51
|
Ausländer S, Ausländer D, Fussenegger M. Synthetische Biologie - die Synthese der Biologie. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Simon Ausländer
- Department of Biosystems Science and Engineering; ETH Zürich; Mattenstrasse 26 4058 Basel Schweiz
| | - David Ausländer
- Department of Biosystems Science and Engineering; ETH Zürich; Mattenstrasse 26 4058 Basel Schweiz
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering; ETH Zürich; Mattenstrasse 26 4058 Basel Schweiz
- Faculty of Science; Universität Basel; Mattenstrasse 26 4058 Basel Schweiz
| |
Collapse
|
52
|
Ausländer S, Ausländer D, Fussenegger M. Synthetic Biology-The Synthesis of Biology. Angew Chem Int Ed Engl 2017; 56:6396-6419. [PMID: 27943572 DOI: 10.1002/anie.201609229] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/17/2016] [Indexed: 01/01/2023]
Abstract
Synthetic biology concerns the engineering of man-made living biomachines from standardized components that can perform predefined functions in a (self-)controlled manner. Different research strategies and interdisciplinary efforts are pursued to implement engineering principles to biology. The "top-down" strategy exploits nature's incredible diversity of existing, natural parts to construct synthetic compositions of genetic, metabolic, or signaling networks with predictable and controllable properties. This mainly application-driven approach results in living factories that produce drugs, biofuels, biomaterials, and fine chemicals, and results in living pills that are based on engineered cells with the capacity to autonomously detect and treat disease states in vivo. In contrast, the "bottom-up" strategy seeks to be independent of existing living systems by designing biological systems from scratch and synthesizing artificial biological entities not found in nature. This more knowledge-driven approach investigates the reconstruction of minimal biological systems that are capable of performing basic biological phenomena, such as self-organization, self-replication, and self-sustainability. Moreover, the syntheses of artificial biological units, such as synthetic nucleotides or amino acids, and their implementation into polymers inside living cells currently set the boundaries between natural and artificial biological systems. In particular, the in vitro design, synthesis, and transfer of complete genomes into host cells point to the future of synthetic biology: the creation of designer cells with tailored desirable properties for biomedicine and biotechnology.
Collapse
Affiliation(s)
- Simon Ausländer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - David Ausländer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland.,Faculty of Science, University of Basel, Mattenstrasse 26, 4058, Basel, Switzerland
| |
Collapse
|
53
|
Abstract
Genetically encoded fluorescent sensors are essential tools in modern biological research, and recent advances in fluorescent proteins (FPs) have expanded the scope of sensor design and implementation. In this review we compare different sensor platforms, including Förster resonance energy transfer (FRET) sensors, fluorescence-modulated single FP-based sensors, translocation sensors, complementation sensors, and dimerization-based sensors. We discuss elements of sensor design and engineering for each platform, including the incorporation of new types of FPs and sensor screening techniques. Finally, we summarize the wide range of sensors in the literature, exploring creative new sensor architectures suitable for different applications.
Collapse
Affiliation(s)
- Lynn Sanford
- University of Colorado Boulder, Boulder, CO, United States
| | - Amy Palmer
- University of Colorado Boulder, Boulder, CO, United States.
| |
Collapse
|
54
|
Bassett JJ, Monteith GR. Genetically Encoded Calcium Indicators as Probes to Assess the Role of Calcium Channels in Disease and for High-Throughput Drug Discovery. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 79:141-171. [PMID: 28528667 DOI: 10.1016/bs.apha.2017.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The calcium ion (Ca2+) is an important signaling molecule implicated in many cellular processes, and the remodeling of Ca2+ homeostasis is a feature of a variety of pathologies. Typical methods to assess Ca2+ signaling in cells often employ small molecule fluorescent dyes, which are sometimes poorly suited to certain applications such as assessment of cellular processes, which occur over long periods (hours or days) or in vivo experiments. Genetically encoded calcium indicators are a set of tools available for the measurement of Ca2+ changes in the cytosol and subcellular compartments, which circumvent some of the inherent limitations of small molecule Ca2+ probes. Recent advances in genetically encoded calcium sensors have greatly increased their ability to provide reliable monitoring of Ca2+ changes in mammalian cells. New genetically encoded calcium indicators have diverse options in terms of targeting, Ca2+ affinity and fluorescence spectra, and this will further enhance their potential use in high-throughput drug discovery and other assays. This review will outline the methods available for Ca2+ measurement in cells, with a focus on genetically encoded calcium sensors. How these sensors will improve our understanding of the deregulation of Ca2+ handling in disease and their application to high-throughput identification of drug leads will also be discussed.
Collapse
Affiliation(s)
- John J Bassett
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Gregory R Monteith
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia; Mater Research, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
55
|
Horiguchi M, Fujioka M, Kondo T, Fujioka Y, Li X, Horiuchi K, O. Satoh A, Nepal P, Nishide S, Nanbo A, Teshima T, Ohba Y. Improved FRET Biosensor for the Measurement of BCR-ABL Activity in Chronic Myeloid Leukemia Cells. Cell Struct Funct 2017; 42:15-26. [DOI: 10.1247/csf.16019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Mika Horiguchi
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine
| | - Mari Fujioka
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine
| | - Takeshi Kondo
- Department of Hematology, Hokkaido University Graduate School of Medicine
| | - Yoichiro Fujioka
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine
| | - Xinxin Li
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine
| | - Kosui Horiuchi
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine
| | - Aya O. Satoh
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine
| | - Prabha Nepal
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine
| | - Shinya Nishide
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine
| | - Asuka Nanbo
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Graduate School of Medicine
| | - Yusuke Ohba
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine
| |
Collapse
|
56
|
Alonso MT, Rojo-Ruiz J, Navas-Navarro P, Rodríguez-Prados M, García-Sancho J. Measuring Ca 2+ inside intracellular organelles with luminescent and fluorescent aequorin-based sensors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:894-899. [PMID: 27939433 DOI: 10.1016/j.bbamcr.2016.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 02/06/2023]
Abstract
GFP-Aequorin Protein (GAP) can be used to measure [Ca2+] inside intracellular organelles, both by luminescence and by fluorescence. The low-affinity variant GAP3 is adequate for ratiometric imaging in the endoplasmic reticulum and Golgi apparatus, and it can be combined with conventional synthetic indicators for simultaneous measurements of cytosolic Ca2+. GAP is bioorthogonal as it does not have mammalian homologues, and it is robust and functionally expressed in transgenic flies and mice, where it can be used for Ca2+ measurements ex vivo and in vivo to explore animal models of health and disease. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- María Teresa Alonso
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), C/Sanz y Forés 3, 47003, Valladolid, Spain.
| | - Jonathan Rojo-Ruiz
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), C/Sanz y Forés 3, 47003, Valladolid, Spain
| | - Paloma Navas-Navarro
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), C/Sanz y Forés 3, 47003, Valladolid, Spain
| | - Macarena Rodríguez-Prados
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), C/Sanz y Forés 3, 47003, Valladolid, Spain
| | - Javier García-Sancho
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), C/Sanz y Forés 3, 47003, Valladolid, Spain.
| |
Collapse
|
57
|
Bolbat A, Schultz C. Recent developments of genetically encoded optical sensors for cell biology. Biol Cell 2016; 109:1-23. [PMID: 27628952 DOI: 10.1111/boc.201600040] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022]
Abstract
Optical sensors are powerful tools for live cell research as they permit to follow the location, concentration changes or activities of key cellular players such as lipids, ions and enzymes. Most of the current sensor probes are based on fluorescence which provides great spatial and temporal precision provided that high-end microscopy is used and that the timescale of the event of interest fits the response time of the sensor. Many of the sensors developed in the past 20 years are genetically encoded. There is a diversity of designs leading to simple or sometimes complicated applications for the use in live cells. Genetically encoded sensors began to emerge after the discovery of fluorescent proteins, engineering of their improved optical properties and the manipulation of their structure through application of circular permutation. In this review, we will describe a variety of genetically encoded biosensor concepts, including those for intensiometric and ratiometric sensors based on single fluorescent proteins, Forster resonance energy transfer-based sensors, sensors utilising bioluminescence, sensors using self-labelling SNAP- and CLIP-tags, and finally tetracysteine-based sensors. We focus on the newer developments and discuss the current approaches and techniques for design and application. This will demonstrate the power of using optical sensors in cell biology and will help opening the field to more systematic applications in the future.
