51
|
Hay S, Pudney CR, McGrory TA, Pang J, Sutcliffe MJ, Scrutton NS. Barrier compression enhances an enzymatic hydrogen-transfer reaction. Angew Chem Int Ed Engl 2009; 48:1452-4. [PMID: 19145622 DOI: 10.1002/anie.200805502] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Putting the squeeze on: Hydrostatic pressure causes a shortening of the charge-transfer bond in the binary complex of morphinone reductase and NADH(4) (see diagram). Molecular dynamics simulations suggest that pressure reduces the average reaction barrier width by restricting the conformational space available to the flavin mononucleotide and NADH within the active site. The apparent rate of catalysis increases with pressure.
Collapse
Affiliation(s)
- Sam Hay
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester, UK
| | | | | | | | | | | |
Collapse
|
52
|
Hay S, Pudney C, McGrory T, Pang J, Sutcliffe M, Scrutton N. Barrier Compression Enhances an Enzymatic Hydrogen‐Transfer Reaction. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200805502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sam Hay
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN (UK), Fax: (+44) 161‐306‐8918
| | - Christopher R. Pudney
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN (UK), Fax: (+44) 161‐306‐8918
| | - Tom A. McGrory
- Manchester Interdisciplinary Biocentre, School of Chemical Engineering and Analytical Science, University of Manchester, 131 Princess Street, Manchester M1 7DN (UK), Fax: (+44) 161‐306‐5201
| | - Jiayun Pang
- Manchester Interdisciplinary Biocentre, School of Chemical Engineering and Analytical Science, University of Manchester, 131 Princess Street, Manchester M1 7DN (UK), Fax: (+44) 161‐306‐5201
| | - Michael J. Sutcliffe
- Manchester Interdisciplinary Biocentre, School of Chemical Engineering and Analytical Science, University of Manchester, 131 Princess Street, Manchester M1 7DN (UK), Fax: (+44) 161‐306‐5201
| | - Nigel S. Scrutton
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN (UK), Fax: (+44) 161‐306‐8918
| |
Collapse
|
53
|
Liavonchanka A, Rudolph MG, Tittmann K, Hamberg M, Feussner I. On the mechanism of a polyunsaturated fatty acid double bond isomerase from Propionibacterium acnes. J Biol Chem 2009; 284:8005-12. [PMID: 19164287 DOI: 10.1074/jbc.m809060200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The catalytic mechanism of Propionibacterium acnes polyunsaturated fatty acid isomerase (PAI) is explored by kinetic, spectroscopic, and thermodynamic studies. The PAI-catalyzed double bond isomerization takes place by selective removal of the pro-R hydrogen from C-11 followed by suprafacial transfer of this hydrogen to C-9 as shown by conversion of C-9-deuterated substrate isotopologs. Data on the midpoint potential, photoreduction, and cofactor replacement suggest PAI to operate via an ionic mechanism with the formation of FADH(2) and linoleic acid carbocation as intermediates. In line with this proposal, no radical intermediates were detected neither by stopped flow absorption nor by EPR spectroscopy. The substrate preference toward free fatty acids is determined by the interaction between Arg-88 and Phe-193, and the reaction rate is strongly affected by replacement of these amino acids, indicating that the efficiency of the hydrogen transfer relies on a fixed distance between the free carboxyl group and the N-5 atom of FAD. Combining data obtained for PAI from the structural studies and experiments described here suggests that at least two different prototypical active site geometries exist among polyunsaturated fatty acid double bond isomerases.
Collapse
Affiliation(s)
- Alena Liavonchanka
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Goettingen, Germany
| | | | | | | | | |
Collapse
|
54
|
Toogood HS, Fryszkowska A, Hare V, Fisher K, Roujeinikova A, Leys D, Gardiner JM, Stephens GM, Scrutton NS. Structure-Based Insight into the Asymmetric Bioreduction of the C=C Double Bond of alpha,beta-Unsaturated Nitroalkenes by Pentaerythritol Tetranitrate Reductase. Adv Synth Catal 2008; 350:2789-2803. [PMID: 20396603 PMCID: PMC2854801 DOI: 10.1002/adsc.200800561] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Biocatalytic reduction of alpha- or beta-alkyl-beta-arylnitroalkenes provides a convenient and efficient method to prepare chiral substituted nitroalkanes. Pentaerythritol tetranitrate reductase (PETN reductase) from Enterobacter cloacae st. PB2 catalyses the reduction of nitroolefins such as 1-nitrocyclohexene (1) with steady state and rapid reaction kinetics comparable to other old yellow enzyme homologues. Furthermore, it reduces 2-aryl-1-nitropropenes (4a-d) to their equivalent (S)-nitropropanes 9a-d. The enzyme shows a preference for the (Z)-isomer of substrates 4a-d, providing almost pure enantiomeric products 9a-d (ees up to > 99%) in quantitative yield, whereas the respective (E)-isomers are reduced with lower enantioselectivity (63-89% ee) and lower product yields. 1-Aryl-2-nitropropenes (5a, b) are also reduced efficiently, but the products (R)-10 have lower optical purities. The structure of the enzyme complex with 1-nitrocyclohexene (1) was determined by X-ray crystallography, revealing two substrate-binding modes, with only one compatible with hydride transfer. Models of nitropropenes 4 and 5 in the active site of PETN reductase predicted that the enantioselectivity of the reaction was dependent on the orientation of binding of the (E)- and (Z)-substrates. This work provides a structural basis for understanding the mechanism of asymmetric bioreduction of nitroalkenes by PETN reductase.
