51
|
Orekhov AN, Zhelankin AV, Kolmychkova KI, Mitrofanov KY, Kubekina MV, Ivanova EA, Sobenin IA. Susceptibility of monocytes to activation correlates with atherogenic mitochondrial DNA mutations. Exp Mol Pathol 2015; 99:672-6. [PMID: 26551079 DOI: 10.1016/j.yexmp.2015.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/04/2015] [Indexed: 11/16/2022]
Abstract
We have recently evaluated the susceptibility of circulating monocytes to pro- and anti-inflammatory activation comparing samples from healthy individuals and patients with asymptomatic carotid atherosclerosis. Surprisingly, we found a dramatic individual difference in susceptibility to activation between monocytes isolated from the blood of different subjects, regardless of the presence or absence of atherosclerosis. In the present study the monocyte susceptibility to pro-inflammatory activation was evaluated in comparison with mitochondrial DNA mutations that have previously been shown to correlate with the degree of carotid atherosclerosis assessed by intima-media thickness. Among the mutations associated with atherosclerosis were both homoplasmic (absence or presence of the mutation) or heteroplasmic (different proportions of mutant allele). It was found that two homoplasmic mutations, A1811G and G9477A, tended to correlate with the degree of monocyte susceptibility to activation. At the same time, the mutation G9477A inversely correlated with the degree of monocyte activability, that is, the mutation was more prevalent in monocytes with a low degree of activability. We have found that at least three heteroplasmic mutations of mtDNA (G14459A, A1555G, G12315A) earlier known to be associated with human atherosclerosis, also correlate with proinflammatory activation of circulating human monocytes. We suggest that some mutations can cause mitochondrial dysfunction, which in turn may lead to changes of macrophage activities in atherosclerosis.
Collapse
Affiliation(s)
- A N Orekhov
- Department of Biophysics, Biological Faculty, Moscow State University, 119991 Moscow, Russia; Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia.
| | - A V Zhelankin
- Laboratory of Medical Genetics, Russian Cardiology Research and Production Complex, 121552 Moscow, Russia.
| | - K I Kolmychkova
- Laboratory of Medical Genetics, Russian Cardiology Research and Production Complex, 121552 Moscow, Russia.
| | - K Yu Mitrofanov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia.
| | - M V Kubekina
- Laboratory of Medical Genetics, Russian Cardiology Research and Production Complex, 121552 Moscow, Russia.
| | - E A Ivanova
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium.
| | - I A Sobenin
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; Laboratory of Medical Genetics, Russian Cardiology Research and Production Complex, 121552 Moscow, Russia.
| |
Collapse
|
52
|
Sica A, Erreni M, Allavena P, Porta C. Macrophage polarization in pathology. Cell Mol Life Sci 2015; 72:4111-26. [PMID: 26210152 PMCID: PMC11113543 DOI: 10.1007/s00018-015-1995-y] [Citation(s) in RCA: 467] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/07/2015] [Accepted: 07/16/2015] [Indexed: 01/05/2023]
Abstract
Macrophages are cells of the innate immunity constituting the mononuclear phagocyte system and endowed with remarkable different roles essential for defense mechanisms, development of tissues, and homeostasis. They derive from hematopoietic precursors and since the early steps of fetal life populate peripheral tissues, a process continuing throughout adult life. Although present essentially in every organ/tissue, macrophages are more abundant in the gastro-intestinal tract, liver, spleen, upper airways, and brain. They have phagocytic and bactericidal activity and produce inflammatory cytokines that are important to drive adaptive immune responses. Macrophage functions are settled in response to microenvironmental signals, which drive the acquisition of polarized programs, whose extremes are simplified in the M1 and M2 dichotomy. Functional skewing of monocyte/macrophage polarization occurs in physiological conditions (e.g., ontogenesis and pregnancy), as well as in pathology (allergic and chronic inflammation, tissue repair, infection, and cancer) and is now considered a key determinant of disease development and/or regression. Here, we will review evidence supporting a dynamic skewing of macrophage functions in disease, which may provide a basis for macrophage-centered therapeutic strategies.
Collapse
Affiliation(s)
- Antonio Sica
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", via Bovio 6, Novara, Italy.
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Milan, Rozzano, Italy.
| | - Marco Erreni
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Milan, Rozzano, Italy
| | - Paola Allavena
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Milan, Rozzano, Italy
| | - Chiara Porta
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", via Bovio 6, Novara, Italy
| |
Collapse
|
53
|
Cho LY, Yang JJ, Ko KP, Ma SH, Shin A, Choi BY, Kim HJ, Han DS, Song KS, Kim YS, Chang SH, Shin HR, Kang D, Yoo KY, Park SK. Gene polymorphisms in the ornithine decarboxylase-polyamine pathway modify gastric cancer risk by interaction with isoflavone concentrations. Gastric Cancer 2015; 18:495-503. [PMID: 25079701 DOI: 10.1007/s10120-014-0396-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 06/11/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND The study aimed to examine the association between genes encoding molecules in the ornithine decarboxylase (ODC)-polyamine pathway (ODC1, AMD1, NQO1, NOS2A, and OAZ2) and gastric cancer risk and whether the gene-phytoestrogen interaction modifies gastric cancer risk. METHODS Among 76 gastric cancer cases and their 1:4 matched controls within the Korean Multi-center Cancer Cohort, a total of 30 SNPs in five genes involved in the ODC pathway were primarily analyzed. The second-stage genotyping in 388 matched case-control sets was conducted to reevaluate the significant SNPs interacting with phytoestrogens during the primary analysis. The summary odds ratios (ORs) [95 % confidence intervals (CIs)] for gastric cancer were estimated. Interaction effects between the SNPs and plasma concentrations of phytoestrogens (genistein, daidzein, equol, and enterolactone) were evaluated. RESULTS In the pooled analysis, NQO1 rs1800566 showed significant genetic effects on gastric cancer without heterogeneity [OR 0.83 (95 % CI 0.70-0.995)] and a greater decreased risk at high genistein/daidzein levels [OR 0.36 (95 % CI 0.15-0.90) and OR 0.26 (95 % CI 0.10-0.64), respectively; p interaction < 0.05]. Risk alleles of AMD1 rs1279599, AMD1 rs7768897, and OAZ2 rs7403751 had a significant gene-phytoestrogen (genistein and daidzein) interaction effect to modify the development of gastric cancer. They had an increased gastric cancer risk at low isoflavone levels, but a decreased risk at high isoflavone levels (p interaction < 0.01). CONCLUSIONS Our findings suggest that common variants in the genes involved in the ODC pathway may contribute to the risk of gastric cancer possibly by modulating ODC polyamine biosynthesis or by interaction between isoflavones and NQO1, OAZ2, and AMD1.
Collapse
Affiliation(s)
- Lisa Y Cho
- Department of Preventive Medicine, Seoul National University College of Medicine, 103 Daehakno, Jongno-Gu, Seoul, 110-799, Republic of Korea,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Suppression of cell division-associated genes by Helicobacter pylori attenuates proliferation of RAW264.7 monocytic macrophage cells. Sci Rep 2015; 5:11046. [PMID: 26078204 PMCID: PMC4468580 DOI: 10.1038/srep11046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 05/07/2015] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori at multiplicity of infection (MOI ≥ 50) have been shown to cause apoptosis in RAW264.7 monocytic macrophage cells. Because chronic gastric infection by H. pylori results in the persistence of macrophages in the host's gut, it is likely that H. pylori is present at low to moderate, rather than high numbers in the infected host. At present, the effect of low-MOI H. pylori infection on macrophage has not been fully elucidated. In this study, we investigated the genome-wide transcriptional regulation of H. pylori-infected RAW264.7 cells at MOI 1, 5 and 10 in the absence of cellular apoptosis. Microarray data revealed up- and down-regulation of 1341 and 1591 genes, respectively. The expression of genes encoding for DNA replication and cell cycle-associated molecules, including Aurora-B kinase (AurkB) were down-regulated. Immunoblot analysis verified the decreased expression of AurkB and downstream phosphorylation of Cdk1 caused by H. pylori infection. Consistently, we observed that H. pylori infection inhibited cell proliferation and progression through the G1/S and G2/M checkpoints. In summary, we suggest that H. pylori disrupts expression of cell cycle-associated genes, thereby impeding proliferation of RAW264.7 cells, and such disruption may be an immunoevasive strategy utilized by H. pylori.
Collapse
|
55
|
Chaturvedi R, de Sablet T, Asim M, Piazuelo MB, Barry DP, Verriere TG, Sierra JC, Hardbower DM, Delgado AG, Schneider BG, Israel DA, Romero-Gallo J, Nagy TA, Morgan DR, Murray-Stewart T, Bravo LE, Peek RM, Fox JG, Woster PM, Casero RA, Correa P, Wilson KT. Increased Helicobacter pylori-associated gastric cancer risk in the Andean region of Colombia is mediated by spermine oxidase. Oncogene 2015; 34:3429-40. [PMID: 25174398 PMCID: PMC4345146 DOI: 10.1038/onc.2014.273] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/16/2014] [Accepted: 07/19/2014] [Indexed: 12/11/2022]
Abstract
Helicobacter pylori infection causes gastric cancer, the third leading cause of cancer death worldwide. More than half of the world's population is infected, making universal eradication impractical. Clinical trials suggest that antibiotic treatment only reduces gastric cancer risk in patients with non-atrophic gastritis (NAG), and is ineffective once preneoplastic lesions of multifocal atrophic gastritis (MAG) and intestinal metaplasia (IM) have occurred. Therefore, additional strategies for risk stratification and chemoprevention of gastric cancer are needed. We have implicated polyamines, generated by the rate-limiting enzyme ornithine decarboxylase (ODC), in gastric carcinogenesis. During H. pylori infection, the enzyme spermine oxidase (SMOX) is induced, which generates hydrogen peroxide from the catabolism of the polyamine spermine. Herein, we assessed the role of SMOX in the increased gastric cancer risk in Colombia associated with the Andean mountain region when compared with the low-risk region on the Pacific coast. When cocultured with gastric epithelial cells, clinical strains of H. pylori from the high-risk region induced more SMOX expression and oxidative DNA damage, and less apoptosis than low-risk strains. These findings were not attributable to differences in the cytotoxin-associated gene A oncoprotein. Gastric tissues from subjects from the high-risk region exhibited greater levels of SMOX and oxidative DNA damage by immunohistochemistry and flow cytometry, and this occurred in NAG, MAG and IM. In Mongolian gerbils, a prototype colonizing strain from the high-risk region induced more SMOX, DNA damage, dysplasia and adenocarcinoma than a colonizing strain from the low-risk region. Treatment of gerbils with either α-difluoromethylornithine, an inhibitor of ODC, or MDL 72527 (N(1),N(4)-Di(buta-2,3-dien-1-yl)butane-1,4-diamine dihydrochloride), an inhibitor of SMOX, reduced gastric dysplasia and carcinoma, as well as apoptosis-resistant cells with DNA damage. These data indicate that aberrant activation of polyamine-driven oxidative stress is a marker of gastric cancer risk and a target for chemoprevention.
Collapse
Affiliation(s)
- Rupesh Chaturvedi
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thibaut de Sablet
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M. Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel P. Barry
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas G. Verriere
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - J. Carolina Sierra
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dana M. Hardbower
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alberto G. Delgado
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Barbara G. Schneider
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dawn A. Israel
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Judith Romero-Gallo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Toni A. Nagy
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Douglas R. Morgan
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tracy Murray-Stewart
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luis E. Bravo
- Department of Pathology, Universidad del Valle School of Medicine, Cali, Colombia
| | - Richard M. Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts lnstitute of Technology, Cambridge, MA, USA
| | - Patrick M. Woster
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Robert A. Casero
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pelayo Correa
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Keith T. Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
56
|
Noni (Morinda citrifolia L.) Fruit Extracts Improve Colon Microflora and Exert Anti-Inflammatory Activities in Caco-2 Cells. J Med Food 2015; 18:663-76. [DOI: 10.1089/jmf.2014.3213] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
57
|
van der Veen S, Tang CM. The BER necessities: the repair of DNA damage in human-adapted bacterial pathogens. Nat Rev Microbiol 2015; 13:83-94. [PMID: 25578955 DOI: 10.1038/nrmicro3391] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
During colonization and disease, bacterial pathogens must survive the onslaught of the host immune system. A key component of the innate immune response is the generation of reactive oxygen and nitrogen species by phagocytic cells, which target and disrupt pathogen molecules, particularly DNA, and the base excision repair (BER) pathway is the most important mechanism for the repair of such oxidative DNA damage. In this Review, we discuss how the human-specific pathogens Mycobacterium tuberculosis, Helicobacter pylori and Neisseria meningitidis have evolved specialized mechanisms of DNA repair, particularly their BER pathways, compared with model organisms such as Escherichia coli. This specialization in DNA repair is likely to reflect the distinct niches occupied by these important human pathogens in the host.
