51
|
Kim TH, Jiang HH, Lee S, Youn YS, Park CW, Byun Y, Chen X, Lee KC. Mono-PEGylated dimeric exendin-4 as high receptor binding and long-acting conjugates for type 2 anti-diabetes therapeutics. Bioconjug Chem 2011; 22:625-32. [PMID: 21401109 DOI: 10.1021/bc100404x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dimerization is viewed as the most effective means of increasing receptor binding affinity, and both dimerization and PEGylation effectively prolong the life spans of short-lived peptides and proteins in vivo by delaying excretion via the renal route. Here, we describe the high binding affinities of two long-acting exendin-4 (Ex4) conjugates, dimerized Ex4 (Di-Ex4) and PEGylated Di-Ex-4 (PEG-Di-Ex4). Di-Ex4 and PEG-Di-Ex4 were prepared using cysteine and amine residue specific coupling reactions using Ex4-Cys, bisMal-NH(2), and activated PEG. The Ex4 conjugates produced were of high purity (>98.5%), as determined by size-exclusion chromatography and MALDI-TOF mass spectrometry. The receptor binding affinity of Di-Ex4 on RIN-m5F cells was 3.5-fold higher than that of Ex4, and the in vivo antihyperglycemic efficacy of Di-Ex4 was also greater than that of native Ex4 in type 2 diabetic db/db mice. Furthermore, Di-Ex4 and PEG-Di-Ex4 were found to have greater blood circulating t(1/2) and AUC(inf) values than native Ex4 by 2.7- and 13.7-fold, and by 4.0- and 17.3-fold, respectively. Accordingly, hypoglycemic durations were greatly increased to 15.0 and 40.1 h, respectively, at a dose of 25 nmol/kg (native Ex4 7.3 h). The results of this study show that combined dimerization and PEGylation are effective when applied to Ex4, and suggest that PEG-Di-Ex4 has considerable potential as a type 2 anti-diabetic agent.
Collapse
Affiliation(s)
- Tae Hyung Kim
- College of Pharmacy, SungKyunKwan University , 300 Chonchon-dong, Jangan-ku, Suwon City 440-746, Korea
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Shang GG, Zhang JH, Lü YG, Yun J. Bioinformatics-led design of single-chain antibody molecules targeting DNA sequences for retinoblastoma. Int J Ophthalmol 2011; 4:8-13. [PMID: 22553599 DOI: 10.3980/j.issn.2222-3959.2011.01.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 01/20/2011] [Indexed: 02/01/2023] Open
Abstract
AIM To analyze the relationship between the structure and function of single-chain Fv antibody (scFv) with bioinformatics methods, so as to provide theoretical basis for retinoblastoma targeted therapy. METHODS Single-chain antibodies are reconstructed for cancer-targeted therapy to provide good penetration into tumor tissue and to improve their pharmacokinetics in vivo, offering a clinically valuable application. The relationship needs to be analyzed that there may be some variations between the structure and function of the fusion proteins, and the relationship between the structure and function of protein molecules was obtained through analyzing relevant literature at home and abroad as well as modeling analysis. RESULTS Through our analysis of the interaction region between the antibody and the antigen, and of the binding sites for molecular conformation, it is clear that existing antibodies need to be modified at the DNA sequence level, enhancing the biological activity of the antibodies. Based on the view that bio-molecular computer models are closely integrated with biological experiments, a bio-molecular structure-activity relationship model can be established in terms of molecular conformation, physical and chemical properties and the biological activity of single-chain antibodies. Two enlightenments are obtained from our analysis. On the one hand, the structure-activity relationship is clear for new immune molecules at the gene expression level. On the other hand, a single-chain antibody molecule can be designed and optimized for the cancer-oriented treatment. CONCLUSION In this article, we provide the theoretical and experimental basis for the development of single-chain antibodies appropriate for retinoblastoma therapy.
Collapse
Affiliation(s)
- Guo-Gang Shang
- Department of Radiotherapy, Zhengzhou People's Hospital, Zhengzhou 450052, Henan Province, China
| | | | | | | |
Collapse
|
53
|
Naimuddin M, Kobayashi S, Tsutsui C, Machida M, Nemoto N, Sakai T, Kubo T. Directed evolution of a three-finger neurotoxin by using cDNA display yields antagonists as well as agonists of interleukin-6 receptor signaling. Mol Brain 2011; 4:2. [PMID: 21214917 PMCID: PMC3024951 DOI: 10.1186/1756-6606-4-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 01/07/2011] [Indexed: 12/16/2022] Open
Abstract
Background Directed evolution of biomolecules such as DNA, RNA and proteins containing high diversity has emerged as an effective method to obtain molecules for various purposes. In the recent past, proteins from non-immunoglobulins have attracted attention as they mimic antibodies with respect to binding potential and provide further potential advantages. In this regard, we have attempted to explore a three-finger neurotoxin protein (3F). 3F proteins are small (~7 kDa), structurally well defined, thermally stable and resistant to proteolysis that presents them as promising candidates for directed evolution. Results We have engineered a snake α-neurotoxin that belongs to the 3F family by randomizing the residues in the loops involved in binding with acetylcholine receptors and employing cDNA display to obtain modulators of interleukin-6 receptor (IL-6R). Selected candidates were highly specific for IL-6R with dissociation constants and IC50s in the nanomolar range. Antagonists as well as agonists were identified in an IL-6 dependent cell proliferation assay. Size minimization yielded peptides of about one-third the molecular mass of the original proteins, without significant loss of activities and, additionally, lead to the identification of the loops responsible for function. Conclusions This study shows 3F protein is amenable to introduce amino acid changes in the loops that enable preparation of a high diversity library that can be utilized to obtain ligands against macromolecules. We believe this is the first report of protein engineering to convert a neurotoxin to receptor ligands other than the parent receptor, the identification of an agonist from non-immunoglobulin proteins, the construction of peptide mimic of IL-6, and the successful size reduction of a single-chain protein.
Collapse
Affiliation(s)
- Mohammed Naimuddin
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | |
Collapse
|
54
|
Jafari R, Holm P, Sandegren J, Stigbrand T, Sundström BE. Localization of complexed anticytokeratin 8 scFv TS1-218 to HeLa HEp-2 multicellular tumor spheroids and experimental tumors. Cancer Biother Radiopharm 2011; 25:455-63. [PMID: 20707717 DOI: 10.1089/cbr.2010.0785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recombinant single-chain fragment variable (scFv) antibodies with specificity to tumor antigens can be used to target tumors in vivo. The approach to use administration of complexes of idiotypic-anti-idiotypic scFvs when targeting tumors has not been tested earlier, and from a theoretical point it could contribute to longer in vivo circulation and improved targeting efficiency by dissociation, when in contact with the target antigen. In this study two models to evaluate the targeting efficiency of such complexes were used. HeLa HEp-2 tumor cells were grown as multicellular tumor spheroids (MCTS) and exposed to the antibody constructs in vitro. The behavior in vivo was tested in an in vivo tumor xenograft model. To increase the size of the anticytokeratin 8 scFv, TS1-218, complexes were formed between TS1-218 and its anti-idiotype, alphaTS1 scFv. The functionality of (125)I-labeled TS1-218 alone and in complex was studied in both models. The uptake patterns were similar in both models. The idiotypic TS1-218 was able to localize to the MCTS and xenografted tumors, both alone and in complex with alphaTS1 scFv. TS1-218 in complex, however, demonstrated a significantly higher uptake than the monomeric TS1-218 in both models (p < 0.0005 and p < 0.0089, respectively). When complexes were administered in vivo, a slower clearance and an increased tumor half-life could be observed. The present investigation indicates that administration of targeting antibodies, with initially blocked antigen-binding sites by complex formation with their anti-idiotypes, may improve targeting efficiency.