Collapse
Affiliation(s)
- Andrey Bolbat
- European Molecular Biology Laboratory (EMBL), Cell Biology & Biophysics Unit, Heidelberg, 69117, Germany
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL), Cell Biology & Biophysics Unit, Heidelberg, 69117, Germany
| |
Collapse
|
58
|
Badr MA, Pinto JR, Davidson MW, Chase PB. Fluorescent Protein-Based Ca2+ Sensor Reveals Global, Divalent Cation-Dependent Conformational Changes in Cardiac Troponin C. PLoS One 2016; 11:e0164222. [PMID: 27736894 PMCID: PMC5063504 DOI: 10.1371/journal.pone.0164222] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/21/2016] [Indexed: 12/12/2022] Open
Abstract
Cardiac troponin C (cTnC) is a key effector in cardiac muscle excitation-contraction coupling as the Ca2+ sensing subunit responsible for controlling contraction. In this study, we generated several FRET sensors for divalent cations based on cTnC flanked by a donor fluorescent protein (CFP) and an acceptor fluorescent protein (YFP). The sensors report Ca2+ and Mg2+ binding, and relay global structural information about the structural relationship between cTnC’s N- and C-domains. The sensors were first characterized using end point titrations to decipher the response to Ca2+ binding in the presence or absence of Mg2+. The sensor that exhibited the largest responses in end point titrations, CTV-TnC, (Cerulean, TnC, and Venus) was characterized more extensively. Most of the divalent cation-dependent FRET signal originates from the high affinity C-terminal EF hands. CTV-TnC reconstitutes into skinned fiber preparations indicating proper assembly of troponin complex, with only ~0.2 pCa unit rightward shift of Ca2+-sensitive force development compared to WT-cTnC. Affinity of CTV-TnC for divalent cations is in agreement with known values for WT-cTnC. Analytical ultracentrifugation indicates that CTV-TnC undergoes compaction as divalent cations bind. C-terminal sites induce ion-specific (Ca2+ versus Mg2+) conformational changes in cTnC. Our data also provide support for the presence of additional, non-EF-hand sites on cTnC for Mg2+ binding. In conclusion, we successfully generated a novel FRET-Ca2+ sensor based on full length cTnC with a variety of cellular applications. Our sensor reveals global structural information about cTnC upon divalent cation binding.
Collapse
Affiliation(s)
- Myriam A. Badr
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
- * E-mail:
| | - Jose R. Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Michael W. Davidson
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, United States of America
| | - P. Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
59
|
Suzuki J, Kanemaru K, Iino M. Genetically Encoded Fluorescent Indicators for Organellar Calcium Imaging. Biophys J 2016; 111:1119-1131. [PMID: 27477268 DOI: 10.1016/j.bpj.2016.04.054] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 12/14/2022] Open
Abstract
Optical Ca(2+) indicators are powerful tools for investigating intracellular Ca(2+) signals in living cells. Although a variety of Ca(2+) indicators have been developed, deciphering the physiological functions and spatiotemporal dynamics of Ca(2+) in intracellular organelles remains challenging. Genetically encoded Ca(2+) indicators (GECIs) using fluorescent proteins are promising tools for organellar Ca(2+) imaging, and much effort has been devoted to their development. In this review, we first discuss the key points of organellar Ca(2+) imaging and summarize the requirements for optimal organellar Ca(2+) indicators. Then, we highlight some of the recent advances in the engineering of fluorescent GECIs targeted to specific organelles. Finally, we discuss the limitations of currently available GECIs and the requirements for advancing the research on intraorganellar Ca(2+) signaling.
Collapse
Affiliation(s)
- Junji Suzuki
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Physiology, University of California San Francisco, San Francisco, California
| | - Kazunori Kanemaru
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masamitsu Iino
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cellular and Molecular Pharmacology, Nihon University School of Medicine, Tokyo, Japan.
| |
Collapse
|
60
|
Gibhardt CS, Zimmermann KM, Zhang X, Belousov VV, Bogeski I. Imaging calcium and redox signals using genetically encoded fluorescent indicators. Cell Calcium 2016; 60:55-64. [PMID: 27142890 DOI: 10.1016/j.ceca.2016.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 04/23/2016] [Accepted: 04/25/2016] [Indexed: 12/30/2022]
Abstract
Calcium and redox signals are presently established as essential regulators of many cellular processes. Nevertheless, we are still far from fully understanding the physiological and pathological importance of these universal second messengers. It is becoming increasingly apparent that many cellular functions are not regulated by global changes in the abundance of Ca(2+) ions and/or reactive oxygen and nitrogen species (ROS and RNS), but by the formation of transient local micro-domains or by signaling limited to a particular cellular compartment. Therefore, it is essential to identify and quantify Ca(2+) and redox signals in single cells with a high spatial and temporal resolution. The best tools for this purpose are the genetically encoded fluorescent indicators (GEFI). These protein sensors can be targeted into different cellular compartments, feature different colors, can be used to establish transgenic animal models, and are relatively inert to the cellular environment. Based on the chemical properties of Ca(2+) and ROS/RNS, currently more sensors exist for the detection of Ca(2+)- than for redox signals. Here, we shortly describe the most popular genetically encoded fluorescent Ca(2+) and redox indicators, discuss advantages and disadvantages based on our experience, show examples of different applications, and thus provide a brief guide that will help scientists choose the right combination of Ca(2+) and redox sensors to answer specific scientific questions.
Collapse
Affiliation(s)
- Christine S Gibhardt
- Department of Biophysics, CIPMM, School of Medicine, Saarland University, Homburg, Germany
| | - Katharina M Zimmermann
- Department of Biophysics, CIPMM, School of Medicine, Saarland University, Homburg, Germany
| | - Xin Zhang
- Department of Biophysics, CIPMM, School of Medicine, Saarland University, Homburg, Germany
| | | | - Ivan Bogeski
- Department of Biophysics, CIPMM, School of Medicine, Saarland University, Homburg, Germany.
| |
Collapse
|
61
|
del Castillo U, Winding M, Lu W, Gelfand VI. Interplay between kinesin-1 and cortical dynein during axonal outgrowth and microtubule organization in Drosophila neurons. eLife 2015; 4:e10140. [PMID: 26615019 PMCID: PMC4739764 DOI: 10.7554/elife.10140] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/27/2015] [Indexed: 12/21/2022] Open
Abstract
In this study, we investigated how microtubule motors organize microtubules in Drosophila neurons. We showed that, during the initial stages of axon outgrowth, microtubules display mixed polarity and minus-end-out microtubules push the tip of the axon, consistent with kinesin-1 driving outgrowth by sliding antiparallel microtubules. At later stages, the microtubule orientation in the axon switches from mixed to uniform polarity with plus-end-out. Dynein knockdown prevents this rearrangement and results in microtubules of mixed orientation in axons and accumulation of microtubule minus-ends at axon tips. Microtubule reorganization requires recruitment of dynein to the actin cortex, as actin depolymerization phenocopies dynein depletion, and direct recruitment of dynein to the membrane bypasses the actin requirement. Our results show that cortical dynein slides ‘minus-end-out’ microtubules from the axon, generating uniform microtubule arrays. We speculate that differences in microtubule orientation between axons and dendrites could be dictated by differential activity of cortical dynein. DOI:http://dx.doi.org/10.7554/eLife.10140.001 Motor proteins can move along filaments called microtubules to transport proteins and other materials to different parts of the cell. Microtubules are “polar” filaments, meaning that they have two distinct ends that have different chemical properties. Motor proteins can only move along these filaments in one direction, for example, the kinesin motor proteins generally move toward the so-called “plus-end”, while dynein motors move in the opposite direction. A typical nerve cell (or neuron) is composed of a cell body, a long projection called an axon and many small branch-like structures called dendrites. Within the axon, the microtubules are arranged so that their plus-ends point outwards, but the microtubules in dendrites are arranged differently so that many minus-ends point outwards instead. This polarity is important for the neuron in deciding which proteins should be transported to axons, and which should go to the dendrites. However, it is not clear how these different microtubule arrangements are established. Here, del Castillo et al. used microscopy to study microtubules in the axons of fruit fly neurons. The experiments show that in the very early stages of neuron development, the axons contained microtubules of mixed polarity. However, by the later stages, the microtubules had become uniform with all the plus-ends directed outwards. Further experiments show that dynein is responsible for this organization as it pushes the minus-end-out microtubules out of the axons. Dynein uses a scaffold made of a protein called actin to attach to the inner surface of the cell and move the minus-end microtubules to the cell body of the neuron. Thus, del Castillo et al.’s findings reveal that these dynein motors are responsible for the polarity of microtubules in mature axons. The next challenge is to understand how dynein is attached to the actin scaffold and why it rearranges microtubules in axons, but not in dendrites. DOI:http://dx.doi.org/10.7554/eLife.10140.002
Collapse
Affiliation(s)
- Urko del Castillo
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Michael Winding
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Wen Lu
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Vladimir I Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| |
Collapse
|
62
|
Genetically targeted single-channel optical recording reveals multiple Orai1 gating states and oscillations in calcium influx. Proc Natl Acad Sci U S A 2015; 113:440-5. [PMID: 26712003 DOI: 10.1073/pnas.1523410113] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Orai1 comprises the pore-forming subunit of the Ca(2+) release-activated Ca(2+) (CRAC) channel. When bound and activated by stromal interacting molecule 1 (STIM1), an endoplasmic reticulum (ER)-resident calcium sensor, Orai1 channels possess high selectivity for calcium but extremely small conductance that has precluded direct recording of single-channel currents. We have developed an approach to visualize Orai1 activity by fusing Orai1 to fluorescent, genetically encoded calcium indicators (GECIs). The GECI-Orai1 probes reveal local Ca(2+) influx at STIM1-Orai1 puncta. By whole cell recording, these fusions are fully functional as CRAC channels. When GECI-Orai1 and the CRAC-activating domain (CAD) of STIM1 were coexpressed at low levels and imaged using a total internal reflectance fluorescence microscope, cells exhibited sporadic fluorescence transients the size of diffraction-limited spots and the brightness of a few activated GECI proteins. Transients typically rose rapidly and fell into two classes according to duration: briefer "flickers" lasting only a few hundred milliseconds, and longer "pulses" lasting one to several seconds. The size, intensity, trace shape, frequency, distribution, physiological characteristics, and association with CAD binding together demonstrate that GECI-Orai1 fluorescence transients correspond to single-channel Orai1 responses. Single Orai1 channels gated by CAD, and small Orai1 puncta gated by STIM1, exhibit repetitive fluctuations in single-channel output. CAD binding supports a role in open state maintenance and reveals a second phase of CAD/STIM1 binding after channel opening. These first recordings of single-channel Orai1 currents reveal unexpected dynamics, and when paired with CAD association, support multiple single-channel states.