Collapse
Affiliation(s)
- Helen S Toogood
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Hay S, Pudney CR, Sutcliffe MJ, Scrutton NS. Solvent as a probe of active site motion and chemistry during the hydrogen tunnelling reaction in morphinone reductase. Chemphyschem 2008; 9:1875-81. [PMID: 18668493 DOI: 10.1002/cphc.200800303] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The reductive half-reaction of morphinone reductase involves a hydride transfer from enzyme-bound beta-nicotinamide adenine dinucleotide (NADH) to a flavin mononucleotide (FMN). We have previously demonstrated that this step proceeds via a quantum mechanical tunnelling mechanism. Herein, we probe the effect of the solvent on the active site chemistry. The pK(a) of the reduced FMN N1 is 7.4+/-0.7, based on the pH-dependence of the FMN midpoint potential. We rule out that protonation of the reduced FMN N1 is coupled to the preceding H-transfer as both the rate and temperature-dependence of the reaction are insensitive to changes in solution pH above and below this pK(a). Further, the solvent kinetic isotope effect is approximately 1.0 and both the 1 degrees and 2 degrees KIEs are insensitive to solution pH. The effect of the solvent's dielectric constant is investigated and the rate of H-transfer is found to be unaffected by changes in the dielectric constant between approximately 60 and 80. We suggest that, while there is crystallographic evidence for some water in the active site, the putative promoting motion involved in the H-tunnelling reaction is insensitive to such changes.
Collapse
Affiliation(s)
- Sam Hay
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | | | | | |
Collapse
|
56
|
Hay S, Pang J, Monaghan PJ, Wang X, Evans RM, Sutcliffe MJ, Allemann RK, Scrutton NS. Secondary kinetic isotope effects as probes of environmentally-coupled enzymatic hydrogen tunneling reactions. Chemphyschem 2008; 9:1536-9. [PMID: 18613201 DOI: 10.1002/cphc.200800291] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sam Hay
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Hay S, Scrutton NS. H-transfers in Photosystem II: what can we learn from recent lessons in the enzyme community? PHOTOSYNTHESIS RESEARCH 2008; 98:169-177. [PMID: 18766465 DOI: 10.1007/s11120-008-9326-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 06/28/2008] [Indexed: 05/26/2023]
Abstract
Over the last 10 years, studies of enzyme systems have demonstrated that, in many cases, H-transfers occur by a quantum mechanical tunneling mechanism analogous to long-range electron transfer. H-transfer reactions can be described by an extension of Marcus theory and, by substituting hydrogen with deuterium (or even tritium), it is possible to explore this theory in new ways by employing kinetic isotope effects. Because hydrogen has a relatively short deBroglie wavelength, H-transfers are controlled by the width of the reaction barrier. By coupling protein dynamics to the reaction coordinate, enzymes have the potential ability to facilitate more efficient H-tunneling by modulating barrier properties. In this review, we describe recent advances in both experimental and theoretical studies of enzymatic H-transfer, in particular the role of protein dynamics or promoting motions. We then discuss possible consequences with regard to tyrosine oxidation/reduction kinetics in Photosystem II.
Collapse
Affiliation(s)
- Sam Hay
- Manchester Interdisciplinary Biocentre and Faculty of Life Sciences, University of Manchester, Manchester, UK.
| | | |
Collapse
|
58
|
Pang J, Hay S, Scrutton NS, Sutcliffe MJ. Deep tunneling dominates the biologically important hydride transfer reaction from NADH to FMN in morphinone reductase. J Am Chem Soc 2008; 130:7092-7. [PMID: 18470990 DOI: 10.1021/ja800471f] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The temperature dependence of the primary kinetic isotope effect (KIE), combined temperature-pressure studies of the primary KIE, and studies of the alpha-secondary KIE previously led us to infer that hydride transfer from nicotinamide adenine dinucleotide to flavin mononucleotide in morphinone reductase proceeds via environmentally coupled hydride tunneling. We present here a computational analysis of this hydride transfer reaction using QM/MM molecular dynamics simulations and variational transition-state theory calculations. Our calculated primary and secondary KIEs are in good agreement with the corresponding experimental values. Although the experimentally observed KIE lies below the semiclassical limit, our calculations suggest that approximately 99% of the reaction proceeds via tunneling: this is the first "deep tunneling" reaction observed for hydride transfer. We also show that the dominant tunneling mechanism is controlled by the isotope at the primary rather than the secondary position: with protium in the primary position, large-curvature tunneling dominates, whereas with deuterium in this position, small-curvature tunneling dominates. Also, our study is consistent with tunneling being preceded by reorganization: in the reactant, the rings of the nicotinamide and isoalloxazine moieties are stacked roughly parallel to each other, and as the system moves toward a "tunneling-ready" configuration, the nicotinamide ring rotates to become almost perpendicular to the isoalloxazine ring.
Collapse
Affiliation(s)
- Jiayun Pang
- Manchester Interdisciplinary Biocentre, School of Chemical Engineering and Analytical Science, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | | | | | |
Collapse
|
59
|
Hay S, Pudney CR, Sutcliffe MJ, Scrutton NS. Are environmentally coupled enzymatic hydrogen tunneling reactions influenced by changes in solution viscosity? Angew Chem Int Ed Engl 2008; 47:537-40. [PMID: 18058788 DOI: 10.1002/anie.200704484] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sam Hay
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | | | | | | |
Collapse
|
60
|
Atomistic insight into the origin of the temperature-dependence of kinetic isotope effects and H-tunnelling in enzyme systems is revealed through combined experimental studies and biomolecular simulation. Biochem Soc Trans 2008; 36:16-21. [DOI: 10.1042/bst0360016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The physical basis of the catalytic power of enzymes remains contentious despite sustained and intensive research efforts. Knowledge of enzyme catalysis is predominantly descriptive, gained from traditional protein crystallography and solution studies. Our goal is to understand catalysis by developing a complete and quantitative picture of catalytic processes, incorporating dynamic aspects and the role of quantum tunnelling. Embracing ideas that we have spearheaded from our work on quantum mechanical tunnelling effects linked to protein dynamics for H-transfer reactions, we review our recent progress in mapping macroscopic kinetic descriptors to an atomistic understanding of dynamics linked to biological H-tunnelling reactions.
