51
|
Ramasamy SK, Mailleux AA, Gupte VV, Mata F, Sala FG, Veltmaat JM, Del Moral PM, De Langhe S, Parsa S, Kelly LK, Kelly R, Shia W, Keshet E, Minoo P, Warburton D, Bellusci S. Fgf10 dosage is critical for the amplification of epithelial cell progenitors and for the formation of multiple mesenchymal lineages during lung development. Dev Biol 2007; 307:237-47. [PMID: 17560563 PMCID: PMC3714306 DOI: 10.1016/j.ydbio.2007.04.033] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 04/24/2007] [Accepted: 04/26/2007] [Indexed: 01/08/2023]
Abstract
The key role played by Fgf10 during early lung development is clearly illustrated in Fgf10 knockout mice, which exhibit lung agenesis. However, Fgf10 is continuously expressed throughout lung development suggesting extended as well as additional roles for FGF10 at later stages of lung organogenesis. We previously reported that the enhancer trap Mlcv1v-nLacZ-24 transgenic mouse strain functions as a reporter for Fgf10 expression and displays decreased endogenous Fgf10 expression. In this paper, we have generated an allelic series to determine the impact of Fgf10 dosage on lung development. We report that 80% of the newborn Fgf10 hypomorphic mice die within 24 h of birth due to respiratory failure. These mutant mouse lungs display severe hypoplasia, dilation of the distal airways and large hemorrhagic areas. Epithelial differentiation and proliferation studies indicate a specific decrease in TTF1 and SP-B expressing cells correlating with reduced epithelial cell proliferation and associated with a decrease in activation of the canonical Wnt signaling in the epithelium. Analysis of vascular development shows a reduction in PECAM expression at E14.5, which is associated with a simplification of the vascular tree at E18.5. We also show a decrease in alpha-SMA expression in the respiratory airway suggesting defective smooth muscle cell formation. At the molecular level, these defects are associated with decrease in Vegfa and Pdgfa expression likely resulting from the decrease of the epithelial/mesenchymal ratio in the Fgf10 hypomorphic lungs. Thus, our results indicate that FGF10 plays a pivotal role in maintaining epithelial progenitor cell proliferation as well as coordinating alveolar smooth muscle cell formation and vascular development.
Collapse
Affiliation(s)
- Suresh K Ramasamy
- Developmental Biology Program, Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Levesque BM, Zhou S, Shan L, Johnston P, Kong Y, Degan S, Sunday ME. NPAS1 regulates branching morphogenesis in embryonic lung. Am J Respir Cell Mol Biol 2006; 36:427-34. [PMID: 17110583 PMCID: PMC1899329 DOI: 10.1165/rcmb.2006-0314oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drosophila trachealess (Trl), master regulator of tracheogenesis, has no known functional mammalian homolog. We hypothesized that genes similar to trachealess regulate lung development. Quantitative (Q)RT-PCR and immunostaining were used to determine spatial and temporal patterns of npas1 gene expression in developing murine lung. Immunostaining for alpha-smooth muscle actin demonstrated myofibroblasts, and protein gene product (PGP)9.5 identified neuroendocrine cells. Branching morphogenesis of embryonic lung buds was analyzed in the presence of antisense or sense oligodeoxynucleotides (ODN). Microarray analyses were performed to screen for changes in gene expression in antisense-treated lungs. QRT-PCR was used to validate the altered expression of key genes identified on the microarrays. We demonstrate that npas1 is expressed in murine embryonic lung. npas1 mRNA peaks early at Embryonic Day (E)10.5-E11.5, then drops to low levels. Sequencing verifies the identity of npas1 transcripts in embryonic lung. NPAS1 immunostaining occurs in nuclei of parabronchial mesenchymal cells, especially at the tracheal bifurcation. Arnt, the murine homolog of Tango (the heterodimerization partner for Trl) is also expressed in developing lung but at constant levels. npas1- or arnt-antisense ODN inhibit lung branching morphogenesis, with altered myofibroblast development and increased pulmonary neuroendocrine cells. On microarrays, we identify > 50 known genes down-regulated by npas1-antisense, including multiple genes regulating cell migration and cell differentiation. QRT-PCR confirms significantly decreased expression of the neurogenic genes RBP-Jk and Tle, and three genes involved in muscle development: beta-ig-h3, claudin-11, and myocardin. Npas1 can regulate myofibroblast distribution, branching morphogenesis, and neuroendocrine cell differentiation in murine embryonic lung.