Collapse
|
63
|
Abstract
Convergent advances in optical imaging and genetic engineering have fueled the development of new technologies for biological visualization. Those technologies include genetically encoded indicators based on fluorescent proteins (FPs) for imaging ions, molecules, and enzymatic activities "to spy on cells," as phrased by Roger Tsien, by sneaking into specific tissues, cell types, or subcellular compartments, and reporting on specific intracellular activities. Here we review the current range of unimolecular indicators whose working principle is the conversion of a protein conformational change into a fluorescence signal. Many of the indicators have been developed from fluorescence resonance energy transfer- and single-FP-based approaches.
Collapse
|
64
|
Keinath NF, Waadt R, Brugman R, Schroeder JI, Grossmann G, Schumacher K, Krebs M. Live Cell Imaging with R-GECO1 Sheds Light on flg22- and Chitin-Induced Transient [Ca(2+)]cyt Patterns in Arabidopsis. MOLECULAR PLANT 2015; 8:1188-200. [PMID: 26002145 PMCID: PMC5134422 DOI: 10.1016/j.molp.2015.05.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 05/03/2015] [Accepted: 05/05/2015] [Indexed: 05/17/2023]
Abstract
Intracellular Ca(2+) transients are an integral part of the signaling cascade during pathogen-associated molecular pattern (PAMP)-triggered immunity in plants. Yet, our knowledge about the spatial distribution of PAMP-induced Ca(2+) signals is limited. Investigation of cell- and tissue-specific properties of Ca(2+)-dependent signaling processes requires versatile Ca(2+) reporters that are able to extract spatial information from cellular and subcellular structures, as well as from whole tissues over time periods from seconds to hours. Fluorescence-based reporters cover both a broad spatial and temporal range, which makes them ideally suited to study Ca(2+) signaling in living cells. In this study, we compared two fluorescence-based Ca(2+) sensors: the Förster resonance energy transfer (FRET)-based reporter yellow cameleon NES-YC3.6 and the intensity-based sensor R-GECO1. We demonstrate that R-GECO1 exhibits a significantly increased signal change compared with ratiometric NES-YC3.6 in response to several stimuli. Due to its superior sensitivity, R-GECO1 is able to report flg22- and chitin-induced Ca(2+) signals on a cellular scale, which allowed identification of defined [Ca(2+)]cyt oscillations in epidermal and guard cells in response to the fungal elicitor chitin. Moreover, we discovered that flg22- and chitin-induced Ca(2+) signals in the root initiate from the elongation zone.
Collapse
Affiliation(s)
- Nana F Keinath
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Rainer Waadt
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany; Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, 92093 La Jolla, USA
| | - Rik Brugman
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Julian I Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, 92093 La Jolla, USA
| | - Guido Grossmann
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Karin Schumacher
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Melanie Krebs
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany.
| |
Collapse
|
65
|
Tang S, Reddish F, Zhuo Y, Yang JJ. Fast kinetics of calcium signaling and sensor design. Curr Opin Chem Biol 2015; 27:90-7. [PMID: 26151819 DOI: 10.1016/j.cbpa.2015.06.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 06/11/2015] [Accepted: 06/11/2015] [Indexed: 12/25/2022]
Abstract
Fast calcium signaling is regulated by numerous calcium channels exhibiting high spatiotemporal profiles which are currently measured by fluorescent calcium sensors. There is still a strong need to improve the kinetics of genetically encoded calcium indicators (sensors) to capture calcium dynamics in the millisecond time frame. In this review, we summarize several major fast calcium signaling pathways and discuss the recent developments and application of genetically encoded calcium indicators to detect these pathways. A new class of genetically encoded calcium indicators designed with site-directed mutagenesis on the surface of beta-barrel fluorescent proteins to form a pentagonal bipyramidal-like calcium binding domain dramatically accelerates calcium binding kinetics. Furthermore, novel genetically encoded calcium indicators with significantly increased fluorescent lifetime change are advantageous in deep-field imaging with high light-scattering and notable morphology change.
Collapse
Affiliation(s)
- Shen Tang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, United States
| | - Florence Reddish
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, United States
| | - You Zhuo
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, United States
| | - Jenny J Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, United States.
| |
Collapse
|
66
|
Wang J, Zhao Y, Wang C, Zhu Q, Du Z, Hu A, Yang Y. Organelle-Specific Nitric Oxide Detection in Living Cells via HaloTag Protein Labeling. PLoS One 2015; 10:e0123986. [PMID: 25923693 PMCID: PMC4414533 DOI: 10.1371/journal.pone.0123986] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/25/2015] [Indexed: 11/27/2022] Open
Abstract
Nitric oxide (NO) is a membrane-permeable signaling molecule that is constantly produced, transferred, and consumed in vivo. NO participates and plays important roles in multiple biological processes. However, spatiotemporal imaging of NO in living cells is challenging. To fill the gap in currently used techniques, we exploited the versatility of HaloTag technology and synthesized a novel organelle-targetable fluorescent probe called HTDAF-2DA. We demonstrate the utility of the probe by monitoring subcellular NO dynamics. The developed strategy enables precise determination of local NO function.
Collapse
Affiliation(s)
- Jianhua Wang
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, CAS Center for Excellence in Brain Science, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, P. R. China
| | - Yuzheng Zhao
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, CAS Center for Excellence in Brain Science, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, P. R. China
| | - Chao Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, P. R. China
| | - Qian Zhu
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, CAS Center for Excellence in Brain Science, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, P. R. China
| | - Zengmin Du
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, CAS Center for Excellence in Brain Science, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, P. R. China
| | - Aiguo Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, P. R. China
- * E-mail: (AH); (YY)
| | - Yi Yang
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, CAS Center for Excellence in Brain Science, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, P. R. China
- * E-mail: (AH); (YY)
| |
Collapse
|
67
|
Horikawa K. Recent progress in the development of genetically encoded Ca 2+ indicators. THE JOURNAL OF MEDICAL INVESTIGATION 2015; 62:24-8. [DOI: 10.2152/jmi.62.24] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Kazuki Horikawa
- Division for Bio-imaging, Support Center for Advanced Medical Sciences, Institute of Health Biosciences, the University of Tokushima Graduate School
| |
Collapse
|
68
|
Nagai T, Horikawa K, Saito K, Matsuda T. Genetically encoded Ca(2+) indicators; expanded affinity range, color hue and compatibility with optogenetics. Front Mol Neurosci 2014; 7:90. [PMID: 25505381 PMCID: PMC4243560 DOI: 10.3389/fnmol.2014.00090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/30/2014] [Indexed: 11/18/2022] Open
Affiliation(s)
- Takeharu Nagai
- Department of Biomolecular Science and Engineering, The Institute of Scientific and Industrial Research, Osaka University Osaka, Japan ; PRESTO, Japan Science and Technology Agency Tokyo, Japan
| | - Kazuki Horikawa
- Division for Bioimaging, Institute of Health Biosciences, The University of Tokushima Graduate School Tokushima, Japan
| | - Kenta Saito
- Department of Systems Neuroscience, Centre for Brain Integration Research, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences Bunkyo-ku, Tokyo, Japan
| | - Tomoki Matsuda
- Department of Biomolecular Science and Engineering, The Institute of Scientific and Industrial Research, Osaka University Osaka, Japan
| |
Collapse
|
69
|
Rose T, Goltstein PM, Portugues R, Griesbeck O. Putting a finishing touch on GECIs. Front Mol Neurosci 2014; 7:88. [PMID: 25477779 PMCID: PMC4235368 DOI: 10.3389/fnmol.2014.00088] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/29/2014] [Indexed: 01/12/2023] Open
Abstract
More than a decade ago genetically encoded calcium indicators (GECIs) entered the stage as new promising tools to image calcium dynamics and neuronal activity in living tissues and designated cell types in vivo. From a variety of initial designs two have emerged as promising prototypes for further optimization: FRET (Förster Resonance Energy Transfer)-based sensors and single fluorophore sensors of the GCaMP family. Recent efforts in structural analysis, engineering and screening have broken important performance thresholds in the latest generation for both classes. While these improvements have made GECIs a powerful means to perform physiology in living animals, a number of other aspects of sensor function deserve attention. These aspects include indicator linearity, toxicity and slow response kinetics. Furthermore creating high performance sensors with optically more favorable emission in red or infrared wavelengths as well as new stably or conditionally GECI-expressing animal lines are on the wish list. When the remaining issues are solved, imaging of GECIs will finally have crossed the last milestone, evolving from an initial promise into a fully matured technology.
