51
|
Ghosh C, Mukherjee S, Seal M, Dey SG. Peroxidase to Cytochrome b Type Transition in the Active Site of Heme-Bound Amyloid β Peptides Relevant to Alzheimer’s Disease. Inorg Chem 2016; 55:1748-57. [DOI: 10.1021/acs.inorgchem.5b02683] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Chandradeep Ghosh
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Soumya Mukherjee
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Manas Seal
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
52
|
Corti P, Ieraci M, Tejero J. Characterization of zebrafish neuroglobin and cytoglobins 1 and 2: Zebrafish cytoglobins provide insights into the transition from six-coordinate to five-coordinate globins. Nitric Oxide 2015; 53:22-34. [PMID: 26721561 DOI: 10.1016/j.niox.2015.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/11/2015] [Accepted: 12/19/2015] [Indexed: 12/30/2022]
Abstract
Neuroglobin (Ngb) and cytoglobin (Cygb) are two six-coordinate heme proteins of unknown physiological function. Although studies on the mammalian proteins have elucidated aspects of Ngb and Cygb biophysics and indicated potential functions, the properties of non-mammalian Ngbs and Cygbs are largely uncharacterized. We have expressed the recombinant zebrafish proteins Ngb, Cygb1, and Cygb2 in Escherichia coli and characterized their nitrite reduction rates, spectral properties, autoxidation rate constants, redox potentials and lipid binding properties. The three zebrafish proteins can catalyze the reduction of nitrite to nitric oxide with a broad range of reaction rate constants. (Ngb, 0.68 ± 0.04 M(-1) s(-1); Cygb1, 28.6 ± 3.1 M(-1) s(-1); Cygb2, 0.94 ± 0.18 M(-1) s(-1)). We observe that zebrafish Ngb and Cygb2 have comparable spectral features to those of human Ngb and Cygb, consistent with a six-coordinate heme, whereas unexpectedly Cygb1 has a five-coordinate heme, a slower autoxidation and in general has properties more akin to oxygen transport proteins. In agreement with a possible oxygen carrier and nitrite reductase role, we detect mRNA transcript for Cygb1 but not Cygb2 or Ngb in zebrafish blood. Unlike human Cygb, neither of the zebrafish globins binds oleic acid with high affinity. This finding suggests that lipid binding may be a trait acquired later during evolution and not an ancestral property of cytoglobins. Altogether, our results uncover unexpected properties of zebrafish globins and reveal the pivotal role of cytoglobins in the transition of heme globins from six-coordinate to five-coordinate oxygen carriers and nitrite reductases.
Collapse
Affiliation(s)
- Paola Corti
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Matthew Ieraci
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jesús Tejero
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
53
|
Gardner PR, Gardner DP, Gardner AP. Globins Scavenge Sulfur Trioxide Anion Radical. J Biol Chem 2015; 290:27204-27214. [PMID: 26381408 DOI: 10.1074/jbc.m115.679621] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Indexed: 01/16/2023] Open
Abstract
Ferrous myoglobin was oxidized by sulfur trioxide anion radical (STAR) during the free radical chain oxidation of sulfite. Oxidation was inhibited by the STAR scavenger GSH and by the heme ligand CO. Bimolecular rate constants for the reaction of STAR with several ferrous globins and biomolecules were determined by kinetic competition. Reaction rate constants for myoglobin, hemoglobin, neuroglobin, and flavohemoglobin are large at 38, 120, 2,600, and ≥ 7,500 × 10(6) m(-1) s(-1), respectively, and correlate with redox potentials. Measured rate constants for O2, GSH, ascorbate, and NAD(P)H are also large at ∼100, 10, 130, and 30 × 10(6) m(-1) s(-1), respectively, but nevertheless allow for favorable competition by globins and a capacity for STAR scavenging in vivo. Saccharomyces cerevisiae lacking sulfite oxidase and deleted of flavohemoglobin showed an O2-dependent growth impairment with nonfermentable substrates that was exacerbated by sulfide, a precursor to mitochondrial sulfite formation. Higher O2 exposures inactivated the superoxide-sensitive mitochondrial aconitase in cells, and hypoxia elicited both aconitase and NADP(+)-isocitrate dehydrogenase activity losses. Roles for STAR-derived peroxysulfate radical, superoxide radical, and sulfo-NAD(P) in the mechanism of STAR toxicity and flavohemoglobin protection in yeast are suggested.
Collapse
|
54
|
A Futile Redox Cycle Involving Neuroglobin Observed at Physiological Temperature. Int J Mol Sci 2015; 16:20082-94. [PMID: 26305249 PMCID: PMC4581342 DOI: 10.3390/ijms160820082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/01/2015] [Accepted: 08/09/2015] [Indexed: 12/22/2022] Open
Abstract
Previous studies identifying the potential anti-apoptotic role of neuroglobin raise the question as to how cells might employ neuroglobin to avoid the apoptotic impact of acute hypoxia whilst also avoiding chronic enhancement of tumour formation. We show that under likely physiological conditions neuroglobin can take part in a futile redox cycle. Determination of the rate constants for each of the steps in the cycle allows us to mathematically model the steady state concentration of the active anti-apoptotic ferrous form of neuroglobin under various conditions. Under likely normal physiological conditions neuroglobin is shown to be present in the ferrous state at approximately 30% of its total cellular concentration. Under hypoxic conditions this rapidly rises to approximately 80%. Temporal analysis of this model indicates that the transition from low concentrations to high concentration of ferrous neuroglobin occurs on the seconds time scale. These findings indicate a potential control model for the anti-apoptotic activity of neuroglobin, under likely physiological conditions, whereby, in normoxic conditions, the anti-apoptotic activity of neuroglobin is maintained at a low level, whilst immediately a transition occurs to a hypoxic situation, as might arise during stroke, the anti-apoptotic activity is drastically increased. In this way the cell avoids unwanted increased oncogenic potential under normal conditions, but the rapid activation of neuroglobin provides anti-apoptotic protection in times of acute hypoxia.
Collapse
|
55
|
Cytoglobin as a Biomarker in Cancer: Potential Perspective for Diagnosis and Management. BIOMED RESEARCH INTERNATIONAL 2015; 2015:824514. [PMID: 26339645 PMCID: PMC4538418 DOI: 10.1155/2015/824514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 05/02/2015] [Indexed: 12/30/2022]
Abstract
The search for biomarkers to detect the earliest glimpse of cancer has been one of the primary objectives of cancer research initiatives. These endeavours, in spite of constant clinical challenges, are now more focused as early cancer detection provides increased opportunities for different interventions and therapies, with higher potential for improving patient survival and quality of life. With the progress of the omics technologies, proteomics and metabolomics are currently being used for identification of biomarkers. In this line, cytoglobin (Cygb), a ubiquitously found protein, has been actively reviewed for its functional role. Cytoglobin is dynamically responsive to a number of insults, namely, fibrosis, oxidative stress, and hypoxia. Recently, it has been reported that Cygb is downregulated in a number of malignancies and that an induced overexpression reduces the proliferative characteristics of cancer cells. Thus, the upregulation of cytoglobin can be indicative of a tumour suppressor ability. Nevertheless, without a comprehensive outlook of the molecular and functional role of the globin, it will be most unlikely to consider cytoglobin as a biomarker for early detection of cancer or as a therapeutic option. This review provides an overview of the proposed role of cytoglobin and explores its potential functional role as a biomarker for cancer and other diseases.
Collapse
|
56
|
Roy J, Sen Santara S, Adhikari A, Mukherjee A, Adak S. Control of catalysis in globin coupled adenylate cyclase by a globin-B domain. Arch Biochem Biophys 2015; 579:85-90. [PMID: 26095616 DOI: 10.1016/j.abb.2015.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 10/23/2022]
Abstract
The globin coupled heme containing adenylate cyclase from Leishmania major (HemAC-Lm) has two globin domains (globin-A and globin-B). Globin-B domain (210-360 amino acids) may guide the interaction between globin-A and adenylate cyclase domains for the regulation of catalysis. We investigated the role of globin-B domain in HemAC-Lm by constructing a series of mutants namely Δ209 (209 amino acids deleted), Δ360 (360 amino acids deleted), H161A, H311A and H311A-Δ209. Spectroscopic data suggest that the Δ209 and H311A-Δ209 proteins to be Fe(2+)-O2 form and apo form, respectively, indicating that His311 residue in the globin-B domain is crucial for heme binding in Δ209 protein. However, the H311A mutant is still of the Fe(2+)-O2 form whereas H161A mutant shows the apo form, indicating that only His161 residue in the globin-A domain is responsible for heme binding in full length enzyme. cAMP measurements suggest that the activities of Δ360 and Δ209 proteins were ∼10 and ∼1000 times lesser than full length enzyme, respectively, leading to the fact that globin-B domain inhibited catalysis rather than activation in absence of globin-A domain. These data suggest that the O2 bound globin-A domain in HemAC-Lm allows the best cooperation of the catalytic domain interactions to generate optimum cAMP.
