full explanation for the vascular lesions and prominent hemorrhages that follow Bacillus anthracis infection and spreading and call into play vascular associated proteins such as EMILINs as potential inhibitory proteins.
Collapse
Affiliation(s)
- Roberto Doliana
- Divisione di Oncologia Sperimentale 2, CRO-IRCCS, Aviano, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Abstract
Anthrax toxin consists of three nontoxic proteins that self-assemble at the surface of receptor-bearing mammalian cells or in solution, yielding a series of toxic complexes. Two of the proteins, called Lethal Factor (LF) and Edema Factor (EF), are enzymes that act on cytosolic substrates. The third, termed Protective Antigen (PA), is a multifunctional protein that binds to receptors, orchestrates the assembly and internalization of the complexes, and delivers them to the endosome. There, the PA moiety forms a pore in the endosomal membrane and promotes translocation of LF and EF to the cytosol. Recent advances in understanding the entry process include insights into how PA recognizes its two known receptors and its ligands, LF and EF; how the PA:receptor interaction influences the pH-dependence of pore formation; and how the pore functions in promoting translocation of LF and EF across the endosomal membrane.
Collapse
Affiliation(s)
- John A T Young
- Infectious Disease Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | |
Collapse
|
84
|
Moayeri M, Wiggins JF, Leppla SH. Anthrax protective antigen cleavage and clearance from the blood of mice and rats. Infect Immun 2007; 75:5175-84. [PMID: 17724066 PMCID: PMC2168306 DOI: 10.1128/iai.00719-07] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus anthracis protective antigen (PA) is an 83-kDa (PA83) protein that is cleaved to the 63-kDa protein (PA63) as an essential step in binding and internalizing lethal factor (LF). To assess in vivo receptor saturating PA concentrations, we injected mice with PA variants and measured the PA remaining in the blood at various times using PA83- and PA63-specific enzyme-linked immunosorbent assays. We found that both wild-type PA (WT-PA) and a receptor-binding-defective mutant (Ub-PA) were cleaved to PA63 independent of their ability to bind cells. This suggested a PA-acting protease activity in the blood. The protease cleaved PA at the furin cleavage sequence because furin site-modified PA mutants were not cleaved. Cleavage measured in vitro was leupeptin sensitive and dependent on calcium. Cell surface cleavage was important for toxin clearance, however, as Ub-PA and uncleavable PA mutants were cleared at slower rates than WT-PA. The cell binding-independent cleavage of PA was also verified by using Ub-PA (which is still cleaved) to rescue mice from toxin challenge by competitively binding circulating LF. This mutant was able to rescue mice even when given 12 h before toxin challenge. Its therapeutic ability was comparable to that of dominant-negative PA, which binds cells but does not allow LF translocation, and to the protection afforded through receptor clearance by WT-PA and uncleavable receptor binding-competent mutants. The PA cleavage and clearance observed in mice did not appear to have a role in the differential mouse susceptibility as it occurred similarly in lethal toxin (LT)-resistant DBA/2J and LT-sensitive BALB/cJ mice. Interestingly, PA63 was not found in LT-resistant or -sensitive rats and PA83 clearance was slower in rats than in mice. Finally, to determine the minimum amount of PA required in circulation for LT toxicity in mice, we administered time-separated injections of PA and LF and showed that lethality of LF for mice after PA was no longer measurable in circulation, suggesting active PA sequestration at tissue surfaces.