Collapse
Affiliation(s)
- Stijn van der Veen
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, OX1 3RE, UK
| | - Christoph M Tang
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, OX1 3RE, UK
| |
Collapse
|
58
|
Dalal RS, Moss SF. At the bedside: Helicobacter pylori, dysregulated host responses, DNA damage, and gastric cancer. J Leukoc Biol 2014; 96:213-24. [PMID: 24823809 PMCID: PMC4101088 DOI: 10.1189/jlb.4bt0214-100r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/14/2014] [Accepted: 04/17/2014] [Indexed: 12/15/2022] Open
Abstract
Clinical trials performed in populations at high GC risk have demonstrated that eradication of Helicobacter pylori from the stomach with a course of combination antimicrobials helps prevent gastric carcinogenesis when they are administered before precancerous lesions have yet developed. In this review, we consider the insights into H. pylori-associated gastric carcinogenesis that have been gained from these and many other clinical studies in the field to highlight priority areas for basic research and clinical investigation. Among these are defining the magnitude of the risk reduction that may be achieved in clinical practice and at a population level by H. pylori eradication and investigating when, during the slow multistep progression to GC, intervention will be of the most benefit. Additional strategies to prevent GC induced by H. pylori, including chemoprevention, dietary modification, and close endoscopic surveillance, may also have value in augmenting the risk reduction. Why only a small subpopulation of those infected by H. pylori go on to develop GC may be partially explained by genetic susceptibility related to SNPs in several genes regulating the intensity of the gastric inflammatory response to H. pylori. Investigation of the basic mechanisms underlying the promotion of GC by H. pylori and the associated inflammatory response will likely continue to improve clinical strategies for the prevention of one of the most common causes of cancer death globally. See related review, At the Bench: H. pylori, dysregulated host responses, DNA damage, and gastric cancer.
Collapse
Affiliation(s)
- Rahul S Dalal
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Steven F Moss
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
59
|
Hardbower DM, Peek RM, Wilson KT. At the Bench: Helicobacter pylori, dysregulated host responses, DNA damage, and gastric cancer. J Leukoc Biol 2014; 96:201-12. [PMID: 24868089 DOI: 10.1189/jlb.4bt0214-099r] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori infection is the strongest known risk factor for the development of gastric cancer. Given that ∼50% of the global population is infected with this pathogen, there is great impetus to elucidate underlying causes that mediate progression from infection to cancer. Recent evidence suggests that H. pylori-induced chronic inflammation and oxidative stress create an environment conducive to DNA damage and tissue injury. DNA damage leads to genetic instability and eventually, neoplastic transformation. Pathogen-encoded virulence factors induce a robust but futile immune response and alter host pathways that lower the threshold for carcinogenesis, including DNA damage repair, polyamine synthesis and catabolism, antioxidant responses, and cytokine production. Collectively, such dysregulation creates a protumorigenic microenvironment within the stomach. This review seeks to address each of these aspects of H. pylori infection and to call attention to areas of particular interest within this field of research. This review also seeks to prioritize areas of translational research related to H. pylori-induced gastric cancer based on insights garnered from basic research in this field. See related review by Dalal and Moss, At the Bedside: H. pylori, dysregulated host responses, DNA damage, and gastric cancer.
Collapse
Affiliation(s)
- Dana M Hardbower
- Departments of Pathology, Microbiology, and Immunology and Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and
| | - Richard M Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and Cancer Biology, and
| | - Keith T Wilson
- Departments of Pathology, Microbiology, and Immunology and Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and Cancer Biology, and Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
60
|
Moschou PN, Roubelakis-Angelakis KA. Polyamines and programmed cell death. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1285-96. [PMID: 24218329 DOI: 10.1093/jxb/ert373] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Polyamines (PAs) have been considered as important molecules for survival. However, evidence reinforces that PAs are also implicated, directly or indirectly, in pathways regulating programmed cell death (PCD). Direct correlation of PAs with cell death refers to their association with particular biological processes, and their physical contact with molecules or structures involved in cell death. Indirectly, PAs regulate PCD through their metabolic derivatives, such as catabolic and interconversion products. Cytotoxic products of PA metabolism are involved in PCD cascades, whereas it remains largely elusive how PAs directly control pathways leading to PCD. In this review, we present and compare advances in PA-dependent PCD in animals and plants.
Collapse
Affiliation(s)
- Panagiotis N Moschou
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | | |
Collapse
|
61
|
Chaturvedi R, Asim M, Barry DP, Frye JW, Casero RA, Wilson KT. Spermine oxidase is a regulator of macrophage host response to Helicobacter pylori: enhancement of antimicrobial nitric oxide generation by depletion of spermine. Amino Acids 2014; 46:531-42. [PMID: 23820617 PMCID: PMC3812355 DOI: 10.1007/s00726-013-1531-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/05/2013] [Indexed: 01/10/2023]
Abstract
The gastric pathogen Helicobacter pylori causes peptic ulcer disease and gastric cancer. We have reported that in H. pylori-activated macrophages, nitric oxide (NO) derived from inducible NO synthase (iNOS) can kill the bacterium, iNOS protein expression is dependent on uptake of its substrate L-arginine (L-Arg), the polyamine spermine can inhibit iNOS translation by inhibiting L-Arg uptake, and inhibition of polyamine synthesis enhances NO-mediated bacterial killing. Because spermine oxidase (SMO), which back-converts spermine to spermidine, is induced in macrophages by H. pylori, we determined its role in iNOS-dependent host defense. SMO shRNA knockdown in RAW 264.7 murine macrophages resulted in a marked decrease in H. pylori-stimulated iNOS protein, but not mRNA expression, and a 90% reduction in NO levels; NO production was also inhibited in primary murine peritoneal macrophages with SMO knockdown. There was an increase in spermine levels after H. pylori stimulation that rapidly decreased, while SMO knockdown caused a greater increase in spermine that was sustained. With SMO knockdown, L-Arg uptake and killing of H. pylori by macrophages was prevented. The overexpression of SMO by transfection of an expression plasmid prevented the H. pylori-stimulated increase in spermine levels, and led to increased L-Arg uptake, iNOS protein expression and NO production, and H. pylori killing. In two human monocytic cell lines, U937 and THP-1, overexpression of SMO caused a significant enhancement of NO production with H. pylori stimulation. By depleting spermine, SMO can abrogate the inhibitory effect of polyamines on innate immune responses to H. pylori by enhancing antimicrobial NO production.
Collapse
Affiliation(s)
- Rupesh Chaturvedi
- Division of Gastroenterology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Mohammad Asim
- Division of Gastroenterology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
- Department of Cancer Biology, Vanderbilt University School of Medicine Nashville, TN USA
| | - Daniel P. Barry
- Division of Gastroenterology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
- Department of Cancer Biology, Vanderbilt University School of Medicine Nashville, TN USA
| | - Jeanetta W. Frye
- Division of Gastroenterology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Robert A. Casero
- Department of Oncology, Johns Hopkins University, Baltimore, MD USA
| | - Keith T. Wilson
- Division of Gastroenterology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
- Department of Cancer Biology, Vanderbilt University School of Medicine Nashville, TN USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
62
|
Battaglia V, Shields CD, Murray-Stewart T, Casero RA. Polyamine catabolism in carcinogenesis: potential targets for chemotherapy and chemoprevention. Amino Acids 2014; 46:511-9. [PMID: 23771789 PMCID: PMC3795954 DOI: 10.1007/s00726-013-1529-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 05/30/2013] [Indexed: 01/01/2023]
Abstract
Polyamines, including spermine, spermidine, and the precursor diamine, putrescine, are naturally occurring polycationic alkylamines that are required for eukaryotic cell growth, differentiation, and survival. This absolute requirement for polyamines and the need to maintain intracellular levels within specific ranges require a highly regulated metabolic pathway primed for rapid changes in response to cellular growth signals, environmental changes, and stress. Although the polyamine metabolic pathway is strictly regulated in normal cells, dysregulation of polyamine metabolism is a frequent event in cancer. Recent studies suggest that the polyamine catabolic pathway may be involved in the etiology of some epithelial cancers. The catabolism of spermine to spermidine utilizes either the one-step enzymatic reaction of spermine oxidase (SMO) or the two-step process of spermidine/spermine N (1)-acetyltransferase (SSAT) coupled with the peroxisomal enzyme N (1)-acetylpolyamine oxidase. Both catabolic pathways produce hydrogen peroxide and a reactive aldehyde that are capable of damaging DNA and other critical cellular components. The catabolic pathway also depletes the intracellular concentrations of spermidine and spermine, which are free radical scavengers. Consequently, the polyamine catabolic pathway in general and specifically SMO and SSAT provide exciting new targets for chemoprevention and/or chemotherapy.
Collapse
Affiliation(s)
- Valentina Battaglia
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Christina DeStefano Shields
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Program in Molecular and Translational Toxicology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21231, USA
| | - Tracy Murray-Stewart
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Robert A. Casero
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
63
|
Andronis EA, Moschou PN, Toumi I, Roubelakis-Angelakis KA. Peroxisomal polyamine oxidase and NADPH-oxidase cross-talk for ROS homeostasis which affects respiration rate in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2014; 5:132. [PMID: 24765099 PMCID: PMC3982065 DOI: 10.3389/fpls.2014.00132] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/20/2014] [Indexed: 05/18/2023]
Abstract
Homeostasis of reactive oxygen species (ROS) in the intracellular compartments is of critical importance as ROS have been linked with nearly all cellular processes and more importantly with diseases and aging. PAs are nitrogenous molecules with an evolutionary conserved role in the regulation of metabolic and energetic status of cells. Recent evidence also suggests that polyamines (PA) are major regulators of ROS homeostasis. In Arabidopsis the backconversion of the PAs spermidine (Spd) and spermine to putrescine and Spd, respectively, is catalyzed by two peroxisomal PA oxidases (AtPAO). However, the physiological role of this pathway remains largely elusive. Here we explore the role of peroxisomal PA backconversion and in particular that catalyzed by the highly expressed AtPAO3 in the regulation of ROS homeostasis and mitochondrial respiratory burst. Exogenous PAs exert an NADPH-oxidase dependent stimulation of oxygen consumption, with Spd exerting the strongest effect. This increase is attenuated by treatment with the NADPH-oxidase blocker diphenyleneiodonium iodide (DPI). Loss-of-function of AtPAO3 gene results to increased NADPH-oxidase-dependent production of superoxide anions ([Formula: see text] ), but not H2O2, which activate the mitochondrial alternative oxidase pathway (AOX). On the contrary, overexpression of AtPAO3 results to an increased but balanced production of both H2O2 and [Formula: see text] . These results suggest that the ratio of [Formula: see text] /H2O2 regulates respiratory chain in mitochondria, with PA-dependent production of [Formula: see text] by NADPH-oxidase tilting the balance of electron transfer chain in favor of the AOX pathway. In addition, AtPAO3 seems to be an important component in the regulating module of ROS homeostasis, while a conserved role for PA backconversion and ROS across kingdoms is discussed.