Collapse
|
61
|
Hay S, Pudney C, Sutcliffe M, Scrutton N. Are Environmentally Coupled Enzymatic Hydrogen Tunneling Reactions Influenced by Changes in Solution Viscosity? Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200704484] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
62
|
Pudney CR, Hay S, Pang J, Costello C, Leys D, Sutcliffe MJ, Scrutton NS. Mutagenesis of morphinone reductase induces multiple reactive configurations and identifies potential ambiguity in kinetic analysis of enzyme tunneling mechanisms. J Am Chem Soc 2007; 129:13949-56. [PMID: 17939663 DOI: 10.1021/ja074463h] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have identified multiple reactive configurations (MRCs) of an enzyme-coenzyme complex that have measurably different kinetic properties. In the complex formed between morphinone reductase (MR) and the NADH analogue 1,4,5,6-tetrahydro-NADH (NADH4) the nicotinamide moiety is restrained close to the FMN isoalloxazine ring by hydrogen bonds from Asn-189 and His-186 as determined from the X-ray crystal structure. Molecular dynamic simulations indicate that removal of one of these hydrogen bonds in the N189A MR mutant allows the nicotinamide moiety to occupy a region of configurational space not accessible in wild-type enzyme. Using stopped-flow spectroscopy, we show that reduction of the FMN cofactor by NADH in N189A MR is multiphasic, identifying at least four different reactive configurations of the MR-NADH complex. This contrasts with wild-type MR in which hydride transfer occurs by environmentally coupled tunneling in a single kinetic phase [Pudney et al. J. Am. Chem. Soc. 2006, 128, 14053-14058]. Values for primary and alpha-secondary kinetic isotope effects, and their temperature dependence, for three of the kinetic phases in the N189A MR are consistent with hydride transfer by tunneling. Our analysis enables derivation of mechanistic information concerning different reactive configurations of the same enzyme-coenzyme complex using ensemble stopped-flow methods. Implications for the interpretation from kinetic data of tunneling mechanisms in enzymes are discussed.
Collapse
Affiliation(s)
- Christopher R Pudney
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester, M1 7DN, U.K
| | | | | | | | | | | | | |
Collapse
|
63
|
Pudney CR, Hay S, Sutcliffe MJ, Scrutton NS. Alpha-secondary isotope effects as probes of "tunneling-ready" configurations in enzymatic H-tunneling: insight from environmentally coupled tunneling models. J Am Chem Soc 2007; 128:14053-8. [PMID: 17061887 DOI: 10.1021/ja0614619] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using alpha-secondary kinetic isotope effects (2 degrees KIEs) in conjunction with primary (1 degrees ) KIEs, we have investigated the mechanism of environmentally coupled hydrogen tunneling in the reductive half-reactions of two homologous flavoenzymes, morphinone reductase (MR) and pentaerythritol tetranitrate reductase (PETNR). We find exalted 2 degrees KIEs (1.17-1.18) for both enzymes, consistent with hydrogen tunneling. These 2 degrees KIEs, unlike 1 degrees KIEs, are independent of promoting motions-a nonequilibrium pre-organization of cofactor and active site residues that is required to bring the reactants into a "tunneling-ready" configuration. That these 2 degrees KIEs are identical suggests the geometries of the "tunneling-ready" configurations in both enzymes are indistinguishable, despite the fact that MR, but not PETNR, has a clearly temperature-dependent 1 degrees KIE. The work emphasizes the benefit of combining studies of 1 degrees and 2 degrees KIEs to report on pre-organization and local geometries within the context of contemporary environmentally coupled frameworks for H-tunneling.
Collapse
Affiliation(s)
- Christopher R Pudney
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7ND, United Kingdom
| | | | | | | |
Collapse
|
64
|
Ranaghan KE, Masgrau L, Scrutton NS, Sutcliffe MJ, Mulholland AJ. Analysis of Classical and Quantum Paths for Deprotonation of Methylamine by Methylamine Dehydrogenase. Chemphyschem 2007; 8:1816-35. [PMID: 17676581 DOI: 10.1002/cphc.200700143] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The hydrogen-transfer reaction catalysed by methylamine dehydrogenase (MADH) with methylamine (MA) as substrate is a good model system for studies of proton tunnelling in enzyme reactions--an area of great current interest--for which atomistic simulations will be vital. Here, we present a detailed analysis of the key deprotonation step of the MADH/MA reaction and compare the results with experimental observations. Moreover, we compare this reaction with the related aromatic amine dehydrogenase (AADH) reaction with tryptamine, recently studied by us, and identify possible causes for the differences observed in the measured kinetic isotope effects (KIEs) of the two systems. We have used combined quantum mechanics/molecular mechanics (QM/MM) techniques in molecular dynamics simulations and variational transition state theory with multidimensional tunnelling calculations averaged over an ensemble of paths. The results reveal important mechanistic complexity. We calculate activation barriers and KIEs for the two possible proton transfers identified-to either of the carboxylate oxygen atoms of the catalytic base (Asp428beta)-and analyse the contributions of quantum effects. The activation barriers and tunnelling contributions for the two possible proton transfers are similar and lead to a phenomenological activation free energy of 16.5+/-0.9 kcal mol(-1) for transfer to either oxygen (PM3-CHARMM calculations applying PM3-SRP specific reaction parameters), in good agreement with the experimental value of 14.4 kcal mol(-1). In contrast, for the AADH system, transfer to the equivalent OD1 was found to be preferred. The structures of the enzyme complexes during reaction are analysed in detail. The hydrogen bond of Thr474beta(MADH)/Thr172beta(AADH) to the catalytic carboxylate group and the nonconserved active site residue Tyr471beta(MADH)/Phe169beta(AADH) are identified as important factors in determining the preferred oxygen acceptor. The protein environment has a significant effect on the reaction energetics and hence on tunnelling contributions and KIEs. These environmental effects, and the related clearly different preferences for the two carboxylate oxygen atoms (with different KIEs) in MADH/MA and AADH/tryptamine, are possible causes of the differences observed in the KIEs between these two important enzyme reactions.