Collapse
Affiliation(s)
- Mahtab Moayeri
- Laboratory of Bacterial Diseases, Building 33, Room 1W20, NIAID, NIH, Bethesda, MD 20892-3202, USA
| | | | | |
Collapse
|
85
|
Watson LE, Kuo SR, Katki K, Dang T, Park SK, Dostal DE, Tang WJ, Leppla SH, Frankel AE. Anthrax toxins induce shock in rats by depressed cardiac ventricular function. PLoS One 2007; 2:e466. [PMID: 17520025 PMCID: PMC1867860 DOI: 10.1371/journal.pone.0000466] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 05/01/2007] [Indexed: 12/05/2022] Open
Abstract
Anthrax infections are frequently associated with severe and often irreversible hypotensive shock. The isolated toxic proteins of Bacillus anthracis produce a non-cytokine-mediated hypotension in rats by unknown mechanisms. These observations suggest the anthrax toxins have direct cardiovascular effects. Here, we characterize these effects. As a first step, we administered systemically anthrax lethal toxin (LeTx) and edema toxin (EdTx) to cohorts of three to twelve rats at different doses and determined the time of onset, degree of hypotension and mortality. We measured serum concentrations of the protective antigen (PA) toxin component at various time points after infusion. Peak serum levels of PA were in the µg/mL range with half-lives of 10–20 minutes. With doses that produced hypotension with delayed lethality, we then gave bolus intravenous infusions of toxins to groups of four to six instrumented rats and continuously monitored blood pressure by telemetry. Finally, the same doses used in the telemetry experiments were given to additional groups of four rats, and echocardiography was performed pretreatment and one, two, three and twenty-four hours post-treatment. LeTx and EdTx each produced hypotension. We observed a doubling of the velocity of propagation and 20% increases in left ventricular diastolic and systolic areas in LeTx-treated rats, but not in EdTx-treated rats. EdTx-but not LeTx-treated rats showed a significant increase in heart rate. These results indicate that LeTx reduced left ventricular systolic function and EdTx reduced preload. Uptake of toxins occurs readily into tissues with biological effects occurring within minutes to hours of serum toxin concentrations in the µg/mL range. LeTx and EdTx yield an irreversible shock with subsequent death. These findings should provide a basis for the rational design of drug interventions to reduce the dismal prognosis of systemic anthrax infections.
Collapse
Affiliation(s)
- Linley E. Watson
- Division of Cardiology, Scott and White Memorial Hospital, Scott, Sherwood and Brindley Foundation, Temple, Texas, United States of America
- Department of Medicine, Texas A&M University System, Health Science Center College of Medicine, Temple, Texas, United States of America
- Division of Molecular Cardiology, Texas A&M University System, Health Science Center College of Medicine, and Central Texas Veterans Health Care System, Temple, Texas, United States of America
| | - Shu-ru Kuo
- Scott and White Cancer Research Institute, Temple, Texas, United States of America
| | - Khurshed Katki
- Department of Medicine, Texas A&M University System, Health Science Center College of Medicine, Temple, Texas, United States of America
| | - Tongyun Dang
- Scott and White Cancer Research Institute, Temple, Texas, United States of America
| | - Seong Kyu Park
- Scott and White Cancer Research Institute, Temple, Texas, United States of America
| | - David E. Dostal
- Department of Medicine, Texas A&M University System, Health Science Center College of Medicine, Temple, Texas, United States of America
- Division of Molecular Cardiology, Texas A&M University System, Health Science Center College of Medicine, and Central Texas Veterans Health Care System, Temple, Texas, United States of America
| | - Wei-Jen Tang
- Ben May Institute for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Stephen H. Leppla
- Bacterial Toxins and Therapeutics Section, National Institutes of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Arthur E. Frankel
- Department of Medicine, Texas A&M University System, Health Science Center College of Medicine, Temple, Texas, United States of America
- Scott and White Cancer Research Institute, Temple, Texas, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
86
|
Pelat T, Hust M, Laffly E, Condemine F, Bottex C, Vidal D, Lefranc MP, Dübel S, Thullier P. High-affinity, human antibody-like antibody fragment (single-chain variable fragment) neutralizing the lethal factor (LF) of Bacillus anthracis by inhibiting protective antigen-LF complex formation. Antimicrob Agents Chemother 2007; 51:2758-64. [PMID: 17517846 PMCID: PMC1932538 DOI: 10.1128/aac.01528-06] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The anthrax lethal toxin (LT) consists of two subunits, the protective antigen (PA) and the lethal factor (LF), and is essential for anthrax pathogenesis. Several recombinant antibodies directed against PA and intended for medical use have been obtained, but none against LF, despite the recommendations of anthrax experts. Here we describe an anti-LF single-chain variable fragment (scFv) that originated from an immunized macaque (Macaca fascicularis) and was obtained by phage display. Panning of the library of 1.8 x 10(8) clones allowed the isolation of 2LF, a high-affinity (equilibrium dissociation constant, 1.02 nM) scFv, which is highly neutralizing in the standardized in vitro assay (50% inhibitory concentration, 1.20 +/- 0.06 nM) and in an in vivo assay. The scFv neutralizes anthrax LT by inhibiting the formation of the LF-PA complex. The genes encoding 2LF are very similar to those of human immunoglobulin germ line genes, sharing substantial (84.2%) identity with their most similar, germinally encoded counterparts; this feature favors medical applications. These results, and others formerly published, demonstrate that our approach can generate antibody fragments suitable for prophylaxis and therapeutics.