Collapse
Affiliation(s)
- Jayasree Roy
- Division of Structural Biology and Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Sumit Sen Santara
- Division of Structural Biology and Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Ayan Adhikari
- Division of Structural Biology and Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Aditi Mukherjee
- Division of Structural Biology and Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Subrata Adak
- Division of Structural Biology and Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
57
|
Tejero J, Sparacino-Watkins CE, Ragireddy V, Frizzell S, Gladwin MT. Exploring the mechanisms of the reductase activity of neuroglobin by site-directed mutagenesis of the heme distal pocket. Biochemistry 2015; 54:722-33. [PMID: 25554946 PMCID: PMC4410703 DOI: 10.1021/bi501196k] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Neuroglobin
(Ngb) is a six-coordinate globin that can catalyze
the reduction of nitrite to nitric oxide. Although this reaction is
common to heme proteins, the molecular interactions in the heme pocket
that regulate this reaction are largely unknown. We have shown that
the H64L Ngb mutation increases the rate of nitrite reduction by 2000-fold
compared to that of wild-type Ngb [Tiso, M., et al. (2011) J. Biol. Chem. 286, 18277–18289]. Here we explore
the effect of distal heme pocket mutations on nitrite reduction. For
this purpose, we have generated mutations of Ngb residues Phe28(B10),
His64(E7), and Val68(E11). Our results indicate a dichotomy in the
reactivity of deoxy five- and six-coordinate globins toward nitrite.
In hemoglobin and myoglobin, there is a correlation between faster
rates and more negative potentials. However, in Ngb, reaction rates
are apparently related to the distal pocket volume, and redox potential
shows a poor relationship with the rate constants. This suggests a
relationship between the nitrite reduction rate and heme accessibility
in Ngb, particularly marked for His64(E7) mutants. In five-coordinate
globins, His(E7) facilitates nitrite reduction, likely through proton
donation. Conversely, in Ngb, the reduction mechanism does not rely
on the delivery of a proton from the histidine side chain, as His64
mutants show the fastest reduction rates. In fact, the rate observed
for H64A Ngb (1120 M–1 s–1) is
to the best of our knowledge the fastest reported for a heme nitrite
reductase. These differences may be related to a differential stabilization
of the iron–nitrite complexes in five- and six-coordinate globins.
Collapse
Affiliation(s)
- Jesús Tejero
- Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | | | | | | | | |
Collapse
|
58
|
Chakraborty S, John R, Nag A. Cytoglobin in tumor hypoxia: novel insights into cancer suppression. Tumour Biol 2014; 35:6207-19. [PMID: 24816917 DOI: 10.1007/s13277-014-1992-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 04/17/2014] [Indexed: 01/19/2023] Open
Abstract
Emerging new and intriguing roles of cytoglobin (Cygb) have attracted considerable attention of cancer researchers in recent years. Hypoxic upregulation of Cygb as well as its altered expression in various human cancers suggest another possible role of this newly discovered globin in tumor cell response under low oxygen tension. Since tumor hypoxia is strongly associated with malignant progression of disease and poor treatment response, it constitutes an area of paramount importance for rational design of cancer selective therapies. However, the mechanisms involved during this process are still elusive. This review outlines the current understanding of Cygb's involvement in tumor hypoxia and discusses its role in tumorigenesis. A better perception of Cygb in tumor hypoxia response is likely to open novel perspectives for future tumor therapy.
Collapse
Affiliation(s)
- Sankalpa Chakraborty
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India
| | | | | |
Collapse
|
59
|
Affiliation(s)
- Luisa B. Maia
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José J. G. Moura
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
60
|
Disulfide bonds regulate binding of exogenous ligand to human cytoglobin. J Inorg Biochem 2014; 135:20-7. [PMID: 24632414 DOI: 10.1016/j.jinorgbio.2014.02.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/19/2014] [Accepted: 02/19/2014] [Indexed: 01/17/2023]
Abstract
Cytoglobin (Cgb) was discovered a decade ago and is a fourth member of the group of hexacoordinated globin-folded proteins. Although some crystal structures have been reported and several functions have been proposed for Cgb, its physiological role remains uncertain. In this study, we measured cyanide binding to the ferric state of the wild-type (WT) Cgb, and found that the binding consisted of multiple steps. These results indicated that Cgb may be comprised of several forms, and the presence of monomers, dimers, and tetramers was subsequently confirmed by SDS-PAGE. Remarkably, each species contained two distinguishable forms, and, in the monomer, analyses of alternative cysteine states suggested the presence of an intramolecular disulfide bond (monomer SS form) and a structure with unpaired thiol groups (monomer SH form). These confirmed that forms were separated by gel-exclusion chromatography, and that the cyanide binding of the separated fractions was again measured; they showed different affinities for cyanide, with the monomer fraction showing the highest affinity. In addition, the ferrous state in each fraction showed distinct carbon monoxide (CO)-binding properties, and the affinities for cyanide and CO suggested a linear correlation. Furthermore, we also prepared several variants involving the two cysteine residues. The C38S and C83S variants showed a binding affinity for cyanide similar to the value for the monomer SH form, and hence the fraction with the highest affinity for exogenous ligands was designated as a monomer SS form. We concluded that polymerization could be a mechanism that triggers the exertion of various physiological functions of this protein and that an appropriate disulfide bond between the two cysteine residues was critical for regulating the binding affinity of Cgb, which can act as a ROS scavenger, for exogenous ligands.
Collapse
|
61
|
Li WD, Sun Q, Zhang XS, Wang CX, Li S, Li W, Hang CH. Expression and cell distribution of neuroglobin in the brain tissue after experimental subarachnoid hemorrhage in rats: a pilot study. Cell Mol Neurobiol 2014; 34:247-55. [PMID: 24281943 DOI: 10.1007/s10571-013-0008-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 11/17/2013] [Indexed: 12/30/2022]
Abstract
Neuroglobin (Ngb) is a member of the globin superfamily expressed mainly in the nervous system and retina of vertebrates. Accumulated evidence has clearly demonstrated that Ngb has a neuro-protective role enhancing cell viability under hypoxia and other types of oxidative stress. It was suggested that oxidant stress could play an important role in neuronal injury after subarachnoid hemorrhage (SAH). The present study aims to examine the expression of Ngb in the temporal cortex and its cellular localization after SAH. We used a prechiasmatic cistern model of SAH. Ngb expression was examined at 3, 6, 12, 24, 48, and 72 h after SAH by western blot analysis and real-time polymerase chain reaction (PCR). Immunohistochemistry and immunofluorescence were performed to detect the localization of Ngb. Real-time PCR demonstrated that Ngb mRNA levels increased from 3 h after SAH, peaked at 6 h. Western blot showed Ngb protein levels were significantly increased in SAH groups in the temporal cortex and reached the peak at 24 h after SAH. The immunohistochemical staining demonstrated that Ngb was weakly expressed in the cortex in the control group while the enhanced expression of Ngb could be detected in the SAH groups. In addition, immunofluorescence results revealed that the over-expressed Ngb was located in the neuronal and microglia cell cytoplasm. These findings indicated that Ngb might play an important neuro-protective effect after SAH.
Collapse
Affiliation(s)
- Wei-De Li
- Department of Neurosurgery, School of Medicine, Southern Medical University (Guangzhou), Jinling Hospital, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu Province, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
62
|
Roy J, Sen Santara S, Bose M, Mukherjee S, Saha R, Adak S. The ferrous–dioxy complex of Leishmania major globin coupled heme containing adenylate cyclase: The role of proximal histidine on its stability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:615-22. [DOI: 10.1016/j.bbapap.2014.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 11/16/2022]
|
63
|
Cytoglobin modulates myogenic progenitor cell viability and muscle regeneration. Proc Natl Acad Sci U S A 2013; 111:E129-38. [PMID: 24367119 DOI: 10.1073/pnas.1314962111] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mammalian skeletal muscle can remodel, repair, and regenerate itself by mobilizing satellite cells, a resident population of myogenic progenitor cells. Muscle injury and subsequent activation of myogenic progenitor cells is associated with oxidative stress. Cytoglobin is a hemoprotein expressed in response to oxidative stress in a variety of tissues, including striated muscle. In this study, we demonstrate that cytoglobin is up-regulated in activated myogenic progenitor cells, where it localizes to the nucleus and contributes to cell viability. siRNA-mediated depletion of cytoglobin from C2C12 myoblasts increased levels of reactive oxygen species and apoptotic cell death both at baseline and in response to stress stimuli. Conversely, overexpression of cytoglobin reduced reactive oxygen species levels, caspase activity, and cell death. Mice in which cytoglobin was knocked out specifically in skeletal muscle were generated to examine the role of cytoglobin in vivo. Myogenic progenitor cells isolated from these mice were severely deficient in their ability to form myotubes as compared with myogenic progenitor cells from wild-type littermates. Consistent with this finding, the capacity for muscle regeneration was severely impaired in mice deficient for skeletal-muscle cytoglobin. Collectively, these data demonstrate that cytoglobin serves an important role in muscle repair and regeneration.