Collapse
Affiliation(s)
- Efthimios A. Andronis
- Laboratory of Plant Physiology and Biotechnology, Department of Biology, University of CreteHeraklion, Greece
| | - Panagiotis N. Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant BiologyUppsala, Sweden
| | - Imene Toumi
- Laboratory of Plant Physiology and Biotechnology, Department of Biology, University of CreteHeraklion, Greece
| | - Kalliopi A. Roubelakis-Angelakis
- Laboratory of Plant Physiology and Biotechnology, Department of Biology, University of CreteHeraklion, Greece
- *Correspondence: Kalliopi A. Roubelakis-Angelakis, Laboratory of Plant Physiology and Biotechnology, Department of Biology, University of Crete, Voutes University Campus, Heraklion, Crete 70013, Greece e-mail:
| |
Collapse
|
64
|
Coburn LA, Horst SN, Chaturvedi R, Brown CT, Allaman MM, Scull BP, Singh K, Piazuelo MB, Chitnavis MV, Hodges ME, Rosen MJ, Williams CS, Slaughter JC, Beaulieu DB, Schwartz DA, Wilson KT. High-throughput multi-analyte Luminex profiling implicates eotaxin-1 in ulcerative colitis. PLoS One 2013; 8:e82300. [PMID: 24367513 PMCID: PMC3867379 DOI: 10.1371/journal.pone.0082300] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/01/2013] [Indexed: 12/12/2022] Open
Abstract
Accurate and high-throughput technologies are needed for identification of new therapeutic targets and for optimizing therapy in inflammatory bowel disease. Our aim was to assess multi-analyte protein-based assays of cytokines/chemokines using Luminex technology. We have reported that Luminex-based profiling was useful in assessing response to L-arginine therapy in the mouse model of dextran sulfate sodium colitis. Therefore, we studied prospectively collected samples from ulcerative colitis (UC) patients and control subjects. Serum, colon biopsies, and clinical information were obtained from subjects undergoing colonoscopy for evaluation of UC or for non-UC indications. In total, 38 normal controls and 137 UC cases completed the study. Histologic disease severity and the Mayo Disease Activity Index (DAI) were assessed. Serum and colonic tissue cytokine/chemokine profiles were measured by Luminex-based multiplex testing of 42 analytes. Only eotaxin-1 and G-CSF were increased in serum of patients with histologically active UC vs. controls. While 13 cytokines/chemokines were increased in active UC vs. controls in tissues, only eotaxin-1 was increased in all levels of active disease in both serum and tissue. In tissues, eotaxin-1 correlated with the DAI and with eosinophil counts. Increased eotaxin-1 levels were confirmed by real-time PCR. Tissue eotaxin-1 levels were also increased in experimental murine colitis induced by dextran sulfate sodium, oxazolone, or Citrobacter rodentium, but not in murine Helicobacter pylori infection. Our data implicate eotaxin-1 as an etiologic factor and therapeutic target in UC, and indicate that Luminex-based assays may be useful to assess IBD pathogenesis and to select patients for anti-cytokine/chemokine therapies.
Collapse
Affiliation(s)
- Lori A Coburn
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America ; Veterans Affairs Tennessee Valley Healthcare System, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Sara N Horst
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America ; Veterans Affairs Tennessee Valley Healthcare System, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Rupesh Chaturvedi
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Caroline T Brown
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Margaret M Allaman
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America ; Veterans Affairs Tennessee Valley Healthcare System, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Brooks P Scull
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Kshipra Singh
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - M Blanca Piazuelo
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Maithili V Chitnavis
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Mallary E Hodges
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Michael J Rosen
- Department of Pediatrics, Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Christopher S Williams
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America ; Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America ; Veterans Affairs Tennessee Valley Healthcare System, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - James C Slaughter
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Dawn B Beaulieu
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - David A Schwartz
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Keith T Wilson
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America ; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America ; Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America ; Veterans Affairs Tennessee Valley Healthcare System, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
65
|
Dietary L-arginine supplementation attenuates lipopolysaccharide-induced inflammatory response in broiler chickens. Br J Nutr 2013; 111:1394-404. [PMID: 24330949 DOI: 10.1017/s0007114513003863] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the present study, two experiments were conducted to investigate the effect of dietary L-arginine (Arg) supplementation on the inflammatory response and innate immunity of broiler chickens. Expt 1 was designed as a 2 × 3 factorial arrangement (n 8 cages/treatment; n 6 birds/cage) with three dietary Arg concentrations (1.05, 1.42 and 1.90%) and two immune treatments (injection of lipopolysaccharide (LPS) or saline) given at an interval of 48 h between 14 and 21 d of age. In Expt 2, correlation between dietary Arg concentration (0.99, 1.39, 1.76, 2.13 or 2.53%) and percentage of circulating B cells (percentage of circulating lymphocytes) was determined. In Expt 1, LPS injection decreased body-weight gain and feed intake and increased feed conversion ratio of the challenged broilers (14-21 d; P< 0.05). LPS injection suppressed (P< 0.05) the percentages of splenic CD11+ and B cells (percentages of splenic lymphocytes) and phagocytic activity of splenic heterophils and macrophages; Arg supplementation linearly decreased the percentages of CD11+, CD14+ and B cells in the spleen (P< 0.10). LPS injection increased (P< 0.05) the expression of IL-1β and IL-6 mRNA in the spleen and caecal tonsils. Arginine supplementation decreased (P< 0.05) the expression of IL-1β, Toll-like receptor 4 (TLR4) and PPAR-γ mRNA in the spleen and IL-1β, IL-10, TLR4 and NF-κB mRNA in the caecal tonsils. In Expt 2, increasing dietary Arg concentrations linearly and quadratically reduced the percentage of circulating B cells (P< 0.01). Collectively, Arg supplementation attenuated the overexpression of pro-inflammatory cytokines probably through the suppression of the TLR4 pathway and CD14+ cell percentage. Furthermore, excessive Arg supplementation (1.76%) suppressed the percentages of circulating and splenic B cells.
Collapse
|
66
|
Abstract
Polyamines are ubiquitous and essential components of mammalian cells. They have multiple functions including critical roles in nucleic acid and protein synthesis, gene expression, protein function, protection from oxidative damage, the regulation of ion channels, and maintenance of the structure of cellular macromolecules. It is essential to maintain a correct level of polyamines, and this amount is tightly regulated at the levels of transport, synthesis, and degradation. Catabolic pathways generate reactive aldehydes including acrolein and hydrogen peroxide via a number of oxidases. These metabolites, particularly those from spermine, can cause significant toxicity with damage to proteins, DNA, and other cellular components. Their production can be increased as a result of infection or cell damage that releases free polyamines and activates the oxidative catabolic pathways. Since polyamines also have an important physiological role in protection from oxidative damage, the reduction in polyamine content may exacerbate the toxic potential of these agents. Increases in polyamine catabolism have been implicated in the development of diseases including stroke, other neurological diseases, renal failure, liver disease, and cancer. These results provide new opportunities for the early diagnosis, prevention, and treatment of disease.
Collapse
Affiliation(s)
- Anthony E Pegg
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine , Hershey, Pennsylvania 17033, United States
| |
Collapse
|
67
|
Pathak SK, Tavares R, de Klerk N, Spetz AL, Jonsson AB. Helicobacter pylori protein JHP0290 binds to multiple cell types and induces macrophage apoptosis via tumor necrosis factor (TNF)-dependent and independent pathways. PLoS One 2013; 8:e77872. [PMID: 24223737 PMCID: PMC3815203 DOI: 10.1371/journal.pone.0077872] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/09/2013] [Indexed: 01/03/2023] Open
Abstract
Activated macrophages at the sub-mucosal space play a major role in generating innate immune responses during H. pylori infection. Final disease outcome largely depends on how H. pylori and bacterium-derived products modulate macrophage responses. Here, we report that JHP0290, a functionally unknown protein from H. pylori, regulates macrophage functions. Recombinant purified JHP0290 (rJHP0290) had the ability to bind to several cell types including macrophages, human gastric epithelial cell lines, human monocyte-derived dendritic cells (MoDC) and human neutrophils. Exposure to rJHP0290 induced apoptosis in macrophages concurrent with release of proinflammatory cytokine tumor necrosis factor (TNF). A mutant strain of H. pylori disrupted in the jhp0290 gene was significantly impaired in its ability to induce apoptosis and TNF in macrophages confirming the role of endogenous protein in regulating macrophage responses. Intracellular signaling involving Src family of tyrosine kinases (SFKs) and ERK MAPK were required for rJHP0290-induced TNF release and apoptosis in macrophages. Furthermore, rJHP0290-induced TNF release was partly dependent on activation of nuclear transcription factor-κB (NF-κB). Neutralizing antibodies against TNF partially blocked rJHP0290-induced macrophage apoptosis indicating TNF-independent pathways were also involved. These results provide mechanistic insight into the potential role of the protein JHP0290 during H. pylori-associated disease development. By virtue of its ability to induce TNF, an acid suppressive proinflammatory cytokine and induction of macrophage apoptosis, JHP0290 possibly helps in persistent survival of the bacterium inside the stomach.
Collapse
Affiliation(s)
- Sushil Kumar Pathak
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Raquel Tavares
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Nele de Klerk
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Anna-Lena Spetz
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Ann-Beth Jonsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
68
|
Hardbower DM, de Sablet T, Chaturvedi R, Wilson KT. Chronic inflammation and oxidative stress: the smoking gun for Helicobacter pylori-induced gastric cancer? Gut Microbes 2013; 4:475-81. [PMID: 23811829 PMCID: PMC3928159 DOI: 10.4161/gmic.25583] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 06/27/2013] [Accepted: 06/28/2013] [Indexed: 02/03/2023] Open
Abstract
Helicobacter pylori is the leading risk factor associated with gastric carcinogenesis. H. pylori leads to chronic inflammation because of the failure of the host to eradicate the infection. Chronic inflammation leads to oxidative stress, deriving from immune cells and from within gastric epithelial cells. This is a main contributor to DNA damage, apoptosis and neoplastic transformation. Both pathogen and host factors directly contribute to oxidative stress, including H. pylori virulence factors, and pathways involving DNA damage and repair, polyamine synthesis and metabolism, and oxidative stress response. Our laboratory has recently uncovered a mechanism by which polyamine oxidation by spermine oxidase causes H 2O 2 release, DNA damage and apoptosis. Our studies indicate novel targets for therapeutic intervention and risk assessment in H. pylori-induced gastric cancer. More studies addressing the many potential contributors to oxidative stress, chronic inflammation, and gastric carcinogenesis are essential for development of therapeutics and identification of gastric cancer biomarkers.
Collapse
Affiliation(s)
- Dana M Hardbower
- Department of Pathology, Microbiology and Immunology; Vanderbilt University Medical Center; Nashville, TN USA
- Division of Gastroenterology, Hepatology and Nutrition; Department of Medicine; Vanderbilt University Medical Center; Nashville, TN USA
| | - Thibaut de Sablet
- Division of Gastroenterology, Hepatology and Nutrition; Department of Medicine; Vanderbilt University Medical Center; Nashville, TN USA
| | - Rupesh Chaturvedi
- Division of Gastroenterology, Hepatology and Nutrition; Department of Medicine; Vanderbilt University Medical Center; Nashville, TN USA
| | - Keith T Wilson
- Department of Pathology, Microbiology and Immunology; Vanderbilt University Medical Center; Nashville, TN USA
- Division of Gastroenterology, Hepatology and Nutrition; Department of Medicine; Vanderbilt University Medical Center; Nashville, TN USA
- Veterans Affairs Tennessee Valley Healthcare System; Nashville, TN USA
- Department of Cancer Biology; Vanderbilt University Medical Center; Nashville, TN USA
| |
Collapse
|
69
|
Singh K, Coburn LA, Barry DP, Asim M, Scull BP, Allaman MM, Lewis ND, Washington MK, Rosen MJ, Williams CS, Chaturvedi R, Wilson KT. Deletion of cationic amino acid transporter 2 exacerbates dextran sulfate sodium colitis and leads to an IL-17-predominant T cell response. Am J Physiol Gastrointest Liver Physiol 2013; 305:G225-40. [PMID: 23703655 PMCID: PMC3742860 DOI: 10.1152/ajpgi.00091.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
L-Arginine (L-Arg) is a semiessential amino acid that has altered availability in human ulcerative colitis (UC), a form of inflammatory bowel disease, and is beneficial in murine colitis induced by dextran sulfate sodium (DSS), a model with similarity to UC. We assessed the role of cationic amino acid transporter 2 (CAT2), the inducible transporter of L-Arg, in DSS colitis. Expression of CAT2 was upregulated in tissues from colitic mice and localized predominantly to colonic macrophages. CAT2-deficient (CAT2-/-) mice exposed to DSS exhibited worsening of survival, body weight loss, colon weight, and histological injury. These effects were associated with increased serum L-Arg and decreased tissue L-Arg uptake and inducible nitric oxide synthase protein expression. Clinical benefits of L-Arg supplementation in wild-type mice were lost in CAT2-/- mice. There was increased infiltration of macrophages, dendritic cells, granulocytes, and T cells in colitic CAT2-/- compared with wild-type mice. Cytokine profiling revealed increases in proinflammatory granulocyte colony-stimulating factor, macrophage inflammatory protein-1α, IL-15, and regulated and normal T cell-expressed and -secreted and a shift from an IFN-γ- to an IL-17-predominant T cell response, as well as an increase in IL-13, in tissues from colitic CAT2-/- mice. However, there were no increases in other T helper cell type 2 cytokines, nor was there a global increase in macrophage-derived proinflammatory cytokines. The increase in IL-17 derived from both CD4 and γδ T cells and was associated with colonic IL-6 expression. Thus CAT2 plays an important role in controlling inflammation and IL-17 activation in an injury model of colitis, and impaired L-Arg availability may contribute to UC pathogenesis.