Collapse
Affiliation(s)
- Tobias Rose
- Max-Planck-Institute of Neurobiology Martinsried, Germany
| | | | | | | |
Collapse
|
70
|
Wu J, Prole D, Shen Y, Lin Z, Gnanasekaran A, Liu Y, Chen L, Zhou H, Chen SR, Usachev Y, Taylor C, Campbell R. Red fluorescent genetically encoded Ca2+ indicators for use in mitochondria and endoplasmic reticulum. Biochem J 2014; 464:13-22. [PMID: 25164254 PMCID: PMC4214425 DOI: 10.1042/bj20140931] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/28/2014] [Indexed: 01/01/2023]
Abstract
Ca2+ is a key intermediary in a variety of signalling pathways and undergoes dynamic changes in its cytoplasmic concentration due to release from stores within the endoplasmic reticulum (ER) and influx from the extracellular environment. In addition to regulating cytoplasmic Ca2+ signals, these responses also affect the concentration of Ca2+ within the ER and mitochondria. Single fluorescent protein-based Ca2+ indicators, such as the GCaMP series based on GFP, are powerful tools for imaging changes in the concentration of Ca2+ associated with intracellular signalling pathways. Most GCaMP-type indicators have dissociation constants (Kd) for Ca2+ in the high nanomolar to low micromolar range and are therefore optimal for measuring cytoplasmic [Ca2+], but poorly suited for use in mitochondria and ER where [Ca2+] can reach concentrations of several hundred micromolar. We now report GCaMP-type low-affinity red fluorescent genetically encoded Ca2+ indicators for optical imaging (LAR-GECO), engineered to have Kd values of 24 μM (LAR-GECO1) and 12 μM (LAR-GECO1.2). We demonstrate that these indicators can be used to image mitochondrial and ER Ca2+ dynamics in several cell types. In addition, we perform two-colour imaging of intracellular Ca2+ dynamics in cells expressing both cytoplasmic GCaMP and ER-targeted LAR-GECO1. The development of these low-affinity intensiometric red fluorescent Ca2+ indicators enables monitoring of ER and mitochondrial Ca2+ in combination with GFP-based reporters.
Collapse
Key Words
- endoplasmic reticulum (er)
- fluorescence ca2+ imaging
- gcamp
- mitochondrion
- multicolour imaging
- red fluorescent genetically encoded ca2+ indicator for optical imaging (r-geco)
- [ca2+]i and [ca2+]mt, free ca2+ concentration in cytosol and mitochondrial matrix, respectively
- cam, calmodulin
- cpfp, circularly permuted fluorescent protein
- dmem, dulbecco’s modified eagle’s medium
- drg, dorsal root ganglion
- er, endoplasmic reticulum
- fp, fluorescent protein
- fret, förster resonance energy transfer
- gfp, green fluorescent protein
- hbs, hepes-buffered saline
- hek, human embryonic kidney
- lar-geco, low-affinity red fluorescent genetically encoded ca2+ indicator for optical imaging
- led, light-emitting diode
- na, numerical aperture
- nta, nitrilotriacetic acid
- rfp, red fluorescent protein
- ryr2, type 2 ryanodine receptor
- serca, sarcoplasmic/endoplasmic reticulum ca2+-atpase
- soicr, store overload-induced ca2+ release
- sr, sarcoplasmic reticulum
Collapse
Affiliation(s)
- Jiahui Wu
- *Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - David L. Prole
- †Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, U.K
| | - Yi Shen
- *Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Zhihong Lin
- ‡Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, U.S.A
| | - Aswini Gnanasekaran
- ‡Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, U.S.A
| | - Yingjie Liu
- §Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada, T2N 4N1
| | - Lidong Chen
- *Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Hang Zhou
- *Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - S. R. Wayne Chen
- §Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada, T2N 4N1
- ¶Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada, T2N 4N1
| | - Yuriy M. Usachev
- ‡Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, U.S.A
| | - Colin W. Taylor
- †Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, U.K
| | - Robert E. Campbell
- *Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| |
Collapse
|
71
|
Lindenburg LH, Malisauskas M, Sips T, van Oppen L, Wijnands SPW, van de Graaf SFJ, Merkx M. Quantifying stickiness: thermodynamic characterization of intramolecular domain interactions to guide the design of förster resonance energy transfer sensors. Biochemistry 2014; 53:6370-81. [PMID: 25216081 DOI: 10.1021/bi500433j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The introduction of weak, hydrophobic interactions between fluorescent protein domains (FPs) can substantially increase the dynamic range (DR) of Förster resonance energy transfer (FRET)-based sensor systems. Here we report a comprehensive thermodynamic characterization of the stability of a range of self-associating FRET pairs. A new method is introduced that allows direct quantification of the stability of weak FP interactions by monitoring intramolecular complex formation as a function of urea concentration. The commonly used S208F mutation stabilized intramolecular FP complex formation by 2.0 kCal/mol when studied in an enhanced cyan FP (ECFP)-linker-enhanced yellow FP (EYFP) fusion protein, whereas a significantly weaker interaction was observed for the homologous Cerulean/Citrine FRET pair (ΔG0(o-c) = 0.62 kCal/mol). The latter effect could be attributed to two mutations in Cerulean (Y145A and H148D) that destabilize complex formation with Citrine. Systematic analysis of the contribution of residues 125 and 127 at the dimerization interface in mOrange.linker.mCherry fusion proteins yielded a toolbox of new mOrange-mCherry combinations that allowed tuning of their intramolecular interaction from very weak (ΔG0(o-c) = .0.39 kCal/mol) to relatively stable (ΔG0(o-c) = 2.2 kCal/mol). The effects of these mutations were also studied by monitoring homodimerization of mCherry variants using fluorescence anisotropy. These mutations affected intramolecular and intermolecular domain interactions similarly, although FP interactions were found to be stronger in the latter. The knowledge thus obtained allowed successful construction of a red-shifted variant of the bile acid FRET sensor BAS-1 by replacement of the self-associating Cerulean-Citrine pair by mOrange.mCherry variants with a similar intramolecular affinity. Our findings thus allow a better understanding of the subtle but important role of intramolecular domain interactions in current FRET sensors and help guide the construction of new sensors using modular design strategies.
Collapse
Affiliation(s)
- Laurens H Lindenburg
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology , Eindhoven, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
72
|
Oheim M, van 't Hoff M, Feltz A, Zamaleeva A, Mallet JM, Collot M. New red-fluorescent calcium indicators for optogenetics, photoactivation and multi-color imaging. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:2284-306. [PMID: 24681159 DOI: 10.1016/j.bbamcr.2014.03.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/09/2014] [Indexed: 01/15/2023]
Abstract
Most chemical and, with only a few exceptions, all genetically encoded fluorimetric calcium (Ca(2+)) indicators (GECIs) emit green fluorescence. Many of these probes are compatible with red-emitting cell- or organelle markers. But the bulk of available fluorescent-protein constructs and transgenic animals incorporate green or yellow fluorescent protein (GFP and YFP respectively). This is, in part, not only heritage from the tendency to aggregate of early-generation red-emitting FPs, and due to their complicated photochemistry, but also resulting from the compatibility of green-fluorescent probes with standard instrumentation readily available in most laboratories and core imaging facilities. Photochemical constraints like limited water solubility and low quantum yield have contributed to the relative paucity of red-emitting Ca(2+) probes compared to their green counterparts, too. The increasing use of GFP and GFP-based functional reporters, together with recent developments in optogenetics, photostimulation and super-resolution microscopies, has intensified the quest for red-emitting Ca(2+) probes. In response to this demand more red-emitting chemical and FP-based Ca(2+)-sensitive indicators have been developed since 2009 than in the thirty years before. In this topical review, we survey the physicochemical properties of these red-emitting Ca(2+) probes and discuss their utility for biological Ca(2+) imaging. Using the spectral separability index Xijk (Oheim M., 2010. Methods in Molecular Biology 591: 3-16) we evaluate their performance for multi-color excitation/emission experiments, involving the identification of morphological landmarks with GFP/YFP and detecting Ca(2+)-dependent fluorescence in the red spectral band. We also establish a catalog of criteria for evaluating Ca(2+) indicators that ideally should be made available for each probe. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.
