51
|
Falciani C, Brunetti J, Lelli B, Ravenni N, Lozzi L, Depau L, Scali S, Bernini A, Pini A, Bracci L. Cancer Selectivity of Tetrabranched Neurotensin Peptides Is Generated by Simultaneous Binding to Sulfated Glycosaminoglycans and Protein Receptors. J Med Chem 2013; 56:5009-18. [DOI: 10.1021/jm400329p] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chiara Falciani
- Department of Medical Biotechnologies, University of Siena, Via Fiorentina 1, 53100 Siena,
Italy
- Istituto Toscano Tumori (ITT), Via Fiorentina 1, 53100 Siena,
Italy
| | - Jlenia Brunetti
- Department of Medical Biotechnologies, University of Siena, Via Fiorentina 1, 53100 Siena,
Italy
| | - Barbara Lelli
- Department of Medical Biotechnologies, University of Siena, Via Fiorentina 1, 53100 Siena,
Italy
| | - Niccolò Ravenni
- Department of Medical Biotechnologies, University of Siena, Via Fiorentina 1, 53100 Siena,
Italy
| | - Luisa Lozzi
- Department of Medical Biotechnologies, University of Siena, Via Fiorentina 1, 53100 Siena,
Italy
| | - Lorenzo Depau
- Department of Medical Biotechnologies, University of Siena, Via Fiorentina 1, 53100 Siena,
Italy
| | - Silvia Scali
- Department of Medical Biotechnologies, University of Siena, Via Fiorentina 1, 53100 Siena,
Italy
| | - Andrea Bernini
- Department of Biotechnology,
Chemistry, and Pharmacy, University of Siena, Via Fiorentina 1, 53100 Siena, Italy
| | - Alessandro Pini
- Department of Medical Biotechnologies, University of Siena, Via Fiorentina 1, 53100 Siena,
Italy
| | - Luisa Bracci
- Department of Medical Biotechnologies, University of Siena, Via Fiorentina 1, 53100 Siena,
Italy
- Istituto Toscano Tumori (ITT), Via Fiorentina 1, 53100 Siena,
Italy
| |
Collapse
|
52
|
Kim JY, Kim OY, Paik JK, Lee SH, Lee JH. Association of apolipoprotein A-V concentration with apolipoprotein A5 gene -1131T>C polymorphism and fasting triglyceride levels. J Clin Lipidol 2013; 7:94-101. [DOI: 10.1016/j.jacl.2012.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 05/29/2012] [Accepted: 06/20/2012] [Indexed: 12/25/2022]
|
53
|
Mendoza-Barberá E, Julve J, Nilsson SK, Lookene A, Martín-Campos JM, Roig R, Lechuga-Sancho AM, Sloan JH, Fuentes-Prior P, Blanco-Vaca F. Structural and functional analysis of APOA5 mutations identified in patients with severe hypertriglyceridemia. J Lipid Res 2013; 54:649-661. [PMID: 23307945 DOI: 10.1194/jlr.m031195] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
During the diagnosis of three unrelated patients with severe hypertriglyceridemia, three APOA5 mutations [p.(Ser232_Leu235)del, p.Leu253Pro, and p.Asp332ValfsX4] were found without evidence of concomitant LPL, APOC2, or GPIHBP1 mutations. The molecular mechanisms by which APOA5 mutations result in severe hypertriglyceridemia remain poorly understood, and the functional impairment/s induced by these specific mutations was not obvious. Therefore, we performed a thorough structural and functional analysis that included follow-up of patients and their closest relatives, measurement of apoA-V serum concentrations, and sequencing of the APOA5 gene in 200 nonhyperlipidemic controls. Further, we cloned, overexpressed, and purified both wild-type and mutant apoA-V variants and characterized their capacity to activate LPL. The interactions of recombinant wild-type and mutated apoA-V variants with liposomes of different composition, heparin, LRP1, sortilin, and SorLA/LR11 were also analyzed. Finally, to explore the possible structural consequences of these mutations, we developed a three-dimensional model of full-length, lipid-free human apoA-V. A complex, wide array of impairments was found in each of the three mutants, suggesting that the specific residues affected are critical structural determinants for apoA-V function in lipoprotein metabolism and, therefore, that these APOA5 mutations are a direct cause of hypertriglyceridemia.