Collapse
|
64
|
Nicolis S, Monzani E, Pezzella A, Ascenzi P, Sbardella D, Casella L. Neuroglobin Modification by Reactive Quinone Species. Chem Res Toxicol 2013; 26:1821-31. [DOI: 10.1021/tx4001896] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Stefania Nicolis
- Dipartimento
di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Enrico Monzani
- Dipartimento
di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Alessandro Pezzella
- Dipartimento
di Scienze Chimiche, Università di Napoli ‘Federico II’, Via Cintia 4, 80126 Napoli, Italy
| | - Paolo Ascenzi
- Laboratorio
Interdipartimentale di Microscopia Elettronica, Università Roma Tre, Via della Vasca Navale 79, 00146 Roma, Italy
| | - Diego Sbardella
- Dipartimento
di Scienze Cliniche e Medicina Traslazionale, Università di Roma ‘Tor Vergata’, Via Montpellier 1, 00133 Roma, Italy
- Consorzio Interuniversitario per la Ricerca sulla Chimica dei Metalli nei Sistemi Biologici, Via C. Ulpiani
27, 70126 Bari, Italy
| | - Luigi Casella
- Dipartimento
di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
- Consorzio Interuniversitario per la Ricerca sulla Chimica dei Metalli nei Sistemi Biologici, Via C. Ulpiani
27, 70126 Bari, Italy
| |
Collapse
|
65
|
Damsgaard C, Storz JF, Hoffmann FG, Fago A. Hemoglobin isoform differentiation and allosteric regulation of oxygen binding in the turtle, Trachemys scripta. Am J Physiol Regul Integr Comp Physiol 2013; 305:R961-7. [PMID: 23986362 PMCID: PMC3798770 DOI: 10.1152/ajpregu.00284.2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/20/2013] [Indexed: 01/09/2023]
Abstract
When freshwater turtles acclimatize to winter hibernation, there is a gradual transition from aerobic to anaerobic metabolism, which may require adjustments of blood O2 transport before turtles become anoxic. Here, we report the effects of protons, anionic cofactors, and temperature on the O2-binding properties of isolated hemoglobin (Hb) isoforms, HbA and HbD, in the turtle Trachemys scripta. We determined the primary structures of the constituent subunits of the two Hb isoforms, and we related the measured functional properties to differences in O2 affinity between untreated hemolysates from turtles that were acclimated to normoxia and anoxia. Our data show that HbD has a consistently higher O2 affinity compared with HbA, whereas Bohr and temperature effects, as well as thiol reactivity, are similar. Although sequence data show amino acid substitutions at two known β-chain ATP-binding site positions, we find high ATP affinities for both Hb isoforms, suggesting an alternative and stronger binding site for ATP. The high ATP affinities indicate that, although ATP levels decrease in red blood cells of turtles acclimating to anoxia, the O2 affinity would remain largely unchanged, as confirmed by O2-binding measurements of untreated hemolysates from normoxic and anoxic turtles. Thus, the increase in blood-O2 affinity that accompanies winter acclimation is mainly attributable to a decrease in temperature rather than in concentrations of organic phosphates. This is the first extensive study on freshwater turtle Hb isoforms, providing molecular evidence for adaptive changes in O2 transport associated with acclimation to severe hypoxia.
Collapse
|
66
|
Globin-coupled heme containing oxygen sensor soluble adenylate cyclase in Leishmania prevents cell death during hypoxia. Proc Natl Acad Sci U S A 2013; 110:16790-5. [PMID: 24082109 DOI: 10.1073/pnas.1304145110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Globin and adenylate cyclase play individually numerous crucial roles in eukaryotic organisms. Comparison of the amino acid sequences of globins and adenylate cyclase from prokaryotic to eukaryotic organisms suggests that they share an early common ancestor, even though these proteins execute different functions in these two kingdoms. The latest studies of biological signaling molecules in both prokaryotic and eukaryotic organisms have discovered a new class of heme-containing proteins that act as sensors. The protein of the globin family is still unknown in the trypanosomatid parasites, Trypanosome and Leishmania. In addition, globin-coupled heme containing adenylate cyclase is undescribed in the literature. Here we report a globin-coupled heme containing adenylate cyclase (HemAC-Lm) in the unicellular eukaryotic organism Leishmania. The protein exhibits spectral properties similar to neuroglobin and cytoglobin. Localization studies and activity measurements demonstrate that the protein is present in cytosol and oxygen directly stimulates adenylate cyclase activity in vivo and in vitro. Gene knockdown and overexpression studies suggest that O2-dependent cAMP signaling via protein kinase A plays a fundamental role in cell survival through suppression of oxidative stress under hypoxia. In addition, the enzyme-dependent cAMP generation shows a stimulatory as well as inhibitory role in cell proliferation of Leishmania promastigotes during normoxia. Our work begins to clarify how O2-dependent cAMP generation by adenylate cyclase is likely to function in cellular adaptability under various O2 tensions.
Collapse
|
67
|
Rahaman MM, Straub AC. The emerging roles of somatic globins in cardiovascular redox biology and beyond. Redox Biol 2013; 1:405-10. [PMID: 24191233 PMCID: PMC3814953 DOI: 10.1016/j.redox.2013.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 12/28/2022] Open
Abstract
The vertebrate globins are a group of hemoproteins with the intrinsic capacity to regulate gaseous ligands and redox signaling required for cardiovascular biology. This graphical review will provide a comprehensive synopsis of somatic cardiovascular globins focusing on expression, function and redox signaling - an emerging area in both physiology and disease.
Collapse
Affiliation(s)
- Mizanur M. Rahaman
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Adam C. Straub
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15216, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15216, USA
- Correspondence to: University of Pittsburgh School of Medicine, Vascular Medicine Institute, E1254 Biomedical Science Tower, 200 Lothrop St., Pittsburgh, PA 15216, USA. Tel.: +1 412 648 7097; fax: +1 412 648 5980.
| |
Collapse
|
68
|
Pietra F. From Dioxygen Storing to Dioxygen Sensing with Neuroglobins: An Insight from Molecular Mechanics. Chem Biodivers 2013; 10:963-75. [DOI: 10.1002/cbdv.201300060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Indexed: 11/06/2022]
|
69
|
Abbruzzetti S, Spyrakis F, Bidon-Chanal A, Luque FJ, Viappiani C. Ligand migration through hemeprotein cavities: insights from laser flash photolysis and molecular dynamics simulations. Phys Chem Chem Phys 2013; 15:10686-701. [PMID: 23733145 DOI: 10.1039/c3cp51149a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The presence of cavities and tunnels in the interior of proteins, in conjunction with the structural plasticity arising from the coupling to the thermal fluctuations of the protein scaffold, has profound consequences on the pathways followed by ligands moving through the protein matrix. In this perspective we discuss how quantitative analysis of experimental rebinding kinetics from laser flash photolysis, trapping of unstable conformational states by embedding proteins within the nanopores of silica gels, and molecular simulations can synergistically converge to gain insight into the migration mechanism of ligands. We show how the evaluation of the free energy landscape for ligand diffusion based on the outcome of computational techniques can assist the definition of sound reaction schemes, leading to a comprehensive understanding of the broad range of chemical events and time scales that encompass the transport of small ligands in hemeproteins.
Collapse
Affiliation(s)
- Stefania Abbruzzetti
- Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Parma, viale delle Scienze 7A, 43124, Parma, Italy
| | | | | | | | | |
Collapse
|
70
|
Hundahl CA, Elfving B, Müller HK, Hay-Schmidt A, Wegener G. A gene-environment study of cytoglobin in the human and rat hippocampus. PLoS One 2013; 8:e63288. [PMID: 23696808 PMCID: PMC3655970 DOI: 10.1371/journal.pone.0063288] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/02/2013] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Cytoglobin (Cygb) was discovered a decade ago as the fourth vertebrate heme-globin. The function of Cygb is still unknown, but accumulating evidence from in vitro studies point to a putative role in scavenging of reactive oxygen species and nitric oxide metabolism and in vivo studies have shown Cygb to be up regulated by hypoxic stress. This study addresses three main questions related to Cygb expression in the hippocampus: 1) Is the rat hippocampus a valid neuroanatomical model for the human hippocampus; 2) What is the degree of co-expression of Cygb and neuronal nitric oxide synthase (nNOS) in the rat hippocampus; 3) The effect of chronic restraint stress (CRS) on Cygb and nNOS expression. METHODS Immunohistochemistry was used to compare Cygb expression in the human and rat hippocampi as well as Cygb and nNOS co-expression in the rat hippocampus. Transcription and translation of Cygb and nNOS were investigated using quantitative real-time polymerase chain reaction (real-time qPCR) and Western blotting on hippocampi from Flinders (FSL/FRL) rats exposed to CRS. PRINCIPAL FINDINGS Cygb expression pattern in the human and rat hippocampus was found to be similar. A high degree of Cygb and nNOS co-expression was observed in the rat hippocampus. The protein levels of nNOS and Cygb were significantly up-regulated in FSL animals in the dorsal hippocampus. In the ventral hippocampus Cygb protein levels were significantly up-regulated in the FSL compared to the FRL, following CRS. SIGNIFICANCE The rodent hippocampus can be used to probe questions related to Cygb protein localization in human hippocampus. The high degree of Cygb and nNOS co-expression gives support for Cygb involvement in nitric oxide metabolism. CRS induced Cygb and nNOS expression indicating that Cygb expression is stress responsive. Cygb and nNOS may be important in physiological response to stress.