Collapse
Affiliation(s)
- Rozbeh Jafari
- Department of Chemistry and Biomedical Sciences, Karlstad University, Sweden
| | | | | | | | | |
Collapse
|
55
|
|
56
|
Conrad U, Plagmann I, Malchow S, Sack M, Floss DM, Kruglov AA, Nedospasov SA, Rose-John S, Scheller J. ELPylated anti-human TNF therapeutic single-domain antibodies for prevention of lethal septic shock. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:22-31. [PMID: 20444206 DOI: 10.1111/j.1467-7652.2010.00523.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Tumour necrosis factor (TNF) is a major pro-inflammatory cytokine involved in multiple inflammatory diseases. The detrimental activity of TNF can be blocked by various antagonists, and commercial therapeutics based upon this principle have been approved for treatment of diseases including rheumatoid arthritis, Crohn's disease and psoriasis. In a search for new, improved anti-inflammatory therapeutics we have designed a single-domain monoclonal antibody (V(H) H), which recognizes TNF. The antibody component (TNF-V(H) H) is based upon an anti-human TNF Camelidae heavy-chain monoclonal antibody, which was linked to an elastin-like polypeptide (ELP). We demonstrate that ELP fusion to the TNF-V(H) H enhances accumulation of the fusion protein during biomanufacturing in transgenic tobacco plants. With this study, we show for the first time that this plant-derived anti-human TNF-V(H) H antibody was biologically active in vivo. Therefore, therapeutic application of TNF-V(H) H-ELP fusion protein was tested in humanized TNF mice and was shown to be effective in preventing death caused by septic shock. The in vivo persistence of the ELPylated antibody was ∼24 fold longer than that of non-ELPylated TNF-V(H) H.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Disease Models, Animal
- Elastin
- Escherichia coli
- Galactose
- Gene Expression
- Humans
- L Cells
- Lipopolysaccharides
- Mice
- Peptides
- Plants, Genetically Modified
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/isolation & purification
- Recombinant Fusion Proteins/therapeutic use
- Shock, Septic/chemically induced
- Shock, Septic/immunology
- Shock, Septic/prevention & control
- Nicotiana/genetics
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/immunology
Collapse
Affiliation(s)
- Udo Conrad
- Institute of Plant Genetics and Crop Plant Research (IPK), Phytoantibodies, Gatersleben, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Jafari R, Holm P, Piercecchi M, Sundström BE. Construction of divalent anti-keratin 8 single-chain antibodies (sc(Fv)(2)), expression in Pichia pastoris and their reactivity with multicellular tumor spheroids. J Immunol Methods 2010; 364:65-76. [PMID: 21093447 DOI: 10.1016/j.jim.2010.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Revised: 10/15/2010] [Accepted: 11/10/2010] [Indexed: 11/28/2022]
Abstract
Single-chain variable fragments (scFvs) are small monovalent recombinant antibody fragments that retain the specificity of their parent immunoglobulins. ScFvs are excellent building blocks for new and improved immunodiagnostic and therapeutic proteins. However, the monovalency and the rapid renal elimination of scFvs result in poor tumor accumulation and retention. Engineering divalent antibody fragments is an excellent way to address these shortcomings. In this study, covalent divalent single-chain variable fragments (sc(Fv)(2)s), were constructed from the monovalent anti-keratin 8 scFvs, TS1-218 and its mutant, HE1-Q. The scFvs and sc(Fv)(2)s were expressed in the methylotrophic yeast Pichia pastoris, utilizing the alpha-factor secretion signal (α-factor) for extracellular secretion. The immunoreactivity and specificity of the antibody fragments were analyzed with enzyme-linked immunosorbent assay (ELISA) and the uptake and retention of the (125)I labeled antibody fragments were evaluated using HeLa HEp-2 multicellular tumor spheroids (MCTSs). Analysis of the antibody fragments demonstrated that parts of the α-factor remained at the N-terminal of the antibody fragments. Despite incomplete processing of the α-factor, the antibody fragments were functional where the sc(Fv)(2)s gave a three-fold stronger signal in ELISA compared to their scFv counterparts and the mutant antibodies demonstrated a stronger signal than their initial wild types. In addition, the sc(Fv)(2)s DiTS1-218 and DiHE1-Q displayed an approximately two-fold higher uptake and were retained to a larger extent in the MCTS, demonstrating a 3.9 and 9.4-fold increase in half-life respectively compared to their corresponding scFvs. In conclusion, expression in P. pastoris improved the yield 20-fold and facilitated the purification of the antibody fragments. Furthermore, the sc(Fv)(2)s presented a higher functional affinity to K 8 both in ELISA and MCTS compared to the scFvs with DiHE1-Q being the best candidate for further studies.
Collapse
Affiliation(s)
- Rozbeh Jafari
- Department of Chemistry and Biomedical Sciences, Karlstad University, S-651 88 Karlstad, Sweden
| | | | | | | |
Collapse
|
58
|
Stains CI, Furman JL, Porter JR, Rajagopal S, Li Y, Wyatt RT, Ghosh I. A general approach for receptor and antibody-targeted detection of native proteins utilizing split-luciferase reassembly. ACS Chem Biol 2010; 5:943-52. [PMID: 20681584 DOI: 10.1021/cb100143m] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The direct detection of native proteins in heterogeneous solutions remains a challenging problem. Standard methodologies rely on a separation step to circumvent nonspecific signal generation. We hypothesized that a simple and general method for the detection of native proteins in solution could be achieved through ternary complexation, where the conditional signal generation afforded by split-protein reporters could be married to the specificity afforded by either native receptors or specific antibodies. Toward this goal, we describe a solution phase split-luciferase assay for native protein detection, where we fused fragmented halves of firefly luciferase to separate receptor fragments or single-chain antibodies, allowing for conditional luciferase complementation in the presence of several biologically significant protein targets. To demonstrate the utility of this strategy, we have developed and validated assay platforms for the vascular endothelial growth factor, the gp120 coat protein from HIV-1, and the human epidermal growth factor receptor 2 (HER2), a marker for breast cancer. The specificities of the recognition elements, CD4 and the 17b single-chain antibody, employed in the gp120 sensor allowed us to parse gp120s from different clades. Our rationally designed HER2 sensing platform was capable of discriminating between HER2 expression levels in several tumor cell lines. In addition, luminescence from reassembled luciferase was linear across a panel of cell lines with increasing HER2 expression. We envision that the proof of principle studies presented herein may allow for the potential detection of a broad range of biological analytes utilizing ternary split-protein systems.