Collapse
Affiliation(s)
| | - Josep Julve
- Institute for Biomedical Research (IIB) Sant Pau, 08025 Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, 08017 Barcelona, Spain
| | - Stefan K Nilsson
- Department of Medical Biosciences/Physiological Chemistry, Umeå University, SE90187, Sweden
| | - Aivar Lookene
- Department of Chemistry, Tallinn Technical University, Tallinn 12618, Estonia
| | | | - Rosa Roig
- Institute for Biomedical Research (IIB) Sant Pau, 08025 Barcelona, Spain
| | | | | | | | - Francisco Blanco-Vaca
- Institute for Biomedical Research (IIB) Sant Pau, 08025 Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, 08017 Barcelona, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08025 Barcelona, Spain
| |
Collapse
|
54
|
Lin WJ, Salton SR. The regulated secretory pathway and human disease: insights from gene variants and single nucleotide polymorphisms. Front Endocrinol (Lausanne) 2013; 4:96. [PMID: 23964269 PMCID: PMC3734370 DOI: 10.3389/fendo.2013.00096] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/23/2013] [Indexed: 12/15/2022] Open
Abstract
The regulated secretory pathway provides critical control of peptide, growth factor, and hormone release from neuroendocrine and endocrine cells, and neurons, maintaining physiological homeostasis. Propeptides and prohormones are packaged into dense core granules (DCGs), where they frequently undergo tissue-specific processing as the DCG matures. Proteins of the granin family are DCG components, and although their function is not fully understood, data suggest they are involved in DCG formation and regulated protein/peptide secretion, in addition to their role as precursors of bioactive peptides. Association of gene variation, including single nucleotide polymorphisms (SNPs), with neuropsychiatric, endocrine, and metabolic diseases, has implicated specific secreted proteins and peptides in disease pathogenesis. For example, a SNP at position 196 (G/A) of the human brain-derived neurotrophic factor gene dysregulates protein processing and secretion and leads to cognitive impairment. This suggests more generally that variants identified in genes encoding secreted growth factors, peptides, hormones, and proteins involved in DCG biogenesis, protein processing, and the secretory apparatus, could provide insight into the process of regulated secretion as well as disorders that result when it is impaired.
Collapse
Affiliation(s)
- Wei-Jye Lin
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen R. Salton
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Geriatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- *Correspondence: Stephen R. Salton, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1065, New York, NY 10029, USA e-mail:
| |
Collapse
|
55
|
Zheng XY, Zhao SP, Yan H. The role of apolipoprotein A5 in obesity and the metabolic syndrome. Biol Rev Camb Philos Soc 2012; 88:490-8. [PMID: 23279260 DOI: 10.1111/brv.12005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 11/10/2012] [Accepted: 11/20/2012] [Indexed: 12/17/2022]
Affiliation(s)
- Xiao-Yan Zheng
- Department of Cardiology; The Second Xiangya Hospital, Central South University; Changsha; 410011; China
| | - Shui-Ping Zhao
- Department of Cardiology; The Second Xiangya Hospital, Central South University; Changsha; 410011; China
| | - Hu Yan
- Institute of Mental Health; The Second Xiangya Hospital, Central South University; Changsha; 410011; China
| |
Collapse
|
56
|
Coutinho MF, Prata MJ, Alves S. A shortcut to the lysosome: the mannose-6-phosphate-independent pathway. Mol Genet Metab 2012; 107:257-66. [PMID: 22884962 DOI: 10.1016/j.ymgme.2012.07.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 07/12/2012] [Indexed: 12/12/2022]
Abstract
Lysosomal hydrolases have long been known to be responsible for the degradation of different substrates in the cell. These acid hydrolases are synthesized in the rough endoplasmic reticulum and transported through the Golgi apparatus to the trans-Golgi network (TGN). From there, they are delivered to endosomal/lysosomal compartments, where they finally become active due to the acidic pH characteristic of the lysosomal compartment. The majority of the enzymes leave the TGN after modification with mannose-6-phosphate (M6P) residues, which are specifically recognized by M6P receptors (MPRs), ensuring their transport to the endosomal/lysosomal system. Although M6P receptors play a major role in the intracellular transport of newly synthesized lysosomal enzymes in mammalian cells, several lines of evidence suggest the existence of alternative processes of lysosomal targeting. Among them, the two that are mediated by the M6P alternative receptors, lysosomal integral membrane protein (LIMP-2) and sortilin, have gained unequivocal support. LIMP-2 was shown to be implicated in the delivery of beta-glucocerebrosidase (GCase) to the lysosomes, whereas sortilin has been suggested to be a multifunctional receptor capable of binding several different ligands, including neurotensin and receptor-associated protein (RAP), and of targeting several proteins to the lysosome, including sphingolipid activator proteins (prosaposin and GM2 activator protein), acid sphingomyelinase and cathepsins D and H. Here, we review the current knowledge on these two proteins: their discovery, study, structural features and cellular function, with special attention to their role as alternative receptors to lysosomal trafficking. Recent studies associating both LIMP2 and sortilin to disease are also extensively reviewed.