Collapse
Affiliation(s)
- Christian Ansgar Hundahl
- Centre of Excellence for Translational Medicine, University of Tartu, Tartu, Estonia
- Department of Neuroscience and Pharmacology, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Heidi Kaastrup Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anders Hay-Schmidt
- Department of Neuroscience and Pharmacology, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Unit for Drug Research and Development, School of Pharmacy (Pharmacology), North-West University, Potchefstroom, South Africa
| |
Collapse
|
71
|
Tanaka F, Tominaga K, Sasaki E, Sogawa M, Yamagami H, Tanigawa T, Shiba M, Watanabe K, Watanabe T, Fujiwara Y, Kawada N, Yoshizato K, Arakawa T. Cytoglobin may be involved in the healing process of gastric mucosal injuries in the late phase without angiogenesis. Dig Dis Sci 2013; 58:1198-206. [PMID: 23306842 DOI: 10.1007/s10620-012-2514-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/03/2012] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIMS Cytoglobin (Cygb) is the newest globin family and is upregulated during hypoxia to maintain the oxygen status. Herein, we investigated Cygb expression in both acute and chronic gastric mucosal injuries. METHODS Acute gastric mucosal injuries in rats were produced by oral administration of indomethacin, followed by sacrifice at 1, 3, 6, 24, and 48 h. Gastric ulcer was produced by acetic acid, followed by sacrifice on days 3, 7, 11, 18, and 25. Each protein expression of Cygb and hypoxia-inducible factor (HIF)-1α was evaluated by western blotting. We measured vascular endothelial growth factor (VEGF) mRNA by RT-PCR and examined localization of Cygb by immunofluorescence. RESULTS In indomethacin-induced injury, Cygb protein was significantly increased at 24 h. In ulcerated tissues, HIF-1α protein was significantly increased on days 7 and 11 (1.83 ± 0.11 and 2.12 ± 0.19 folds, respectively, p < 0.05 and 0.01), which corresponded to the early healing phase. In contrast, Cygb protein was significantly increased on days 11 and 18 (1.87 ± 0.13 and 1.60 ± 0.06 folds, respectively, p < 0.05), which demonstrated late phase. Though these proteins peaked on day 11, VEGF mRNA was gradually increased from day 11 to 18. Cygb was expressed in fibroblasts and myofibroblasts in both acute and chronic models. Cygb and HIF-1α were abundantly colocalized at the ulcer margin before angiogenesis development. However, faint localization was observed with angiogenesis. CONCLUSIONS Cygb may be involved in the healing process of gastric mucosal injuries in the late phase without angiogenesis.
Collapse
Affiliation(s)
- Fumio Tanaka
- Department of Gastroenterology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Johansson JD, Wårdell K. Intracerebral quantitative chromophore estimation from reflectance spectra captured during deep brain stimulation implantation. JOURNAL OF BIOPHOTONICS 2013; 6:435-45. [PMID: 22927367 DOI: 10.1002/jbio.201200055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 06/20/2012] [Accepted: 07/09/2012] [Indexed: 05/02/2023]
Abstract
Quantification of blood fraction (f(blood)), blood oxygenation (S(O2)), melanin, lipofuscin and oxidised and reduced Cytochrome aa 3 and c was done from diffuse reflectance spectra captured in cortex, white matter, globus pallidus internus (GPi) and subthalamus during stereotactic implantations of 29 deep brain stimulation (DBS) electrodes with the aim of investigating whether the chromophores can give physiological information about the targets for DBS. Double-sided Mann-Whitney U-tests showed more lipofuscin in GPi compared to white matter and subthalamus (p < 0.05). Compared to the other structures, f(blood) was significantly higher in cortex (p < 0.05) and S(O2) lower in GPi (p < 0.05). Median values and range for f(blood) were 1.0 [0.2-6.0]% in the cortex, 0.3 [0.1-8.2]% in white matter, 0.2 [0.1-0.8]% in the GPi and 0.2 [0.1-11.7]% in the subthalamus. Corresponding values for S(O2) was 20 [0-81]% in the cortex, 29 [0-78]% in white matter, 0 [0-0]% in the GPi and 0 [0-92]% in the subthalamus. In conclusion, the measurements indicate very low oxygenation and blood volume for DBS patients, especially in the GPi. It would be of great interest to investigate whether this is due to the disease, the normal situation or an artefact of doing invasive measurements.
Collapse
|
73
|
Gabba M, Abbruzzetti S, Spyrakis F, Forti F, Bruno S, Mozzarelli A, Luque FJ, Viappiani C, Cozzini P, Nardini M, Germani F, Bolognesi M, Moens L, Dewilde S. CO rebinding kinetics and molecular dynamics simulations highlight dynamic regulation of internal cavities in human cytoglobin. PLoS One 2013; 8:e49770. [PMID: 23308092 PMCID: PMC3537629 DOI: 10.1371/journal.pone.0049770] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/12/2012] [Indexed: 12/03/2022] Open
Abstract
Cytoglobin (Cygb) was recently discovered in the human genome and localized in different tissues. It was suggested to play tissue-specific protective roles, spanning from scavenging of reactive oxygen species in neurons to supplying oxygen to enzymes in fibroblasts. To shed light on the functioning of such versatile machinery, we have studied the processes supporting transport of gaseous heme ligands in Cygb. Carbon monoxide rebinding shows a complex kinetic pattern with several distinct reaction intermediates, reflecting rebinding from temporary docking sites, second order recombination, and formation (and dissociation) of a bis-histidyl heme hexacoordinated reaction intermediate. Ligand exit to the solvent occurs through distinct pathways, some of which exploit temporary docking sites. The remarkable change in energetic barriers, linked to heme bis-histidyl hexacoordination by HisE7, may be responsible for active regulation of the flux of reactants and products to and from the reaction site on the distal side of the heme. A substantial change in both protein dynamics and inner cavities is observed upon transition from the CO-liganded to the pentacoordinated and bis-histidyl hexacoordinated species, which could be exploited as a signalling state. These findings are consistent with the expected versatility of the molecular activity of this protein.
Collapse
Affiliation(s)
- Matteo Gabba
- Institute of Complex Systems - Molekulare Biophysik (ICS-5) Forschungszentrum Jülich, Jülich, Germany
| | - Stefania Abbruzzetti
- Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Parma, Parma, Italy
| | - Francesca Spyrakis
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Parma, Parma, Italy
- INBB, Biostructures and Biosystems National Institute, Rome, Italy
| | - Flavio Forti
- Departament de Fisicoquímica and Institut de Biomedicina (IBUB), Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | - Stefano Bruno
- Dipartimento di Farmacia, Università degli Studi di Parma, Parma, Italy
| | - Andrea Mozzarelli
- Dipartimento di Farmacia, Università degli Studi di Parma, Parma, Italy
| | - F. Javier Luque
- Departament de Fisicoquímica and Institut de Biomedicina (IBUB), Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | - Cristiano Viappiani
- Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Parma, Parma, Italy
- NEST, Istituto Nanoscienze-CNR, Pisa, Italy
- * E-mail:
| | - Pietro Cozzini
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Parma, Parma, Italy
- INBB, Biostructures and Biosystems National Institute, Rome, Italy
| | - Marco Nardini
- Dipartimento di BioScienze, CNR-IBF, and CIMAINA, Università degli Studi di Milano, Milano, Italy
| | - Francesca Germani
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Martino Bolognesi
- Dipartimento di BioScienze, CNR-IBF, and CIMAINA, Università degli Studi di Milano, Milano, Italy
| | - Luc Moens
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sylvia Dewilde
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
74
|
Gardner PR. Hemoglobin: a nitric-oxide dioxygenase. SCIENTIFICA 2012; 2012:683729. [PMID: 24278729 PMCID: PMC3820574 DOI: 10.6064/2012/683729] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/04/2012] [Indexed: 05/09/2023]
Abstract
Members of the hemoglobin superfamily efficiently catalyze nitric-oxide dioxygenation, and when paired with native electron donors, function as NO dioxygenases (NODs). Indeed, the NOD function has emerged as a more common and ancient function than the well-known role in O2 transport-storage. Novel hemoglobins possessing a NOD function continue to be discovered in diverse life forms. Unique hemoglobin structures evolved, in part, for catalysis with different electron donors. The mechanism of NOD catalysis by representative single domain hemoglobins and multidomain flavohemoglobin occurs through a multistep mechanism involving O2 migration to the heme pocket, O2 binding-reduction, NO migration, radical-radical coupling, O-atom rearrangement, nitrate release, and heme iron re-reduction. Unraveling the physiological functions of multiple NODs with varying expression in organisms and the complexity of NO as both a poison and signaling molecule remain grand challenges for the NO field. NOD knockout organisms and cells expressing recombinant NODs are helping to advance our understanding of NO actions in microbial infection, plant senescence, cancer, mitochondrial function, iron metabolism, and tissue O2 homeostasis. NOD inhibitors are being pursued for therapeutic applications as antibiotics and antitumor agents. Transgenic NOD-expressing plants, fish, algae, and microbes are being developed for agriculture, aquaculture, and industry.