Collapse
Affiliation(s)
- Kshipra Singh
- 1Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - Lori A. Coburn
- 1Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; ,5Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Daniel P. Barry
- 1Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; ,5Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Mohammad Asim
- 1Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; ,5Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Brooks P. Scull
- 1Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - Margaret M. Allaman
- 1Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; ,5Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Nuruddeen D. Lewis
- 1Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; ,2Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - M. Kay Washington
- 3Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - Michael J. Rosen
- 4Division of Gastroenterology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Christopher S. Williams
- 1Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; ,2Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee; ,5Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Rupesh Chaturvedi
- 1Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - Keith T. Wilson
- 1Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; ,2Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee; ,3Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; ,5Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
70
|
Di Martino ML, Campilongo R, Casalino M, Micheli G, Colonna B, Prosseda G. Polyamines: emerging players in bacteria-host interactions. Int J Med Microbiol 2013; 303:484-91. [PMID: 23871215 DOI: 10.1016/j.ijmm.2013.06.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/13/2013] [Accepted: 06/16/2013] [Indexed: 12/17/2022] Open
Abstract
Polyamines are small polycationic molecules found in almost all cells and associated with a wide variety of physiological processes. In recent years it has become increasingly clear that, in addition to core physiological functions, polyamines play a crucial role in bacterial pathogenesis. Considerable evidence has built up that bacteria have evolved mechanisms to turn these molecules to their own advantage and a novel standpoint to look at host-bacterium interactions emerges from the interplay among polyamines, host cells and infecting bacteria. In this review, we highlight how human bacterial pathogens have developed their own resourceful strategies to exploit polyamines or manipulate polyamine-related processes to optimize their fitness within the host. Besides contributing to a better understanding of the complex relationship between a pathogen and its host, acquisitions in this field have a significant potential towards the development of novel antibacterial therapeutic approaches.
Collapse
Affiliation(s)
- Maria Letizia Di Martino
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Via dei Sardi 70, 00185 Roma, Italy; Dipartimento di Biologia, Università Roma Tre, Viale G. Marconi 446, 00146 Roma, Italy
| | | | | | | | | | | |
Collapse
|
71
|
Singh K, Coburn LA, Barry DP, Boucher JL, Chaturvedi R, Wilson KT. L-arginine uptake by cationic amino acid transporter 2 is essential for colonic epithelial cell restitution. Am J Physiol Gastrointest Liver Physiol 2012; 302:G1061-73. [PMID: 22361732 PMCID: PMC3362080 DOI: 10.1152/ajpgi.00544.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Restoration of the colonic epithelial barrier is an important response during colitis. L-arginine (L-Arg) is a semiessential amino acid that reduces murine colitis induced by Citrobacter rodentium. Cationic amino acid transporter (CAT) proteins increase L-Arg uptake into cells. L-Arg is utilized to produce nitric oxide (NO), by inducible NO synthase (iNOS), or L-ornithine (L-Orn) by arginase (Arg) enzymes. The latter is followed by generation of polyamines by ornithine decarboxylase (ODC) and L-proline (L-Pro) by ornithine aminotransferase (OAT). We show that L-Arg enhanced epithelial restitution in conditionally immortalized young adult mouse colon (YAMC) cells in a wound repair model, and in isolated mouse colonic epithelial cells (CECs), using a cell migration assay. Restitution was impaired by C. rodentium. Wounding induced CAT2, and inhibition of L-Arg uptake by the competitive inhibitor L-lysine (L-Lys) or by CAT2 shRNA, but not CAT1 shRNA, decreased restitution. Migration was impaired in CECs treated with L-Lys or from CAT2(-/-) mice. Wounding increased Arg1 expression, and inhibition of arginase with S-(2-boronoethyl)-L-cysteine (BEC) or Arg1 shRNA inhibited restitution in YAMC cells; cell migration in CECs was also impaired by BEC. Inhibition of ODC or iNOS did not alter restitution. L-Orn or L-Pro restored restitution in cells treated with BEC or Arg1 shRNA, whereas the polyamine putrescine had no benefit. Wounding increased OAT levels, OAT shRNA inhibited restitution, and L-Pro restored restitution in cells with OAT knockdown. Uptake of L-Arg, and its metabolism by Arg1 to L-Orn and conversion to L-Pro by OAT is essential for colonic epithelial wound repair.
Collapse
Affiliation(s)
- Kshipra Singh
- Departments of 1Medicine, Division of Gastroenterology, ,4Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, and
| | - Lori A. Coburn
- Departments of 1Medicine, Division of Gastroenterology, ,4Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, and
| | - Daniel P. Barry
- Departments of 1Medicine, Division of Gastroenterology, ,4Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, and
| | | | - Rupesh Chaturvedi
- Departments of 1Medicine, Division of Gastroenterology, ,4Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, and
| | - Keith T. Wilson
- Departments of 1Medicine, Division of Gastroenterology, ,2Cancer Biology, and ,3Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center and ,4Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, and
| |
Collapse
|
72
|
Coburn LA, Gong X, Singh K, Asim M, Scull BP, Allaman MM, Williams CS, Rosen MJ, Washington MK, Barry DP, Piazuelo MB, Casero RA, Chaturvedi R, Zhao Z, Wilson KT. L-arginine supplementation improves responses to injury and inflammation in dextran sulfate sodium colitis. PLoS One 2012; 7:e33546. [PMID: 22428068 PMCID: PMC3299802 DOI: 10.1371/journal.pone.0033546] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/11/2012] [Indexed: 12/27/2022] Open
Abstract
Inflammatory bowel disease (IBD), consisting of Crohn's disease and ulcerative colitis (UC), results in substantial morbidity and is difficult to treat. New strategies for adjunct therapies are needed. One candidate is the semi-essential amino acid, L-arginine (L-Arg), a complementary medicine purported to be an enhancer of immunity and vitality in the lay media. Using dextran sulfate sodium (DSS) as a murine colonic injury and repair model with similarities to human UC, we assessed the effect of L-Arg, as DSS induced increases in colonic expression of the y(+) cationic amino acid transporter 2 (CAT2) and L-Arg uptake. L-Arg supplementation improved the clinical parameters of survival, body weight loss, and colon weight, and reduced colonic permeability and the number of myeloperoxidase-positive neutrophils in DSS colitis. Luminex-based multi-analyte profiling demonstrated that there was a marked reduction in proinflammatory cytokine and chemokine expression with L-Arg treatment. Genomic analysis by microarray demonstrated that DSS-treated mice supplemented with L-Arg clustered more closely with mice not exposed to DSS than to those receiving DSS alone, and revealed that multiple genes that were upregulated or downregulated with DSS alone exhibited normalization of expression with L-Arg supplementation. Additionally, L-Arg treatment of mice with DSS colitis resulted in increased ex vivo migration of colonic epithelial cells, suggestive of increased capacity for wound repair. Because CAT2 induction was sustained during L-Arg treatment and inducible nitric oxide (NO) synthase (iNOS) requires uptake of L-Arg for generation of NO, we tested the effect of L-Arg in iNOS(-/-) mice and found that its benefits in DSS colitis were eliminated. These preclinical studies indicate that L-Arg supplementation could be a potential therapy for IBD, and that one mechanism of action may be functional enhancement of iNOS activity.
Collapse
Affiliation(s)
- Lori A Coburn
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Pilonieta MC, Nagy TA, Jorgensen DR, Detweiler CS. A glycine betaine importer limits Salmonella stress resistance and tissue colonization by reducing trehalose production. Mol Microbiol 2012; 84:296-309. [PMID: 22375627 DOI: 10.1111/j.1365-2958.2012.08022.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mechanisms by which Salmonella establish chronic infections are not well understood. Microbes respond to stress by importing or producing compatible solutes, small molecules that stabilize proteins and lipids. The Salmonella locus opuABCD (also called OpuC) encodes a predicted importer of the compatible solute glycine betaine. Under stress conditions, if glycine betaine cannot be imported, Salmonella enterica produce the disaccharide trehalose, a highly effective compatible solute. We demonstrate that strains lacking opuABCD accumulate more trehalose under stress conditions than wild-type strains. ΔopuABCD mutant strains are more resistant to high-salt, low-pH and -hydrogen peroxide, conditions that mimic aspects of innate immunity, in a trehalose-dependent manner. In addition, ΔopuABCD mutant strains require the trehalose production genes to out-compete wild-type strains in mice and macrophages. These data suggest that in the absence of opuABCD, trehalose accumulation increases bacterial resistance to stress in broth and mice. Thus, opuABCD reduces bacterial colonization via a mechanism that limits trehalose production. Mechanisms by which microbes limit disease may reveal novel pathways as therapeutic targets.
Collapse
Affiliation(s)
- M Carolina Pilonieta
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
| | | | | | | |
Collapse
|
74
|
Cervelli M, Amendola R, Polticelli F, Mariottini P. Spermine oxidase: ten years after. Amino Acids 2012; 42:441-50. [PMID: 21809080 DOI: 10.1007/s00726-011-1014-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 05/25/2011] [Indexed: 12/13/2022]
Abstract
Spermine oxidase (SMO) was discovered much more recently than other enzymes involved in polyamine metabolism; this review summarizes 10 years of researches on this enzyme. Spermine oxidase (SMO) is a FAD-dependent enzyme that specifically oxidizes spermine (Spm) and plays a dominant role in the highly regulated mammalian polyamines catabolism. SMO participates in drug response, apoptosis, response to stressful stimuli and etiology of several pathological conditions, including cancer. SMO is a highly inducible enzyme, its deregulation can alter polyamine homeostasis, and dysregulation of polyamine catabolism is often associated with several disease states. The oxidative products of SMO activity are spermidine, and the reactive oxygen species H(2)O(2) and the aldehyde 3-aminopropanal each with the potential to produce cellular damages and pathologies. The SMO substrate Spm is a tetramine that plays mandatory roles in several cell functions, such as DNA synthesis, cellular proliferation, modulation of ion channels function, cellular signaling, nitric oxide synthesis and inhibition of immune responses. The goal of this review is to cover the main biochemical, cellular and physiological processes in which SMO is involved.
Collapse
|
75
|
Abstract
All organisms have pathways that repair the genome, ensuring their survival and that of their progeny. But these pathways also serve to diversify the genome, causing changes at the nucleotide, whole gene, and genome structure levels. Sequencing of bacteria has revealed wide allelic diversity and differences in gene content within the same species, highlighting the importance of understanding pathways of recombination and DNA repair. The human stomach pathogen Helicobacter pylori is an excellent model system for studying these pathways. H. pylori harbors major recombination and repair pathways and is naturally competent, facilitating its ability to diversify its genome. Elucidation of DNA recombination, repair, and diversification programs in this pathogen will reveal connections between these pathways and their importance to infection.