Collapse
|
57
|
Strong A, Ding Q, Edmondson AC, Millar JS, Sachs KV, Li X, Kumaravel A, Wang MY, Ai D, Guo L, Alexander ET, Nguyen D, Lund-Katz S, Phillips MC, Morales CR, Tall AR, Kathiresan S, Fisher EA, Musunuru K, Rader DJ. Hepatic sortilin regulates both apolipoprotein B secretion and LDL catabolism. J Clin Invest 2012; 122:2807-16. [PMID: 22751103 DOI: 10.1172/jci63563] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/21/2012] [Indexed: 01/05/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified a genetic variant at a locus on chromosome 1p13 that is associated with reduced risk of myocardial infarction, reduced plasma levels of LDL cholesterol (LDL-C), and markedly increased expression of the gene sortilin-1 (SORT1) in liver. Sortilin is a lysosomal sorting protein that binds ligands both in the Golgi apparatus and at the plasma membrane and traffics them to the lysosome. We previously reported that increased hepatic sortilin expression in mice reduced plasma LDL-C levels. Here we show that increased hepatic sortilin not only reduced hepatic apolipoprotein B (APOB) secretion, but also increased LDL catabolism, and that both effects were dependent on intact lysosomal targeting. Loss-of-function studies demonstrated that sortilin serves as a bona fide receptor for LDL in vivo in mice. Our data are consistent with a model in which increased hepatic sortilin binds intracellular APOB-containing particles in the Golgi apparatus as well as extracellular LDL at the plasma membrane and traffics them to the lysosome for degradation. We thus provide functional evidence that genetically increased hepatic sortilin expression both reduces hepatic APOB secretion and increases LDL catabolism, providing dual mechanisms for the very strong association between increased hepatic sortilin expression and reduced plasma LDL-C levels in humans.
Collapse
Affiliation(s)
- Alanna Strong
- Institute for Translational Medicine and Therapeutics, Cardiovascular Institute, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Abstract
Elevated low-density lipoprotein cholesterol (LDL-C) is associated with increased risk of atherosclerotic cardiovascular disease (ASCVD) and myocardial infarction (MI). Much of the insight into LDL metabolism has been gained through the study of Mendelian disorders of lipid metabolism. Genome-wide associations studies (GWAS) are now being used to identify novel genes and loci that contribute to variations in LDL-C levels, and they have identified the SORT1 gene as an important modulator of LDL-C levels and ASCVD risk. Mechanistic studies in mice and cell culture also suggest that the SORT1 gene is an important regulator of lipoprotein metabolism; however, these studies disagree on the directionality of the effect of Sort1 expression on plasma lipids and the mechanism for the lipid changes. Here we review the identification of the SORT1 locus as a modulator of LDL-C levels and ASCVD risk and the first mechanistic studies that explore the role of Sortilin in lipid metabolism.