Collapse
Affiliation(s)
- Kara E Ranaghan
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | | | | | | | | |
Collapse
|
65
|
Fan F, Gadda G. An internal equilibrium preorganizes the enzyme-substrate complex for hydride tunneling in choline oxidase. Biochemistry 2007; 46:6402-8. [PMID: 17472346 DOI: 10.1021/bi700255v] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hydride transfer reaction catalyzed by choline oxidase under irreversible regime, i.e., at saturating oxygen, was shown in a recent study to occur quantum mechanically within a highly preorganized active site, with the reactive configuration for hydride tunneling being minimally affected by environmental vibrations of the reaction coordinate other than those affecting the distance between the alpha-carbon of the choline alkoxide substrate and the N(5) atom of the enzyme-bound flavin cofactor [Fan, F., and Gadda, G. (2005) J. Am. Chem. Soc. 127, 17954-17961]. In this study, we have determined the effects of pH and temperature on the substrate kinetic isotope effects with 1,2-[2H4]choline as substrate for choline oxidase at 0.2 mM oxygen to gain insights on the mechanism of hydride transfer under reversible catalytic regime. The data presented indicated that the kinetic complexity arising from the net flux through the reverse of the hydride transfer step changed with temperature, with the hydride transfer reaction becoming more reversible with increasing temperatures. After this kinetic complexity was accounted for, analyses of the kcat/Km and D(kcat/Km) values determined at 0.2 mM according to the Eyring and Arrhenius formalisms suggested that the quantum mechanical nature of the hydride transfer reaction is, not surprisingly, maintained during enzymatic catalysis under reversible regime. A comparison of the thermodynamic and kinetic parameters of the hydride transfer reaction under reversible and irreversible catalytic regimes showed that the enthalpies of activation (DeltaH++) were significantly larger in the reversible catalytic regime. This reflects the presence of an enthalpically unfavorable internal equilibrium of the enzyme-substrate Michaelis complex occurring prior to, and independently from, CH bond cleavage. Such an internal equilibrium is required to preorganize the enzyme-substrate complex for efficient quantum mechanical tunneling of the hydride ion from the substrate alpha-carbon to the flavin N(5) atom.
Collapse
Affiliation(s)
- Fan Fan
- Department of Biology, Georgia State University, Atlanta, Georgia 30302-4098, USA
| | | |
Collapse
|
66
|
Masgrau L, Ranaghan KE, Scrutton NS, Mulholland AJ, Sutcliffe MJ. Tunneling and Classical Paths for Proton Transfer in an Enzyme Reaction Dominated by Tunneling: Oxidation of Tryptamine by Aromatic Amine Dehydrogenase. J Phys Chem B 2007; 111:3032-47. [PMID: 17388439 DOI: 10.1021/jp067898k] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proton tunneling dominates the oxidative deamination of tryptamine catalyzed by the enzyme aromatic amine dehydrogenase. For reaction with the fast substrate tryptamine, a H/D kinetic isotope effect (KIE) of 55 +/- 6 has been reported-one of the largest observed in an enzyme reaction. We present here a computational analysis of this proton-transfer reaction, applying combined quantum mechanics/molecular mechanics (QM/MM) methods (PM3-SRP//PM3/CHARMM22). In particular, we extend our previous computational study (Masgrau et al. Science 2006, 312, 237) by using improved energy corrections, high-level QM/MM methods, and an ensemble of paths to estimate the tunneling contributions. We have carried out QM/MM molecular dynamics simulations and variational transition state theory calculations with small-curvature tunneling corrections. The results provide detailed insight into the processes involved in the reaction. Transfer to the O2 oxygen of the catalytic base, Asp128beta, is found to be the favored reaction both thermodynamically and kinetically, even though O1 is closer in the reactant complex. Comparison of quantum and classical models of proton transfer allows estimation of the contribution of hydrogen tunneling in lowering the barrier to reaction in the enzyme. A reduction of the activation free energy due to tunneling of 3.1 kcal mol-1 is found, which represents a rate enhancement due to tunneling by 2 orders of magnitude. The calculated KIE of 30 is significantly elevated over the semiclassical limit, in agreement with the experimental observations; a semiclassical value of 6 is obtained when tunneling is omitted. A polarization of the C-H bond to be broken is observed due to the close proximity of the catalytic aspartate and the (formally) positively charged imine nitrogen. A comparison is also made with the related quinoprotein methylamine dehydrogenase (MADH)-the much lower KIE of 11 that we obtain for the MADH/methylamine system is found to arise from a more endothermic potential energy surface for the MADH reaction.
Collapse
Affiliation(s)
- Laura Masgrau
- Manchester Interdisciplinary Biocentre, School of Chemical Engineering and Analytical Science, and Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | | | | | | | | |
Collapse
|
67
|
Johannissen LO, Hay S, Scrutton NS, Sutcliffe MJ. Proton tunneling in aromatic amine dehydrogenase is driven by a short-range sub-picosecond promoting vibration: consistency of simulation and theory with experiment. J Phys Chem B 2007; 111:2631-8. [PMID: 17305385 DOI: 10.1021/jp066276w] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydrogen transfer, an essential component of most biological reactions, is a quantum problem. However, the proposed role of compressive motion in promoting enzymatic H-transfer is contentious. Using molecular dynamics simulations and density functional theory (DFT) calculations, we show that, during proton tunneling in the oxidative deamination of tryptamine catalyzed by the enzyme aromatic amine dehydrogenase (AADH), a sub-picosecond promoting vibration is inherent to the iminoquinone intermediate. We show by numerical modeling that this short-range vibration, with a frequency of approximately 165 cm-1, is consistent with "gating" motion in the hydrogen tunneling model of Kuznetsov and Ulstrup (Kuznetsov, A. M.; Ulstrup, J. Can. J. Chem. 1999, 77, 1085) in an enzymatic reaction with an observed protium/deuterium kinetic isotope effect that is not measurably temperature-dependent.
Collapse
Affiliation(s)
- Linus O Johannissen
- Manchester Interdisciplinary Biocentre, School of Chemical Engineering and Analytical Science, and Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | | | | | | |
Collapse
|
68
|
Hay S, Sutcliffe MJ, Scrutton NS. Promoting motions in enzyme catalysis probed by pressure studies of kinetic isotope effects. Proc Natl Acad Sci U S A 2007; 104:507-12. [PMID: 17202258 PMCID: PMC1766415 DOI: 10.1073/pnas.0608408104] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Use of the pressure dependence of kinetic isotope effects, coupled with a study of their temperature dependence, as a probe for promoting motions in enzymatic hydrogen-tunneling reactions is reported. Employing morphinone reductase as our model system and by using stopped-flow methods, we measured the hydride transfer rate (a tunneling reaction) as a function of hydrostatic pressure and temperature. Increasing the pressure from 1 bar (1 bar = 100 kPa) to 2 kbar accelerates the hydride transfer reaction when both protium (from 50 to 161 s(-1) at 25 degrees C) and deuterium (12 to 31 s(-1) at 25 degrees C) are transferred. We found that the observed primary kinetic isotope effect increases with pressure (from 4.0 to 5.2 at 25 degrees C), an observation incompatible with the Bell correction model for hydrogen tunneling but consistent with a full tunneling model. By numerical modeling, we show that both the pressure and temperature dependencies of the reaction rates are consistent with the framework of the environmentally coupled tunneling model of Kuznetsov and Ulstrup [Kuznetsov AM, Ulstrup J (1999) Can J Chem 77:1085-1096], providing additional support for the role of a promoting motion in the hydride tunneling reaction in morphinone reductase. Our study demonstrates the utility of "barrier engineering" by using hydrostatic pressure as a probe for tunneling regimes in enzyme systems and provides added and independent support for the requirement of promoting motions in such tunneling reactions.