Collapse
Affiliation(s)
- Marion S Dorer
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA.
| | | | | |
Collapse
|
76
|
Chaturvedi R, de Sablet T, Peek RM, Wilson KT. Spermine oxidase, a polyamine catabolic enzyme that links Helicobacter pylori CagA and gastric cancer risk. Gut Microbes 2012; 3:48-56. [PMID: 22555547 PMCID: PMC3337125 DOI: 10.4161/gmic.19345] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have recently reported that Helicobacter pylori strains expressing the virulence factor cytotoxin-associated gene A (CagA) stimulate increased levels of spermine oxidase (SMO) in gastric epithelial cells, while cagA⁻ strains did not. SMO catabolizes the polyamine spermine and produces H₂O₂ that results in both apoptosis and DNA damage. Exogenous overexpression of CagA confirmed these findings, and knockdown or inhibition of SMO blocked CagA-mediated apoptosis and DNA damage. The strong association of SMO, apoptosis, and DNA damage was also demonstrated in humans infected with cagA⁺, but not cagA⁻ strains. In infected gerbils and mice, DNA damage was CagA-dependent and only present in epithelial cells that expressed SMO. We also discovered SMO (high) gastric epithelial cells from infected animals with dysplasia that are resistant to apoptosis despite high levels of DNA damage. Inhibition of polyamine synthesis or SMO could abrogate the development of this cell population that may represent precursors for neoplastic transformation.
Collapse
Affiliation(s)
- Rupesh Chaturvedi
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Medicine; Vanderbilt University Medical Center; Nashville, TN USA
- Veterans Affairs; Tennessee Valley Healthcare System; Nashville, TN USA
| | - Thibaut de Sablet
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Medicine; Vanderbilt University Medical Center; Nashville, TN USA
- Veterans Affairs; Tennessee Valley Healthcare System; Nashville, TN USA
| | - Richard M. Peek
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Medicine; Vanderbilt University Medical Center; Nashville, TN USA
- Veterans Affairs; Tennessee Valley Healthcare System; Nashville, TN USA
- Department of Cancer Biology; Vanderbilt University Medical Center; Nashville, TN USA
| | - Keith T. Wilson
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Medicine; Vanderbilt University Medical Center; Nashville, TN USA
- Veterans Affairs; Tennessee Valley Healthcare System; Nashville, TN USA
- Department of Cancer Biology; Vanderbilt University Medical Center; Nashville, TN USA
- Department of Pathology, Microbiology, and Immunology; Vanderbilt University Medical Center; Nashville, TN USA
| |
Collapse
|
77
|
Cationic amino acid transporter 2 enhances innate immunity during Helicobacter pylori infection. PLoS One 2011; 6:e29046. [PMID: 22194986 PMCID: PMC3237590 DOI: 10.1371/journal.pone.0029046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/18/2011] [Indexed: 01/19/2023] Open
Abstract
Once acquired, Helicobacter pylori infection is lifelong due to an inadequate innate and adaptive immune response. Our previous studies indicate that interactions among the various pathways of arginine metabolism in the host are critical determinants of outcomes following infection. Cationic amino acid transporter 2 (CAT2) is essential for transport of L-arginine (L-Arg) into monocytic immune cells during H. pylori infection. Once within the cell, this amino acid is utilized by opposing pathways that lead to elaboration of either bactericidal nitric oxide (NO) produced from inducible NO synthase (iNOS), or hydrogen peroxide, which causes macrophage apoptosis, via arginase and the polyamine pathway. Because of its central role in controlling L-Arg availability in macrophages, we investigated the importance of CAT2 in vivo during H. pylori infection. CAT2(-/-) mice infected for 4 months exhibited decreased gastritis and increased levels of colonization compared to wild type mice. We observed suppression of gastric macrophage levels, macrophage expression of iNOS, dendritic cell activation, and expression of granulocyte-colony stimulating factor in CAT2(-/-) mice suggesting that CAT2 is involved in enhancing the innate immune response. In addition, cytokine expression in CAT2(-/-) mice was altered from an antimicrobial Th1 response to a Th2 response, indicating that the transporter has downstream effects on adaptive immunity as well. These findings demonstrate that CAT2 is an important regulator of the immune response during H. pylori infection.
Collapse
|
78
|
Chaturvedi R, Asim M, Romero-Gallo J, Barry DP, Hoge S, de Sablet T, Delgado AG, Wroblewski LE, Piazuelo MB, Yan F, Israel DA, Casero RA, Correa P, Gobert AP, Polk DB, Peek RM, Wilson KT. Spermine oxidase mediates the gastric cancer risk associated with Helicobacter pylori CagA. Gastroenterology 2011; 141:1696-708.e1-2. [PMID: 21839041 PMCID: PMC3202654 DOI: 10.1053/j.gastro.2011.07.045] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 06/28/2011] [Accepted: 07/26/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Helicobacter pylori-induced gastric carcinogenesis has been linked to the microbial oncoprotein cytotoxin-associated gene A (CagA). Spermine oxidase (SMO) metabolizes the polyamine spermine into spermidine and generates H(2)O(2), which causes apoptosis and DNA damage. We determined if pathogenic effects of CagA are attributable to SMO. METHODS Levels of SMO, apoptosis, and DNA damage (8-oxoguanosine) were measured in gastric epithelial cell lines infected with cagA(+) or cagA(-)H pylori strains, or transfected with a CagA expression plasmid, in the absence or presence of SMO small interfering RNA, or an SMO inhibitor. The role of CagA in induction of SMO and DNA damage was assessed in H pylori-infected gastritis tissues from humans, gerbils, and both wild-type and hypergastrinemic insulin-gastrin mice, using immunohistochemistry and flow cytometry. RESULTS cagA(+) strains or ectopic expression of CagA, but not cagA(-) strains, led to increased levels of SMO, apoptosis, and DNA damage in gastric epithelial cells, and knockdown or inhibition of SMO blocked apoptosis and DNA damage. There was increased SMO expression, apoptosis, and DNA damage in gastric tissues from humans infected with cagA(+), but not cagA(-) strains. In gerbils and mice, DNA damage was CagA-dependent and present in cells that expressed SMO. Gastric epithelial cells with DNA damage that were negative for markers of apoptosis accounted for 42%-69% of cells in gerbils and insulin-gastrin mice with dysplasia and carcinoma. CONCLUSIONS By inducing SMO, H pylori CagA generates cells with oxidative DNA damage, and a subpopulation of these cells are resistant to apoptosis and thus at high risk for malignant transformation.
Collapse
Affiliation(s)
- Rupesh Chaturvedi
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN
| | - Judith Romero-Gallo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Daniel P. Barry
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN
| | - Svea Hoge
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of General, Abdominal and Vascular Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Thibaut de Sablet
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN
| | - Alberto G. Delgado
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Lydia E. Wroblewski
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - M. Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Fang Yan
- Division of Gastroenterology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Dawn A. Israel
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Robert A. Casero
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Pelayo Correa
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Alain P. Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN
- Institut National de la Recherche Agronomique, Unité de Microbiologie UR454, Saint-Genès-Champanelle, France
| | - D. Brent Polk
- Division of Gastroenterology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Richard M. Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN
| | - Keith T. Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN
| |
Collapse
|
79
|
Chaturvedi R, de Sablet T, Coburn LA, Gobert AP, Wilson KT. Arginine and polyamines in Helicobacter pylori-induced immune dysregulation and gastric carcinogenesis. Amino Acids 2011; 42:627-40. [PMID: 21874531 DOI: 10.1007/s00726-011-1038-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 06/13/2011] [Indexed: 02/07/2023]
Abstract
L-arginine (L-Arg) is metabolized by nitric oxide synthase and arginase enzymes. The gastric pathogen Helicobacter pylori causes peptic ulcer disease and gastric cancer. We have shown that alterations in L-Arg availability and metabolism into polyamines contribute significantly to the dysregulation of the host immune response to this infection. Nitric oxide (NO) derived from inducible NO synthase (iNOS) can kill H. pylori. There are multiple mechanisms leading to failure of this process, including competition for L-Arg substrate by H. pylori arginase, and induction of host macrophage arginase II (Arg2) and ornithine decarboxylase (ODC). Generation of spermine by ODC inhibits iNOS translation and NO-mediated H. pylori killing. Expression of ODC is dependent on formation of a unique AP-1 complex, leading to upregulation of c-Myc as a transcriptional enhancer. Macrophage apoptosis is mediated by oxidation of spermine via the enzyme spermine oxidase (SMO) that generates hydrogen peroxide (H(2)O(2)), and thus oxidative stress-induced mitochondrial membrane polarization. Our studies have demonstrated that apoptosis occurs through a pERK → pc-Fos/c-Jun → c-Myc → ODC → SMO pathway. In gastric epithelial cells, activation of oxidative stress by H. pylori is dependent on SMO induction and results in both apoptosis and DNA damage, such that inhibition or knockdown of SMO markedly attenuates these events. In summary, L-Arg metabolism by the arginase-ODC pathway and the activation of SMO leads to H. pylori-induced DNA damage and immune dysregulation through polyamine-mediated oxidative stress and impairment of antimicrobial NO synthesis. Our studies indicate novel targets for therapeutic intervention in H. pylori-associated diseases, including gastritis, ulcer disease, and gastric cancer.
Collapse
Affiliation(s)
- Rupesh Chaturvedi
- Division of Gastroenterology, Department of Medicine, Vanderbilt University School of Medicine, 1030C MRBIV, 2215 Garland Avenue, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
80
|
Tavladoraki P, Cervelli M, Antonangeli F, Minervini G, Stano P, Federico R, Mariottini P, Polticelli F. Probing mammalian spermine oxidase enzyme-substrate complex through molecular modeling, site-directed mutagenesis and biochemical characterization. Amino Acids 2011; 40:1115-26. [PMID: 20839014 DOI: 10.1007/s00726-010-0735-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 08/26/2010] [Indexed: 10/19/2022]
Abstract
Spermine oxidase (SMO) and acetylpolyamine oxidase (APAO) are FAD-dependent enzymes that are involved in the highly regulated pathways of polyamine biosynthesis and degradation. Polyamine content is strictly related to cell growth, and dysfunctions in polyamine metabolism have been linked with cancer. Specific inhibitors of SMO and APAO would allow analyzing the precise role of these enzymes in polyamine metabolism and related pathologies. However, none of the available polyamine oxidase inhibitors displays the desired characteristics of selective affinity and specificity. In addition, repeated efforts to obtain structural details at the atomic level on these two enzymes have all failed. In the present study, in an effort to better understand structure-function relationships, SMO enzyme-substrate complex has been probed through a combination of molecular modeling, site-directed mutagenesis and biochemical studies. Results obtained indicate that SMO binds spermine in a similar conformation as that observed in the yeast polyamine oxidase FMS1-spermine complex and demonstrate a major role for residues His82 and Lys367 in substrate binding and catalysis. In addition, the SMO enzyme-substrate complex highlights the presence of an active site pocket with highly polar characteristics, which may explain the different substrate specificity of SMO with respect to APAO and provide the basis for the design of specific inhibitors for SMO and APAO.