Collapse
Affiliation(s)
- Alanna Strong
- Perelman School of Medicine at the University of Pennsylvania, Translational Research Center, Philadelphia, PA, 19104-5158, USA.
| | | |
Collapse
|
59
|
Abstract
To enhance glucose uptake into muscle and fat cells, insulin stimulates the translocation of GLUT4 glucose transporters from intracellular membranes to the cell surface. This response requires the intersection of insulin signaling and vesicle trafficking pathways, and it is compromised in the setting of overnutrition to cause insulin resistance. Insulin signals through AS160/Tbc1D4 and Tbc1D1 to modulate Rab GTPases and through the Rho GTPase TC10α to act on other targets. In unstimulated cells, GLUT4 is incorporated into specialized storage vesicles containing IRAP, LRP1, sortilin, and VAMP2, which are sequestered by TUG, Ubc9, and other proteins. Insulin mobilizes these vesicles directly to the plasma membrane, and it modulates the trafficking itinerary so that cargo recycles from endosomes during ongoing insulin exposure. Knowledge of how signaling and trafficking pathways are coordinated will be essential to understanding the pathogenesis of diabetes and the metabolic syndrome and may also inform a wide range of other physiologies.
Collapse
Affiliation(s)
- Jonathan S Bogan
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8020, USA.
| |
Collapse
|
60
|
Ai D, Baez JM, Jiang H, Conlon DM, Hernandez-Ono A, Frank-Kamenetsky M, Milstein S, Fitzgerald K, Murphy AJ, Woo CW, Strong A, Ginsberg HN, Tabas I, Rader DJ, Tall AR. Activation of ER stress and mTORC1 suppresses hepatic sortilin-1 levels in obese mice. J Clin Invest 2012; 122:1677-87. [PMID: 22466652 DOI: 10.1172/jci61248] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 02/15/2012] [Indexed: 02/06/2023] Open
Abstract
Recent GWAS have identified SNPs at a human chromosom1 locus associated with coronary artery disease risk and LDL cholesterol levels. The SNPs are also associated with altered expression of hepatic sortilin-1 (SORT1), which encodes a protein thought to be involved in apoB trafficking and degradation. Here, we investigated the regulation of Sort1 expression in mouse models of obesity. Sort1 expression was markedly repressed in both genetic (ob/ob) and high-fat diet models of obesity; restoration of hepatic sortilin-1 levels resulted in reduced triglyceride and apoB secretion. Mouse models of obesity also exhibit increased hepatic activity of mammalian target of rapamycin complex 1 (mTORC1) and ER stress, and we found that administration of the mTOR inhibitor rapamycin to ob/ob mice reduced ER stress and increased hepatic sortilin-1 levels. Conversely, genetically increased hepatic mTORC1 activity was associated with repressed Sort1 and increased apoB secretion. Treating WT mice with the ER stressor tunicamycin led to marked repression of hepatic sortilin-1 expression, while administration of the chemical chaperone PBA to ob/ob mice led to amelioration of ER stress, increased sortilin-1 expression, and reduced apoB and triglyceride secretion. Moreover, the ER stress target Atf3 acted at the SORT1 promoter region as a transcriptional repressor, whereas knockdown of Atf3 mRNA in ob/ob mice led to increased hepatic sortilin-1 levels and decreased apoB and triglyceride secretion. Thus, in mouse models of obesity, induction of mTORC1 and ER stress led to repression of hepatic Sort1 and increased VLDL secretion via Atf3. This pathway may contribute to dyslipidemia in metabolic disease.
Collapse
Affiliation(s)
- Ding Ai
- Department of Medicine, Columbia University, New York, New York 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
GUO J, LI W, LIU X, WANG XY, WANG Y, LIU LS. Association of single-nucleotide polymorphisms on chromosome 1p13 and 9p21 with acute myocardial infarction in a Chinese population: the AMI study in China. ACTA ACUST UNITED AC 2011. [DOI: 10.3724/sp.j.1008.2011.00822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
62
|
Ellis KL, Frampton CM, Pilbrow AP, Troughton RW, Doughty RN, Whalley GA, Ellis CJ, Skelton L, Thomson J, Yandle TG, Richards AM, Cameron VA. Genomic Risk Variants at 1p13.3, 1q41, and 3q22.3 Are Associated With Subsequent Cardiovascular Outcomes in Healthy Controls and in Established Coronary Artery Disease. ACTA ACUST UNITED AC 2011; 4:636-46. [DOI: 10.1161/circgenetics.111.960336] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Genome-wide association studies have identified gene variants associated with coronary artery disease risk; however, whether they affect disease progression is largely unknown. This study investigated associations between polymorphisms at 1p13.3 (rs599839), 1q41 (rs17465637), and 3q22.3 (rs9818870) and cardiovascular outcomes in healthy volunteers and in patients with established heart disease.