Collapse
Affiliation(s)
- Thibaut Pelat
- Groupe de Biotechnologie des Anticorps, Département de Biologie des Agents Transmissibles, La Tronche, France
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Jeong KJ, Seo MJ, Iverson BL, Georgiou G. APEx 2-hybrid, a quantitative protein-protein interaction assay for antibody discovery and engineering. Proc Natl Acad Sci U S A 2007; 104:8247-52. [PMID: 17494738 PMCID: PMC1895937 DOI: 10.1073/pnas.0702650104] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have developed a bacterial system for the discovery of interacting proteins that, unlike other two-hybrid technologies, allows for the selection of protein pairs on the basis of affinity or expression. This technology relies on the anchored periplasmic expression (APEx) of one protein (bait) on the periplasmic side of the inner membrane of Escherichia coli and its interacting partner (prey) as a soluble, epitope-tagged, periplasmic protein. Upon removal of the outer membrane by spheroplasting, periplasmic proteins, including any unbound epitope-tagged prey, are released into the extracellular fluid. However, if the epitope-tagged prey can bind to the membrane-anchored bait, it remains associated with the cell and can be detected quantitatively by using fluorescent anti-epitope tag antibodies. Cells expressing prey:bait pairs exhibiting different affinities can be readily distinguished by flow cytometry. The utility of this technology, called APEx two-hybrid, was demonstrated in two demanding antibody engineering applications: First, single-chain variable fragment (scFvs) with increased affinity to the protective antigen of Bacillus anthracis were isolated from cells coexpressing libraries of scFv random mutants, together with endogenously expressed antigen. Second, APEx two-hybrid coupled with multicolor FACS analysis to account for protein expression was used for the selection of mutant Fab antibody fragments exhibiting improved expression in the bacterial periplasm.
Collapse
Affiliation(s)
- Ki Jun Jeong
- Departments of *Chemical Engineering
- Institute for Cellular and Molecular Biology, and
| | - Min Jeong Seo
- Departments of *Chemical Engineering
- Institute for Cellular and Molecular Biology, and
| | | | - George Georgiou
- Departments of *Chemical Engineering
- Biomedical Engineering
- Section of Molecular Genetics and Microbiology, University of Texas, Austin, TX 78712
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
88
|
Liu S, Leung HJ, Leppla SH. Characterization of the interaction between anthrax toxin and its cellular receptors. Cell Microbiol 2007; 9:977-87. [PMID: 17381430 PMCID: PMC2459336 DOI: 10.1111/j.1462-5822.2006.00845.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutations in capillary morphogenesis gene 2 (CMG2), one of the two closely related proteins that act as anthrax toxin receptors, cause two rare human autosomal recessive conditions, juvenile hyaline fibromatosis (JHF) and infantile systemic hyalinosis (ISH). Here we demonstrate that CMG2 proteins with certain JHF- and ISH-associated single amino acid substitutions in their von Willebrand factor A domain or transmembrane region do not function as anthrax toxin receptors. However, an ISH-associated CMG2 variant having a truncated cytosolic domain does still function as an anthrax receptor, and in fact makes cells hyper-sensitive to toxin, distinguishing the roles of CMG2 in physiology and anthrax pathology. Site-specific mutagenesis was used to characterize the role that domain 2 of the anthrax toxin protective antigen (PA) plays in interaction with CMG2, focusing on the interaction between the PA 2beta(3)-2beta(4) loop and a pocket (Glu-122 pocket) adjacent to the metal ion-dependent adhesion site in CMG2. Substitutions that disrupted the salt bridge between PA Arg-344 and CMG2 Glu-122 decreased the affinity of PA to CMG2 three- to fourfold. Furthermore, mutation of CMG2 Tyr-119 (within the Glu-122 pocket) to His lowered the pH threshold for PA prepore-to-pore conversion in the endocytic pathway.