Collapse
Affiliation(s)
- Cliff I. Stains
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721
| | - Jennifer L. Furman
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721
| | - Jason R. Porter
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721
| | - Srivats Rajagopal
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721
| | - Yuxing Li
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Richard T. Wyatt
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Indraneel Ghosh
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721
| |
Collapse
|
59
|
Hu J, Duppatla V, Harth S, Schmitz W, Sebald W. Site-Specific PEGylation of Bone Morphogenetic Protein-2 Cysteine Analogues. Bioconjug Chem 2010; 21:1762-72. [DOI: 10.1021/bc9005706] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Junli Hu
- Physiological Chemistry II, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Viswanadham Duppatla
- Physiological Chemistry II, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Stefan Harth
- Physiological Chemistry II, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Werner Schmitz
- Physiological Chemistry II, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Walter Sebald
- Physiological Chemistry II, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
60
|
Chames P, Baty D. [The future of antibody fragments, made of a single immunoglobulin domain]. Med Sci (Paris) 2010; 25:1159-62. [PMID: 20035698 DOI: 10.1051/medsci/200925121159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Monoclonal antibodies are now established as key therapeutics for a range of diseases including cancer and auto-immunity. However, despite important improvements, these molecules still face several serious limitations including production costs and tumor penetration. A new class of antibody fragments, made of a single immunoglobulin domain, is emerging as an exciting alternative. This review describes the outstanding properties and the first achievements of these domain antibodies.
Collapse
Affiliation(s)
- Patrick Chames
- Anticorps thérapeutiques et immunociblage, Inserm U624, GDR 3260, 163, avenue de Luminy, 13288 Marseille Cedex 09, France.
| | | |
Collapse
|
61
|
Zahnd C, Kawe M, Stumpp MT, de Pasquale C, Tamaskovic R, Nagy-Davidescu G, Dreier B, Schibli R, Binz HK, Waibel R, Plückthun A. Efficient tumor targeting with high-affinity designed ankyrin repeat proteins: effects of affinity and molecular size. Cancer Res 2010; 70:1595-605. [PMID: 20124480 DOI: 10.1158/0008-5472.can-09-2724] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Slow-clearing, tumor-targeting proteins such as monoclonal antibodies typically exhibit high tumor accumulation but low tissue contrast, whereas intermediate-sized proteins such as scFvs show faster clearance but only moderate tumor accumulation. For both, tumor targeting does not seem to improve further above an optimal affinity. We show here that with very small high-affinity proteins such as designed ankyrin repeat proteins (DARPins), these limits can be overcome. We have systematically investigated the influence of molecular mass and affinity on tumor accumulation with DARPins with specificity for HER2 in SK-OV-3.ip nude mouse xenografts. DARPins with a mass of 14.5 kDa and affinities between 270 nmol/L and 90 pmol/L showed a strong correlation of tumor accumulation with affinity to HER2, with the highest affinity DARPin reaching 8% ID/g after 24 hours and 6.5% ID/g after 48 hours (tumor-to-blood ratio >60). Tumor autoradiographs showed good penetration throughout the tumor mass. Genetic fusion of two DARPins (30 kDa) resulted in significantly lower tumor accumulation, similar to values observed for scFvs, whereas valency had no influence on accumulation. PEGylation of the DARPins increased the circulation half-life, leading to higher tumor accumulation (13.4% ID/g after 24 hours) but lower tumor-to-blood ratios. Affinity was less important for tumor uptake of the PEGylated constructs. We conclude that two regimes exist for delivering high levels of drug to a tumor: small proteins with very high affinity, such as unmodified DARPins, and large proteins with extended half-life, such as PEGylated DARPins, in which the importance of affinity is less pronounced.
Collapse
Affiliation(s)
- Christian Zahnd
- Universität Zürich, Biochemisches Institut, Winterthurerstrasse, 8057 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Schmidt MM, Wittrup KD. A modeling analysis of the effects of molecular size and binding affinity on tumor targeting. Mol Cancer Ther 2010; 8:2861-71. [PMID: 19825804 DOI: 10.1158/1535-7163.mct-09-0195] [Citation(s) in RCA: 405] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A diverse array of tumor targeting agents ranging in size from peptides to nanoparticles is currently under development for applications in cancer imaging and therapy. However, it remains largely unclear how size differences among these molecules influence their targeting properties. Here, we develop a simple, mechanistic model that can be used to understand and predict the complex interplay between molecular size, affinity, and tumor uptake. Empirical relationships between molecular radius and capillary permeability, interstitial diffusivity, available volume fraction, and plasma clearance were obtained using data in the literature. These relationships were incorporated into a compartmental model of tumor targeting using MATLAB to predict the magnitude, specificity, time dependence, and affinity dependence of tumor uptake for molecules across a broad size spectrum. In the typical size range for proteins, the model uncovers a complex trend in which intermediate-sized targeting agents (MW, approximately 25 kDa) have the lowest tumor uptake, whereas higher tumor uptake levels are achieved by smaller and larger agents. Small peptides accumulate rapidly in the tumor but require high affinity to be retained, whereas larger proteins can achieve similar retention with >100-fold weaker binding. For molecules in the size range of liposomes, the model predicts that antigen targeting will not significantly increase tumor uptake relative to untargeted molecules. All model predictions are shown to be consistent with experimental observations from published targeting studies. The results and techniques have implications for drug development, imaging, and therapeutic dosing.
Collapse
Affiliation(s)
- Michael M Schmidt
- Department of Biological Engineering, Massachusetts Institute of Technology, Building E19-551, 50 Ames Street, Cambridge, MA 02139, USA
| | | |
Collapse
|
63
|
de Greef TFA, Nieuwenhuizen MML, Sijbesma RP, Meijer EW. Competitive Intramolecular Hydrogen Bonding in Oligo(ethylene oxide) Substituted Quadruple Hydrogen Bonded Systems. J Org Chem 2010; 75:598-610. [DOI: 10.1021/jo902053t] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Tom F. A. de Greef
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Marko M. L. Nieuwenhuizen
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Rint P. Sijbesma
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - E. W. Meijer
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
64
|
Antitumor activity and toxicity of anti-HER2 immunoRNase scFv 4D5-dibarnase in mice bearing human breast cancer xenografts. Invest New Drugs 2009; 29:22-32. [PMID: 19789841 DOI: 10.1007/s10637-009-9329-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Accepted: 09/16/2009] [Indexed: 10/20/2022]
Abstract
Ribonucleases (RNases) are a non-mutagenic alternative to harmful DNA-damaging anticancer drugs. Targeting of RNases with antibodies to surface antigens that are selectively expressed on tumor cells endows specificity to the cytotoxic actions of RNases. Barnase, a ribonuclease from Bacillus amyloliquefaciens, is a promising candidate for targeted delivery to cancer cells because of its insusceptibility to the ubiquitous cytoplasmic ribonuclease inhibitor, and its high stability and catalytic activity. Here, we characterized in vitro and in vivo an immunoRNase, scFv 4D5-dibarnase, which consists of two barnase molecules that are fused serially to the single-chain variable fragment (scFv) of humanized 4D5 antibody. The latter is directed against the extracellular domain of human epidermal growth factor receptor 2 (HER2), a cancer marker that is overexpressed in many human carcinomas. The scFv 4D5-dibarnase exerted a specific cytotoxic effect on HER2-overexpressing SKBR-3 and BT-474 human breast carcinoma cells (IC(50) = 4.1 and 2.4 nM, respectively) via induction of apoptosis. Ten doses of 0.7 mg/kg scFv 4D5-dibarnase to BALB/c nude mice that bore SKBR-3 human breast cancer xenografts resulted in a 76% reduction in tumor growth. A single injection of scFv 4D5-dibarnase at a total course dose of 7 mg/kg did not cause severe side effects in BALB/c nude or BDF1 mice. The cytotoxicity and selectivity of scFv 4D5-dibarnase merit consideration of this immunoRNase as a potent anticancer agent.