Collapse
Affiliation(s)
- Martin Oheim
- CNRS, UMR 8154, Paris F-75006, France; INSERM, U603, Paris F-75006, France; University Paris Descartes, PRES Sorbonne Paris Cité, Laboratory of Neurophysiology and New Microscopies, 45 rue des Saints Pères, Paris F-75006, France.
| | - Marcel van 't Hoff
- CNRS, UMR 8154, Paris F-75006, France; INSERM, U603, Paris F-75006, France; University Paris Descartes, PRES Sorbonne Paris Cité, Laboratory of Neurophysiology and New Microscopies, 45 rue des Saints Pères, Paris F-75006, France; University of Florence, LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
| | - Anne Feltz
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Paris F-75005, France; INSERM U1024, Paris F-75005, France; CNRS UMR 8197, Paris F-75005, France
| | - Alsu Zamaleeva
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Paris F-75005, France; INSERM U1024, Paris F-75005, France; CNRS UMR 8197, Paris F-75005, France
| | - Jean-Maurice Mallet
- UPMC Université́ Paris 06, Ecole Normale Supérieure (ENS), 24 rue Lhomond, Paris F-75005, France; CNRS UMR 7203, Paris F-75005, France
| | - Mayeul Collot
- UPMC Université́ Paris 06, Ecole Normale Supérieure (ENS), 24 rue Lhomond, Paris F-75005, France; CNRS UMR 7203, Paris F-75005, France
| |
Collapse
|
73
|
Male-female communication triggers calcium signatures during fertilization in Arabidopsis. Nat Commun 2014; 5:4645. [PMID: 25145880 PMCID: PMC4143946 DOI: 10.1038/ncomms5645] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 07/09/2014] [Indexed: 12/11/2022] Open
Abstract
Cell-cell communication and interaction is critical during fertilization and triggers free cytosolic calcium ([Ca2+]cyto) as a key signal for egg activation and a polyspermy block in animal oocytes. Fertilization in flowering plants is more complex, involving interaction of a pollen tube with egg adjoining synergid cells, culminating in release of two sperm cells and their fusion with the egg and central cell, respectively. Here, we report the occurrence and role of [Ca2+]cyto signals during the entire double fertilization process in Arabidopsis. [Ca2+]cyto oscillations are initiated in synergid cells after physical contact with the pollen tube apex. In egg and central cells, a short [Ca2+]cyto transient is associated with pollen tube burst and sperm cell arrival. A second extended [Ca2+]cyto transient solely in the egg cell is correlated with successful fertilization. Thus, each female cell type involved in double fertilization displays a characteristic [Ca2+]cyto signature differing by timing and behaviour from [Ca2+]cyto waves reported in mammals.
Collapse
|
74
|
Lindenburg L, Merkx M. Engineering genetically encoded FRET sensors. SENSORS 2014; 14:11691-713. [PMID: 24991940 PMCID: PMC4168480 DOI: 10.3390/s140711691] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 01/15/2023]
Abstract
Förster Resonance Energy Transfer (FRET) between two fluorescent proteins can be exploited to create fully genetically encoded and thus subcellularly targetable sensors. FRET sensors report changes in energy transfer between a donor and an acceptor fluorescent protein that occur when an attached sensor domain undergoes a change in conformation in response to ligand binding. The design of sensitive FRET sensors remains challenging as there are few generally applicable design rules and each sensor must be optimized anew. In this review we discuss various strategies that address this shortcoming, including rational design approaches that exploit self-associating fluorescent domains and the directed evolution of FRET sensors using high-throughput screening.
Collapse
Affiliation(s)
- Laurens Lindenburg
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands.
| | - Maarten Merkx
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands.
| |
Collapse
|
75
|
Kaestner L, Scholz A, Tian Q, Ruppenthal S, Tabellion W, Wiesen K, Katus HA, Müller OJ, Kotlikoff MI, Lipp P. Genetically encoded Ca2+ indicators in cardiac myocytes. Circ Res 2014; 114:1623-39. [PMID: 24812351 DOI: 10.1161/circresaha.114.303475] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genetically encoded Ca(2+) indicators constitute a powerful set of tools to investigate functional aspects of Ca(2+) signaling in isolated cardiomyocytes, cardiac tissue, and whole hearts. Here, we provide an overview of the concepts, experiences, state of the art, and ongoing developments in the use of genetically encoded Ca(2+) indicators for cardiac cells and heart tissue. This review is supplemented with in vivo viral gene transfer experiments and comparisons of available genetically encoded Ca(2+) indicators with each other and with the small molecule dye Fura-2. In the context of cardiac myocytes, we provide guidelines for selecting a genetically encoded Ca(2+) indicator. For future developments, we discuss improvements of a broad range of properties, including photophysical properties such as spectral spread and biocompatibility, as well as cellular and in vivo applications.
Collapse
Affiliation(s)
- Lars Kaestner
- From the Institute for Molecular Cell Biology and Research Center for Molecular Imaging and Screening, School of Medicine, Saarland University, Homburg-Saar, Germany (L.K., A.S., Q.T., S.R., W.T., K.W., P.L.); Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany (H.A.K., O.J.M.); DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (H.A.K., O.J.M.); and Biomedical Sciences Department, College of Veterinary Medicine, Cornell University, Ithaca, NY (M.I.K.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Zhuo Y, Solntsev KM, Reddish F, Tang S, Yang JJ. Effect of Ca²⁺ on the steady-state and time-resolved emission properties of the genetically encoded fluorescent sensor CatchER. J Phys Chem B 2014; 119:2103-11. [PMID: 24836743 PMCID: PMC4329989 DOI: 10.1021/jp501707n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
We
previously designed a calcium sensor CatchER (a GFP-based Calcium
sensor for detecting high concentrations in the high calcium concentration
environment such as ER) with a capability for monitoring calcium ion
responses in various types of cells. Calcium binding to CatchER induces
the ratiometric changes in the absorption spectra, as well as an increase
in fluorescence emission at 510 nm upon excitation at both 395 and
488 nm. Here, we have applied the combination of the steady-state
and time-resolved optical methods and Hydrogen/Deuterium isotope exchange
to understand the origin of such calcium-induced optical property
changes of CatchER. We first demonstrated that calcium binding results
in a 44% mean fluorescence lifetime increase of the indirectly excited
anionic chromophore. Thus, CatchER is the first protein-based calcium
indicator with the single fluorescent moiety to show the direct correlation
between the lifetime and calcium binding. Calcium exhibits a strong
inhibition on the excited-state proton transfer nonadiabatic geminate
recombination in protic (vs deuteric) medium. Analysis of CatchER
crystal structures and the MD simulations reveal the proton transfer
mechanism in which the disrupted proton migration path in CatchER
is rescued by calcium binding. Our finding provides important insights
for a strategy to design calcium sensors and suggests that CatchER
could be a useful probe for FLIM imaging of calcium in situ.
Collapse
Affiliation(s)
- You Zhuo
- Department of Chemistry, Georgia State University , Atlanta, Georgia 30303, United States
| | | | | | | | | |
Collapse
|
77
|
Carter KP, Young AM, Palmer AE. Fluorescent sensors for measuring metal ions in living systems. Chem Rev 2014; 114:4564-601. [PMID: 24588137 PMCID: PMC4096685 DOI: 10.1021/cr400546e] [Citation(s) in RCA: 1582] [Impact Index Per Article: 143.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Kyle P. Carter
- Department
of Chemistry and
Biochemistry, BioFrontiers Institute, University
of Colorado, UCB 596,
3415 Colorado AvenueBoulder, Colorado 80303, United
States
| | - Alexandra M. Young
- Department
of Chemistry and
Biochemistry, BioFrontiers Institute, University
of Colorado, UCB 596,
3415 Colorado AvenueBoulder, Colorado 80303, United
States
| | - Amy E. Palmer
- Department
of Chemistry and
Biochemistry, BioFrontiers Institute, University
of Colorado, UCB 596,
3415 Colorado AvenueBoulder, Colorado 80303, United
States
| |
Collapse
|
78
|
Thestrup T, Litzlbauer J, Bartholomäus I, Mues M, Russo L, Dana H, Kovalchuk Y, Liang Y, Kalamakis G, Laukat Y, Becker S, Witte G, Geiger A, Allen T, Rome LC, Chen TW, Kim DS, Garaschuk O, Griesinger C, Griesbeck O. Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes. Nat Methods 2014; 11:175-82. [DOI: 10.1038/nmeth.2773] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 11/29/2013] [Indexed: 01/20/2023]
|
79
|
Fluorescent protein-based biosensors and their clinical applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 113:313-48. [PMID: 23244794 DOI: 10.1016/b978-0-12-386932-6.00008-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Green fluorescent protein and its relatives have shed their light on a wide range of biological problems. To date, with a color palette consisting of fluorescent proteins with different spectra, researchers can "paint" living cells as they desire. Moreover, sophisticated biosensors engineered to contain single or multiple fluorescent proteins, including FRET-based biosensors, spatiotemporally unveil molecular mechanisms underlying physiological processes. Although such molecules have contributed considerably to basic research, their abilities to be used in applied life sciences have yet to be fully explored. Here, we review the molecular bases of fluorescent proteins and fluorescent protein-based biosensors and focus on approaches aimed at applying such proteins to the clinic.
Collapse
|
80
|
Hill JM, De Stefani D, Jones AWE, Ruiz A, Rizzuto R, Szabadkai G. Measuring baseline Ca(2+) levels in subcellular compartments using genetically engineered fluorescent indicators. Methods Enzymol 2014; 543:47-72. [PMID: 24924127 DOI: 10.1016/b978-0-12-801329-8.00003-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Intracellular Ca(2+) signaling is involved in a series of physiological and pathological processes. In particular, an intimate crosstalk between bioenergetic metabolism and Ca(2+) homeostasis has been shown to determine cell fate in resting conditions as well as in response to stress. The endoplasmic reticulum and mitochondria represent key hubs of cellular metabolism and Ca(2+) signaling. However, it has been challenging to specifically detect highly localized Ca(2+) fluxes such as those bridging these two organelles. To circumvent this issue, various recombinant Ca(2+) indicators that can be targeted to specific subcellular compartments have been developed over the past two decades. While the use of these probes for measuring agonist-induced Ca(2+) signals in various organelles has been extensively described, the assessment of basal Ca(2+) concentrations within specific organelles is often disregarded, in spite of the fact that this parameter is vital for several metabolic functions, including the enzymatic activity of mitochondrial dehydrogenases of the Krebs cycle and protein folding in the endoplasmic reticulum. Here, we provide an overview on genetically engineered, organelle-targeted fluorescent Ca(2+) probes and outline their evolution. Moreover, we describe recently developed protocols to quantify baseline Ca(2+) concentrations in specific subcellular compartments. Among several applications, this method is suitable for assessing how changes in basal Ca(2+) levels affect the metabolic profile of cancer cells.