Methods and Results—
Canterbury Healthy Volunteer study (HV) (n=1649), Coronary Disease Cohort Study (CDCS) (n=1797), and Post-Myocardial Infarction study (PMI) (n=906) participants (New Zealand), were genotyped for rs599839, rs9818870, and rs17465637. Associations between genotype and anthropometric characteristics, neurohormonal analysis, echocardiography, and clinical outcomes over medium-long-term follow-up (median HV, 5.9 years; CDCS, 3.7 years; PMI, 11.3 years) were tested. At 1p13.3, HV and CDCS participants carrying 1 or more rs599839 G allele had a lower prevalence of dyslipidemia (
P
≤0.005) or lower levels of low-density lipoprotein (
P
=0.031) and total (
P
=0.004) cholesterol and/or less history of myocardial infarction (
P
≤0.04) compared with AA participants. Moreover, CDCS and PMI AG/GG participants had better cardiac function as indicated by echocardiography (
P
≤0.026), and fewer CDCS AG/GG participants were readmitted for a non-ST-segment elevation MI (
P
=0.012) during follow-up. The polymorphism at 1q41 (rs17465637) was associated with better cardiovascular outcomes in the HV (
P
=0.028) and PMI (
P
=0.008) cohorts, and 3q22.3 (rs9818870) was a predictor of death/admission in the HV cohort (
P
=0.045).
Conclusions—
These data suggest that coronary artery disease genomic risk variants at 1p13.3 and 1q41 are associated with subsequent clinical outcome in heart patients and confirm rs9818870 at 3q22.3 as a predictor of cardiovascular risk in individuals free of overt heart disease.
Collapse
Affiliation(s)
- Katrina L. Ellis
- From the Christchurch Cardioendocrine Research Group, Department of Medicine, University of Otago-Christchurch, Christchurch, New Zealand (K.L.E., C.M.F., A.P.P., R.W.T., L.S., J.T., T.G.Y., A.M.R., V.A.C.); Department of Medicine, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand (R.N.D., G.A.W., C.J.E.), and Department of Medical Imaging, Unitec Institute of Technology, Auckland, New Zealand (G.A.W.)
| | - Chris M. Frampton
- From the Christchurch Cardioendocrine Research Group, Department of Medicine, University of Otago-Christchurch, Christchurch, New Zealand (K.L.E., C.M.F., A.P.P., R.W.T., L.S., J.T., T.G.Y., A.M.R., V.A.C.); Department of Medicine, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand (R.N.D., G.A.W., C.J.E.), and Department of Medical Imaging, Unitec Institute of Technology, Auckland, New Zealand (G.A.W.)
| | - Anna P. Pilbrow
- From the Christchurch Cardioendocrine Research Group, Department of Medicine, University of Otago-Christchurch, Christchurch, New Zealand (K.L.E., C.M.F., A.P.P., R.W.T., L.S., J.T., T.G.Y., A.M.R., V.A.C.); Department of Medicine, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand (R.N.D., G.A.W., C.J.E.), and Department of Medical Imaging, Unitec Institute of Technology, Auckland, New Zealand (G.A.W.)
| | - Richard W. Troughton
- From the Christchurch Cardioendocrine Research Group, Department of Medicine, University of Otago-Christchurch, Christchurch, New Zealand (K.L.E., C.M.F., A.P.P., R.W.T., L.S., J.T., T.G.Y., A.M.R., V.A.C.); Department of Medicine, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand (R.N.D., G.A.W., C.J.E.), and Department of Medical Imaging, Unitec Institute of Technology, Auckland, New Zealand (G.A.W.)