Collapse
Affiliation(s)
- Shihui Liu
- Bacterial Toxins and Therapeutics Section, Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
89
|
Chen KH, Liu S, Bankston LA, Liddington RC, Leppla SH. Selection of anthrax toxin protective antigen variants that discriminate between the cellular receptors TEM8 and CMG2 and achieve targeting of tumor cells. J Biol Chem 2007; 282:9834-9845. [PMID: 17251181 PMCID: PMC2530824 DOI: 10.1074/jbc.m611142200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anthrax toxin, a three-component protein toxin secreted by Bacillus anthracis, assembles into toxic complexes at the surface of receptor-bearing eukaryotic cells. The protective antigen (PA) protein binds to receptors, either tumor endothelial cell marker 8 (TEM8) or CMG2 (capillary morphogenesis protein 2), and orchestrates the delivery of the lethal and edema factors into the cytosol. TEM8 is reported to be overexpressed during tumor angiogenesis, whereas CMG2 is more widely expressed in normal tissues. To extend prior work on targeting of tumor with modified anthrax toxins, we used phage display to select PA variants that preferentially bind to TEM8 as compared with CMG2. Substitutions were randomly introduced into residues 605-729 of PA, within the C-terminal domain 4 of PA, which is the principal region that contacts receptor. Candidates were characterized in cellular cytotoxicity assays with Chinese hamster ovary (CHO) cells expressing either TEM8 or CMG2. A PA mutant having the substitutions R659S and M662R had enhanced specificity toward TEM8-overexpressing CHO cells. This PA variant also displayed broad and potent tumoricidal activity to various human tumor cells, especially to HeLa and A549/ATCC cells. By contrast, the substitution N657Q significantly reduced toxicity to TEM8 but not CMG2-overexpressing CHO cells. Our results indicate that certain amino acid substitutions within PA domain 4 create anthrax toxins that selectively kill human tumor cells. The PA R659S/M662R protein may be useful as a therapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Kuang-Hua Chen
- Laboratory of Bacterial Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3202
| | - Shihui Liu
- Laboratory of Bacterial Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3202
| | - Laurie A Bankston
- Infectious and Inflammatory Disease Center, Burnham Institute for Medical Research, La Jolla, California 92037
| | - Robert C Liddington
- Infectious and Inflammatory Disease Center, Burnham Institute for Medical Research, La Jolla, California 92037
| | - Stephen H Leppla
- Laboratory of Bacterial Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3202.
| |
Collapse
|
90
|
Scobie HM, Young JA. Divalent metal ion coordination by residue T118 of anthrax toxin receptor 2 is not essential for protective antigen binding. PLoS One 2006; 1:e99. [PMID: 17183731 PMCID: PMC1762376 DOI: 10.1371/journal.pone.0000099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Accepted: 11/21/2006] [Indexed: 11/30/2022] Open
Abstract
The protective antigen (PA) subunit of anthrax toxin interacts with the integrin-like I domains of either of two cellular receptors, ANTXR1 or ANTXR2. These I domains contain a metal ion-dependent adhesion site (MIDAS) made up of five non-consecutive amino acid residues that coordinate a divalent metal ion that is important for PA-binding. The MIDAS residues of integrin I domains shift depending upon whether the domain exists in a closed (ligand-unbound) or open (ligand-bound) conformation. Of relevance to this study, the MIDAS threonine residue coordinates the metal ion only in the open I domain conformation. Previously it was shown that the MIDAS threonine is essential for PA interaction with ANTXR1, a result consistent with the requirement that the I domain of that receptor adopts an open conformation for PA-binding [1]. Here we have tested the requirement for the MIDAS threonine of ANTXR2 for PA-binding. We show that the toxin can bind to a mutant receptor lacking the MIDAS threonine and that it can use that mutant receptor to intoxicate cultured cells. These findings suggest that an open-like configuration of the ANTXR2 MIDAS is not essential for the interaction with PA.