Collapse
Affiliation(s)
- Julia M Hill
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
| | - Diego De Stefani
- Department of Biomedical Sciences, CNR Neuroscience Institute, University of Padua, Padua, Italy
| | - Aleck W E Jones
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
| | - Asier Ruiz
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Achúcarro Basque Center for Neuroscience-UPV/EHU, Leioa, Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, (CIBERNED), Madrid, Spain
| | - Rosario Rizzuto
- Department of Biomedical Sciences, CNR Neuroscience Institute, University of Padua, Padua, Italy
| | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom; Department of Biomedical Sciences, CNR Neuroscience Institute, University of Padua, Padua, Italy.
| |
Collapse
|
81
|
Fluorescent biosensors: design and application to motor proteins. EXPERIENTIA SUPPLEMENTUM (2012) 2014; 105:25-47. [PMID: 25095989 DOI: 10.1007/978-3-0348-0856-9_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reagentless biosensors are single molecular species that report the concentration of a specific target analyte, while having minimal impact on the system being studied. This chapter reviews such biosensors with emphasis on the ones that use fluorescence as readout and can be used for real-time assays of concentration changes with reasonably high time resolution and sensitivity. Reagentless biosensors can be designed with different types of recognition elements, particularly specific binding proteins and nucleic acids, including aptamers. Different ways are described in which a fluorescence signal can be used to report the target concentration. These include the use of single, environmentally sensitive fluorophores; FRET pairs, often used in genetically encoded biosensors; and pairs of identical fluorophores that undergo reversible stacking interactions to change fluorescence intensity. The applications of these biosensors in different types of real-time assays with motor proteins are described together with some specific examples. These encompass regulation and mechanism of motor proteins, using both steady-state assays and single-turnover measurements.
Collapse
|
82
|
Miyawaki A, Nagai T, Mizuno H. Imaging intracellular free Ca2+ concentration using yellow cameleons. Cold Spring Harb Protoc 2013; 2013:2013/11/pdb.prot078642. [PMID: 24184769 DOI: 10.1101/pdb.prot078642] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Green fluorescent protein (GFP)-based fluorescent indicators for Ca(2+) offer significant promise for monitoring Ca(2+) in previously unexplored organisms, tissues, and submicroscopic environments because they are genetically encoded, function without cofactors, can be targeted to any intracellular location, and are bright enough for single-cell imaging. These probes use simple GFP variants, circularly permuted GFP (cpGFP), in which the amino and carboxyl portions have been interchanged and reconnected by short spacers between the original termini, or pairs of GFP variants that permit fluorescence resonance energy transfer (FRET). Yellow cameleons (YCs) use FRET between cyan- and yellow-emitting variants of Aequorea GFP (cyan fluorescent protein [CFP] and yellow fluorescent protein [YFP], respectively). YCs are composed of a linear combination of CFP, calmodulin (CaM), a glycylglycine linker, the CaM-binding peptide of myosin light-chain kinase (M13), and YFP. Binding of Ca(2+) to the CaM moiety of the YC initiates an intramolecular interaction between the CaM and the M13 domains, causing the chimeric protein to shift from an extended conformation to a more compact one, thereby increasing the efficiency of FRET from CFP to YFP. This technique is amenable to emission ratioing, which is more quantitative than single-wavelength monitoring. YC3.60 was engineered to enhance its performance as a fluorescent Ca(2+) indicator and here we describe the use of this cameleon to image rapid changes in intracellular free Ca(2+) concentration ([Ca(2+)]i) within HeLa cells. FRET imaging is performed using a laser-scanning confocal microscope.
Collapse
|
83
|
Costantini LM, Snapp EL. Fluorescent proteins in cellular organelles: serious pitfalls and some solutions. DNA Cell Biol 2013; 32:622-7. [PMID: 23971632 PMCID: PMC3806368 DOI: 10.1089/dna.2013.2172] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 07/28/2013] [Indexed: 01/27/2023] Open
Abstract
Fluorescent proteins (FPs) have been powerful tools for cell biologists for over 15 years. The large variety of FPs available rarely comes with an instruction manual or a warning label. The potential pitfalls of the use of FPs in cellular organelles represent a significant concern for investigators. FPs generally did not evolve in the often distinctive physicochemical environments of subcellular organelles. In organelles, FPs can misfold, go dark, and even distort organelle morphology. In this minireview, we describe the issues associated with FPs in organelles and provide solutions to enable investigators to better exploit FP technology in cells.
Collapse
Affiliation(s)
- Lindsey M Costantini
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine , Bronx, New York
| | | |
Collapse
|
84
|
Ueda Y, Kwok S, Hayashi Y. Application of FRET probes in the analysis of neuronal plasticity. Front Neural Circuits 2013; 7:163. [PMID: 24133415 PMCID: PMC3794420 DOI: 10.3389/fncir.2013.00163] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/23/2013] [Indexed: 12/12/2022] Open
Abstract
Breakthroughs in imaging techniques and optical probes in recent years have revolutionized the field of life sciences in ways that traditional methods could never match. The spatial and temporal regulation of molecular events can now be studied with great precision. There have been several key discoveries that have made this possible. Since green fluorescent protein (GFP) was cloned in 1992, it has become the dominant tracer of proteins in living cells. Then the evolution of color variants of GFP opened the door to the application of Förster resonance energy transfer (FRET), which is now widely recognized as a powerful tool to study complicated signal transduction events and interactions between molecules. Employment of fluorescent lifetime imaging microscopy (FLIM) allows the precise detection of FRET in small subcellular structures such as dendritic spines. In this review, we provide an overview of the basic and practical aspects of FRET imaging and discuss how different FRET probes have revealed insights into the molecular mechanisms of synaptic plasticity and enabled visualization of neuronal network activity both in vitro and in vivo.
Collapse
|
85
|
Abstract
PURPOSE OF REVIEW Tremendous advances have occurred in recent years in elucidating basic mechanisms of epilepsy at the level of ion channels and neurotransmitters. Epilepsy, however, is ultimately a disease of functionally and/or structurally aberrant connections between neurons and groups of neurons at the systems level. Recent advances in neuroimaging and electrophysiology now make it possible to investigate structural and functional connectivity of the entire brain, and these techniques are currently being used to investigate diseases that manifest as global disturbances of brain function. Epilepsy is such a disease, and our understanding of the mechanisms underlying the development of epilepsy and the generation of epileptic seizures will undoubtedly benefit from research utilizing these connectomic approaches. RECENT FINDINGS MRI using diffusion tensor imaging provides structural information, whereas functional MRI and electroencephalography provide functional information about connectivity at the whole brain level. Optogenetics, tracers, electrophysiological approaches, and calcium imaging provide connectivity information at the level of local circuits. These approaches are revealing important neuronal network disturbances underlying epileptic abnormalities. SUMMARY An understanding of the fundamental mechanisms underlying the development of epilepsy and the generation of epileptic seizures will require delineation of the aberrant functional and structural connections of the whole brain. The field of connectomics now provides approaches to accomplish this.
Collapse
|
86
|
Rinnenthal JL, Börnchen C, Radbruch H, Andresen V, Mossakowski A, Siffrin V, Seelemann T, Spiecker H, Moll I, Herz J, Hauser AE, Zipp F, Behne MJ, Niesner R. Parallelized TCSPC for dynamic intravital fluorescence lifetime imaging: quantifying neuronal dysfunction in neuroinflammation. PLoS One 2013; 8:e60100. [PMID: 23613717 PMCID: PMC3629055 DOI: 10.1371/journal.pone.0060100] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 02/22/2013] [Indexed: 01/27/2023] Open
Abstract
Two-photon laser-scanning microscopy has revolutionized our view on vital processes by revealing motility and interaction patterns of various cell subsets in hardly accessible organs (e.g. brain) in living animals. However, current technology is still insufficient to elucidate the mechanisms of organ dysfunction as a prerequisite for developing new therapeutic strategies, since it renders only sparse information about the molecular basis of cellular response within tissues in health and disease. In the context of imaging, Förster resonant energy transfer (FRET) is one of the most adequate tools to probe molecular mechanisms of cell function. As a calibration-free technique, fluorescence lifetime imaging (FLIM) is superior for quantifying FRET in vivo. Currently, its main limitation is the acquisition speed in the context of deep-tissue 3D and 4D imaging. Here we present a parallelized time-correlated single-photon counting point detector (p-TCSPC) (i) for dynamic single-beam scanning FLIM of large 3D areas on the range of hundreds of milliseconds relevant in the context of immune-induced pathologies as well as (ii) for ultrafast 2D FLIM in the range of tens of milliseconds, a scale relevant for cell physiology. We demonstrate its power in dynamic deep-tissue intravital imaging, as compared to multi-beam scanning time-gated FLIM suitable for fast data acquisition and compared to highly sensitive single-channel TCSPC adequate to detect low fluorescence signals. Using p-TCSPC, 256×256 pixel FLIM maps (300×300 µm(2)) are acquired within 468 ms while 131×131 pixel FLIM maps (75×75 µm(2)) can be acquired every 82 ms in 115 µm depth in the spinal cord of CerTN L15 mice. The CerTN L15 mice express a FRET-based Ca-biosensor in certain neuronal subsets. Our new technology allows us to perform time-lapse 3D intravital FLIM (4D FLIM) in the brain stem of CerTN L15 mice affected by experimental autoimmune encephalomyelitis and, thereby, to truly quantify neuronal dysfunction in neuroinflammation.