Collapse
Affiliation(s)
- Sam Hay
- *Manchester Interdisciplinary Biocentre and
- Faculty of Life Science and
| | - Michael J. Sutcliffe
- *Manchester Interdisciplinary Biocentre and
- School of Chemical Engineering and Analytical Science, University of Manchester, 131 Princess Street, Manchester M1 7ND, United Kingdom
| | - Nigel S. Scrutton
- *Manchester Interdisciplinary Biocentre and
- Faculty of Life Science and
- To whom correspondence should be addressed.
| |
Collapse
|
69
|
Sutcliffe MJ, Masgrau L, Roujeinikova A, Johannissen LO, Hothi P, Basran J, Ranaghan KE, Mulholland AJ, Leys D, Scrutton NS. Hydrogen tunnelling in enzyme-catalysed H-transfer reactions: flavoprotein and quinoprotein systems. Philos Trans R Soc Lond B Biol Sci 2006; 361:1375-86. [PMID: 16873125 PMCID: PMC1647315 DOI: 10.1098/rstb.2006.1878] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It is now widely accepted that enzyme-catalysed C-H bond breakage occurs by quantum mechanical tunnelling. This paradigm shift in the conceptual framework for these reactions away from semi-classical transition state theory (TST, i.e. including zero-point energy, but with no tunnelling correction) has been driven over the recent years by experimental studies of the temperature dependence of kinetic isotope effects (KIEs) for these reactions in a range of enzymes, including the tryptophan tryptophylquinone-dependent enzymes such as methylamine dehydrogenase and aromatic amine dehydrogenase, and the flavoenzymes such as morphinone reductase and pentaerythritol tetranitrate reductase, which produced observations that are also inconsistent with the simple Bell-correction model of tunnelling. However, these data-especially, the strong temperature dependence of reaction rates and the variable temperature dependence of KIEs-are consistent with other tunnelling models (termed full tunnelling models), in which protein and/or substrate fluctuations generate a configuration compatible with tunnelling. These models accommodate substrate/protein (environment) fluctuations required to attain a configuration with degenerate nuclear quantum states and, when necessary, motion required to increase the probability of tunnelling in these states. Furthermore, tunnelling mechanisms in enzymes are supported by atomistic computational studies performed within the framework of modern TST, which incorporates quantum nuclear effects.
Collapse
Affiliation(s)
- Michael J Sutcliffe
- Manchester Interdisciplinary Biocentre, School of Chemical Engineering and Analytical Science, Faculty of Life Sciences, University of Manchester, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Muthusamy M, Burrell MR, Thorneley RNF, Bornemann S. Real-time monitoring of the oxalate decarboxylase reaction and probing hydron exchange in the product, formate, using fourier transform infrared spectroscopy. Biochemistry 2006; 45:10667-73. [PMID: 16939218 DOI: 10.1021/bi060460q] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oxalate decarboxylase converts oxalate to formate and carbon dioxide and uses dioxygen as a cofactor despite the reaction involving no net redox change. We have successfully used Fourier transform infrared spectroscopy to monitor in real time both substrate consumption and product formation for the first time. The assignment of the peaks was confirmed using [(13)C]oxalate as the substrate. The K(m) for oxalate determined using this assay was 3.8-fold lower than that estimated from a stopped assay. The infrared assay was also capable of distinguishing between oxalate decarboxylase and oxalate oxidase activity by the lack of formate being produced by the latter. In D(2)O, the product with oxalate decarboxylase was C-deuterio formate rather than formate, showing that the source of the hydron was solvent as expected. Large solvent deuterium kinetic isotope effects were observed on V(max) (7.1 +/- 0.3), K(m) for oxalate (3.9 +/- 0.9), and k(cat)/K(m) (1.8 +/- 0.4) indicative of a proton transfer event during a rate-limiting step. Semiempirical quantum mechanical calculations on the stability of formate-derived species gave an indication of the stability and nature of a likely enzyme-bound formyl radical catalytic intermediate. The capability of the enzyme to bind formate under conditions in which the enzyme is known to be active was determined by electron paramagnetic resonance. However, no enzyme-catalyzed exchange of the C-hydron of formate was observed using the infrared assay, suggesting that a formyl radical intermediate is not accessible in the reverse reaction. This restricts the formation of potentially harmful radical intermediates to the forward reaction.
Collapse
Affiliation(s)
- Mylrajan Muthusamy
- Biological Chemistry Department, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, United Kingdom
| | | | | | | |
Collapse
|
71
|
Pu J, Gao J, Truhlar DG. Multidimensional tunneling, recrossing, and the transmission coefficient for enzymatic reactions. Chem Rev 2006; 106:3140-69. [PMID: 16895322 PMCID: PMC4478620 DOI: 10.1021/cr050308e] [Citation(s) in RCA: 273] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jingzhi Pu
- Department of Chemistry and Supercomputer Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, Minnesota 55455-0431
| | - Jiali Gao
- Department of Chemistry and Supercomputer Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, Minnesota 55455-0431
| | - Donald G. Truhlar
- Department of Chemistry and Supercomputer Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, Minnesota 55455-0431
| |
Collapse
|
72
|
Masgrau L, Roujeinikova A, Johannissen LO, Hothi P, Basran J, Ranaghan KE, Mulholland AJ, Sutcliffe MJ, Scrutton NS, Leys D. Atomic Description of an Enzyme Reaction Dominated by Proton Tunneling. Science 2006; 312:237-41. [PMID: 16614214 DOI: 10.1126/science.1126002] [Citation(s) in RCA: 235] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We present an atomic-level description of the reaction chemistry of an enzyme-catalyzed reaction dominated by proton tunneling. By solving structures of reaction intermediates at near-atomic resolution, we have identified the reaction pathway for tryptamine oxidation by aromatic amine dehydrogenase. Combining experiment and computer simulation, we show proton transfer occurs predominantly to oxygen O2 of Asp(128)beta in a reaction dominated by tunneling over approximately 0.6 angstroms. The role of long-range coupled motions in promoting tunneling is controversial. We show that, in this enzyme system, tunneling is promoted by a short-range motion modulating proton-acceptor distance and no long-range coupled motion is required.