Collapse
Affiliation(s)
- Paraskevi Tavladoraki
- Department of Biology, University Roma Tre, Viale Guglielmo Marconi 446, 00146, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Difluoromethylornithine is a novel inhibitor of Helicobacter pylori growth, CagA translocation, and interleukin-8 induction. PLoS One 2011; 6:e17510. [PMID: 21386987 PMCID: PMC3046249 DOI: 10.1371/journal.pone.0017510] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 02/04/2011] [Indexed: 02/08/2023] Open
Abstract
Helicobacter pylori infects half the world's population, and carriage is lifelong without antibiotic therapy. Current regimens prescribed to prevent infection-associated diseases such as gastroduodenal ulcers and gastric cancer can be thwarted by antibiotic resistance. We reported that administration of 1% d,l-α-difluoromethylornithine (DFMO) to mice infected with H. pylori reduces gastritis and colonization, which we attributed to enhanced host immune response due to inhibition of macrophage ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis. Although no ODC has been identified in any H. pylori genome, we sought to determine if DFMO has direct effects on the bacterium. We found that DFMO significantly reduced the growth rate of H. pylori in a polyamine-independent manner. Two other Gram-negative pathogens possessing ODC, Escherichia coli and Citrobacter rodentium, were resistant to the DFMO effect. The effect of DFMO on H. pylori required continuous exposure to the drug and was reversible when removed, with recovery of growth rate in vitro and the ability to colonize mice. H. pylori exposed to DFMO were significantly shorter in length than those untreated and they contained greater internal levels of ATP, suggesting severe effects on bacterial metabolism. DFMO inhibited expression of the H. pylori virulence factor cytotoxin associated gene A, and its translocation and phosphorylation in gastric epithelial cells, which was associated with a reduction in interleukin-8 expression. These findings suggest that DFMO has effects on H. pylori that may contribute to its effectiveness in reducing gastritis and colonization and may be a useful addition to anti-H. pylori therapies.
Collapse
|
82
|
Lewis ND, Asim M, Barry DP, de Sablet T, Singh K, Piazuelo MB, Gobert AP, Chaturvedi R, Wilson KT. Immune evasion by Helicobacter pylori is mediated by induction of macrophage arginase II. THE JOURNAL OF IMMUNOLOGY 2011; 186:3632-41. [PMID: 21296975 DOI: 10.4049/jimmunol.1003431] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Helicobacter pylori infection persists for the life of the host due to the failure of the immune response to eradicate the bacterium. Determining how H. pylori escapes the immune response in its gastric niche is clinically important. We have demonstrated in vitro that macrophage NO production can kill H. pylori, but induction of macrophage arginase II (Arg2) inhibits inducible NO synthase (iNOS) translation, causes apoptosis, and restricts bacterial killing. Using a chronic H. pylori infection model, we determined whether Arg2 impairs host defense in vivo. In C57BL/6 mice, expression of Arg2, but not arginase I, was abundant and localized to gastric macrophages. Arg2(-/-) mice had increased histologic gastritis and decreased bacterial colonization compared with wild-type (WT) mice. Increased gastritis scores correlated with decreased colonization in individual Arg2(-/-) mice but not in WT mice. When mice infected with H. pylori were compared, Arg2(-/-) mice had more gastric macrophages, more of these cells were iNOS(+), and these cells expressed higher levels of iNOS protein, as determined by flow cytometry and immunofluorescence microscopy. There was enhanced nitrotyrosine staining in infected Arg2(-/-) versus WT mice, indicating increased NO generation. Infected Arg2(-/-) mice exhibited decreased macrophage apoptosis, as well as enhanced IFN-γ, IL-17a, and IL-12p40 expression, and reduced IL-10 levels consistent with a more vigorous Th1/Th17 response. These studies demonstrate that Arg2 contributes to the immune evasion of H. pylori by limiting macrophage iNOS protein expression and NO production, mediating macrophage apoptosis, and restraining proinflammatory cytokine responses.
Collapse
Affiliation(s)
- Nuruddeen D Lewis
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Singh K, Chaturvedi R, Barry DP, Coburn LA, Asim M, Lewis ND, Piazuelo MB, Washington MK, Vitek MP, Wilson KT. The apolipoprotein E-mimetic peptide COG112 inhibits NF-kappaB signaling, proinflammatory cytokine expression, and disease activity in murine models of colitis. J Biol Chem 2011; 286:3839-50. [PMID: 21115487 PMCID: PMC3030385 DOI: 10.1074/jbc.m110.176719] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD), consisting of Crohn's disease and ulcerative colitis, is a source of substantial morbidity and remains difficult to treat. New strategies for beneficial anti-inflammatory therapies would be highly desirable. Apolipoprotein (apo) E has immunomodulatory effects and synthetically derived apoE-mimetic peptides are beneficial in models of sepsis and neuroinflammation. We have reported that the antennapedia-linked apoE-mimetic peptide COG112 inhibits the inflammatory response to the colitis-inducing pathogen Citrobacter rodentium in vitro by inhibiting NF-κB activation. We now determined the effect of COG112 in mouse models of colitis. Using C. rodentium as an infection model, and dextran sulfate sodium (DSS) as an injury model, mice were treated with COG112 by intraperitoneal injection. With C. rodentium, COG112 improved the clinical parameters of survival, body weight, colon weight, and histologic injury. With DSS, COG112 ameliorated the loss of body weight, reduction in colon length, and histologic injury, whether administered concurrently with induction of colitis, during induction plus recovery, or only during the recovery phase of disease. In both colitis models, COG112 inhibited colon tissue inducible nitric-oxide synthase (iNOS), KC, TNF-α, IFN-γ, and IL-17 mRNA expression, and reduced nuclear translocation of NF-κB, as determined by immunoblot and immunofluorescence confocal microscopy. IκB kinase (IKK) activity was also reduced, which is necessary for activation of the canonical NF-κB pathway. Isolated colonic epithelial cells exhibited marked attenuation of expression of iNOS and the CXC chemokines KC and MIP-2. These studies indicate that apoE-mimetic peptides such as COG112 are novel potential therapies for IBD.
Collapse
Affiliation(s)
- Kshipra Singh
- From the Departments of Medicine, Division of Gastroenterology
- the Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee 37212, and
| | - Rupesh Chaturvedi
- From the Departments of Medicine, Division of Gastroenterology
- the Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee 37212, and
| | - Daniel P. Barry
- From the Departments of Medicine, Division of Gastroenterology
| | - Lori A. Coburn
- the Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee 37212, and
| | - Mohammad Asim
- From the Departments of Medicine, Division of Gastroenterology
- the Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee 37212, and
| | - Nuruddeen D. Lewis
- From the Departments of Medicine, Division of Gastroenterology
- Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | | | | | | | - Keith T. Wilson
- From the Departments of Medicine, Division of Gastroenterology
- Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- the Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee 37212, and
| |
Collapse
|
84
|
Gobert AP, Chaturvedi R, Wilson KT. Methods to evaluate alterations in polyamine metabolism caused by Helicobacter pylori infection. Methods Mol Biol 2011; 720:409-25. [PMID: 21318889 PMCID: PMC3069756 DOI: 10.1007/978-1-61779-034-8_26] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Helicobacter pylori is a Gram-negative bacteria that infects the human stomach of half of the world's -population. Colonization is followed by infiltration of the gastric mucosa by lymphocytes and myeloid cells. These cells are activated by various bacterial factors, causing them to produce immune/inflammatory mediators, including reactive nitrogen species and polyamines that contribute to cellular damage and the pathogenesis of H. pylori-associated gastric cancer. In vitro experiments have revealed that H. pylori induces macrophage polyamine production by upregulation of the arginase 2/ornithine decarboxylase (ODC) metabolic pathway and enhances hydrogen peroxide synthesis through the activity of spermidine oxidase (SMO). In this chapter, we present a survey of the methods used to analyze the induction and the role of the enzymes related to polyamine metabolism, i.e., arginase, ODC, and SMO in H. pylori-infected macrophages.
Collapse
Affiliation(s)
- Alain P. Gobert
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee
- INRA, UR454 Unité de Microbiologie, Centre de Recherche de Clermont-Ferrand/Theix, 63122 Saint-Genès-Champanelle, France
| | - Rupesh Chaturvedi
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Keith T. Wilson
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
85
|
Abstract
This chapter provides an overview of the polyamine field and introduces the 32 other chapters that make up this volume. These chapters provide a wide range of methods, advice, and background relevant to studies of the function of polyamines, the regulation of their content, their role in disease, and the therapeutic potential of drugs targeting polyamine content and function. The methodology provided in this new volume will enable laboratories already working in this area to expand their experimental techniques and facilitate the entry of additional workers into this rapidly expanding field.
Collapse
Affiliation(s)
- Anthony E Pegg
- College of Medicine, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, PA, USA
| | | |
Collapse
|
86
|
Goodwin AC, Murray-Stewart TR, Casero RA. A simple assay for mammalian spermine oxidase: a polyamine catabolic enzyme implicated in drug response and disease. Methods Mol Biol 2011; 720:173-81. [PMID: 21318873 PMCID: PMC3652264 DOI: 10.1007/978-1-61779-034-8_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Spermine oxidase (SMO), the most recently characterized polyamine metabolic enzyme, catalyzes the direct back-conversion of spermine to spermidine in an FAD-dependent reaction that also yields the byproducts hydrogen peroxide (H(2)O(2)) and 3-aminopropanal. These metabolites, particularly H(2)O(2), have been implicated in cytotoxic cellular responses to specific antitumor polyamine analogs, as well as in the inflammation-associated generation of DNA damage. This chapter describes a rapid, sensitive, and inexpensive method for the chemiluminescent measurement of SMO (or alternatively, N (1)-acetyl polyamine oxidase, APAO) enzyme activity in cultured cell lysates, without the need for radioactive reagents or the use of high performance liquid chromatography (HPLC). Specifically, H(2)O(2) production by SMO is coupled to chemiluminescence generated by the horseradish peroxidase-catalyzed oxidation of luminol. Detailed protocols for preparation of reagents, harvesting cell lysates, generation of a standard curve, assaying of samples, and calculation of SMO enzyme activity are presented.
Collapse
Affiliation(s)
- Andrew C Goodwin
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
87
|
Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin Microbiol Rev 2010; 23:713-39. [PMID: 20930071 DOI: 10.1128/cmr.00011-10] [Citation(s) in RCA: 919] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori is a gastric pathogen that colonizes approximately 50% of the world's population. Infection with H. pylori causes chronic inflammation and significantly increases the risk of developing duodenal and gastric ulcer disease and gastric cancer. Infection with H. pylori is the strongest known risk factor for gastric cancer, which is the second leading cause of cancer-related deaths worldwide. Once H. pylori colonizes the gastric environment, it persists for the lifetime of the host, suggesting that the host immune response is ineffective in clearing this bacterium. In this review, we discuss the host immune response and examine other host factors that increase the pathogenic potential of this bacterium, including host polymorphisms, alterations to the apical-junctional complex, and the effects of environmental factors. In addition to host effects and responses, H. pylori strains are genetically diverse. We discuss the main virulence determinants in H. pylori strains and the correlation between these and the diverse clinical outcomes following H. pylori infection. Since H. pylori inhibits the gastric epithelium of half of the world, it is crucial that we continue to gain understanding of host and microbial factors that increase the risk of developing more severe clinical outcomes.
Collapse
|
88
|
Chaturvedi R, Asim M, Hoge S, Lewis ND, Singh K, Barry DP, de Sablet T, Piazuelo MB, Sarvaria AR, Cheng Y, Closs EI, Casero RA, Gobert AP, Wilson KT. Polyamines Impair Immunity to Helicobacter pylori by Inhibiting L-Arginine Uptake Required for Nitric Oxide Production. Gastroenterology 2010; 139:1686-98, 1698.e1-6. [PMID: 20600019 PMCID: PMC2967614 DOI: 10.1053/j.gastro.2010.06.060] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 05/26/2010] [Accepted: 06/24/2010] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS Helicobacter pylori-induced immune responses fail to eradicate the bacterium. Nitric oxide (NO) can kill H pylori. However, translation of inducible NO synthase (iNOS) and NO generation by H pylori-stimulated macrophages is inhibited by the polyamine spermine derived from ornithine decarboxylase (ODC), and is dependent on availability of the iNOS substrate L-arginine (L-Arg). We determined if spermine inhibits iNOS-mediated immunity by reducing L-Arg uptake into macrophages. METHODS Levels of the inducible cationic amino acid transporter (CAT)2, ODC, and iNOS were measured in macrophages and H pylori gastritis tissues. L-Arg uptake, iNOS expression, and NO levels were assessed in cells with small interfering RNA knockdown of CAT2 or ODC, and in gastric macrophages. The ODC inhibitor, α-difluoromethylornithine, was administered to H pylori-infected mice for 4 months after inoculation. RESULTS H pylori induced CAT2 and uptake of L-Arg in RAW 264.7 or primary macrophages. Addition of spermine or knockdown of CAT2 inhibited L-Arg uptake, NO production, and iNOS protein levels, whereas knockdown of ODC had the opposite effect. CAT2 and ODC were increased in mouse and human H pylori gastritis tissues and localized to macrophages. Gastric macrophages from H pylori-infected mice showed increased ODC expression, and attenuated iNOS and NO levels upon ex vivo H pylori stimulation versus cells from uninfected mice. α-Difluoromethylornithine treatment of infected mice restored L-Arg uptake, iNOS protein expression, and NO production in gastric macrophages, and significantly reduced both H pylori colonization levels and gastritis severity. CONCLUSIONS Up-regulation of ODC in gastric macrophages impairs host defense against H pylori by suppressing iNOS-derived NO production.