Collapse
Affiliation(s)
- Jan Leo Rinnenthal
- German Rheumatism Research Center, Berlin, Germany
- Charité – University of Medicine, Berlin, Germany
| | - Christian Börnchen
- Department of Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Helena Radbruch
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- Charité – University of Medicine, Berlin, Germany
| | | | - Agata Mossakowski
- German Rheumatism Research Center, Berlin, Germany
- Charité – University of Medicine, Berlin, Germany
| | - Volker Siffrin
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- Neurology Department, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | - Ingrid Moll
- Department of Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Josephine Herz
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- Charité – University of Medicine, Berlin, Germany
| | - Anja E. Hauser
- German Rheumatism Research Center, Berlin, Germany
- Charité – University of Medicine, Berlin, Germany
| | - Frauke Zipp
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- Neurology Department, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Martin J. Behne
- Department of Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Raluca Niesner
- German Rheumatism Research Center, Berlin, Germany
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- Charité – University of Medicine, Berlin, Germany
| |
Collapse
|
87
|
Dedecker P, De Schryver FC, Hofkens J. Fluorescent Proteins: Shine on, You Crazy Diamond. J Am Chem Soc 2013; 135:2387-402. [DOI: 10.1021/ja309768d] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Peter Dedecker
- Department of Chemistry, University of Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Frans C. De Schryver
- Department of Chemistry, University of Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Johan Hofkens
- Department of Chemistry, University of Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| |
Collapse
|
88
|
Genetically encoded Ca(2+) indicators: properties and evaluation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1787-97. [PMID: 23352808 DOI: 10.1016/j.bbamcr.2013.01.011] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/02/2013] [Accepted: 01/10/2013] [Indexed: 02/04/2023]
Abstract
Genetically encoded calcium ion (Ca(2+)) indicators have become very useful and widely used tools for Ca(2+) imaging, not only in cellular models, but also in living organisms. However, the in vivo and in situ characterization of these indicators is tedious and time consuming, and it does not provide information regarding the suitability of an indicator for particular experimental environments. Thus, initial in vitro evaluation of these tools is typically performed to determine their properties. In this review, we examined the properties of dynamic range, affinity, selectivity, and kinetics for Ca(2+) indicators. Commonly used strategies for evaluating these properties are presented. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
|
89
|
Williams DA, Monif M, Richardson KL. Compartmentalizing genetically encoded calcium sensors. Methods Mol Biol 2013; 937:307-26. [PMID: 23007595 DOI: 10.1007/978-1-62703-086-1_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Within single cells there is a complex myriad of signaling which controls physiological process many of which are modulated, or signaled directly, by intracellular calcium ions. Understanding the exquisitely sensitive, and spatially restricted, changes in calcium has been of interest to the researcher for a number of years. Recent advances in this field have been driven by the development of genetically encoded calcium probes for detecting calcium changes within the cells specifically targeting organelles such as mitochondria, endoplasmic reticulum, and the nucleus. In this chapter the authors outline some of the available fluorescent probes, with particular emphasis on an endoplasmic reticulum targeted calcium biosensor in cell signaling studies with astrocytes, detailing experimental protocols and the interpretation of data from such probes.
Collapse
Affiliation(s)
- David A Williams
- Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia.
| | | | | |
Collapse
|
90
|
Abstract
There is a vast array of dyes currently available for measurement of cytosolic calcium. These encompass single and dual excitation and single and dual emission probes. The choice of particular probe depends on the experimental question and the type of equipment to be used. It is therefore extremely difficult to define a universal approach that will suit all potential investigators. Preparations under investigation are loaded with the selected organic indicator dye by incubation with ester derivatives, by micropipet injection or reverse permeabilization. Indicators can also be targeted to a range of intracellular organelles. Calibration of a fluorescent signal into Ca(2+) concentration is in theory relatively simple but the investigator needs to take great care in this process. This chapter describes the theory of these processes and some of the pitfalls users should be aware of. Precise experimental details can be found in the subsequent chapters of this volume.
Collapse
Affiliation(s)
- Alec W M Simpson
- Department of Cell and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
| |
Collapse
|
91
|
Probing neuronal activities with genetically encoded optical indicators: from a historical to a forward-looking perspective. Pflugers Arch 2012; 465:361-71. [PMID: 23271451 DOI: 10.1007/s00424-012-1202-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 12/06/2012] [Indexed: 10/27/2022]
Abstract
Optical imaging has a long history in physiology and in neurophysiology in particular. Over the past 15 years or so, new methodologies have emerged that combine genetic engineering with light-based imaging methods. This merger has resulted in a tool box of genetically encoded optical indicators that enable nondestructive and long-lasting monitoring of neuronal activities at the cellular, circuit, and system level. This review describes the historical roots and fundamental concepts underlying these new approaches, evaluates current progress in this field, and concludes with a forward-looking perspective on current work and potential future developments in this field.
Collapse
|
92
|
Loro G, Ruberti C, Zottini M, Costa A. The D3cpv Cameleon reports Ca²⁺ dynamics in plant mitochondria with similar kinetics of the YC3.6 Cameleon, but with a lower sensitivity. J Microsc 2012; 249:8-12. [PMID: 23227874 DOI: 10.1111/j.1365-2818.2012.03683.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mitochondria are key organelles involved in many aspects of plant physiology and, their ability to generate specific Ca²⁺ signatures in response to abiotic and biotic stimuli has been reported as one of their roles. The recent identification of the mammalian mitochondrial Ca²⁺ uniporter opens a new research area in plant biology. To study the mitochondrial Ca²⁺ handling, it is essential to have a reliable probe. Here we have reported the generation of an Arabidopsis transgenic line expressing the genetically encoded probe Cameleon D3cpv targeted to mitochondria, and compared its properties with the already known Cameleon YC3.6.
Collapse
Affiliation(s)
- G Loro
- Dipartimento di Biologia, Università degli Studi di Padova, Via U. Bassi, Padova, Italia
| | | | | | | |
Collapse
|
93
|
Laine R, Stuckey DW, Manning H, Warren SC, Kennedy G, Carling D, Dunsby C, Sardini A, French PMW. Fluorescence lifetime readouts of Troponin-C-based calcium FRET sensors: a quantitative comparison of CFP and mTFP1 as donor fluorophores. PLoS One 2012; 7:e49200. [PMID: 23152874 PMCID: PMC3494685 DOI: 10.1371/journal.pone.0049200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/08/2012] [Indexed: 11/23/2022] Open
Abstract
We have compared the performance of two Troponin-C-based calcium FRET sensors using fluorescence lifetime read-outs. The first sensor, TN-L15, consists of a Troponin-C fragment inserted between CFP and Citrine while the second sensor, called mTFP-TnC-Cit, was realized by replacing CFP in TN-L15 with monomeric Teal Fluorescent Protein (mTFP1). Using cytosol preparations of transiently transfected mammalian cells, we have measured the fluorescence decay profiles of these sensors at controlled concentrations of calcium using time-correlated single photon counting. These data were fitted to discrete exponential decay models using global analysis to determine the FRET efficiency, fraction of donor molecules undergoing FRET and calcium affinity of these sensors. We have also studied the decay profiles of the donor fluorescent proteins alone and determined the sensitivity of the donor lifetime to temperature and emission wavelength. Live-cell fluorescence lifetime imaging (FLIM) of HEK293T cells expressing each of these sensors was also undertaken. We confirmed that donor fluorescence of mTFP-TnC-Cit fits well to a two-component decay model, while the TN-L15 lifetime data was best fitted to a constrained four-component model, which was supported by phasor analysis of the measured lifetime data. If the constrained global fitting is employed, the TN-L15 sensor can provide a larger dynamic range of lifetime readout than the mTFP-TnC-Cit sensor but the CFP donor is significantly more sensitive to changes in temperature and emission wavelength compared to mTFP and, while the mTFP-TnC-Cit solution phase data broadly agreed with measurements in live cells, this was not the case for the TN-L15 sensor. Our titration experiment also indicates that a similar precision in determination of calcium concentration can be achieved with both FRET biosensors when fitting a single exponential donor fluorescence decay model to the fluorescence decay profiles. We therefore suggest that mTFP-based probes are more suitable for FLIM experiments than CFP-based probes.