Collapse
Affiliation(s)
- Paul R. Gardner
- Miami Valley Biotech, 1001 E. 2nd Street, Suite 2445, Dayton, OH 45402, USA
| |
Collapse
|
75
|
Astudillo L, Bernad S, Derrien V, Sebban P, Miksovska J. Conformational dynamics in human neuroglobin: effect of His64, Val68, and Cys120 on ligand migration. Biochemistry 2012; 51:9984-94. [PMID: 23176629 DOI: 10.1021/bi301016u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuroglobin belongs to the family of hexacoordinate hemoglobins and has been implicated in the protection of neuronal tissue under hypoxic and ischemic conditions. Here we present transient absorption and photoacoustic calorimetry studies of CO photodissociation and bimolecular rebinding to neuroglobin focusing on the ligand migration process and the role of distal pocket residues (His64 and Val68) and two Cys residues (Cys55 and Cys120). Our results indicate that His64 has a minor impact on the migration of CO between the distal heme pocket and protein exterior, whereas the Val68 side chain regulates the transition of the photodissociated ligand between the distal pocket and internal hydrophobic cavities, which is evident from the increased geminate quantum yield in this mutated protein (Φ(gem) = 0.32 for WT and His64Gln, and Φ(gem) = 0.85 for Val68Phe). The interface between helix G and the A-B loop provides an escape pathway for the photodissociated ligand, which is evident from a decrease in the reaction enthalpy for the transition between the CO-bound hNgb and five-coordinate hNgb in the Cys120Ser mutant (ΔH = -3 ± 4 kcal mol(-1)) compared to that of the WT protein (ΔH = 20 ± 4 kcal mol(-1)). The extensive electrostatic/hydrogen binding network that includes heme propionate groups, Lys67, His64, and Tyr44 not only restricts the heme binding but also modulates the energetics of binding of CO to the five-coordinate hNgb as substitution of His64 with Gln leads to an endothermic association of CO with the five-coordinate hNgb (ΔH = 6 ± 3 kcal mol(-1)).
Collapse
Affiliation(s)
- Luisana Astudillo
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | | | | | | | | |
Collapse
|
76
|
Abstract
Insights into the evolution of hemoglobins and their genes are an abundant source of ideas regarding hemoglobin function and regulation of globin gene expression. This article presents the multiple genes and gene families encoding human globins, summarizes major events in the evolution of the hemoglobin gene clusters, and discusses how these studies provide insights into regulation of globin genes. Although the genes in and around the α-like globin gene complex are relatively stable, the β-like globin gene clusters are more dynamic, showing evidence of transposition to a new locus and frequent lineage-specific expansions and deletions. The cis-regulatory modules controlling levels and timing of gene expression are a mix of conserved and lineage-specific DNA, perhaps reflecting evolutionary constraint on core regulatory functions shared broadly in mammals and adaptive fine-tuning in different orders of mammals.
Collapse
Affiliation(s)
- Ross C Hardison
- Center for Comparative Genomics and Bioinformatics, Huck Institute of Genome Sciences, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
77
|
Brittain T. The anti-apoptotic role of neuroglobin. Cells 2012; 1:1133-55. [PMID: 24710547 PMCID: PMC3901133 DOI: 10.3390/cells1041133] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 11/15/2012] [Accepted: 11/21/2012] [Indexed: 12/21/2022] Open
Abstract
The small heme-protein neuroglobin is expressed at high concentrations in certain brain neurons and in the rod cells of the retina. This paper reviews the many studies which have recently identified a protective role for neuroglobin, in a wide range of situations involving apoptotic cell death. The origins of this protective mechanism are discussed in terms of both experimental results and computational modeling of the intrinsic pathway of apoptosis, which shows that neuroglobin can intervene in this process by a reaction with released mitochondrial cytochrome c. An integrated model, based on the various molecular actions of both neuroglobin and cytochrome c, is developed, which accounts for the cellular distribution of neuroglobin.
Collapse
Affiliation(s)
- Thomas Brittain
- School of Biological Sciences, Centre for Brain Research, University of Auckland, 3a Symonds Street, Auckland,1142, New Zealand.
| |
Collapse
|
78
|
Tosqui P, Colombo MF. Neuroglobin and cytoglobin: two new members of globin family. Rev Bras Hematol Hemoter 2012; 33:307-11. [PMID: 23049323 PMCID: PMC3415764 DOI: 10.5581/1516-8484.20110082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/14/2011] [Indexed: 01/01/2023] Open
Abstract
The globin family has long been defined by myoglobin and hemoglobin, proteins with the functions of oxygen storage and transportation, respectively. Recently, two new members of this family were discovered: neuroglobin present in neurons and retinal cells and cytoglobin found in various types of tissue. The increased expression of these proteins in hypoxic conditions first suggested a role in oxygen supply. However structural and functional differences, such as the hexacoordinated heme, a high autoxidation rate and different concentrations between different cellular types, have dismissed this hypothesis. The protective role of these globins has already been established. In vitro and in vivo studies have demonstrated increased survival of neurons under stress in the presence of neuroglobin and increased resistance to neurodegenerative diseases. However the mechanism remains unknown. Functions, including detoxification of nitric oxide, free radical scavenging and as an antioxidant and signaling of apoptosis, have also been suggested for neuroglobin and an antifibrotic function for cytoglobin.
Collapse
Affiliation(s)
- Priscilla Tosqui
- Physics Department, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho" - IBILCE-UNESP, São Jose do Rio Preto, SP, Brazil
| | | |
Collapse
|
79
|
Skommer J, Helbo S, Henty K, Brittain T. Ligand binding, reactivity and biological activity of a distal pocket mutant of neuroglobin. Int J Biol Macromol 2012; 51:284-90. [DOI: 10.1016/j.ijbiomac.2012.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/14/2012] [Accepted: 05/15/2012] [Indexed: 12/11/2022]
|
80
|
Raida Z, Hundahl CA, Kelsen J, Nyengaard JR, Hay-Schmidt A. Reduced infarct size in neuroglobin-null mice after experimental stroke in vivo. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2012; 4:15. [PMID: 22901501 PMCID: PMC3487987 DOI: 10.1186/2040-7378-4-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/11/2012] [Indexed: 01/09/2023]
Abstract
BACKGROUND Neuroglobin is considered to be a novel important pharmacological target in combating stroke and neurodegenerative disorders, although the mechanism by which this protection is accomplished remains an enigma. We hypothesized that if neuroglobin is directly involved in neuroprotection, then permanent cerebral ischemia would lead to larger infarct volumes in neuroglobin-null mice than in wild-type mice. METHODS Using neuroglobin-null mice, we estimated the infarct volume 24 hours after permanent middle cerebral artery occlusion using Cavalieri's Principle, and compared the infarct volume in neuroglobin-null and wild-type mice. Neuroglobin antibody staining was used to examine neuroglobin expression in the infarct area of wild-type mice. RESULTS Infarct volumes 24 hours after permanent middle cerebral artery occlusion were significantly smaller in neuroglobin-null mice than in wild-types (p < 0.01). Neuroglobin immunostaining of the penumbra area revealed no visible up-regulation of neuroglobin protein in ischemic wild-type mice when compared to uninjured wild-type mice. In uninjured wild-type mice, neuroglobin protein was seen throughout cortical layer II and sparsely in layer V. In contrast, no neuroglobin-immunoreactive neurons were observed in the aforementioned layers of the ischemia injured cortical area, or in the surrounding penumbra of ischemic wild-type mice. This suggests no selective sparing of neuroglobin expressing neurons in ischemia. CONCLUSIONS Neuroglobin-deficiency resulted in reduced tissue infarction, suggesting that, at least at endogenous expression levels, neuroglobin in itself is non-protective against ischemic injury.
Collapse
Affiliation(s)
- Zindy Raida
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Ansgar Hundahl
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Physiology, University of Tartu, Tartu, Estonia
- Centre of Excellence for Translational Medicine, University of Tartu, Tartu, Estonia
- Department of Clinical Biochemistry, University Hospital Bispebjerg, Copenhagen, Denmark
| | - Jesper Kelsen
- Department of Neurosurgery, University Hospital Copenhagen (Rigshospitalet), Copenhagen, Denmark
| | - Jens Randel Nyengaard
- Stereology and Electron Microscopy Research Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark
| | - Anders Hay-Schmidt
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- The Panum Institute; Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark
| |
Collapse
|
81
|
Hümmler N, Schneider C, Giessl A, Bauer R, Walkinshaw G, Gassmann M, Rascher W, Trollmann R. Acute hypoxia modifies regulation of neuroglobin in the neonatal mouse brain. Exp Neurol 2012; 236:112-21. [DOI: 10.1016/j.expneurol.2012.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 03/26/2012] [Accepted: 04/11/2012] [Indexed: 01/08/2023]
|
82
|
Effect of permanent middle cerebral artery occlusion on Cytoglobin expression in the mouse brain. Biochem Biophys Res Commun 2012; 424:274-8. [PMID: 22750003 DOI: 10.1016/j.bbrc.2012.06.105] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 11/23/2022]
Abstract
Cytoglobin, a new member of the mammalian heme-globin family has been shown to bind oxygen and to have cell protective properties in vitro. Cytoglobin is specifically expressed in a subpopulation of brain neurons. Based on hypoxia-induced up regulation and proposed scavenging of reactive oxygen species Cytoglobin was suggested as a candidate for pharmaceutical stroke treatment. Since production of reactive oxygen species is a hallmark of ischemia, we hypothesized that Cytoglobin expression would be increased and that Cytoglobin expressing neurons would be spared after ischemic injury. Twenty male C57BL/6J mice were used in the experimental design. Ten were sham operated and ten were given permanent middle cerebral artery occlusion (pMCAo). All animals were euthanized after 24h. From each group, three animals were used for histology and seven for QRT-PCR and western blotting. Immunohistochemical examination of the ischemic penumbra revealed neither changes in Cytoglobin immunoreactivity nor any changes in expression in the necrotic infarct area. The lack of expression change was confirmed by western blotting and QRT-PCR showing no significant difference between sham and pMCAo operated mice. This suggests that Cytoglobin is likely not important for global neuronal protection following ischemia and the role of Cytoglobin in relation to endogenous neuroprotection remains unresolved.