Collapse
Affiliation(s)
- Bernadette M Levesque
- Department of Pathology, Duke University Medical Center, Research Drive, Carl Building, Room 0043, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
53
|
Meszaros R, Akerlund M, Hjalt T, Durbeej M, Ekblom P. Gene expression profiling of differentiating embryonic stem cells expressing dominant negative fibroblast growth factor receptor 2. Matrix Biol 2006; 26:197-205. [PMID: 17174081 DOI: 10.1016/j.matbio.2006.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2006] [Revised: 10/13/2006] [Accepted: 10/30/2006] [Indexed: 12/25/2022]
Abstract
Embryonic stem (ES) cells are derived from the inner cell mass of the blastocyst and can be cultured as three-dimensional embryoid bodies (EBs) in which embryonic pregastrulation stages are faithfully mimicked. Fibroblast growth factor receptors (mainly FGFR2) are involved in the first differentiation events during early mammalian embryogenesis. It has been demonstrated that the presence of FGFR2 is a prerequisite for laminin-111 and collagen type IV synthesis and subsequently basement membrane formation in EBs. To identify genes that are influenced by FGFR signalling, we performed global gene expression profiling of differentiating EBs expressing dominant negative FGFR2 (dnFGFR2), acquiring an extensive catalogue of down- and up-regulated genes. We show a strong down-regulation of endodermal and basement membrane related genes, which strengthen the view that the FGFR signalling pathway is a main stimulator of basement membrane synthesis in EBs. We further present down-regulation of genes previously not linked to FGFR signalling, and in addition an active transcription of some mesodermal related genes in differentiating dnFGFR2 EBs.
Collapse
Affiliation(s)
- Renata Meszaros
- Department of Experimental Medical Science, Division for Cell and Matrix Biology, Lund University, Lund, Sweden.
| | | | | | | | | |
Collapse
|
54
|
Benjamin JT, Smith RJ, Halloran BA, Day TJ, Kelly DR, Prince LS. FGF-10 is decreased in bronchopulmonary dysplasia and suppressed by Toll-like receptor activation. Am J Physiol Lung Cell Mol Physiol 2006; 292:L550-8. [PMID: 17071719 DOI: 10.1152/ajplung.00329.2006] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many extremely preterm infants continue to suffer from bronchopulmonary dysplasia, which results from abnormal saccular-stage lung development. Here, we show that fibroblast growth factor-10 (FGF-10) is required for saccular lung development and reduced in the lung tissue of infants with bronchopulmonary dysplasia. Although exposure to bacteria increases the risk of bronchopulmonary dysplasia, no molecular target has been identified connecting inflammatory stimuli and abnormal lung development. In an experimental mouse model of saccular lung development, activation of Toll-like receptor 2 (TLR2) or Toll-like receptor 4 (TLR4) inhibited FGF-10 expression, leading to abnormal saccular airway morphogenesis. In addition, Toll-mediated FGF-10 inhibition disrupted the normal positioning of myofibroblasts around saccular airways, similar to the mislocalization of myofibroblasts seen in patients with bronchopulmonary dysplasia. Reduced FGF-10 expression may therefore link the innate immune system and impaired lung development in bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- John T Benjamin
- Departments of Pediatrics, Children's Hospital of Alabama, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
55
|
De Langhe SP, Carraro G, Warburton D, Hajihosseini MK, Bellusci S. Levels of mesenchymal FGFR2 signaling modulate smooth muscle progenitor cell commitment in the lung. Dev Biol 2006; 299:52-62. [PMID: 16989802 DOI: 10.1016/j.ydbio.2006.07.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 06/20/2006] [Accepted: 07/05/2006] [Indexed: 10/24/2022]
Abstract
Fibroblast growth factor (FGF) signaling has been shown to regulate lung epithelial development but its influence on mesenchymal differentiation has been poorly investigated. To study the role of mesenchymal FGF signaling in the differentiation of the mesenchyme and its impact on epithelial morphogenesis, we took advantage of Fgfr2c(+/Delta) mice, which due to a splicing switch express Fgfr2b in mesenchymal tissues and manifest Apert syndrome-like phenotypes. Using a set of in vivo and in vitro studies, we show that an autocrine FGF10-FGFR2b signaling loop is established in the mutant lung mesenchyme, which has several consequences. It prevents the entry of the smooth muscle progenitors into the smooth muscle cell (SMC) lineage and results in reduced fibronectin and elastin deposition. Levels of Fgf10 expression are raised within the mutant mesenchyme itself. Epithelial branching as well as epithelial levels of FGF and canonical Wnt signaling is dramatically reduced. These defects result in arrested development of terminal airways and an "emphysema like" phenotype in postnatal lungs. Our work unravels part of the complex interactions that govern normal lung development and may be pertinent to understanding the basis of respiratory defects in Apert syndrome.