Collapse
Affiliation(s)
- Romain Laine
- Institute of Chemical Biology (ICB), Imperial College of Science, Technology & Medicine, Institute of Chemical Biology (ICB), London, England
- Photonics Group, Blackett Lab, Imperial College of Science, Technology & Medicine, London, England
- Medical Research Council (MRC) Clinical Sciences Centre, Imperial College of Science, Technology & Medicine, London, England
- * E-mail:
| | - Daniel W. Stuckey
- Medical Research Council (MRC) Clinical Sciences Centre, Imperial College of Science, Technology & Medicine, London, England
| | - Hugh Manning
- Photonics Group, Blackett Lab, Imperial College of Science, Technology & Medicine, London, England
| | - Sean C. Warren
- Photonics Group, Blackett Lab, Imperial College of Science, Technology & Medicine, London, England
| | - Gordon Kennedy
- Photonics Group, Blackett Lab, Imperial College of Science, Technology & Medicine, London, England
| | - David Carling
- Medical Research Council (MRC) Clinical Sciences Centre, Imperial College of Science, Technology & Medicine, London, England
| | - Chris Dunsby
- Photonics Group, Blackett Lab, Imperial College of Science, Technology & Medicine, London, England
| | - Alessandro Sardini
- Medical Research Council (MRC) Clinical Sciences Centre, Imperial College of Science, Technology & Medicine, London, England
| | - Paul M. W. French
- Photonics Group, Blackett Lab, Imperial College of Science, Technology & Medicine, London, England
| |
Collapse
|
94
|
Mbatia HW, Burdette SC. Photochemical Tools for Studying Metal Ion Signaling and Homeostasis. Biochemistry 2012; 51:7212-24. [DOI: 10.1021/bi3001769] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hannah W. Mbatia
- University of Connecticut, 55 North Eagleville
Road, Storrs, Connecticut 06269-3060, United
States
| | - Shawn C. Burdette
- Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts
01609-2280, United States
| |
Collapse
|
95
|
Knöpfel T. Genetically encoded optical indicators for the analysis of neuronal circuits. Nat Rev Neurosci 2012; 13:687-700. [PMID: 22931891 DOI: 10.1038/nrn3293] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In a departure from previous top-down or bottom-up strategies used to understand neuronal circuits, many forward-looking research programs now place the circuit itself at their centre. This has led to an emphasis on the dissection and elucidation of neuronal circuit elements and mechanisms, and on studies that ask how these circuits generate behavioural outputs. This movement towards circuit-centric strategies is progressing rapidly as a result of technological advances that combine genetic manipulation with light-based methods. The core tools of these new approaches are genetically encoded optical indicators and actuators that enable non-destructive interrogation and manipulation of neuronal circuits in behaving animals with cellular-level precision. This Review examines genetically encoded reporters of neuronal function and assesses their value for circuit-oriented neuroscientific investigations.
Collapse
Affiliation(s)
- Thomas Knöpfel
- RIKEN Brain Science Institute, 2-1 Hirosawa, Wako City, Saitama 351-0198, Japan.
| |
Collapse
|
96
|
Biocompatibility of a genetically encoded calcium indicator in a transgenic mouse model. Nat Commun 2012; 3:1031. [DOI: 10.1038/ncomms2035] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 07/31/2012] [Indexed: 11/08/2022] Open
|
97
|
Kim HS, Czymmek KJ, Patel A, Modla S, Nohe A, Duncan R, Gilroy S, Kang S. Expression of the Cameleon calcium biosensor in fungi reveals distinct Ca(2+) signatures associated with polarized growth, development, and pathogenesis. Fungal Genet Biol 2012; 49:589-601. [PMID: 22683653 DOI: 10.1016/j.fgb.2012.05.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/22/2012] [Accepted: 05/24/2012] [Indexed: 11/19/2022]
Abstract
Calcium is a universal messenger that translates diverse environmental stimuli and developmental cues into specific cellular and developmental responses. While individual fungal species have evolved complex and often unique biochemical and structural mechanisms to exploit specific ecological niches and to adjust growth and development in response to external stimuli, one universal feature to all is that Ca(2+)-mediated signaling is involved. The lack of a robust method for imaging spatial and temporal dynamics of subcellular Ca(2+) (i.e., "Ca(2+) signature"), readily available in the plant and animal systems, has severely limited studies on how this signaling pathway controls fungal growth, development, and pathogenesis. Here, we report the first successful expression of a FRET (Förster Resonance Energy Transfer)-based Ca(2+) biosensor in fungi. Time-lapse imaging of Magnaporthe oryzae, Fusarium oxysporum, and Fusarium graminearum expressing this sensor showed that instead of a continuous gradient, the cytoplasmic Ca(2+) ([Ca(2+)](c)) change occurred in a pulsatile manner with no discernable gradient between pulses, and each species exhibited a distinct Ca(2+) signature. Furthermore, occurrence of pulsatile Ca(2+) signatures was age and development dependent, and major [Ca(2+)](c) transients were observed during hyphal branching, septum formation, differentiation into specialized plant infection structures, cell-cell contact and in planta growth. In combination with the sequenced genomes and ease of targeted gene manipulation of these and many other fungal species, the data, materials and methods developed here will help understand the mechanism underpinning Ca(2+)-mediated control of cellular and developmental changes, its role in polarized growth forms and the evolution of Ca(2+) signaling across eukaryotic kingdoms.
Collapse
Affiliation(s)
- Hye-Seon Kim
- Department of Plant Pathology, The Pennsylvania State University, University Park, PA 16802, United States
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Tian L, Hires SA, Looger LL. Imaging neuronal activity with genetically encoded calcium indicators. Cold Spring Harb Protoc 2012; 2012:647-56. [PMID: 22661439 DOI: 10.1101/pdb.top069609] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Genetically encoded calcium indicators (GECIs), which are based on chimeric fluorescent proteins, can be used to monitor calcium transients in living cells and organisms. Because they are encoded by DNA, GECIs can be delivered to the intact brain noninvasively and targeted to defined populations of neurons and specific subcellular compartments for long-term, repeated measurements in vivo. GECIs have improved iteratively and are becoming useful for imaging neural activity in vivo. Here we summarize extrinsic and intrinsic factors that influence a GECI's performance and provides guidelines for selecting the appropriate GECI for a given application. We also review recent progress in GECI design, optimization, and standardized testing protocols.
Collapse
|
99
|
Geiger A, Russo L, Gensch T, Thestrup T, Becker S, Hopfner KP, Griesinger C, Witte G, Griesbeck O. Correlating calcium binding, Förster resonance energy transfer, and conformational change in the biosensor TN-XXL. Biophys J 2012; 102:2401-10. [PMID: 22677394 PMCID: PMC3353025 DOI: 10.1016/j.bpj.2012.03.065] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/21/2012] [Accepted: 03/27/2012] [Indexed: 11/23/2022] Open
Abstract
Genetically encoded calcium indicators have become instrumental in imaging signaling in complex tissues and neuronal circuits in vivo. Despite their importance, structure-function relationships of these sensors often remain largely uncharacterized due to their artificial and multimodular composition. Here, we describe a combination of protein engineering and kinetic, spectroscopic, and biophysical analysis of the Förster resonance energy transfer (FRET)-based calcium biosensor TN-XXL. Using fluorescence spectroscopy of engineered tyrosines, we show that two of the four calcium binding EF-hands dominate the FRET output of TN-XXL and that local conformational changes of these hands match the kinetics of FRET change. Using small-angle x-ray scattering and NMR spectroscopy, we show that TN-XXL changes from a flexible elongated to a rigid globular shape upon binding calcium, thus resulting in FRET signal output. Furthermore, we compare calcium titrations using fluorescence lifetime spectroscopy with the ratiometric approach and investigate potential non-FRET effects that may affect the fluorophores. Thus, our data characterize the biophysics of TN-XXL in detail and may form a basis for further rational engineering of FRET-based biosensors.
Collapse
Affiliation(s)
- Anselm Geiger
- Max-Planck-Institut für Neurobiologie, Martinsried, Germany
| | - Luigi Russo
- Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | | | | | - Stefan Becker
- Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Karl-Peter Hopfner
- Genzentrum und Department Biochemie, Ludwig-Maximilians-Universität, Munich, Germany
| | | | - Gregor Witte
- Genzentrum und Department Biochemie, Ludwig-Maximilians-Universität, Munich, Germany
| | | |
Collapse
|
100
|
Nanodomain Ca²⁺ of Ca²⁺ channels detected by a tethered genetically encoded Ca²⁺ sensor. Nat Commun 2012; 3:778. [PMID: 22491326 PMCID: PMC3615648 DOI: 10.1038/ncomms1777] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 03/07/2012] [Indexed: 12/29/2022] Open
Abstract
Coupling of excitation to secretion, contraction and transcription often relies on Ca(2+) computations within the nanodomain-a conceptual region extending tens of nanometers from the cytoplasmic mouth of Ca(2+) channels. Theory predicts that nanodomain Ca(2+) signals differ vastly from the slow submicromolar signals routinely observed in bulk cytoplasm. However, direct visualization of nanodomain Ca(2+) far exceeds optical resolution of spatially distributed Ca(2+) indicators. Here we couple an optical, genetically encoded Ca(2+) indicator (TN-XL) to the carboxy tail of Ca(V)2.2 Ca(2+) channels, enabling near-field imaging of the nanodomain. Under total internal reflection fluorescence microscopy, we detect Ca(2+) responses indicative of large-amplitude pulses. Single-channel electrophysiology reveals a corresponding Ca(2+) influx of only 0.085 pA, and fluorescence resonance energy transfer measurements estimate TN-XL distance to the cytoplasmic mouth at ~55 Å. Altogether, these findings raise the possibility that Ca(2+) exits the channel through the analogue of molecular portals, mirroring the crystallographic images of side windows in voltage-gated K channels.
Collapse
|