Collapse
Affiliation(s)
- Laura Masgrau
- Manchester Interdisciplinary Biocentre, University of Manchester, Jackson's Mill, Post Office Box 88, Manchester M60 1QD, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Fan F, Gadda G. Oxygen- and temperature-dependent kinetic isotope effects in choline oxidase: correlating reversible hydride transfer with environmentally enhanced tunneling. J Am Chem Soc 2006; 127:17954-61. [PMID: 16351127 DOI: 10.1021/ja0560377] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Choline oxidase catalyzes the flavin-linked oxidation of choline to glycine betaine, with betaine aldehyde as intermediate and oxygen as electron acceptor. Here, the effects of oxygen concentration and temperature on the kinetic isotope effects with deuterated choline have been investigated. The D(kcat/Km) and Dkcat values with 1,2-[(2)H4]-choline were pH-independent at saturating oxygen concentrations, whereas they decreased at high pH to limiting values that depended on oxygen concentration at < or = 0.97 mM oxygen. The kcat/Km and kcat pH profiles had similar patterns reaching plateaus at high pH. Both the limiting kcat/Km at high pH and the pKa values were perturbed to lower values with choline and < or = 0.25 mM oxygen. These data suggest that oxygen availability modulates whether the reduced enzyme-betaine aldehyde complex partitions forward to catalysis rather then reverting to the oxidized enzyme-choline alkoxide species. At saturating oxygen concentrations, the D(kcat/Km) was 10.6 +/- 0.6 and temperature independent, and the isotope effect on the preexponential factors (A(H)'/A(D)') was 14 +/- 3, ruling out a classical over-the-barrier behavior for hydride transfer. Similar enthalpies of activation (deltaH(double dagger)) with values of 18 +/- 2 and 18 +/- 5 kJ mol(-1) were determined with choline and 1,2-[(2)H4]-choline. These data suggest that the hydride transfer reaction in which choline is oxidized by choline oxidase occurs quantum mechanically within a preorganized active site, with the reactive configuration for hydride tunneling being minimally affected by environmental vibrations of the reaction coordinate other than those affecting the distance between the donor and acceptor of the hydride.
Collapse
Affiliation(s)
- Fan Fan
- Department of Biology, Georgia State University, Atlanta, Georgia 30302-4098, USA
| | | |
Collapse
|
74
|
Ohta Y, Mukouyama EB, Suzuki H. Kinetic Isotope Effect of the l-Phenylalanine Oxidase from Pseudomonas sp. P-501. ACTA ACUST UNITED AC 2006; 139:551-5. [PMID: 16567420 DOI: 10.1093/jb/mvj049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Pseudomonas L-phenylalanine oxidase (deaminating and decarboxylating) mainly catalyzes oxygenation when L-phenylalanine is used as the substrate, but oxidation when L-methionine is used as the substrate. Using [C(alpha)-H]-DL-methionine and [C(alpha)-D]-DL-methionine as substrate, the reductive half reaction of FAD cofactor of enzyme has been studied by stopped-flow spectrophotometry. The rate of reduction of FAD cofactor has a kinetic isotope effect (KIE) of 5.4 and 4.1 in the absence and presence of 30% glycerol, respectively. The KIE is independent of temperature, but the rates of the reductive half reaction are dependent on temperature, indicating that thermally induced motion at the active site drives the H-transfer reaction by H-tunneling.
Collapse
Affiliation(s)
- Yui Ohta
- Division of Biosciences, Graduate School of Fundamental Life Science, Kitasato University, Sagamihara, Kanagawa
| | | | | |
Collapse
|
75
|
Sutcliffe MJ, Scrutton NS. Computational studies of enzyme mechanism: linking theory with experiment in the analysis of enzymic H-tunnelling. Phys Chem Chem Phys 2006; 8:4510-6. [PMID: 17047748 DOI: 10.1039/b609622k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen transfer--an essential component of most biological reactions--is a quantum problem. A crucial question of great current interest is how enzymes modulate the quantum dynamics of hydrogen transfer to achieve their outstanding catalytic properties. That tunnelling occurs is now widely accepted, with the conceptual frameworks incorporating protein motion into the enzymic H-tunnelling process. Computational simulation can be used to help elucidate how enzymes work and facilitate H-tunnelling at the atomic level. We review the strength of a multidisciplinary approach--combining computational simulations with enzyme kinetics and structural biology--in revealing tunnelling mechanisms in enzymes. We focus on two paradigm systems--aromatic amine dehydrogenase, in which H-tunnelling is facilitated by fast (sub-picosecond) short range motions, and dihydrofolate reductase, in which a network of long-range coupled motions drives the tunnelling event.