Collapse
|
65
|
Chang CH, Rossi EA, Cardillo TM, Nordstrom DL, McBride WJ, Goldenberg DM. A new method to produce monoPEGylated dimeric cytokines shown with human interferon-α2b. Bioconjug Chem 2009; 20:1899-907. [PMID: 19736932 DOI: 10.1021/bc9001773] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have adapted the dock-and-lock (DNL) method into a novel PEGylation technology using human interferon-α2b (IFN-α2b) as an example. Central to DNL is a pair of distinct protein domains involved in the natural association between cAMP-dependent protein kinase (PKA) and A-kinase anchoring proteins (AKAPs). These domains serve as linkers for site-specific conjugation of poly(ethylene glycol) (PEG) to a dimeric form of IFN-α2b. The combination of a fusion protein comprising IFN-α2b and the dimerization-and-docking domain (DDD) of PKA with a PEG-derivatized anchoring domain (AD) of an interactive AKAP results in facile formation of a trimeric complex containing two copies of IFN-α2b and a single site-specifically linked PEG chain. Three such monoPEGylated dimers of IFN-α2b have been generated, the first with a 20 kDa linear PEG, referred to as α2b-362, the second with a 30 kDa linear PEG (α2b-413), and the third with a 40 kDa branched PEG (α2b-457). All three retained antiviral and antitumor activity in vitro and showed improved pharmacokinetic properties in mice, which translated into potent and prolonged therapeutic efficacy in the Daudi human lymphoma xenograft model. We anticipate wide applicability of the DNL method for developing long-acting therapeutics that are dimeric and monoPEGylated with the increased bioavailability allowing for less frequent dosing.
Collapse
|
66
|
Winkler J, Martin-Killias P, Plückthun A, Zangemeister-Wittke U. EpCAM-targeted delivery of nanocomplexed siRNA to tumor cells with designed ankyrin repeat proteins. Mol Cancer Ther 2009; 8:2674-83. [PMID: 19723880 DOI: 10.1158/1535-7163.mct-09-0402] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Specific delivery to tumors and efficient cellular uptake of nucleic acids remain major challenges for gene-targeted cancer therapies. Here we report the use of a designed ankyrin repeat protein (DARPin) specific for the epithelial cell adhesion molecule (EpCAM) as a carrier for small interfering RNA (siRNA) complementary to the bcl-2 mRNA. For charge complexation of the siRNA, the DARPin was fused to a truncated human protamine-1 sequence. To increase the cell binding affinity and the amount of siRNA delivered into cells, DARPin dimers were generated and used as fusion proteins with protamine. All proteins expressed well in Escherichia coli in soluble form, yet, to remove tightly bound bacterial nucleic acids, they were purified under denaturing conditions by immobilized metal ion affinity chromatography, followed by refolding. The fusion proteins were capable of complexing four to five siRNA molecules per protamine, and fully retained the binding specificity for EpCAM as shown on MCF-7 breast carcinoma cells. In contrast to unspecific LipofectAMINE transfection, down-regulation of antiapoptotic bcl-2 using fusion protein complexed siRNA was strictly dependent on EpCAM binding and internalization. Inhibition of bcl-2 expression facilitated tumor cell apoptosis as shown by increased sensitivity to the anticancer agent doxorubicin.
Collapse
Affiliation(s)
- Johannes Winkler
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | | | | | | |
Collapse
|
67
|
Rudnick SI, Adams GP. Affinity and avidity in antibody-based tumor targeting. Cancer Biother Radiopharm 2009; 24:155-61. [PMID: 19409036 DOI: 10.1089/cbr.2009.0627] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Many factors contribute to successful tumor targeting by antibodies. Besides properties of the tumor tissue and general antibody pharmacology, a relationship exists between an antibody and its antigen that can shape penetration, catabolism, specificity, and efficacy. The affinity and avidity of the binding interactions play critical roles in these dynamics. In this work, we review the principles that guide models predicting tumor penetration and cellular internalization while providing a critical overview of studies aimed at experimentally determining the specific role of affinity and avidity in these processes. One should gain the perspective that binding affinity can, in part, dictate the localization of antibodies in tumors, leading to high concentrations in the perivascular space or low concentrations diffused throughout the tumor. These patterns can be simply due to the diminution of available dose by binding antigen and are complicated by internalization and degradation stemming from slow rates of dissociation. As opposed to the trend of simply increasing affinity to increase efficacy, novel strategies that increase avidity and broaden specificity have made significant progress in tumor targeting.
Collapse
Affiliation(s)
- Stephen I Rudnick
- Molecular Medicine Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | |
Collapse
|
68
|
Stork R, Campigna E, Robert B, Müller D, Kontermann RE. Biodistribution of a bispecific single-chain diabody and its half-life extended derivatives. J Biol Chem 2009; 284:25612-9. [PMID: 19628871 DOI: 10.1074/jbc.m109.027078] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Small recombinant antibody molecules such as bispecific single-chain diabodies (scDb) possessing a molecular mass of approximately 55 kDa are rapidly cleared from circulation. We have recently extended the plasma half-life of scDb applying various strategies including PEGylation, N-glycosylation and fusion to an albumin-binding domain (ABD) from streptococcal protein G. Here, we further analyzed the influence of these modifications on the biodistribution of a scDb directed against carcinoembryonic antigen (CEA) and CD3 capable of retargeting T cells to CEA-expressing tumor cells. We show that a prolonged circulation time results in an increased accumulation in CEA+ tumors, which was most pronounced for scDb-ABD and PEGylated scDb. Interestingly, tumor accumulation of the scDb-ABD fusion protein was approximately 2-fold higher compared with PEGylated scDb, although both molecules exhibit similar plasma half-lives and similar affinities for CEA. Comparing half-lives in neonatal Fc receptor (FcRn) wild-type and FcRn heavy chain knock-out mice the contribution of the FcRn to the long plasma half-life of scDb-ABD was confirmed. The half-life of scDb-ABD was approximately 2-fold lower in the knock-out mice, while no differences were observed for PEGylated scDb. Binding of the scDb derivatives to target and effector cells was not or only marginally affected by the modifications, although, compared with scDb, a reduced cytotoxic activity was observed for scDb-ABD, which was further reduced in the presence of albumin. In summary, these findings demonstrate that the extended half-life of a bispecific scDb translates into improved accumulation in antigen-positive tumors but that modifications might also affect scDb-mediated cytotoxicity.
Collapse
Affiliation(s)
- Roland Stork
- Institut für Zellbiologie und Immunologie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
69
|
A novel CD19-directed recombinant bispecific antibody derivative with enhanced immune effector functions for human leukemic cells. J Immunother 2009; 31:871-84. [PMID: 18833000 DOI: 10.1097/cji.0b013e318186c8b4] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A novel bispecific antibody-derived recombinant protein targeting leukemias and lymphomas was designed, a single-chain Fv triple body (sctb) consisting of 1 polypeptide chain with 3 scFvs connected in tandem. The distal scFvs were specific for the tumor antigen CD19, and the central scFv for the trigger molecule CD16 (FcgammaRIII) on natural killer (NK) cells and macrophages. We had previously built a disulphide stabilized (ds) bsscFv [19 x 16] with monovalent binding for CD19 from ds components. The sctb ds[19 x 16 x 19] also used ds components and displayed 3-fold greater avidity for CD19 than the bsscFv (KD = 13 vs. 42 nM), whereas both had equal affinity for CD16 (KD = 58 nM). Plasma half-lives in mice were 4 and 2 hours for the sctb and the bsscFv, respectively. In antibody-dependent cellular cytotoxicity reactions with human mononuclear cells as effectors, the sctb promoted equal lysis of leukemic cell lines and primary cells from leukemia and lymphoma patients at 10-fold to 40-fold lower concentrations than the bsscFv. This new format may also be applicable to a variety of other tumor antigens and effector molecules. With half-maximum effective concentrations (EC50) in the low picomolar range, the sctb ds[19 x 16 x 19] is an attractive candidate for further preclinical evaluation.