Collapse
|
83
|
Liu X, Follmer D, Zweier JR, Huang X, Hemann C, Liu K, Druhan LJ, Zweier JL. Characterization of the function of cytoglobin as an oxygen-dependent regulator of nitric oxide concentration. Biochemistry 2012; 51:5072-82. [PMID: 22577939 DOI: 10.1021/bi300291h] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The endogenous vasodilator nitric oxide (NO) is metabolized in tissues in an O(2)-dependent manner. This regulates NO levels in the vascular wall; however, the underlying molecular basis of this O(2)-dependent NO consumption remains unclear. While cytoglobin (Cygb) was discovered a decade ago, its physiological function remains uncertain. Cygb is expressed in the vascular wall and can consume NO in an O(2)-dependent manner. Therefore, we characterize the process of the O(2)-dependent consumption of NO by Cygb in the presence of the cellular reductants and reducing systems ascorbate (Asc) and cytochrome P(450) reductase (CPR), measure rate constants of Cygb reduction by Asc and CPR, and propose a reaction mechanism and derive a related kinetic model for this O(2)-dependent NO consumption involving Cygb(Fe(3+)) as the main intermediate reduced back to ferrous Cygb by cellular reductants. This kinetic model expresses the relationship between the rate of O(2)-dependent consumption of NO by Cygb and rate constants of the molecular reactions involved. The predicted rate of O(2)-dependent consumption of NO by Cygb is consistent with experimental results supporting the validity of the kinetic model. Simulations based on this kinetic model suggest that the high efficiency of Cygb in regulating the NO consumption rate is due to the rapid reduction of Cygb by cellular reductants, which greatly increases the rate of consumption of NO at higher O(2) concentrations, and binding of NO to Cygb, which reduces the rate of consumption of NO at lower O(2) concentrations. Thus, the coexistence of Cygb with efficient reductants in tissues allows Cygb to function as an O(2)-dependent regulator of NO decay.
Collapse
Affiliation(s)
- Xiaoping Liu
- Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, 473 West 12th Avenue, Columbus, Ohio 43210, USA.
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Yu Z, Liu N, Liu J, Yang K, Wang X. Neuroglobin, a novel target for endogenous neuroprotection against stroke and neurodegenerative disorders. Int J Mol Sci 2012; 13:6995-7014. [PMID: 22837676 PMCID: PMC3397508 DOI: 10.3390/ijms13066995] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 05/25/2012] [Accepted: 05/31/2012] [Indexed: 11/16/2022] Open
Abstract
Brain neurons and tissues respond to sublethal injury by activating endogenous protective pathways. Recently, following the failure of a large number of clinical trials for protective strategies against stroke that aim to inhibit a specific ischemia response pathway, endogenous neuroprotection has emerged as a more promising and hopeful strategy for development of therapeutics against stroke and neurodegenerative disorders. Neuroglobin (Ngb) is an oxygen-binding globin protein that is highly and specifically expressed in brain neurons. Accumulating evidence have clearly demonstrated that Ngb is an endogenous neuroprotective molecule against hypoxic/ischemic and oxidative stress-related insults in cultured neurons and animals, as well as neurodegenerative disorders such as Alzheimer’s disease, thus any pharmacological strategy that can up-regulate endogenous Ngb expression may lead to novel therapeutics against these brain disorders. In this review, we summarize recent studies about the biological function, regulation of gene expression, and neuroprotective mechanisms of Ngb. Furthermore, strategies for identification of chemical compounds that can up-regulate endogenous Ngb expression for neuroprotection against stroke and neurodegenerative disorders are discussed.
Collapse
Affiliation(s)
- Zhanyang Yu
- Neuroprotection Research Laboratory, Department of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Room 2401/2411A, 149 13th Street, Charlestown Boston, MA 02129, USA; E-Mails: (N.L.); (K.Y.)
- Authors to whom correspondence should be addressed; E-Mails: (Z.Y.); (X.W.); Tel.: +1-617-724-9503 (Z.Y.); +1-617-724-9513 (X.W.); Fax: +1-617-726-7830 (Z.Y.); +1-617-726-7830 (X.W.)
| | - Ning Liu
- Neuroprotection Research Laboratory, Department of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Room 2401/2411A, 149 13th Street, Charlestown Boston, MA 02129, USA; E-Mails: (N.L.); (K.Y.)
| | - Jianxiang Liu
- National Institute for Radiological Protection, China Center for Disease Control and Prevention, Beijing 100088, China; E-Mail:
| | - Kevin Yang
- Neuroprotection Research Laboratory, Department of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Room 2401/2411A, 149 13th Street, Charlestown Boston, MA 02129, USA; E-Mails: (N.L.); (K.Y.)
| | - Xiaoying Wang
- Neuroprotection Research Laboratory, Department of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Room 2401/2411A, 149 13th Street, Charlestown Boston, MA 02129, USA; E-Mails: (N.L.); (K.Y.)
- Authors to whom correspondence should be addressed; E-Mails: (Z.Y.); (X.W.); Tel.: +1-617-724-9503 (Z.Y.); +1-617-724-9513 (X.W.); Fax: +1-617-726-7830 (Z.Y.); +1-617-726-7830 (X.W.)
| |
Collapse
|
85
|
Hota KB, Hota SK, Srivastava RB, Singh SB. Neuroglobin regulates hypoxic response of neuronal cells through Hif-1α- and Nrf2-mediated mechanism. J Cereb Blood Flow Metab 2012; 32:1046-60. [PMID: 22472608 PMCID: PMC3367222 DOI: 10.1038/jcbfm.2012.21] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxygen sensing in hypoxic neurons has been classically attributed to cytochrome c oxidase and prolyl-4-hydroxylases and involves stabilization of transcription factors, hypoxia-inducible factor-1α (Hif-1α) and nuclear factor erythroid 2-related factor 2 (Nrf2) that mediate survival responses. On the contrary, release of cytochrome c into the cytosol during hypoxic stress triggers apoptosis in neuronal cells. We, here advocate that the redox state of neuroglobin (Ngb) could regulate both Hif-1α and Nrf2 stabilization and cytochrome c release during hypoxia. The hippocampal regions showing higher expression of Ngb were less susceptible to global hypoxia-mediated neurodegeneration. During normoxia, Ngb maintained cytochrome c in the reduced state and prevented its release from mitochondria by using cellular antioxidants. Greater turnover of oxidized cytochrome c and increased utilization of cellular antioxidants during acute hypoxia altered cellular redox status and stabilized Hif-1α and Nrf2 through Ngb-mediated mechanism. Chronic hypoxia, however, resulted in oxidation and degradation of Ngb, accumulation of ferric ions and release of cytochrome c that triggered apoptosis. Administration of N-acetyl-cysteine during hypoxic conditions improved neuronal survival by preventing Ngb oxidation and degradation. Taken together, these results establish a role for Ngb in regulating both the survival and apoptotic mechanisms associated with hypoxia.
Collapse
Affiliation(s)
- Kalpana B Hota
- High Altitude Physiology Laboratory, Defence Institute of High Altitude Research, Jammu and Kashmir, India
| | | | | | | |
Collapse
|
86
|
Hundahl CA, Fahrenkrug J, Hay-Schmidt A, Georg B, Faltoft B, Hannibal J. Circadian behaviour in neuroglobin deficient mice. PLoS One 2012; 7:e34462. [PMID: 22496809 PMCID: PMC3320642 DOI: 10.1371/journal.pone.0034462] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/05/2012] [Indexed: 11/18/2022] Open
Abstract
Neuroglobin (Ngb), a neuron-specific oxygen-binding globin with an unknown function, has been proposed to play a key role in neuronal survival. We have previously shown Ngb to be highly expressed in the rat suprachiasmatic nucleus (SCN). The present study addresses the effect of Ngb deficiency on circadian behavior. Ngb-deficient and wild-type (wt) mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1) and the immediate early gene Fos was determined after light stimulation at night and the neurochemical phenotype of Ngb expressing neurons in wt mice was characterized. Loss of Ngb function had no effect on overall circadian entrainment, but resulted in a significantly larger phase delay of circadian rhythm upon light stimulation at early night. A light-induced increase in Per1, but not Fos, gene expression was observed in Ngb-deficient mice. Ngb expressing neurons which co-stored Gastrin Releasing Peptide (GRP) and were innervated from the eye and the geniculo-hypothalamic tract expressed FOS after light stimulation. No PER1 expression was observed in Ngb-positive neurons. The present study demonstrates for the first time that the genetic elimination of Ngb does not affect core clock function but evokes an increased behavioural response to light concomitant with increased Per1 gene expression in the SCN at early night.