Collapse
Affiliation(s)
- Heather M. Scobie
- Infectious Disease Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - John A.T. Young
- Infectious Disease Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
91
|
Abstract
AIM Anthrax is caused by the bacterium Bacillus anthracis. Although primarily a disease of animals, it can also infect man, sometimes with fatal consequences. As a result of concerns over the illicit use of this organism, considerable effort is focussed on the development of therapies capable of conferring protection against anthrax. This brief review will describe the efforts being made to address these issues. METHODS AND RESULTS A review of the literature and the proceedings of the sixth international conference on anthrax, held in Santa Fe, USA in 2005 shows intense activity, but there has been as yet no real progress. While effective antibiotics, antitoxins and vaccines are available, concerns over their toxicity and the emergence of resistant strains have driven the development of second-generation products. The principal target for vaccine development is Protective Antigen (PA), the nontoxic cell-binding component of anthrax lethal toxin. While the recombinant products currently undergoing human clinical trials will offer considerable advantages in terms of reduced side effects and ease of production, they would still require multiple, needle-based dosing, and the inclusion of the adjuvant alum makes them expensive to administer and stockpile. To address these issues, researchers are developing vaccine formulations, which stimulate rapid protection following needle-free injection (nasal, oral or transcutaneous), and are stable at room temperature to facilitate stockpiling and mass vaccination programs. CONCLUSIONS An array of medical countermeasures targeting B. anthracis will become available over the next 5-10 years. SIGNIFICANCE AND IMPACT OF THE STUDY The huge investment of research dollars is expected to dramatically expand the knowledge base. A better understanding of basic issues, such as survival in nature and pathogenesis in humans, will facilitate the development of new modalities to eliminate the threat posed by this organism.
Collapse
Affiliation(s)
- L W J Baillie
- Biodefence Initiative, Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, 21201, USA.
| |
Collapse
|
92
|
Maldonado-Arocho FJ, Fulcher JA, Lee B, Bradley KA. Anthrax oedema toxin induces anthrax toxin receptor expression in monocyte-derived cells. Mol Microbiol 2006; 61:324-37. [PMID: 16856939 DOI: 10.1111/j.1365-2958.2006.05232.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacillus anthracis, the causative agent of anthrax, secretes two bipartite toxins that help the bacterium evade the immune system and contribute directly to pathogenesis. Both toxin catalytic moieties, lethal factor (LF) and oedema factor (OF), are internalized into the host-cell cytosol by a third factor, protective antigen (PA), which binds to cellular anthrax toxin receptors (ANTXRs). Oedema factor is an adenylate cyclase that impairs host defences by raising cellular cAMP levels. Here we demonstrate that oedema toxin (PA + OF) induces an increase in ANTXR expression levels in macrophages and dendritic cells resulting in an increased rate of toxin internalization. Furthermore, we show that increases in ANTXR mRNA levels depends on the ability of OF to increase cAMP levels, is mediated through protein kinase A-directed signalling and is monocyte-lineage-specific. To our knowledge, this is the first report of a bacterial toxin inducing host target cells to increase toxin receptor expression.
Collapse
Affiliation(s)
- Francisco J Maldonado-Arocho
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
93
|
Mabry R, Brasky K, Geiger R, Carrion R, Hubbard GB, Leppla S, Patterson JL, Georgiou G, Iverson BL. Detection of anthrax toxin in the serum of animals infected with Bacillus anthracis by using engineered immunoassays. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:671-7. [PMID: 16760326 PMCID: PMC1489546 DOI: 10.1128/cvi.00023-06] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 03/06/2006] [Accepted: 04/17/2006] [Indexed: 01/13/2023]
Abstract
Several strategies that target anthrax toxin are being developed as therapies for infection by Bacillus anthracis. Although the action of the tripartite anthrax toxin has been extensively studied in vitro, relatively little is known about the presence of toxins during an infection in vivo. We developed a series of sensitive sandwich enzyme-linked immunosorbent assays (ELISAs) for detection of both the protective antigen (PA) and lethal factor (LF) components of the anthrax exotoxin in serum. The assays utilize as capture agents an engineered high-affinity antibody to PA, a soluble form of the extracellular domain of the anthrax toxin receptor (ANTXR2/CMG2), or PA itself. Sandwich immunoassays were used to detect and quantify PA and LF in animals infected with the Ames or Vollum strains of anthrax spores. PA and LF were detected before and after signs of toxemia were observed, with increasing levels reported in the late stages of the infection. These results represent the detection of free PA and LF by ELISA in the systemic circulation of two animal models exposed to either of the two fully virulent strains of anthrax. Simple anthrax toxin detection ELISAs could prove useful in the evaluation of potential therapies and possibly as a clinical diagnostic to complement other strategies for the rapid identification of B. anthracis infection.