Collapse
|
70
|
Weisser NE, Hall JC. Applications of single-chain variable fragment antibodies in therapeutics and diagnostics. Biotechnol Adv 2009; 27:502-20. [PMID: 19374944 DOI: 10.1016/j.biotechadv.2009.04.004] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 03/03/2009] [Accepted: 04/04/2009] [Indexed: 11/18/2022]
Abstract
Antibodies (Abs) are some of the most powerful tools in therapy and diagnostics and are currently one of the fastest growing classes of therapeutic molecules. Recombinant antibody (rAb) fragments are becoming popular therapeutic alternatives to full length monoclonal Abs since they are smaller, possess different properties that are advantageous in certain medical applications, can be produced more economically and are easily amendable to genetic manipulation. Single-chain variable fragment (scFv) Abs are one of the most popular rAb format as they have been engineered into larger, multivalent, bi-specific and conjugated forms for many clinical applications. This review will show the tremendous versatility and importance of scFv fragments as they provide the basic antigen binding unit for a multitude of engineered Abs for use as human therapeutics and diagnostics.
Collapse
Affiliation(s)
- Nina E Weisser
- Department of Environmental Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | | |
Collapse
|
71
|
Plagmann I, Chalaris A, Kruglov AA, Nedospasov S, Rosenstiel P, Rose-John S, Scheller J. Transglutaminase-catalyzed covalent multimerization of Camelidae anti-human TNF single domain antibodies improves neutralizing activity. J Biotechnol 2009; 142:170-8. [PMID: 19439388 DOI: 10.1016/j.jbiotec.2009.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 03/23/2009] [Accepted: 04/03/2009] [Indexed: 11/29/2022]
Abstract
Tumor necrosis factor (TNF) plays an important role in chronic inflammatory disorders, such as Rheumatoid Arthritis and Crohn's disease. Recently, monoclonal Camelidae variable heavy-chain domain-only antibodies (V(H)H) were developed to antagonize the action of human TNF (hTNF). Here, we show that hTNF-V(H)H does not interfere with hTNF trimerization, but competes with hTNF for hTNF-receptor binding. Moreover, we describe posttranslational dimerization and multimerization of hTNF-V(H)H molecules in vitro catalyzed by microbial transglutaminases (MTG). The ribonuclease S-tag-peptide was shown to act as a peptidyl substrate in covalent protein cross-linking reactions catalyzed by MTG from Streptomyces mobaraensis. The S-tag sequence was C-terminally fused to the hTNF-V(H)H and the fusion protein was expressed and purified from Escherichia coli culture supernatants. hTNF-V(H)H-S-tag fusion proteins were efficiently dimerized and multimerized by MTG whereas hTNF-V(H)H was not susceptible to protein cross-linking. Cell cytotoxicity assays, using hTNF as apoptosis inducing cytokine, revealed that dimerized and multimerized hTNF-V(H)H proteins were much more active than the monomeric hTNF-V(H)H. We hypothesize that improved inhibition by dimeric and multimeric single chain hTNF-V(H)H proteins is caused by avidity effects.
Collapse
Affiliation(s)
- Ingo Plagmann
- Department of Biochemistry, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
During last two decades, the chimerization and humanization of monoclonal antibodies (mAbs) have led to the approval of several for the treatment of cancer, autoimmune diseases, and transplant rejection. Additional approaches have been used to further improve their in vivo activity. These include combining them with other modalities such as chemotherapy and redesigning them for improved pharmacokinetics, effector function, and signaling activity. The latter has taken advantage of new insights emerging from an increased understanding of the cellular and molecular mechanisms that are involved in the interaction of immunoglobulin G with Fc receptors and complement as well as the negative signaling resulting from the hypercrosslinking of their target antigens. Hence, mAbs have been redesigned to include mutations in their Fc portions, thereby endowing them with enhanced or decreased effector functions and more desirable pharmacokinetic properties. Their valency has been increased to decrease their dissociation rate from cells and enhance their ability to induce apoptosis and cell cycle arrest. In this review we discuss these redesigned mAbs and current data concerning their evaluation both in vitro and in vivo.
Collapse
Affiliation(s)
- Xiao-yun Liu
- The Cancer Immunobiology Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-8576, USA.
| | | | | |
Collapse
|
73
|
Scott N, Reynolds CB, Wright MJ, Qazi O, Fairweather N, Deonarain MP. Single-chain Fv phage display propensity exhibits strong positive correlation with overall expression levels. BMC Biotechnol 2008; 8:97. [PMID: 19113995 PMCID: PMC2630973 DOI: 10.1186/1472-6750-8-97] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 12/29/2008] [Indexed: 01/09/2023] Open
Abstract
Background Single chain Fvs (scFvs) are widely applied in research, diagnostics and therapeutic settings. Display and selection from combinatorial libraries is the main route to their discovery and many factors influence the success of this process. They exhibit low thermodynamic stability, resulting in low levels of premature cytosolic folding or aggregation which facilitates sec YEG-mediated translocation and phage in E. coli. However, there is little data analysing how this is related to and influenced by scFv protein expression. Results We characterised the relationship between overall scFv expression and display propensity for a panel of 15 anti-tetanus toxin scFvs and found a strong positive correlation (Rho = 0.88, p < 0.005) between the two parameters. Display propensity, overall expression and soluble localisation to the periplasm and extracellular fractions were clone specific characteristics which varied despite high levels of sequence homology. There was no correlation between display of scFv or its expression in non-fused (free) form with soluble scFv localisation to the periplasm or culture supernatant. This suggests that divergence in the fate of scFv-pIII and non-fused scFv after translocation to the periplasm accounts for the observed disparity. Differential degrees of periplasmic aggregation of non-fused scFv between clones may affect the partitioning of scFv in the periplasm and culture supernatant abrogating any correlation. We suggest that these factors do not apply to the scFv-pIII fusion since it remains anchored to the bacterial inner membrane as part of the innate phage packaging and budding process. Conclusion We conclude that in the absence of premature cytosolic aggregation or folding, the propensity of a scFv to be displayed on phage is directly related to its overall expression level and is thus indirectly influenced by factors such as codon bias, mRNA abundance or putative DNA motifs affecting expression. This suggests that scFvs capable of high overall expression and display levels may not produce high yields of non phage-fused soluble protein in either the periplasmic or extracellular fractions of E. coli. This should be considered when screening clones selected from combinatorial libraries for further study. The nucleotide and amino acid sequences of the anti-tetanus toxin scFvs have been deposited in the EMBL data base: accession numbers-C1: AM749134, C2: AM749135, C3: AM749136, C4: AM749137, C5: AM749138, N1: AM749139, N2: AM749140, N3: AM749141, N4: AM749142, N5: AM749143 J1; AM749144, J2: AM749145, J3: AM749146, J4: AM749147, J5: AM749148.