Collapse
Affiliation(s)
- Christian A. Hundahl
- Department of Clinical Biochemistry, Faculty of Health Science, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jan Fahrenkrug
- Department of Clinical Biochemistry, Faculty of Health Science, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Anders Hay-Schmidt
- Department of Neuroscience and Pharmacology, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Georg
- Department of Clinical Biochemistry, Faculty of Health Science, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Faltoft
- Department of Clinical Biochemistry, Faculty of Health Science, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry, Faculty of Health Science, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
- * E-mail: .
| |
Collapse
|
87
|
Brittain T, Skommer J. Does a redox cycle provide a mechanism for setting the capacity of neuroglobin to protect cells from apoptosis? IUBMB Life 2012; 64:419-22. [PMID: 22362590 DOI: 10.1002/iub.566] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 07/30/2011] [Indexed: 02/05/2023]
Abstract
We hypothesize that the various, previously reported, reactivities of neuroglobin with redox partners and oxygen provide for the establishment of a redox cycle within cells, such as neurons and retinal rod cells. Using native cell lysates, from cultured human cells of neuronal origin, we have estimated the rate of reduction of the oxidized form of neuroglobin in vivo. Furthermore we provide evidence that the cytosol of these cells contains factors (presumably enzymes) capable of employing either glutathione or NADH as re-reductants of ferric neuroglobin. Taken in conjunction with previous rate data, for the various redox reactions of neuroglobin, this information allows us to set up a computer model to estimate the steady state cellular level of the antiapoptotic ferrous form of neuroglobin. This model indicates that the steady state level of antiapoptotic neuroglobin is very sensitive to the cellular oxygen tension and moderately sensitive to the redox status of the cell. Further analysis indicates that such a system would be capable of significant modification, on the seconds time scale, following hypoxic transition, as is likely in stroke. We hypothesize that this mechanism might provide a moderately rapid mechanism for adjusting the antiapoptotic status of a cell, whilst the reaction of neuroglobin with mitochondrial cytochrome c provides a very rapid, but limited, capacity to intervene in the apoptotic pathway.
Collapse
Affiliation(s)
- Thomas Brittain
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| | | |
Collapse
|
88
|
Multispectroscopic Study of the Interaction of Chloramphenicol with Human Neuroglobin. ACTA ACUST UNITED AC 2012. [DOI: 10.1155/2012/192591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The interaction between chloramphenicol (CHL) and neuroglobin (Ngb) has been investigated by using fluorescence, synchronous fluorescence, UV-Vis and circular dichroism (CD) spectroscopy. It has been found that CHL molecule can quench the intrinsic fluorescence of Ngb in a way of dynamic quenching mechanism, which was supported by UV-Vis spectral data. Their effective quenching constants (KSV) are2.2×104,2.6×104,and 3.1×104 L⋅mol−1at 298 K, 303 K, and 308 K, respectively. The enthalpy change (ΔH) and entropy change (ΔS) for this reaction are 26.42 kJ⋅mol−1and 171.7 J⋅K−1, respectively. It means that the hydrophobic interaction is the main intermolecular force of the interaction between CHL and Ngb. Synchronous fluorescence spectra showed that the microenvironment of tryptophan and tyrosine residues of Ngb has been changed slightly. The fluorescence quenching efficiency of CHL to tyrosine residues is a little bit more than that to tryptophan residues of Ngb. Furthermore, CD spectra indicated that CHL can induce the formation of α-helix of Ngb.
Collapse
|
89
|
Neuroglobin: A Novel Target for Endogenous Neuroprotection. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
90
|
Hundahl CA, Luuk H, Ilmjärv S, Falktoft B, Raida Z, Vikesaa J, Friis-Hansen L, Hay-Schmidt A. Neuroglobin-deficiency exacerbates Hif1A and c-FOS response, but does not affect neuronal survival during severe hypoxia in vivo. PLoS One 2011; 6:e28160. [PMID: 22164238 PMCID: PMC3229544 DOI: 10.1371/journal.pone.0028160] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 11/02/2011] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Neuroglobin (Ngb), a neuron-specific globin that binds oxygen in vitro, has been proposed to play a key role in neuronal survival following hypoxic and ischemic insults in the brain. Here we address whether Ngb is required for neuronal survival following acute and prolonged hypoxia in mice genetically Ngb-deficient (Ngb-null). Further, to evaluate whether the lack of Ngb has an effect on hypoxia-dependent gene regulation, we performed a transcriptome-wide analysis of differential gene expression using Affymetrix Mouse Gene 1.0 ST arrays. Differential expression was estimated by a novel data analysis approach, which applies non-parametric statistical inference directly to probe level measurements. PRINCIPAL FINDINGS Ngb-null mice were born in expected ratios and were normal in overt appearance, home-cage behavior, reproduction and longevity. Ngb deficiency had no effect on the number of neurons, which stained positive for surrogate markers of endogenous Ngb-expressing neurons in the wild-type (wt) and Ngb-null mice after 48 hours hypoxia. However, an exacerbated hypoxia-dependent increase in the expression of c-FOS protein, an immediate early transcription factor reflecting neuronal activation, and increased expression of Hif1A mRNA were observed in Ngb-null mice. Large-scale gene expression analysis identified differential expression of the glycolytic pathway genes after acute hypoxia in Ngb-null mice, but not in the wts. Extensive hypoxia-dependent regulation of chromatin remodeling, mRNA processing and energy metabolism pathways was apparent in both genotypes. SIGNIFICANCE According to these results, it appears unlikely that the loss of Ngb affects neuronal viability during hypoxia in vivo. Instead, Ngb-deficiency appears to enhance the hypoxia-dependent response of Hif1A and c-FOS protein while also altering the transcriptional regulation of the glycolytic pathway. Bioinformatic analysis of differential gene expression yielded novel predictions suggesting that chromatin remodeling and mRNA metabolism are among the key regulatory mechanisms when adapting to prolonged hypoxia.
Collapse
Affiliation(s)
- Christian Ansgar Hundahl
- Department of Clinical Biochemistry, University of Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
- * E-mail: (CAH); (HL); (AHS)
| | - Hendrik Luuk
- Department of Clinical Biochemistry, University of Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
- Department of Physiology, University of Tartu, Tartu, Estonia
- * E-mail: (CAH); (HL); (AHS)
| | - Sten Ilmjärv
- Department of Physiology, University of Tartu, Tartu, Estonia
- Quretec Ltd, Tartu, Estonia
| | - Birgitte Falktoft
- Department of Clinical Biochemistry, University of Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
| | - Zindy Raida
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Vikesaa
- Department of Genomic Medicine, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Lennart Friis-Hansen
- Department of Genomic Medicine, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Anders Hay-Schmidt
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (CAH); (HL); (AHS)
| |
Collapse
|
91
|
Oleksiewicz U, Liloglou T, Field JK, Xinarianos G. Cytoglobin: biochemical, functional and clinical perspective of the newest member of the globin family. Cell Mol Life Sci 2011; 68:3869-83. [PMID: 21744065 PMCID: PMC11115184 DOI: 10.1007/s00018-011-0764-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 06/17/2011] [Accepted: 06/21/2011] [Indexed: 02/06/2023]
Abstract
Since the discovery of cytoglobin (Cygb) a decade ago, growing amounts of data have been gathered to characterise Cygb biochemistry, functioning and implication in human pathologies. Its molecular roles remain under investigation, but nitric oxide dioxygenase and lipid peroxidase activities have been demonstrated. Cygb expression increases in response to various stress conditions including hypoxia, oxidative stress and fibrotic stimulation. When exogenously overexpressed, Cygb revealed cytoprotection against these factors. Cygb was shown to be upregulated in fibrosis and neurodegenerative disorders and downregulated in multiple cancer types. CYGB was also found within the minimal region of a hereditary tylosis with oesophageal cancer syndrome, and its expression was reduced in tylotic samples. Recently, Cygb has been shown to inhibit cancer cell growth in vitro, thus confirming its suggested tumour suppressor role. This article aims to review the biochemical and functional aspects of Cygb, its involvement in various pathological conditions and potential clinical utility.
Collapse
Affiliation(s)
- Urszula Oleksiewicz
- Cancer Research Centre, Roy Castle Lung Cancer Research Programme, University of Liverpool, 200 London Rd, Liverpool, L3 9TA UK
| | - Triantafillos Liloglou
- Cancer Research Centre, Roy Castle Lung Cancer Research Programme, University of Liverpool, 200 London Rd, Liverpool, L3 9TA UK
| | - John K. Field
- Cancer Research Centre, Roy Castle Lung Cancer Research Programme, University of Liverpool, 200 London Rd, Liverpool, L3 9TA UK
| | - George Xinarianos
- Cancer Research Centre, Roy Castle Lung Cancer Research Programme, University of Liverpool, 200 London Rd, Liverpool, L3 9TA UK
- Department of Molecular and Clinical Pharmacology, University of Liverpool, 70 Pembroke Place (1st floor), Liverpool, L69 3GF UK
| |
Collapse
|
92
|
Yu Z, Liu N, Wang Y, Li X, Wang X. Identification of neuroglobin-interacting proteins using yeast two-hybrid screening. Neuroscience 2011; 200:99-105. [PMID: 22079573 DOI: 10.1016/j.neuroscience.2011.10.046] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/19/2011] [Accepted: 10/25/2011] [Indexed: 01/27/2023]
Abstract
Neuroglobin (Ngb) is a globin protein that is highly and specifically expressed in brain neurons. A large volume of evidence has proven that Ngb is a neuroprotective molecule against hypoxic/ischemic brain injury and other related neurological disorder; however, the underlying mechanisms remain poorly understood. Aiming to provide more clues in understanding the molecular mechanisms of Ngb's neuroprotection, we performed yeast two-hybrid screening to search for proteins that interact with Ngb. From a mouse brain cDNA library, we found totally 36 proteins that potentially interact with Ngb, and 10 of them were each identified in multiple positive clones. The shared sequences within these multiple clones are more likely to be Ngb-interacting domains. In primary cultured mouse cortical neurons, immuno-precipitation was performed to confirm the interactions of selected proteins with Ngb. The discovered Ngb-interacting proteins in this study include those involved in energy metabolism, mitochondria function, and signaling pathways for cell survival and proliferation. Our findings provide molecular targets for investigating protein interaction-based biological functions and neuroprotective mechanisms of Ngb.