Collapse
Affiliation(s)
- Rupesh Chaturvedi
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN
| | - Svea Hoge
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, Department of General, Abdominal and Vascular Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Nuruddeen D. Lewis
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN
| | - Kshipra Singh
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN
| | - Daniel P. Barry
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Thibaut de Sablet
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN
| | - M. Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Aditya R. Sarvaria
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Yulan Cheng
- Division of Gastroenterology, University of Maryland School of Medicine, Baltimore, MD
| | - Ellen I. Closs
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | - Robert A. Casero
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alain P. Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, Institut National de la Recherche Agronomique, Unité de Microbiologie UR454, Saint-Genès-Champanelle, France
| | - Keith T. Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN
| |
Collapse
|
89
|
Garro AP, Chiapello LS, Baronetti JL, Masih DT. Rat eosinophils stimulate the expansion of Cryptococcus neoformans-specific CD4(+) and CD8(+) T cells with a T-helper 1 profile. Immunology 2010; 132:174-87. [PMID: 21039463 DOI: 10.1111/j.1365-2567.2010.03351.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Experimental Cryptococcus neoformans infection in rats has been shown to have similarities with human cryptococcosis, revealing a strong granulomatous response and a low susceptibility to dissemination. Moreover, it has been shown that eosinophils are components of the inflammatory response to C. neoformans infections. In this in vitro study, we demonstrated that rat peritoneal eosinophils phagocytose opsonized live yeasts of C. neoformans, and that the phenomenon involves the engagement of FcγRII and CD18. Moreover, our results showed that the phagocytosis of opsonized C. neoformans triggers eosinophil activation, as indicated by (i) the up-regulation of major histocompatibility complex (MHC) class I, MHC class II and costimulatory molecules, and (ii) an increase in interleukin (IL)-12, tumour necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) production. However, nitric oxide (NO) and hydrogen peroxide (H(2) O(2) ) synthesis by eosinophils was down-regulated after interaction with C. neoformans. Furthermore, this work demonstrated that CD4(+) and CD8(+) T lymphocytes isolated from spleens of infected rats and cultured with C. neoformans-pulsed eosinophils proliferate in an MHC class II- and class I-dependent manner, respectively, and produce important amounts of T-helper 1 (Th1) type cytokines, such as TNF-α and IFN-γ, in the absence of T-helper 2 (Th2) cytokine synthesis. In summary, the present study demonstrates that eosinophils act as fungal antigen-presenting cells and suggests that C. neoformans-loaded eosinophils might participate in the adaptive immune response.
Collapse
Affiliation(s)
- Ana P Garro
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende y Haya de la Torre, Ciudad Universitaria, Córdoba, Argentina
| | | | | | | |
Collapse
|
90
|
Hong SKS, Chaturvedi R, Blanca Piazuelo M, Coburn LA, Williams CS, Delgado AG, Casero RA, Schwartz DA, Wilson KT. Increased expression and cellular localization of spermine oxidase in ulcerative colitis and relationship to disease activity. Inflamm Bowel Dis 2010; 16:1557-66. [PMID: 20127992 PMCID: PMC2894261 DOI: 10.1002/ibd.21224] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Polyamines are important in cell growth and wound repair, but have also been implicated in inflammation-induced carcinogenesis. Polyamine metabolism includes back-conversion of spermine to spermidine by the enzyme spermine oxidase (SMO), which produces hydrogen peroxide that causes oxidative stress. In ulcerative colitis (UC), levels of spermine are decreased compared to spermidine. Therefore, we sought to determine if SMO is involved in UC. METHODS Colon biopsies and clinical information from subjects undergoing colonoscopy for evaluation of UC or colorectal cancer screening were utilized from 16 normal controls and 53 UC cases. Histopathologic disease severity was graded and the Mayo Disease Activity Index (DAI) and endoscopy subscore assessed. SMO mRNA expression was measured in frozen biopsies by TaqMan-based real-time polymerase chain reaction (PCR). Formalin-fixed tissues were used for SMO immunohistochemistry. RESULTS There was a 3.1-fold upregulation of SMO mRNA levels in UC patients compared to controls (P = 0.044), and a 3.7-fold increase in involved left colon versus paired uninvolved right colon (P < 0.001). With worsening histologic injury in UC there was a progressive increase in SMO staining of mononuclear inflammatory cells. There was a similar increase in SMO staining with worsening endoscopic disease severity and strong correlation with the DAI (r = 0.653, P < 0.001). Inflammatory cell SMO staining was increased in involved left colon versus uninvolved right colon. CONCLUSIONS SMO expression is upregulated in UC tissues, deriving from increased levels in mononuclear inflammatory cells. Dysregulated polyamine homeostasis may contribute to chronic UC by altering immune responses and increasing oxidative stress.
Collapse
Affiliation(s)
- Shih-Kuang S. Hong
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Veterans Affairs Tennessee Valley Healthcare System, Murfreesboro, Tennessee
| | - Rupesh Chaturvedi
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - M. Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lori A. Coburn
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christopher S. Williams
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alberto G. Delgado
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Robert A. Casero
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer, Baltimore, Maryland
| | - David A. Schwartz
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Keith T. Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
91
|
Peek RM, Fiske C, Wilson KT. Role of innate immunity in Helicobacter pylori-induced gastric malignancy. Physiol Rev 2010; 90:831-58. [PMID: 20664074 DOI: 10.1152/physrev.00039.2009] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori colonizes the majority of persons worldwide, and the ensuing gastric inflammatory response is the strongest singular risk factor for peptic ulceration and gastric cancer. However, only a fraction of colonized individuals ever develop clinically significant outcomes. Disease risk is combinatorial and can be modified by bacterial factors, host responses, and/or specific interactions between host and microbe. Several H. pylori constituents that are required for colonization or virulence have been identified, and their ability to manipulate the host innate immune response will be the focus of this review. Identification of bacterial and host mediators that augment disease risk has profound ramifications for both biomedical researchers and clinicians as such findings will not only provide mechanistic insights into inflammatory carcinogenesis but may also serve to identify high-risk populations of H. pylori-infected individuals who can then be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Richard M Peek
- Division of Gastroenterology, Department of Medicine, Vanderbilt University School of Medicine, and Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee 37232-2279, USA.
| | | | | |
Collapse
|
92
|
Porasuphatana S, Cao GL, Tsai P, Tavakkoli F, Huwar T, Baillie L, Cross AS, Shapiro P, Rosen GM. Bacillus anthracis endospores regulate ornithine decarboxylase and inducible nitric oxide synthase through ERK1/2 and p38 mitogen-activated protein kinases. Curr Microbiol 2010; 61:567-73. [PMID: 20440620 DOI: 10.1007/s00284-010-9654-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 04/12/2010] [Indexed: 11/26/2022]
Abstract
Interactions between Bacillus anthracis (B. anthracis) and host cells are of particular interest given the implications of anthrax as a biological weapon. Inhaled B. anthracis endospores encounter alveolar macrophages as the first line of defense in the innate immune response. Yet, the consequences of this interaction remain unclear. We have demonstrated that B. anthracis uses arginase, inherent in the endospores, to reduce the ability of macrophages to produce nitric oxide ((•)NO) from inducible nitric oxide synthase (NOS2) by competing for L-arginine, producing L-ornithine at the expense of (•)NO. In the current study, we used genetically engineered B. anthracis endospores to evaluate the contribution of germination and the lethal toxin (LT) in mediating signaling pathways responsible for the induction of NOS2 and ornithine decarboxylase (ODC), which is the rate-limiting enzyme in the conversion of L-ornithine into polyamines. We found that induction of NOS2 and ODC expression in macrophages exposed to B. anthracis occurs through the activation of p38 and ERK1/2 MAP kinases, respectively. Optimal induction of NOS2 was observed following exposure to germination-competent endospores, whereas ODC induction occurred irrespective of the endospores' germination capabilities and was more prominent in macrophages exposed to endospores lacking LT. Our findings suggest that activation of kinase signaling cascades that determine macrophage defense responses against B. anthracis infection occurs through distinct mechanisms.
Collapse
Affiliation(s)
- Supatra Porasuphatana
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Asim M, Chaturvedi R, Hoge S, Lewis ND, Singh K, Barry DP, Algood HS, de Sablet T, Gobert AP, Wilson KT. Helicobacter pylori induces ERK-dependent formation of a phospho-c-Fos c-Jun activator protein-1 complex that causes apoptosis in macrophages. J Biol Chem 2010; 285:20343-57. [PMID: 20410304 DOI: 10.1074/jbc.m110.116988] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Macrophages are essential components of innate immunity, and apoptosis of these cells impairs mucosal defense to microbes. Helicobacter pylori is a gastric pathogen that infects half of the world population and causes peptic ulcer disease and gastric cancer. The host inflammatory response fails to eradicate the organism. We have reported that H. pylori induces apoptosis of macrophages by generation of polyamines from ornithine decarboxylase (ODC), which is dependent on c-Myc as a transcriptional enhancer. We have now demonstrated that expression of c-Myc requires phosphorylation and nuclear translocation of ERK, which results in phosphorylation of c-Fos and formation of a specific activator protein (AP)-1 complex. Electromobility shift assay and immunoprecipitation revealed a previously unrecognized complex of phospho-c-Fos (pc-Fos) and c-Jun in the nucleus. Fluorescence resonance energy transfer demonstrated the interaction of pc-Fos and c-Jun. The capacity of this AP-1 complex to bind to putative AP-1 sequences was demonstrated by oligonucleotide pulldown and fluorescence polarization. Binding of the pc-Fos.c-Jun complex to the c-Myc promoter was demonstrated by chromatin immunoprecipitation. A dominant-negative c-Fos inhibited H. pylori-induced expression of c-Myc and ODC and apoptosis. H. pylori infection of mice induced a rapid infiltration of macrophages into the stomach. Concomitant apoptosis depleted these cells, and this was associated with formation of a pc-Fos.c-Jun complex. Treatment of mice with an inhibitor of ERK phosphorylation attenuated phosphorylation of c-Fos, expression of ODC, and apoptosis in gastric macrophages. A unique AP-1 complex in gastric macrophages contributes to the immune escape of H. pylori.
Collapse
Affiliation(s)
- Mohammad Asim
- Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Lewis ND, Asim M, Barry DP, Singh K, de Sablet T, Boucher JL, Gobert AP, Chaturvedi R, Wilson KT. Arginase II restricts host defense to Helicobacter pylori by attenuating inducible nitric oxide synthase translation in macrophages. THE JOURNAL OF IMMUNOLOGY 2010; 184:2572-82. [PMID: 20097867 DOI: 10.4049/jimmunol.0902436] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Helicobacter pylori infection of the stomach causes peptic ulcer disease and gastric cancer. Despite eliciting a vigorous immune response, the bacterium persists for the life of the host. An important antimicrobial mechanism is the production of NO derived from inducible NO synthase (iNOS). We have reported that macrophages can kill H. pylori in vitro by an NO-dependent mechanism, but supraphysiologic levels of the iNOS substrate l-arginine are required. Because H. pylori induces arginase activity in macrophages, we determined if this restricts NO generation by reducing l-arginine availability. Inhibition of arginase with S-(2-boronoethyl)-l-cysteine (BEC) significantly enhanced NO generation in H. pylori-stimulated RAW 264.7 macrophages by enhancing iNOS protein translation but not iNOS mRNA levels. This effect resulted in increased killing of H. pylori that was attenuated with an NO scavenger. In contrast, inhibition of arginase in macrophages activated by the colitis-inducing bacterium Citrobacter rodentium increased NO without affecting iNOS levels. H. pylori upregulated levels of arginase II (Arg2) mRNA and protein, which localized to mitochondria, whereas arginase I was not induced. Increased iNOS protein and NO levels were also demonstrated by small interfering RNA knockdown of Arg2 and in peritoneal macrophages from C57BL/6 Arg2(-/-) mice. In H. pylori-infected mice, treatment with BEC or deletion of Arg2 increased iNOS protein levels and NO generation in gastric macrophages, but treatment of Arg2(-/-) mice with BEC had no additional effect. These studies implicate Arg2 in the immune evasion of H. pylori by causing intracellular depletion of l-arginine and thus reduction of NO-dependent bactericidal activity.