Collapse
Affiliation(s)
- Nathan Scott
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| | | | | | | | | | | |
Collapse
|
74
|
Taguchi H, Planque S, Sapparapu G, Boivin S, Hara M, Nishiyama Y, Paul S. Exceptional amyloid beta peptide hydrolyzing activity of nonphysiological immunoglobulin variable domain scaffolds. J Biol Chem 2008; 283:36724-33. [PMID: 18974093 DOI: 10.1074/jbc.m806766200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleophilic sites in the paired variable domains of the light and heavy chains (VL and VH domains) of Ig can catalyze peptide bond hydrolysis. Amyloid beta (Abeta)-binding Igs are under consideration for immunotherapy of Alzheimer disease. We searched for Abeta-hydrolyzing human IgV domains (IgVs) in a library containing a majority of single chain Fv clones mimicking physiological VL-VH-combining sites and minority IgV populations with nonphysiological structures generated by cloning errors. Random screening and covalent selection of phage-displayed IgVs with an electrophilic Abeta analog identified rare IgVs that hydrolyzed Abeta mainly at His14-Gln15. Inhibition of IgV catalysis and irreversible binding by an electrophilic hapten suggested a nucleophilic catalytic mechanism. Structural analysis indicated that the catalytic IgVs are nonphysiological structures, a two domain heterodimeric VL (IgVL2-t) and single domain VL clones with aberrant polypeptide tags (IgVL-t'). The IgVs hydrolyzed Abeta at rates superior to naturally occurring Igs by 3-4 orders of magnitude. Forced pairing of the single domain VL with VH or VL domains resulted in reduced Abeta hydrolysis, suggesting catalysis by the unpaired VL domain.Angstrom level amino acid displacements evident in molecular models of the two domain and unpaired VL domain clones explain alterations of catalytic activity. In view of their superior catalytic activity, the VL domain IgVs may help attain clearance of medically important antigens more efficiently than natural Igs.
Collapse
Affiliation(s)
- Hiroaki Taguchi
- Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas Houston Medical School, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
75
|
Thurber GM, Schmidt MM, Wittrup KD. Antibody tumor penetration: transport opposed by systemic and antigen-mediated clearance. Adv Drug Deliv Rev 2008; 60:1421-34. [PMID: 18541331 PMCID: PMC2820307 DOI: 10.1016/j.addr.2008.04.012] [Citation(s) in RCA: 411] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2007] [Accepted: 04/16/2008] [Indexed: 01/01/2023]
Abstract
Antibodies have proven to be effective agents in cancer imaging and therapy. One of the major challenges still facing the field is the heterogeneous distribution of these agents in tumors when administered systemically. Large regions of untargeted cells can therefore escape therapy and potentially select for more resistant cells. We present here a summary of theoretical and experimental approaches to analyze and improve antibody penetration in tumor tissue.
Collapse
Affiliation(s)
- Greg M Thurber
- Department Chemical Engineering, Massachusetts Institute of Technology, USA
| | | | | |
Collapse
|
76
|
Labrijn AF, Aalberse RC, Schuurman J. When binding is enough: nonactivating antibody formats. Curr Opin Immunol 2008; 20:479-85. [PMID: 18577454 DOI: 10.1016/j.coi.2008.05.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 05/23/2008] [Accepted: 05/27/2008] [Indexed: 01/12/2023]
Abstract
Most therapeutic antibodies currently used in the clinic are based on the human IgG1 format, which is a bivalent molecule that efficiently interacts with the immune system's effector functions. In clinical applications where binding to the target alone is sufficient for therapeutic efficacy; however, engagement of the immune system is not required and may even cause unwanted side-effects. Likewise, bivalent binding to the target may negatively influence the therapeutic efficacy of an antibody. Here we discuss the state of the art for antibody-based therapeutics, designed to be nonactivating (i.e. do not engage the innate immune system's effector functions), in both monovalent and bivalent formats.
Collapse
|
77
|
Hwang HY, Duvall MR, Tomlinson S, Boackle RJ. Highly specific inhibition of C1q globular-head binding to human IgG: a novel approach to control and regulate the classical complement pathway using an engineered single chain antibody variable fragment. Mol Immunol 2008; 45:2570-80. [PMID: 18313756 DOI: 10.1016/j.molimm.2007.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 12/25/2007] [Accepted: 12/28/2007] [Indexed: 11/15/2022]
Abstract
We sought to specifically regulate the binding of human C1q, and thus the activation of the first complement component, via the construction of a single chain antibody variable binding region fragment (scFv) targeting the C1q globular heads. Here we describe details of the construction, expression and evaluation of this scFv, which was derived from a high-affinity hybridoma (Qu) specific for the C1q globular heads. The scFv was comprised of the Qu variable heavy chain domain (VH) linked to the Qu variable light chain domain (VL) and was termed scFv-QuVHVL. When mixed with either purified C1q or with human serum as a source of C1, scFv-QuVHVL bound to C1q and competitively restricted the interaction of C1q or C1 with immobilized IgG or with IgG1 antibody-coated cells, and prevented the activation of native C1 in human serum as determined by analyses of C1-mediated C4 deposition and fluid-phase C4 conversion. However scFv-QuVHVL could be manipulated to become a C1 activator when it was irreversibly immobilized onto microtiter ELISA plates, prior to contact with human serum complement. This functional dichotomy can be a useful tool in selectively elucidating, differentiating, inducing or inhibiting specific roles of human C1q and the classical complement pathway in complement-mediated physiological processes. We project that once fully humanized, fluid-phase scFv-QuVHVL could become a useful therapeutic in limiting inadvertent host tissue damage elicited by the classical complement pathway.
Collapse
Affiliation(s)
- Hee Young Hwang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29464, USA
| | | | | | | |
Collapse
|
78
|
Friedländer E, Barok M, Szöllősi J, Vereb G. ErbB-directed immunotherapy: Antibodies in current practice and promising new agents. Immunol Lett 2008; 116:126-40. [DOI: 10.1016/j.imlet.2007.12.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 12/01/2007] [Indexed: 01/24/2023]
|
79
|
Stork R, Zettlitz KA, Müller D, Rether M, Hanisch FG, Kontermann RE. N-glycosylation as novel strategy to improve pharmacokinetic properties of bispecific single-chain diabodies. J Biol Chem 2008; 283:7804-12. [PMID: 18211902 DOI: 10.1074/jbc.m709179200] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The therapeutic efficacy of recombinant antibodies such as single-chain Fv fragments and small bispecific or bifunctional molecules is often limited by rapid elimination from the circulation because of their small size. Here, we have investigated the effects of N-glycosylation on the activity and pharmacokinetics of a small bispecific single-chain diabody (scDb CEACD3) developed for the retargeting of cytotoxic T cells to CEA-expressing tumor cells. We could show that the introduction of N-glycosylation sequons into the flanking linker and a C-terminal extension results in the production of N-glycosylated molecules after expression in transfected HEK293 cells. N-Glycosylated scDb variants possessing 3, 6, or 9 N-glycosylation sites, respectively, retained antigen binding activity and bispecificity for target and effector cells as shown in a target cell-dependent IL-2 release assay, although activity was reduced approximately 3-5-fold compared with the unmodified scDb. All N-glycosylated scDb variants exhibited a prolonged circulation time compared with scDb, leading to a 2-3-fold increase of the area under curve (AUC). In comparison, conjugation of a branched 40-kDa PEG chain increased AUC by a factor of 10.6, while a chimeric anti-CEA IgG1 molecule had the longest circulation time with a 17-fold increase in AUC. Thus, N-glycosylation complements the repertoire of strategies to modulate pharmacokinetics of small recombinant antibody molecules by an approach that moderately prolongs circulation time.