Collapse
Affiliation(s)
- Stijn P De Langhe
- Developmental Biology Program, Department of Surgery, Saban Research Institute of Childrens Hospital Los Angeles, CA 90027, USA
| | | | | | | | | |
Collapse
|
56
|
Cardoso WV, Lü J. Regulation of early lung morphogenesis: questions, facts and controversies. Development 2006; 133:1611-24. [PMID: 16613830 DOI: 10.1242/dev.02310] [Citation(s) in RCA: 409] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During early respiratory system development, the foregut endoderm gives rise to the tracheal and lung cell progenitors. Through branching morphogenesis, and in coordination with vascular development, a tree-like structure of epithelial tubules forms and differentiates to produce the airways and alveoli. Recent studies have implicated the fibroblast growth factor, sonic hedgehog, bone morphogenetic protein, retinoic acid and Wnt signaling pathways, and various transcription factors in regulating the initial stages of lung development. However, the precise roles of these molecules and how they interact in the developing lung is subject to debate. Here, we review early stages in lung development and highlight questions and controversies regarding their molecular regulation.
Collapse
|
57
|
Yoshiba N, Yoshiba K, Stoetzel C, Perrin-Schmitt F, Cam Y, Ruch JV, Hosoya A, Ozawa H, Lesot H. Differential regulation of TIMP-1, -2, and -3 mRNA and protein expressions during mouse incisor development. Cell Tissue Res 2006; 324:97-104. [PMID: 16418837 DOI: 10.1007/s00441-005-0123-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 11/02/2005] [Indexed: 01/13/2023]
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) possess multiple functions, in addition to their matrix metalloproteinase (MMP) inhibitory activity. The continuously growing incisor of mouse possesses a stem cell compartment at the apical end of the epithelium (the apical loop) and thus provides an excellent tool to analyze the mechanisms of organogenesis and cytodifferentiation. To understand the functions of TIMPs in tooth development, we have analyzed the gene expression and protein localization of TIMP-1, -2, and -3 during mouse incisor development, from embryonic day 13 (E13) to postnatal day 3 (P3). TIMP-1 was present on the basement membrane during early developmental stages. At P2, TIMP-1 was strongly detected along the apical loop, transiently disappeared from the basement membrane in the cytodifferentiation zone, and later reappeared at the distal end of functional ameloblasts. Expression of TIMP-2 protein was restricted to the outer part of the apical loop throughout the examined stages. At P2, TIMP-2 was present on the basement membrane at the outer part of the apical loop. The dental follicle also expressed Timp-2, and the corresponding protein was abundant within the extracellular matrix. Timp-3 mRNA was highly expressed in the mesenchyme surrounding the apical loop. During matrix formation, Timp-3 was expressed by subodontoblasts, and the protein was detected in this layer and between odontoblasts. Distinct temporal and spatial expression patterns of TIMPs suggest divergent functions of these factors in incisor organogenesis.
Collapse
Affiliation(s)
- Nagako Yoshiba
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 5274, Niigata, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Li C, Hu L, Xiao J, Chen H, Li JT, Bellusci S, Delanghe S, Minoo P. Wnt5a regulates Shh and Fgf10 signaling during lung development. Dev Biol 2005; 287:86-97. [PMID: 16169547 DOI: 10.1016/j.ydbio.2005.08.035] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 08/17/2005] [Accepted: 08/17/2005] [Indexed: 11/27/2022]
Abstract
The role of WNT signaling and its interactions with other morphogenetic pathways were investigated during lung development. Previously, we showed that targeted disruption of Wnt5a results in over-branching of the epithelium and thickening of the interstitium in embryonic lungs. In this study, we generated and characterized transgenic mice with lung-specific over-expression of Wnt5a from the SpC promoter. Over-expression of Wnt5a interfered with normal epithelial-mesenchymal interactions resulting in reduced epithelial branching and dilated distal airways. During early lung development, over-expression of Wnt5a in the epithelium resulted in increased Fgf10 in the mesenchyme and decreased Shh in the epithelium. Both levels and distribution of SHH receptor, Ptc were reduced in SpC-Wnt5a transgenic lungs and were reciprocally correlated to changes of Fgf10 in the mesenchyme, suggesting that SHH signaling is decreased by over-expression of Wnt5a. Cultured mesenchyme-free epithelial explants from SpC-Wnt5a transgenic lungs responded abnormally to recombinant FGF10 supplied uniformly in the Matrigel with dilated branch tips that mimic the in vivo phenotype. In contrast, chemotaxis of transgenic epithelial explants towards a directional FGF10 source was inhibited. These suggest that over-expression of Wnt5a disrupts epithelial-response to FGF10. In conclusion, Wnt5a regulates SHH and FGF10 signaling during lung development.
Collapse
Affiliation(s)
- Changgong Li
- Department of Pediatrics, Women's and Children's Hospital, USC Keck School of Medicine, Los Angeles, CA 90033, USA.
| | | | | | | | | | | | | | | |
Collapse
|