Collapse
Affiliation(s)
- Michael J Sutcliffe
- Manchester Interdisciplinary Biocentre, and School of Chemical Engineering and Analytical Science, 131 Princess Street, Manchester, UK.
| | | |
Collapse
|
76
|
Khan H, Barna T, Bruce NC, Munro AW, Leys D, Scrutton NS. Proton transfer in the oxidative half-reaction of pentaerythritol tetranitrate reductase. Structure of the reduced enzyme-progesterone complex and the roles of residues Tyr186, His181 and His184. FEBS J 2005; 272:4660-71. [PMID: 16156787 DOI: 10.1111/j.1742-4658.2005.04875.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The roles of His181, His184 and Tyr186 in PETN reductase have been examined by mutagenesis, spectroscopic and stopped-flow kinetics, and by determination of crystallographic structures for the Y186F PETN reductase and reduced wild-type enzyme-progesterone complex. Residues His181 and His184 are important in the binding of coenzyme, steroids, nitroaromatic ligands and the substrate 2-cyclohexen-1-one. The H181A and H184A enzymes retain activity in reductive and oxidative half-reactions, and thus do not play an essential role in catalysis. Ligand binding and catalysis is not substantially impaired in Y186F PETN reductase, which contrasts with data for the equivalent mutation (Y196F) in Old Yellow Enzyme. The structure of Y186F PETN reductase is identical to wild-type enzyme, with the obvious exception of the mutation. We show in PETN reductase that Tyr186 is not a key proton donor in the reduction of alpha/beta unsaturated carbonyl compounds. The structure of two electron-reduced PETN reductase bound to the inhibitor progesterone mimics the catalytic enzyme-steroid substrate complex and is similar to the structure of the oxidized enzyme-inhibitor complex. The reactive C1-C2 unsaturated bond of the steroid is inappropriately orientated with the flavin N5 atom for hydride transfer. With steroid substrates, the productive conformation is achieved by orientating the steroid through flipping by 180 degrees , consistent with known geometries for hydride transfer in flavoenzymes. Our data highlight mechanistic differences between Old Yellow Enzyme and PETN reductase and indicate that catalysis requires a metastable enzyme-steroid complex and not the most stable complex observed in crystallographic studies.
Collapse
Affiliation(s)
- Huma Khan
- Department of Biochemistry, University of Leicester, UK
| | | | | | | | | | | |
Collapse
|
77
|
Messiha HL, Bruce NC, Sattelle BM, Sutcliffe MJ, Munro AW, Scrutton NS. Role of active site residues and solvent in proton transfer and the modulation of flavin reduction potential in bacterial morphinone reductase. J Biol Chem 2005; 280:27103-10. [PMID: 15905167 DOI: 10.1074/jbc.m502293200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The reactions of several active site mutant forms of bacterial morphinone reductase (MR) with NADH and 2-cyclohexen-1-one as substrates have been studied by stopped-flow and steady-state kinetic methods and redox potentiometry. The enzymes were designed to (i) probe a role for potential proton donors (Tyr-72 and Tyr-356) in the oxidative half-reaction of MR; (ii) assess the function of a highly conserved tryptophan residue (Trp-106) in catalysis; (iii) investigate the role of Thr-32 in modulating the FMN reduction potential and catalysis. The Y72F and Y356F enzymes retained activity in both steady-state and stopped-flow kinetic studies, indicating they do not serve as key proton donors in the oxidative reaction of MR. Taken together with our recently published data (Messiha, H. L., Munro, A. W., Bruce, N. C., Barsukov, I., and Scrutton, N. S. (2005) J. Biol. Chem. 280, 4627-4631) that rule out roles for Cys-191 (corresponding with the proton donor, Tyr-196, in the structurally related OYE1 enzyme) and His-186 as proton donors, we infer solvent is the source of the proton in the oxidative half-reaction of MR. We demonstrate a key role for Thr-32 in modulating the reduction potential of the FMN, which is decreased approximately 50 mV in the T32A mutant MR. This effects a change in rate-limiting step in the catalytic cycle of the T32A enzyme with the oxidizing substrate 2-cyclohexenone. Despite the conservation of Trp-106 throughout the OYE family, we show this residue does not play a major role in catalysis, although affects on substrate and coenzyme binding are observed in a W106F enzyme. Our studies show some similarities, but also major differences, in the catalytic mechanism of MR and OYE1, and emphasize the need for caution in inferring mechanism by structural comparison of highly related enzymes in the absence of solution studies.
Collapse
Affiliation(s)
- Hanan L Messiha
- Department of Biochemistry, University of Leicester, University Road, Leicester LE1 7RH
| | | | | | | | | | | |
Collapse
|
78
|
Messiha HL, Munro AW, Bruce NC, Barsukov I, Scrutton NS. Reaction of Morphinone Reductase with 2-Cyclohexen-1-one and 1-Nitrocyclohexene. J Biol Chem 2005; 280:10695-709. [PMID: 15632179 DOI: 10.1074/jbc.m410595200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Morphinone reductase (MR) catalyzes the NADH-dependent reduction of alpha/beta unsaturated carbonyl compounds in a reaction similar to that catalyzed by Old Yellow Enzyme (OYE1). The two enzymes are related at the sequence and structural levels, but key differences in active site architecture exist which have major implications for the reaction mechanism. We report detailed kinetic and solution NMR data for wild-type MR and two mutant forms in which residues His-186 and Asn-189 have been exchanged for alanine residues. We show that both residues are involved in the binding of the reducing nicotinamide coenzyme NADH and also the binding of the oxidizing substrates 2-cyclohexen-1-one and 1-nitrocyclohexene. Reduction of 2-cyclohexen-1-one by FMNH(2) is concerted with proton transfer from an unknown proton donor in the active site. NMR spectroscopy and flavin reoxidation studies with 2-cyclohexen-1-one are consistent with His-186 being unprotonated in oxidized, reduced, and ligand-bound MR, suggesting that His-186 is not the key proton donor required for the reduction of 2-cyclohexen-1-one. Hydride transfer is decoupled from proton transfer with 1-nitrocyclohexene as oxidizing substrate, and unlike with OYE1 the intermediate nitronate species produced after hydride transfer from FMNH(2) is not converted to 1-nitrocyclohexane. The work highlights key mechanistic differences in the reactions catalyzed by MR and OYE1 and emphasizes the need for caution in inferring mechanistic similarities in structurally related proteins.