Collapse
Affiliation(s)
- Roland Stork
- Institut für Zellbiologie und Immunologie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
80
|
Peterson EC, Laurenzana EM, Atchley WT, Hendrickson HP, Owens SM. Development and preclinical testing of a high-affinity single-chain antibody against (+)-methamphetamine. J Pharmacol Exp Ther 2008; 325:124-33. [PMID: 18192498 DOI: 10.1124/jpet.107.134395] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic or excessive (+)-methamphetamine (METH) use often leads to addiction and toxicity to critical organs like the brain. With medical treatment as a goal, a novel single-chain variable fragment (scFv) against METH was engineered from anti-METH monoclonal antibody mAb6H4 (IgG, kappa light chain, K(d) = 11 nM) and found to have similar ligand affinity (K(d) = 10 nM) and specificity as mAb6H4. The anti-METH scFv (scFv6H4) was cloned, expressed in yeast, purified, and formulated as a naturally occurring mixture of monomer ( approximately 75%) and dimer ( approximately 25%). To test the in vivo efficacy of the scFv6H4, male Sprague-Dawley rats (n = 5) were implanted with 3-day s.c. osmotic pumps delivering 3.2 mg/kg/day METH. After reaching steady-state METH concentrations, an i.v. dose of scFv6H4 (36.5 mg/kg, equimolar to the METH body burden) was administered along with a [(3)H]scFv6H4 tracer. Serum pharmacokinetic analysis of METH and [(3)H]scFv6H4 showed that the scFv6H4 caused an immediate 65-fold increase in the METH concentrations and a 12-fold increase in the serum METH area under the concentration-time curve from 0 to 480 min after scFv6H4 administration. The scFv6H4 monomer was quickly cleared or converted to multivalent forms with an apparent t(1/2lambdaz) of 5.8 min. In contrast, the larger scFv6H4 multivalent forms (dimers, trimers, etc.) showed a much longer t(1/2lambdaz) (228 min), and the significantly increased METH serum molar concentrations correlated directly with scFv6H4 serum molar concentrations. Considered together, these data suggested that the scFv6H4 multimers (and not the monomer) were responsible for the prolonged redistribution of METH into the serum.
Collapse
Affiliation(s)
- Eric C Peterson
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham, #611, Little Rock, AR 72205, USA.
| | | | | | | | | |
Collapse
|
81
|
Liu M, Wang X, Yin C, Zhang Z, Lin Q, Zhen Y, Huang H. Targeting TNF-alpha with a tetravalent mini-antibody TNF-TeAb. Biochem J 2007; 406:237-46. [PMID: 17472572 PMCID: PMC1948971 DOI: 10.1042/bj20070149] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Anti-TNF-alpha [anti-(tumour necrosis factor-alpha)] therapy is widely considered to be among the most efficient treatments available for rheumatoid arthritis, psoriatic arthritis and inflammatory bowel disease. In the present study a tetravalent mini-antibody, named 'TNF-TeAb', was constructed by fusing the tetramerization domain of human p53 to the C-terminus of an anti-TNF-scFv [anti-(TNF-alpha-single-chain variable fragment)] via a long and flexible linking peptide derived from human serum albumin. TNF-TeAb was overexpressed as inclusion bodies in the cytoplasm of Escherichia coli, purified to homogeneity by immobilized- metal affinity chromtaography under denaturing conditions and produced in functional form by using an in vitro refolding system. In vitro bioactivity assays suggested that tetramerization of TNF-scFv resulted in an enormous gain in avidity, which endowed TNF-TeAb with a stronger ability to inhibit both receptor binding and cytolytic activity of TNF-alpha. TNF-alpha targeting therapy in rats with collagen-induced arthritis demonstrated that TNF-TeAb provided a much more significant therapeutic effect than did TNF-scFv in suppressing arthritis progression, attenuating inflammation and destruction in joints, and down-regulating pro-inflammatory cytokines and anti-(type II collagen) antibody. The conclusions are therefore (i) that multimerization of the antibody fragment by a self-association peptide is an efficient way to increase its avidity and (ii) that TNF-TeAb has potential applicability for anti-TNF-alpha therapy.
Collapse
Affiliation(s)
- Mengyuan Liu
- *Faculty of Life Science, Hubei University, 430062 Wuhan, People's Republic of China
- †Beijing ABT Genetic Engineering Technology Co. Ltd., 102206 Beijing, People's Republic of China
| | - Xiangbin Wang
- †Beijing ABT Genetic Engineering Technology Co. Ltd., 102206 Beijing, People's Republic of China
| | - Changcheng Yin
- †Beijing ABT Genetic Engineering Technology Co. Ltd., 102206 Beijing, People's Republic of China
| | - Zhong Zhang
- †Beijing ABT Genetic Engineering Technology Co. Ltd., 102206 Beijing, People's Republic of China
| | - Qing Lin
- †Beijing ABT Genetic Engineering Technology Co. Ltd., 102206 Beijing, People's Republic of China
| | - Yongsu Zhen
- §The Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Science, 100050 Beijing, People's Republic of China
| | - Hualiang Huang
- †Beijing ABT Genetic Engineering Technology Co. Ltd., 102206 Beijing, People's Republic of China
- ‡The Institute of Genetics and Developmental Biology, Chinese Academy of Science, 100101 Beijing, People's Republic of China
- To whom correspondence sent, at the following address: Beijing ABT Genetic Engineering Technology Co. Ltd., ZGC Life Science Park, 55 Beiqing Road, Beijing 102206, People's Republic of China (email )
| |
Collapse
|
82
|
Mazor Y, Noy R, Wels WS, Benhar I. chFRP5-ZZ-PE38, a large IgG-toxin immunoconjugate outperforms the corresponding smaller FRP5(Fv)-ETA immunotoxin in eradicating ErbB2-expressing tumor xenografts. Cancer Lett 2007; 257:124-35. [PMID: 17698286 DOI: 10.1016/j.canlet.2007.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 07/09/2007] [Accepted: 07/10/2007] [Indexed: 10/23/2022]
Abstract
As therapeutics, antibodies can be used "un-armed" or as immunoconjugates to direct cytotoxic moieties to tumor cells. Immunoconjugates are made by attaching chemotherapy drugs, radioisotopes or toxins to the antibody. Small recombinant antibody fragments fused to cytotoxic moieties, termed recombinant immunotoxins are also being developed as an additional approach for a targeted cancer therapy. Key parameters in determining the therapeutic potential of such targeted therapies are target specificity, affinity, stability and size. With regard to treating solid tumors, tumor penetration (which is inversely proportional to size) is currently regarded as the prime factor for efficacy, while parameters such as binding affinity and residence time in the body are thought to contribute to a lesser extent. When comparing recombinant immunotoxins and antibody-toxin immunoconjugates that target ErbB2/HER2, here we found that a bivalent antibody-toxin immunoconjugate (200 kDa) was superior to the corresponding recombinant monovalent immunotoxin (69 kDa) in killing ErbB2-expressing tumor cells in culture and as xenografts in nude mice, suggesting that higher avidity and longer residence time may outweigh tumor penetration. Our study suggests that the re-valuation of currently neglected, large IgG-effector molecule conjugates for anti-cancer therapy may be justified.