| | - Rob N. Doughty
- From the Christchurch Cardioendocrine Research Group, Department of Medicine, University of Otago-Christchurch, Christchurch, New Zealand (K.L.E., C.M.F., A.P.P., R.W.T., L.S., J.T., T.G.Y., A.M.R., V.A.C.); Department of Medicine, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand (R.N.D., G.A.W., C.J.E.), and Department of Medical Imaging, Unitec Institute of Technology, Auckland, New Zealand (G.A.W.)
| | - Gillian A. Whalley
- From the Christchurch Cardioendocrine Research Group, Department of Medicine, University of Otago-Christchurch, Christchurch, New Zealand (K.L.E., C.M.F., A.P.P., R.W.T., L.S., J.T., T.G.Y., A.M.R., V.A.C.); Department of Medicine, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand (R.N.D., G.A.W., C.J.E.), and Department of Medical Imaging, Unitec Institute of Technology, Auckland, New Zealand (G.A.W.)
| | - Chris J. Ellis
- From the Christchurch Cardioendocrine Research Group, Department of Medicine, University of Otago-Christchurch, Christchurch, New Zealand (K.L.E., C.M.F., A.P.P., R.W.T., L.S., J.T., T.G.Y., A.M.R., V.A.C.); Department of Medicine, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand (R.N.D., G.A.W., C.J.E.), and Department of Medical Imaging, Unitec Institute of Technology, Auckland, New Zealand (G.A.W.)
| | - Lorraine Skelton
- From the Christchurch Cardioendocrine Research Group, Department of Medicine, University of Otago-Christchurch, Christchurch, New Zealand (K.L.E., C.M.F., A.P.P., R.W.T., L.S., J.T., T.G.Y., A.M.R., V.A.C.); Department of Medicine, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand (R.N.D., G.A.W., C.J.E.), and Department of Medical Imaging, Unitec Institute of Technology, Auckland, New Zealand (G.A.W.)
| | - Judith Thomson
- From the Christchurch Cardioendocrine Research Group, Department of Medicine, University of Otago-Christchurch, Christchurch, New Zealand (K.L.E., C.M.F., A.P.P., R.W.T., L.S., J.T., T.G.Y., A.M.R., V.A.C.); Department of Medicine, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand (R.N.D., G.A.W., C.J.E.), and Department of Medical Imaging, Unitec Institute of Technology, Auckland, New Zealand (G.A.W.)
| | - Tim G. Yandle
- From the Christchurch Cardioendocrine Research Group, Department of Medicine, University of Otago-Christchurch, Christchurch, New Zealand (K.L.E., C.M.F., A.P.P., R.W.T., L.S., J.T., T.G.Y., A.M.R., V.A.C.); Department of Medicine, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand (R.N.D., G.A.W., C.J.E.), and Department of Medical Imaging, Unitec Institute of Technology, Auckland, New Zealand (G.A.W.)
| | - A. Mark Richards
- From the Christchurch Cardioendocrine Research Group, Department of Medicine, University of Otago-Christchurch, Christchurch, New Zealand (K.L.E., C.M.F., A.P.P., R.W.T., L.S., J.T., T.G.Y., A.M.R., V.A.C.); Department of Medicine, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand (R.N.D., G.A.W., C.J.E.), and Department of Medical Imaging, Unitec Institute of Technology, Auckland, New Zealand (G.A.W.)
| | - Vicky A. Cameron
- From the Christchurch Cardioendocrine Research Group, Department of Medicine, University of Otago-Christchurch, Christchurch, New Zealand (K.L.E., C.M.F., A.P.P., R.W.T., L.S., J.T., T.G.Y., A.M.R., V.A.C.); Department of Medicine, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand (R.N.D., G.A.W., C.J.E.), and Department of Medical Imaging, Unitec Institute of Technology, Auckland, New Zealand (G.A.W.)