Collapse
Affiliation(s)
- Robert Mabry
- Institute for Cellular and Molecular Biology, University of Texas at Austin, 1 University Station, 78712, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
McConnell MJ, Danthinne X, Imperiale MJ. Characterization of a permissive epitope insertion site in adenovirus hexon. J Virol 2006; 80:5361-70. [PMID: 16699016 PMCID: PMC1472126 DOI: 10.1128/jvi.00256-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 03/16/2006] [Indexed: 01/22/2023] Open
Abstract
A robust immune response is generated against components of the adenovirus capsid. In particular, a potent and long-lived humoral response is elicited against the hexon protein. This is due to the efficient presentation of adenovirus capsid proteins to CD4+ T cells by antigen-presenting cells, in addition to the highly repetitive structure of the adenovirus capsids, which can efficiently stimulate B-cell proliferation. In the present study, we take advantage of this immune response by inserting epitopes against which an antibody response is desired into the adenovirus hexon. We use a B-cell epitope from Bacillus anthracis protective antigen (PA) as a model antigen to characterize hypervariable region 5 (HVR5) of hexon as a site for peptide insertion. We demonstrate that HVR5 can accommodate a peptide of up to 36 amino acids without adversely affecting virus infectivity, growth, or stability. Viruses containing chimeric hexons elicited antibodies against PA in mice, with total immunoglobulin G (IgG) titers reaching approximately 1 x 10(3) after two injections. The antibody response contained both IgG1 and IgG2a subtypes, suggesting that Th1 and Th2 immunity had been stimulated. Coinjection of wild-type adenovirus and a synthetic peptide from PA produced no detectable antibodies, indicating that incorporation of the epitope into the capsid was crucial for immune stimulation. Together, these results indicate that the adenovirus capsid is an efficient vehicle for presenting B-cell epitopes to the immune system, making this a useful approach for the design of epitope-based vaccines.
Collapse
Affiliation(s)
- Michael J McConnell
- University of Michigan Medical School, 6304 Cancer Center, 1500 E. Medical Center Drive, Ann Arbor, MI 48109-0942, USA
| | | | | |
Collapse
|
95
|
Gao M, Schulten K. Onset of anthrax toxin pore formation. Biophys J 2006; 90:3267-79. [PMID: 16473908 PMCID: PMC1432108 DOI: 10.1529/biophysj.105.079376] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 01/20/2006] [Indexed: 12/13/2022] Open
Abstract
Protective antigen (PA) is the anthrax toxin protein recognized by capillary morphogenesis gene 2 (CMG2), a transmembrane cellular receptor. Upon activation, seven ligand-receptor units self-assemble into a heptameric ring-like complex that becomes endocytozed by the host cell. A critical step in the subsequent intoxication process is the formation and insertion of a pore into the endosome membrane by PA. The pore conversion requires a change in binding between PA and its receptor in the acidified endosome environment. Molecular dynamics simulations totaling approximately 136 ns on systems of over 92,000 atoms were performed. The simulations revealed how the PA-CMG2 complex, stable at neutral conditions, becomes transformed at low pH upon protonation of His-121 and Glu-122, two conserved amino acids of the receptor. The protonation disrupts a salt bridge important for the binding stability and leads to the detachment of PA domain II, which weakens the stability of the PA-CMG2 complex significantly, and subsequently releases a PA segment needed for pore formation. The simulations also explain the great strength of the PA-CMG2 complex achieves through extraordinary coordination of a divalent cation.