Collapse
Affiliation(s)
- Z Yu
- Neuroprotection Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Charlestown, MA, USA.
| | | | | | | | | |
Collapse
|
93
|
Blank M, Wollberg J, Gerlach F, Reimann K, Roesner A, Hankeln T, Fago A, Weber RE, Burmester T. A membrane-bound vertebrate globin. PLoS One 2011; 6:e25292. [PMID: 21949889 PMCID: PMC3176823 DOI: 10.1371/journal.pone.0025292] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/31/2011] [Indexed: 01/21/2023] Open
Abstract
The family of vertebrate globins includes hemoglobin, myoglobin, and other O2-binding proteins of yet unclear functions. Among these, globin X is restricted to fish and amphibians. Zebrafish (Danio rerio) globin X is expressed at low levels in neurons of the central nervous system and appears to be associated with the sensory system. The protein harbors a unique N-terminal extension with putative N-myristoylation and S-palmitoylation sites, suggesting membrane-association. Intracellular localization and transport of globin X was studied in 3T3 cells employing green fluorescence protein fusion constructs. Both myristoylation and palmitoylation sites are required for correct targeting and membrane localization of globin X. To the best of our knowledge, this is the first time that a vertebrate globin has been identified as component of the cell membrane. Globin X has a hexacoordinate binding scheme and displays cooperative O2 binding with a variable affinity (P50∼1.3–12.5 torr), depending on buffer conditions. A respiratory function of globin X is unlikely, but analogous to some prokaryotic membrane-globins it may either protect the lipids in cell membrane from oxidation or may act as a redox-sensing or signaling protein.
Collapse
Affiliation(s)
- Miriam Blank
- Biocenter Grindel, University of Hamburg, Hamburg, Germany
| | | | - Frank Gerlach
- Biocenter Grindel, University of Hamburg, Hamburg, Germany
| | - Katja Reimann
- Biocenter Grindel, University of Hamburg, Hamburg, Germany
| | - Anja Roesner
- Institute of Zoology, Johannes-Gutenberg-University of Mainz, Mainz, Germany
| | - Thomas Hankeln
- Institute of Molecular Genetics, Johannes-Gutenberg-University, Mainz, Germany
| | - Angela Fago
- Zoophysiology, Department of Biological Sciences, Aarhus University, Aarhus, Denmark
| | - Roy E. Weber
- Zoophysiology, Department of Biological Sciences, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
94
|
Lima DC, Cossa AC, Perosa SR, de Oliveira EM, da Silva JA, da Silva Fernandes MJ, da Silva IR, Higa EMS, da Graça Naffah-Mazzacoratti M, Cavalheiro EA, Amado D. Neuroglobin is up-regulated in the cerebellum of pups exposed to maternal epileptic seizures. Int J Dev Neurosci 2011; 29:891-7. [PMID: 21767627 DOI: 10.1016/j.ijdevneu.2011.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 07/03/2011] [Accepted: 07/03/2011] [Indexed: 01/12/2023] Open
Abstract
To evaluate a potential insult in the cerebellum of pups exposed to maternal epileptic seizures during intrauterine life, female rats were subjected to pilocarpine-induced epilepsy. Pups from different litters were sacrificed at 1, 3, 7 and 14 post-natal days (PN) and neuroglobin (Ngb) and gliosis were analyzed in the cerebellum by Western blotting (WB) and RT-PCR. (14)C-l-leucine-[(14)C-Leu] incorporation was used to analyze protein synthesis at PN1. Nitric Oxide (NO) and thiobarbituric acid-reactive substances (TBARS) levels were also measured. Pups from naive mothers were used as controls. The mRNA level of Ngb was increased in experimental animals at PN1 ((**)p ≤ 0.001) and PN3 ((**)p ≤ 0.001), at PN7 ((***)p ≤ 0.0001) and at PN14 ((**)p ≤ 0.001) compared to the respective controls. The protein level of Ngb increased significantly in the experimental pups at PN1 ((*)p ≤ 0.05) and at PN3 ((**)p ≤ 0.001), when compared to the control pups at PN1 and PN3. At PN7 and PN14 no difference was found. The mRNA level of GFAP increased significantly about two times at PN3 ((*)p ≤ 0.05) and PN7 ((*)p ≤ 0.05) in the experimental pups when compared to the respective controls, but was unchanged in the other studied ages. Data showed that experimental pups at PN1 exhibited reduced (about 2 times, (*)p ≤ 0.05) total protein synthesis in the cerebellum when compared to control. No differences were found in the NO and TBARS levels. Our data support the hypothesis that an up-regulation of Ngb could be a compensatory mechanism in response to the hypoxic-ischemic insults caused by seizures in pups during intrauterine life.
Collapse
Affiliation(s)
- Daiana Correia Lima
- Departamento de Neurologia e Neurocirurgia, Disciplina de Neurologia Experimental/Universidade Federal de São Paulo, UNIFESP, Rua Botucatu, 862, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Zhang B, Xu J, Li Y, Du W, Fang W. Molecular dynamics simulation of carboxy and deoxy human cytoglobin in solution. J Inorg Biochem 2011; 105:949-56. [DOI: 10.1016/j.jinorgbio.2011.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 03/28/2011] [Accepted: 03/28/2011] [Indexed: 11/30/2022]
|
96
|
Brittain T, Skommer J, Henty K, Birch N, Raychaudhuri S. A role for human neuroglobin in apoptosis. IUBMB Life 2011; 62:878-85. [PMID: 21190290 DOI: 10.1002/iub.405] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the past decade, following the discovery of the human heme protein neuroglobin, many studies have searched for evidence for this protein's mechanism of action. Much data has accrued showing that high levels of neuroglobin will protect cells from apoptotic cell death, following a wide range of challenges. Various explanations of its actions, based on measured reactivity with oxygen, nitric oxide, or free radicals, have been proposed, but none have, as yet, been substantiated in vivo. Following preliminary experiments, it was previously hypothesised that "the central role of neuroglobin in highly metabolically active cells and retinal and brain neurons is to reset the trigger level of mitochondrial cytochrome c release necessary to commit the cells to apoptosis" (I.U.M.B.M. Life (2008) 60, 398). In this article, we review the evidence, which has accumulated to support this hypothesised mechanism of action of neuroglobin and integrate this data, with other reported intracellular functions of neuroglobin, to suggest a plausible central role for neuroglobin in the control of apoptosis.
Collapse
Affiliation(s)
- Thomas Brittain
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
97
|
Lipid binding to cytoglobin leads to a change in haem co-ordination: a role for cytoglobin in lipid signalling of oxidative stress. Biochem J 2011; 434:483-92. [PMID: 21171964 DOI: 10.1042/bj20101136] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytoglobin is a recently discovered hexa-co-ordinate haemoglobin that does not appear to function as a classical oxygen-binding protein. Its function is unknown and studies on the effects of changes in its expression have not decisively determined its role within the cell. In the present paper, we report that the protein is transformed from hexa-co-ordinate to penta-co-ordinate on binding a lipid molecule. This transformation occurs with the ferric oxidation state of the protein, but not the ferrous state, indicating that this process only occurs under an oxidative environment and may thus be related to redox-linked cell signalling mechanisms. Oleate binds to the protein in a 1:1 stoichiometry and with high affinity (K(d)=0.7 μM); however, stopped-flow kinetic measurements yield a K(d) value of 110 μM. The discrepancy between these K(d) values may be rationalized by recognizing that cytoglobin is a disulfide-linked dimer and invoking co-operativity in oleate binding. The lipid-induced transformation of cytoglobin from hexa-co-ordinate to penta-co-ordinate does not occur with similar hexa-co-ordinate haemoglobins such as neuroglobin, and therefore appears to be a unique property of cytoglobin among the haemoglobin superfamily. The lipid-derived transformation may explain why cytoglobin has enhanced peroxidatic activity, converting lipids into various oxidized products, a property virtually absent from neuroglobin and much decreased in myoglobin. We propose that the binding of ferric cytoglobin to lipids and their subsequent transformation may be integral to the physiological function of cytoglobin, generating cell signalling lipid molecules under an oxidative environment.
Collapse
|
98
|
Kuwada T, Hasegawa T, Takagi T, Sakae T, Sato I, Shishikura F. Involvement of the distal Arg residue in Cl−binding of midge larval haemoglobin. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:488-95. [DOI: 10.1107/s0907444911010808] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 03/23/2011] [Indexed: 11/10/2022]
|
99
|
|
100
|
Ioanitescu AI, Doorslaer SV, Dewilde S, Endeward B, Moens L. Probing the heme-pocket structure of the paramagnetic forms of cytoglobin and a distal histidine mutant using electron paramagnetic resonance. Mol Phys 2010. [DOI: 10.1080/00268970701616030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|