Collapse
Affiliation(s)
- Hanan Latif Messiha
- Department of Biochemistry, University of Leicester, University Road, Leicester LE1 7RH, UK
| | | | | | | | | |
Collapse
|
79
|
Masgrau L, Basran J, Hothi P, Sutcliffe MJ, Scrutton NS. Hydrogen tunneling in quinoproteins. Arch Biochem Biophys 2004; 428:41-51. [PMID: 15234268 DOI: 10.1016/j.abb.2004.03.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 03/15/2004] [Indexed: 10/26/2022]
Abstract
It is now widely accepted that substrate C-H bond breakage by quinoprotein enzymes occurs by quantum mechanical tunneling. This paradigm shift in the conceptual framework for these reactions away from semi-classical transition state theory (i.e., including zero-point energy but with no tunneling correction) has been driven over recent years by experimental studies of the temperature dependence of kinetic isotope effects for these reactions in the TTQ-dependent enzymes methylamine dehydrogenase and aromatic amine dehydrogenase, which produced observations also inconsistent with the simple Bell correction model of tunneling. However, these data-specifically, the strong temperature dependence of reaction rates and the variable temperature dependence of kinetic isotope effects-are consistent with other tunneling models (denoted full tunneling models) in which protein and/or substrate fluctuations generate a configuration compatible with tunneling. These models accommodate substrate/protein (environment) fluctuations required to attain a configuration with degenerate quantum states and, when necessary, motion required to increase the probability of tunneling in these states. Furthermore, tunneling mechanisms in quinoproteins are supported by computational studies employing variational transition state theory with multidimensional tunneling corrections; these studies are also discussed in this review. Potential pitfalls in analyzing the temperature dependence of kinetic isotope effects as probes of tunneling are also discussed with reference to PQQ-dependent methanol dehydrogenase.
Collapse
Affiliation(s)
- Laura Masgrau
- Department of Biochemistry, University of Leicester, University Road, Leicester LE1 7RH, UK
| | | | | | | | | |
Collapse
|
80
|
Khan H, Barna T, Harris RJ, Bruce NC, Barsukov I, Munro AW, Moody PCE, Scrutton NS. Atomic Resolution Structures and Solution Behavior of Enzyme-Substrate Complexes of Enterobacter cloacae PB2 Pentaerythritol Tetranitrate Reductase. J Biol Chem 2004; 279:30563-72. [PMID: 15128738 DOI: 10.1074/jbc.m403541200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structure of pentaerythritol tetranitrate (PETN) reductase in complex with the nitroaromatic substrate picric acid determined previously at 1.55 A resolution indicated additional electron density between the indole ring of residue Trp-102 and the nitro group at C-6 of picrate. The data suggested the presence of an unusual bond between substrate and the tryptophan side chain. Herein, we have extended the resolution of the PETN reductase-picric acid complex to 0.9 A. This high-resolution analysis indicates that the active site is partially occupied with picric acid and that the anomalous density seen in the original study is attributed to the population of multiple conformational states of Trp-102 and not a formal covalent bond between the indole ring of Trp-102 and picric acid. The significance of any interaction between Trp-102 and nitroaromatic substrates was probed further in solution and crystal complexes with wild-type and mutant (W102Y and W102F) enzymes. Unlike with wild-type enzyme, in the crystalline form picric acid was bound at full occupancy in the mutant enzymes, and there was no evidence for multiple conformations of active site residues. Solution studies indicate tighter binding of picric acid in the active sites of the W102Y and W102F enzymes. Mutation of Trp-102 does not impair significantly enzyme reduction by NADPH, but the kinetics of decay of the hydride-Meisenheimer complex are accelerated in the mutant enzymes. The data reveal that decay of the hydride-Meisenheimer complex is enzyme catalyzed and that the final distribution of reaction products for the mutant enzymes is substantially different from wild-type enzyme. Implications for the mechanism of high explosive degradation by PETN reductase are discussed.
Collapse
Affiliation(s)
- Huma Khan
- Department of Biochemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Liang ZX, Lee T, Resing KA, Ahn NG, Klinman JP. Thermal-activated protein mobility and its correlation with catalysis in thermophilic alcohol dehydrogenase. Proc Natl Acad Sci U S A 2004; 101:9556-61. [PMID: 15210941 PMCID: PMC470713 DOI: 10.1073/pnas.0403337101] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Temperature-dependent hydrogen-deuterium (H/D) exchange of the thermophilic alcohol dehydrogenase (htADH) has been studied by using liquid chromatography-coupled mass spectrometry. Analysis of the changes in H/D exchange patterns for the protein-derived peptides suggests that some regions of htADH are in a rigid conformational substate at reduced temperatures with limited cooperative protein motion. The enzyme undergoes two discrete transitions at approximately 30 and 45 degrees C to attain a more dynamic conformational substate. Four of the five peptides exhibiting the transition above 40 degrees C are in direct contact with the cofactor, and the NAD(+)-binding affinity is also altered in this temperature range, implicating a change in the mobility of the cofactor-binding domain >45 degrees C. By contrast, the five peptides exhibiting the transition at 30 degrees C reside in the substrate-binding domain. This transition coincides with a change in the activation energy of k(cat) for hydride transfer, leading to a linear correlation between k(cat) and the weighted average exchange rate constant k(HX(WA)) for the five peptides. These observations indicate a direct coupling between hydride transfer and protein mobility in htADH, and that an increased mobility is at least partially responsible for the reduced E(act) at high temperature. The data provide support for the hypothesis that protein dynamics play a key role in controlling hydrogen tunneling at enzyme active sites.
Collapse
Affiliation(s)
- Zhao-Xun Liang
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
82
|
Mincer JS, Schwartz SD. Rate-promoting vibrations and coupled hydrogen–electron transfer reactions in the condensed phase: A model for enzymatic catalysis. J Chem Phys 2004; 120:7755-60. [PMID: 15267689 DOI: 10.1063/1.1690239] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A model is presented for coupled hydrogen-electron transfer reactions in condensed phase in the presence of a rate promoting vibration. Large kinetic isotope effects (KIEs) are found when the hydrogen is substituted with deuterium. While these KIEs are essentially temperature independent, reaction rates do exhibit temperature dependence. These findings agree with recent experimental data for various enzyme-catalyzed reactions, such as the amine dehydrogenases and soybean lipoxygenase. Consistent with earlier results, turning off the promoting vibration results in an increased KIE. Increasing the barrier height increases the KIE, while increasing the rate of electron transfer decreases it. These results are discussed in light of other views of vibrationally enhanced tunneling in enzymes.
Collapse
Affiliation(s)
- Joshua S Mincer
- Department of Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
83
|
Isotope effects and quantum tunneling in enzyme-catalyzed hydrogen transfer. Part I. The experimental basis. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2004. [DOI: 10.1016/s0065-3160(04)39002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|