Collapse
Affiliation(s)
- Mu Gao
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
96
|
Chen Z, Moayeri M, Zhou YH, Leppla S, Emerson S, Sebrell A, Yu F, Svitel J, Schuck P, St Claire M, Purcell R. Efficient neutralization of anthrax toxin by chimpanzee monoclonal antibodies against protective antigen. J Infect Dis 2006; 193:625-33. [PMID: 16453257 PMCID: PMC7110013 DOI: 10.1086/500148] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 09/20/2005] [Indexed: 12/18/2022] Open
Abstract
Four single-chain variable fragments (scFvs) against protective antigen (PA) and 2 scFvs against lethal factor (LF) of anthrax were isolated from a phage display library generated from immunized chimpanzees. Only 2 scFvs recognizing PA (W1 and W2) neutralized the cytotoxicity of lethal toxin in a macrophage lysis assay. Full-length immunoglobulin G (IgG) of W1 and W2 efficiently protected rats from anthrax toxin challenge. The epitope recognized by W1 and W2 was conformational and was formed by C-terminal amino acids 614-735 of PA. W1 and W2 each bound to PA with an equilibrium dissociation constant of 4x10-11 mol/L to 5x10(-11) mol/L, which is an affinity that is 20-100-fold higher than that for the interaction of the receptor and PA. W1 and W2 inhibited the binding of PA to the receptor, suggesting that this was the mechanism of protection. These data suggest that W1 and W2 chimpanzee monoclonal antibodies may serve as PA entry inhibitors for use in the emergency prophylaxis against and treatment of anthrax.
Collapse
Affiliation(s)
- Zhaochun Chen
- Hepatitis Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Zhang J, Xu J, Li G, Dong D, Song X, Guo Q, Zhao J, Fu L, Chen W. The 2β2–2β3 loop of anthrax protective antigen contains a dominant neutralizing epitope. Biochem Biophys Res Commun 2006; 341:1164-71. [PMID: 16460675 DOI: 10.1016/j.bbrc.2006.01.080] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2006] [Accepted: 01/19/2006] [Indexed: 10/25/2022]
Abstract
Anthrax toxin consists of three proteins, protective antigen (PA), lethal factor, and edema factor. PA is the major component in the current anthrax vaccine, but the antigenic epitopes on it are not well-defined. We generated a pool of toxin-neutralizing anti-PA monoclonal antibodies (MAbs) to analyze the neutralizing epitopes of PA. Nine toxin-neutralizing MAbs obtained were found bound to three different domains of PA respectively, among which three MAbs with the strongest toxin-neutralizing activity recognized the same epitope within domain 2. This epitope was fine mapped to the chymotrypsin-sensitive site, (312)SFFD(315), in the 2beta(2)-2beta(3) loop of PA, using phage-displayed random peptide libraries and mutation analysis. The result demonstrated for the first time that the 2beta(2)-2beta(3) loop, which is involved in the transition of PA oligomers from prepore to pore, contains a dominant neutralizing epitope. This work contributes to the immunological and functional analysis of PA and offers perspective for the development of a new epitope vaccine against anthrax.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Applied Molecular Biology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dongdajie, Fengtai, Beijing 100071, China
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Chekanov AV, Remacle AG, Golubkov VS, Akatov VS, Sikora S, Savinov AY, Fugere M, Day R, Rozanov DV, Strongin AY. Both PA63 and PA83 are endocytosed within an anthrax protective antigen mixed heptamer: A putative mechanism to overcome a furin deficiency. Arch Biochem Biophys 2006; 446:52-9. [PMID: 16384550 DOI: 10.1016/j.abb.2005.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2005] [Revised: 11/17/2005] [Accepted: 11/18/2005] [Indexed: 11/20/2022]
Abstract
Anthrax toxin consists of protective antigen (PA), and lethal (LF) and edema (EF) factors. A 83 kDa PA monomer (PA83) precursor binds to the cell receptor. Furin-like proprotein convertases (PCs) cleave PA83 to generate cell-bound 63 kDa protein (PA63). PA63 oligomerizes to form a ring-shaped heptamer that binds LF-EF and facilitates their entry into the cells. Several additional PCs, as opposed to furin alone, are capable of processing PA83. Following the incomplete processing of the available pool of PA83, the functional heptamer includes both PA83 and PA63. The available structures of the receptor-PA complex imply that the presence of either one or two molecules of PA83 will not impose structural limitations on the formation of the heptamer and the association of either the (PA83)(1)(PA63)(6) or (PA83)(2)(PA63)(5) heteroheptamer with LF-EF. Our data point to the intriguing mechanism of anthrax that appears to facilitate entry of the toxin into the cells which express limiting amounts of PCs and an incompletely processed PA83 pool.