Collapse
Affiliation(s)
- Yariv Mazor
- Department of Molecular Microbiology and Biotechnology the George S. Wise Faculty of Life Sciences, Green Building, Room 202, Tel-Aviv University, Ramat Aviv 69978, Israel
| | | | | | | |
Collapse
|
83
|
Vallera DA, Sicheneder AR, Taras EP, Brechbiel MW, Vallera JA, Panoskaltsis-Mortari A, Burns LJ. Radiotherapy of CD45-Expressing Daudi Tumors in Nude Mice with Yttrium-90-Labeled, PEGylated Anti-CD45 Antibody. Cancer Biother Radiopharm 2007; 22:488-500. [PMID: 17803443 DOI: 10.1089/cbr.2007.366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Studies were performed to determine the suitability of using the polyethylene glycol (PEG)-labeled AHN-12 anti-CD45 monoclonal antibody to deliver the high-energy beta-particle-emitting isotope 90Y to a CD45+ B-cell Daudi lymphoma grown as flank tumors in athymic nude mice. The PEGylated radiolabeled antibody displayed a significantly better antitumor effect in the mouse tumor flank model (p<0.03) and significantly better blood pharmacokinetics in normal rats (p<0.05) than the non-PEGylated radiolabeled antibody. Studies of two different sizes of PEG showed that rats given 43 kDa of PEGylated AHN-12, but not 5 kDa of PEGylated AHN-12, had significantly higher radiolabeled antibody blood levels and, therefore, improved pharmacokinetics, as compared to rodents given non-PEGylated radiolabeled AHN-12 (p<0.05). Surviving mice revealed no signs of kidney, liver, or gastrointestinal damage by histology study. Notably, in vitro studies indicated that PEGylation did not have a major effect on labeling efficiency and the binding of labeled antibody. These findings indicate that PEGylation of radiolabeled anti-CD45 antibody may be a useful and desirable means of extending blood half-life and enhancing efficacy. Also, the final outcome may be impacted by the size of the PEG molecule used for the modification of the blood half-life.
Collapse
Affiliation(s)
- Daniel A Vallera
- Department of Therapeutic Radiology-Radiation Oncology, University of Minnesota Cancer Center, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | |
Collapse
|
84
|
Filpula D. Antibody engineering and modification technologies. ACTA ACUST UNITED AC 2007; 24:201-15. [PMID: 17466589 DOI: 10.1016/j.bioeng.2007.03.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 03/20/2007] [Indexed: 10/23/2022]
Abstract
Antibody engineering has become a well-developed discipline, encompassing discovery methods, production strategies, and modification techniques that have brought forth clinically investigated and marketed therapeutics. The realization of the long-standing goal of production of fully human monoclonal antibodies has focused intensive research on the clinical employment of this potent drug category. However, antibodies are large macromolecules that pose numerous challenges in formulation, optimal pharmacokinetics, manufacturing, stability, and process development. While further improvements in discovery technologies, such as phage display, ribosome display, and transgenic animals continue to advance our capacity to rapidly screen and refine optimal binding molecules, antibody engineers have recently focused more of their efforts on improving protein production and stability, as well as engineering improved biological properties in the effector domains of monoclonal antibodies. A second long-standing goal of antibody engineering, the development of targeted drugs, has not been wholly realized, but this obvious application for antibodies is currently undergoing increasing exploration. Minimal binding proteins, such as Fab, scFv, and single variable domains are the preferred targeting elements for some investigational drugs, whereas non-immunoglobulin scaffold proteins have been explored as binding proteins in other designs. The necessity to utilize non-protein components in targeted drugs, such as polymers, linkers, and cytotoxics, has brought a convergence of the fields of bioconjugate chemistry and protein engineering in experimental antibody therapeutics.
Collapse
Affiliation(s)
- David Filpula
- Enzon Pharmaceuticals, Piscataway, NJ 08854-3969, USA.
| |
Collapse
|
85
|
van Vlerken LE, Vyas TK, Amiji MM. Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm Res 2007; 24:1405-14. [PMID: 17393074 DOI: 10.1007/s11095-007-9284-6] [Citation(s) in RCA: 397] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Accepted: 02/27/2007] [Indexed: 01/29/2023]
Abstract
The success of anti-cancer therapies largely depends on the ability of the therapeutics to reach their designated cellular and intracellular target sites, while minimizing accumulation and action at non-specific sites. Surface modification of nanoparticulate carriers with poly(ethylene glycol) (PEG)/poly(ethylene oxide) (PEO) has emerged as a strategy to enhance solubility of hydrophobic drugs, prolong circulation time, minimize non-specific uptake, and allow for specific tumor-targeting through the enhanced permeability and retention effect. Furthermore, PEG/PEO modification has emerged as a platform for incorporation of active targeting ligands, thereby providing the drug and gene carriers with specific tumor-targeting properties through a flexible tether. This review focuses on the recent developments surrounding such PEG/PEO-surface modification of polymeric nanocarriers to promote tumor-targeting capabilities, thereby enhancing efficacy of anti-cancer therapeutic strategies.
Collapse
Affiliation(s)
- Lilian E van Vlerken
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, 110 Mugar Life Sciences Building, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
86
|
Müller D, Karle A, Meissburger B, Höfig I, Stork R, Kontermann RE. Improved pharmacokinetics of recombinant bispecific antibody molecules by fusion to human serum albumin. J Biol Chem 2007; 282:12650-60. [PMID: 17347147 DOI: 10.1074/jbc.m700820200] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recombinant bispecific antibodies such as tandem scFv molecules (taFv), diabodies (Db), or single chain diabodies (scDb) have shown to be able to retarget T lymphocytes to tumor cells, leading to their destruction. However, therapeutic efficacy is hampered by a short serum half-life of these small molecules having molecule masses of 50-60 kDa. Thus, improvement of the pharmacokinetic properties of small bispecific antibody formats is required to enhance efficacy in vivo. In this study, we generated several recombinant bispecific antibody-albumin fusion proteins and analyzed these molecules for biological activity and pharmacokinetic properties. Three recombinant antibody formats were produced by fusing two different scFv molecules, bispecific scDb or taFv molecules, respectively, to human serum albumin (HSA). These constructs (scFv(2)-HSA, scDb-HSA, taFv-HSA), directed against the tumor antigen carcinoembryonic antigen (CEA) and the T cell receptor complex molecule CD3, retained full binding capacity to both antigens compared with unfused scFv, scDb, and taFv molecules. Tumor antigen-specific retargeting and activation of T cells as monitored by interleukin-2 release was observed for scDb, scDb-HSA, taFv-HSA, and to a lesser extent for scFv(2)-HSA. T cell activation could be further enhanced by a target cell-specific costimulatory signal provided by a B7-DbCEA fusion protein. Furthermore, we could demonstrate that fusion to serum albumin strongly increases circulation time of recombinant bispecific antibodies. In addition, our comparative study indicates that single chain diabody-albumin fusion proteins seem to be the most promising format for further studying cytotoxic activities in vitro and in vivo.
Collapse
Affiliation(s)
- Dafne Müller
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
87
|
Rich RL, Myszka DG. Survey of the year 2006 commercial optical biosensor literature. J Mol Recognit 2007; 20:300-66. [DOI: 10.1002/jmr.862] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|