Collapse
Affiliation(s)
- Nuruddeen D Lewis
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Manetti F, Cona A, Angeli L, Mugnaini C, Raffi F, Capone C, Dreassi E, Zizzari AT, Tisi A, Federico R, Botta M. Synthesis and biological evaluation of guanidino compounds endowed with subnanomolar affinity as competitive inhibitors of maize polyamine oxidase. J Med Chem 2009; 52:4774-85. [PMID: 19591488 DOI: 10.1021/jm900371z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous studies on agmatine and its derivatives suggested that the presence of hydrophobic groups on the guanidine moiety was a crucial key for inhibitory activity of maize polyamine oxidase. Accordingly, new lipophilic agmatine and iminoctadine derivatives were synthesized and tested for their ability to inhibit this enzyme. Several compounds showed an affinity in the nanomolar range, while a cyclopropylmethyl derivative of iminoctadine was found to be the most potent inhibitor of maize polyamine oxidase reported so far (Ki = 0.08 nM).
Collapse
Affiliation(s)
- Fabrizio Manetti
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via Alcide de Gasperi 2, I-53100 Siena, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Abstract
In addition to polyamine homoeostasis, it has become increasingly clear that polyamine catabolism can play a dominant role in drug response, apoptosis and the response to stressful stimuli, and contribute to the aetiology of several pathological states, including cancer. The highly inducible enzymes SSAT (spermidine/spermine N1-acetyltransferase) and SMO (spermine oxidase) and the generally constitutively expressed APAO (N1-acetylpolyamine oxidase) appear to play critical roles in many normal and disease processes. The dysregulation of polyamine catabolism frequently accompanies several disease states and suggests that such dysregulation may both provide useful insight into disease mechanism and provide unique druggable targets that can be exploited for therapeutic benefit. Each of these enzymes has the potential to alter polyamine homoeostasis in response to multiple cell signals and the two oxidases produce the reactive oxygen species H2O2 and aldehydes, each with the potential to produce pathological states. The activity of SSAT provides substrates for APAO or substrates for the polyamine exporter, thus reducing the intracellular polyamine concentration, the net effect of which depends on the magnitude and rate of any increase in SSAT. SSAT may also influence cellular metabolism via interaction with other proteins and by perturbing the content of acetyl-CoA and ATP. The goal of the present review is to cover those aspects of polyamine catabolism that have an impact on disease aetiology or treatment and to provide a solid background in this ever more exciting aspect of polyamine biology.
Collapse
Affiliation(s)
- Robert A Casero
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA.
| | | |
Collapse
|
97
|
Takahama U, Tanaka M, Oniki T, Hirota S. Reactions of thiocyanate in the mixture of nitrite and hydrogen peroxide under acidic conditions: Investigation of the reactions simulating the mixture of saliva and gastric juice. Free Radic Res 2009; 41:627-37. [PMID: 17516234 DOI: 10.1080/10715760701218566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Nitrite and SCN(-) in saliva can mixes with H(2)O(2) in the stomach. The mixing can result in the formation of ONOOH. It is not yet known how salivary SCN(-) reacts with ONOOH. An objective of the present study was to elucidate the reaction between ONOOH and SCN(-). In nitrite/H(2)O(2) systems at pH 2, SCN(-) inhibited the consumption of nitrite and the formation of O(3)(-). SCN(-) enhanced the decomposition of ONOOH and H(2)O(2) in HNO(2)/H(2)O(2) systems. Accompanying the reactions, sulfate was formed, suggesting that ONOOH oxidized SCN(-). SCN(-) inhibited the nitration of phenolics induced by HNO(2)/H(2)O(2). The inhibition is discussed taking SCN(-)-dependent reduction of ONOOH to HNO(2) into consideration. SCN(-) also inhibited H(2)O(2)-induced consumption of nitrite and nitration of phenolics in acidified saliva. The result obtained in this study suggests that salivary SCN(-) can reduce ONOOH to O(2)(-)/HNO(2) inhibiting nitrating reactions in the stomach.
Collapse
Affiliation(s)
- Umeo Takahama
- Department of Bioscience, Kyushu Dental College, Kitakyushu, Japan.
| | | | | | | |
Collapse
|
98
|
Seong J, Piao HH, Ryu PY, Kim YU, Choy HE, Hong Y. Expression of c-Myc is related to host cell death following Salmonella typhimurium infection in macrophage. J Microbiol 2009; 47:214-9. [PMID: 19412607 DOI: 10.1007/s12275-008-0308-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 02/05/2009] [Indexed: 10/20/2022]
Abstract
It has been known that ornithine decarboxylase (ODC) induced by the binding of c-Myc to odc gene is closely linked to cell death. Here, we investigated the relationship between their expressions and cell death in macrophage cells following treatment with Salmonella typhimurium or lipopolysaccharide (LPS). ODC expression was increased by bacteria or LPS and repressed by inhibitors against mitogen-activated protein kinases (MAPKs) in Toll-like receptor 4 (TLR4) signaling pathway. In contrast, c-Myc protein level was increased after treatment with bacteria, but not by treatment with LPS or heat-killed bacteria although both bacteria and LPS increased the levels of c-myc mRNA to a similar extent. c-Myc protein level is dependent upon bacterial invasion because treatment with cytochalasin D (CCD), inhibitors of endocytosis, decreased c-Myc protein level. The cell death induced by bacteria was significantly decreased after treatment of CCD or c-Myc inhibitor, indicating that cell death by S. typhimurium infection is related to c-Myc, but not ODC. Consistent with this conclusion, treatment with bacteria mutated to host invasion did not increase c-Myc protein level and cell death rate. Taken together, it is suggested that induction of c-Myc by live bacterial infection is directly related to host cell death.
Collapse
Affiliation(s)
- Jihyoun Seong
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Gwangju, 501-746, Republic of Korea
| | | | | | | | | | | |
Collapse
|
99
|
Amundsen SK, Fero J, Salama NR, Smith GR. Dual nuclease and helicase activities of Helicobacter pylori AddAB are required for DNA repair, recombination, and mouse infectivity. J Biol Chem 2009; 284:16759-16766. [PMID: 19395381 DOI: 10.1074/jbc.m109.005587] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Helicobacter pylori infection of the human stomach is associated with disease-causing inflammation that elicits DNA damage in both bacterial and host cells. Bacteria must repair their DNA to persist. The H. pylori AddAB helicase-exonuclease is required for DNA repair and efficient stomach colonization. To dissect the role of each activity in DNA repair and infectivity, we altered the AddA and AddB nuclease (NUC) domains and the AddA helicase (HEL) domain by site-directed mutagenesis. Extracts of Escherichia coli expressing H. pylori addA(NUC)B or addAB(NUC) mutants unwound DNA but had approximately half of the exonuclease activity of wild-type AddAB; the addA(NUC)B(NUC) double mutant lacked detectable nuclease activity but retained helicase activity. Extracts with AddA(HEL)B lacked detectable helicase and nuclease activity. H. pylori with the single nuclease domain mutations were somewhat less sensitive to the DNA-damaging agent ciprofloxacin than the corresponding deletion mutant, suggesting that residual nuclease activity promotes limited DNA repair. The addA(NUC) and addA(HEL) mutants colonized the stomach less efficiently than the wild type; addB(NUC) showed partial attenuation. E. coli DeltarecBCD expressing H. pylori addAB was recombination-deficient unless H. pylori recA was also expressed, suggesting a species-specific interaction between AddAB and RecA and also that H. pylori AddAB participates in both DNA repair and recombination. These results support a role for both the AddAB nuclease and helicase in DNA repair and promoting infectivity.
Collapse
Affiliation(s)
| | - Jutta Fero
- Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Nina R Salama
- Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Gerald R Smith
- From the Divisions of Basic Sciences, Seattle, Washington 98109.
| |
Collapse
|
100
|
Yan F, Cao H, Chaturvedi R, Krishna U, Hobbs SS, Dempsey PJ, Peek RM, Cover TL, Washington MK, Wilson KT, Polk DB. Epidermal growth factor receptor activation protects gastric epithelial cells from Helicobacter pylori-induced apoptosis. Gastroenterology 2009; 136:1297-1307, e1-3. [PMID: 19250983 PMCID: PMC2878739 DOI: 10.1053/j.gastro.2008.12.059] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2008] [Revised: 12/15/2008] [Accepted: 12/29/2008] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Helicobacter pylori infection disrupts the balance between gastric epithelial cell proliferation and apoptosis, which is likely to lower the threshold for the development of gastric adenocarcinoma. H pylori infection is associated with epidermal growth factor (EGF) receptor (EGFR) activation through metalloproteinase-dependent release of EGFR ligands in gastric epithelial cells. Because EGFR signaling regulates cell survival, we investigated whether activation of EGFR following H pylori infection promotes gastric epithelial survival. METHODS Mouse conditionally immortalized stomach epithelial cells (ImSt) and a human gastric epithelial cell line, AGS cells, as well as wild-type and kinase-defective EGFR (EGFRwa2) mice, were infected with the H pylori cag+ strain 7.13. Apoptosis, caspase activity, EGFR activation (phosphorylation), and EGFR downstream targets were analyzed. RESULTS Inhibiting EGFR kinase activity or decreasing EGFR expression significantly increased H pylori-induced apoptosis in ImSt. Blocking H pylori-induced EGFR activation with a heparin-binding (HB)-EGF neutralizing antibody or abrogating a disintegrin and matrix metalloproteinase-17 (ADAM-17) expression increased apoptosis of H pylori-infected AGS and ImSt, respectively. Conversely, pretreatment of ImSt with HB-EGF completely blocked H pylori-induced apoptosis. H pylori infection stimulated gastric epithelial cell apoptosis in EGFRwa2 but not in wild-type mice. Furthermore, H pylori-induced EGFR phosphorylation stimulated phosphotidylinositol-3'-kinase-dependent activation of the antiapoptotic factor Akt, increased expression of the antiapoptotic factor Bcl-2, and decreased expression of the proapoptotic factor Bax. CONCLUSIONS EGFR activation by H pylori infection has an antiapoptotic effect in gastric epithelial cells that appears to involve Akt signaling and Bcl family members. These findings provide important insights into the mechanisms of H pylori-associated tumorigenesis.
Collapse
Affiliation(s)
- Fang Yan
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University School of Medicine, Nashville, TN
| | - Hanwei Cao
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University School of Medicine, Nashville, TN
| | - Rupesh Chaturvedi
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN
| | - Uma Krishna
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Stuart S. Hobbs
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University School of Medicine, Nashville, TN
| | - Peter J. Dempsey
- Departments of Pediatrics and Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Richard M. Peek
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Timothy L. Cover
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN
| | - M. Kay Washington
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, TN
| | - Keith T. Wilson
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN
| | - D. Brent Polk
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University School of Medicine, Nashville, TN, Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN,To whom correspondence should be addressed: D. Brent Polk, M.D., Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, 2215 Garland Avenue, MRB IV, Room: 1025, Nashville, TN 37232-0696, Telephone: 615-322-7449, Fax: 615-343-5323,
| |
Collapse
|