Collapse
Affiliation(s)
- Alexei V Chekanov
- Infectious and Inflammatory Disease Center, The Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Brodzik R, Bandurska K, Deka D, Golovkin M, Koprowski H. Advances in alfalfa mosaic virus-mediated expression of anthrax antigen in planta. Biochem Biophys Res Commun 2005; 338:717-22. [PMID: 16236249 DOI: 10.1016/j.bbrc.2005.09.196] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 09/29/2005] [Indexed: 10/25/2022]
Abstract
Plant viruses show great potential for production of pharmaceuticals in plants. Such viruses can harbor a small antigenic peptide(s) as a part of their coat proteins (CP) and elicit an antigen-specific immune response. Here, we report the high yield and consistency in production of recombinant alfalfa mosaic virus (AlMV) particles for specific presentation of the small loop 15 amino acid epitope from domain-4 of the Bacillus anthracis protective antigen (PA-D4s). The epitope was inserted immediately after the first 25 N-terminal amino acids of AlMV CP to retain genome activation and binding of CP to viral RNAs. Recombinant AlMV particles were efficiently produced in tobacco, easily purified for immunological analysis, and exhibited extended stability and systemic proliferation in planta. Intraperitional injections of mice with recombinant plant virus particles harboring the PA-D4s epitope elicited a distinct immune response. Western blotting and ELISA analysis showed that sera from immunized mice recognized both native PA antigen and the AlMV CP.
Collapse
Affiliation(s)
- R Brodzik
- Biotechnology Foundation Laboratories, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
100
|
Brey RN. Molecular basis for improved anthrax vaccines. Adv Drug Deliv Rev 2005; 57:1266-92. [PMID: 15935874 DOI: 10.1016/j.addr.2005.01.028] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Accepted: 01/25/2005] [Indexed: 01/26/2023]
Abstract
The current vaccine for anthrax has been licensed since 1970 and was developed based on the outcome of human trials conducted in the 1950s. This vaccine, known as anthrax vaccine adsorbed (AVA), consists of a culture filtrate from an attenuated strain of Bacillus anthracis adsorbed to aluminum salts as an adjuvant. This vaccine is considered safe and effective, but is difficult to produce and is associated with complaints about reactogenicity among users of the vaccine. Much of the work in the past decade on generating a second generation vaccine is based on the observation that antibodies to protective antigen (PA) are crucial in the protection against exposure to virulent anthrax spores. Antibodies to PA are thought to prevent binding to its cellular receptor and subsequent binding of lethal factor (LF) and edema factor (EF), which are required events for the action of the two toxins: lethal toxin (LeTx) and edema toxin (EdTx). The bacterial capsule as well as the two toxins are virulence factors of B. anthracis. The levels of antibodies to PA must exceed a certain minimal threshold in order to induce and maintain protective immunity. Immunity can be generated by vaccination with purified PA, as well as spores and DNA plasmids that express PA. Although antibodies to PA address the toxemia component of anthrax disease, antibodies to additional virulence factors, including the capsule or somatic antigens in the spore, may be critical in development of complete, sterilizing immunity to anthrax exposure. The next generation anthrax vaccines will be derived from the thorough understanding of the interaction of virulence factors with human and animal hosts and the role the immune response plays in providing protective immunity.
Collapse
Affiliation(s)
- Robert N Brey
- DOR BioPharma, Inc., 1691 Michigan Avenue, Suite 435, Miami, FL 33139, USA.
| |
Collapse
|