| |
Collapse
|
63
|
Apolipoprotein A-V; a potent triglyceride reducer. Atherosclerosis 2011; 219:15-21. [DOI: 10.1016/j.atherosclerosis.2011.07.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 07/03/2011] [Accepted: 07/04/2011] [Indexed: 11/21/2022]
|
64
|
Geng Z, Xu FY, Huang SH, Chen ZY. Sorting protein-related receptor SorLA controls regulated secretion of glial cell line-derived neurotrophic factor. J Biol Chem 2011; 286:41871-41882. [PMID: 21994944 DOI: 10.1074/jbc.m111.246413] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF), after secreted from cells, plays a critical role in central and peripheral neuron survival and function. The secretion of GDNF can be either constitutive or regulated by physiological stimuli; however, the detailed mechanism driving GDNF secretion is still unknown. Here, we report that sorting protein-related receptor with A-type repeats (SorLA), a member of the mammal Vps10p domain receptor, interacts with GDNF and is localized to GDNF-containing vesicles. Overexpression of SorLA significantly increases, and knockdown of SorLA by siRNA decreases, the regulated secretion of GDNF in PC12 and MN9D cells but has no effect on GDNF constitutive secretion. In addition, overexpression of a truncated form of SorLA also impairs GDNF-regulated secretion. Finally, we found that the prodomain of GDNF mediates the interaction of GDNF with SorLA under acidic conditions. Moreover, overexpression of SorLA could enhance the regulated secretion of the GDNF prodomain-GFP fusion protein, suggesting that the prodomain of GDNF is responsible for its regulated secretion. Together, these findings will advance our understanding of the molecular mechanism underlying GDNF-regulated secretion.
Collapse
Affiliation(s)
- Zhao Geng
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Feng-Yi Xu
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shu-Hong Huang
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhe-Yu Chen
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.
| |
Collapse
|
65
|
Dubé JB, Johansen CT, Hegele RA. Sortilin: An unusual suspect in cholesterol metabolism. Bioessays 2011; 33:430-7. [DOI: 10.1002/bies.201100003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
66
|
Kraja AT, Vaidya D, Pankow JS, Goodarzi MO, Assimes TL, Kullo IJ, Sovio U, Mathias RA, Sun YV, Franceschini N, Absher D, Li G, Zhang Q, Feitosa MF, Glazer NL, Haritunians T, Hartikainen AL, Knowles JW, North KE, Iribarren C, Kral B, Yanek L, O'Reilly PF, McCarthy MI, Jaquish C, Couper DJ, Chakravarti A, Psaty BM, Becker LC, Province MA, Boerwinkle E, Quertermous T, Palotie L, Jarvelin MR, Becker DM, Kardia SLR, Rotter JI, Chen YDI, Borecki IB. A bivariate genome-wide approach to metabolic syndrome: STAMPEED consortium. Diabetes 2011; 60:1329-39. [PMID: 21386085 PMCID: PMC3064107 DOI: 10.2337/db10-1011] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The metabolic syndrome (MetS) is defined as concomitant disorders of lipid and glucose metabolism, central obesity, and high blood pressure, with an increased risk of type 2 diabetes and cardiovascular disease. This study tests whether common genetic variants with pleiotropic effects account for some of the correlated architecture among five metabolic phenotypes that define MetS. RESEARCH DESIGN AND METHODS Seven studies of the STAMPEED consortium, comprising 22,161 participants of European ancestry, underwent genome-wide association analyses of metabolic traits using a panel of ∼2.5 million imputed single nucleotide polymorphisms (SNPs). Phenotypes were defined by the National Cholesterol Education Program (NCEP) criteria for MetS in pairwise combinations. Individuals exceeding the NCEP thresholds for both traits of a pair were considered affected. RESULTS Twenty-nine common variants were associated with MetS or a pair of traits. Variants in the genes LPL, CETP, APOA5 (and its cluster), GCKR (and its cluster), LIPC, TRIB1, LOC100128354/MTNR1B, ABCB11, and LOC100129150 were further tested for their association with individual qualitative and quantitative traits. None of the 16 top SNPs (one per gene) associated simultaneously with more than two individual traits. Of them 11 variants showed nominal associations with MetS per se. The effects of 16 top SNPs on the quantitative traits were relatively small, together explaining from ∼9% of the variance in triglycerides, 5.8% of high-density lipoprotein cholesterol, 3.6% of fasting glucose, and 1.4% of systolic blood pressure. CONCLUSIONS Qualitative and quantitative pleiotropic tests on pairs of traits indicate that a small portion of the covariation in these traits can be explained by the reported common genetic variants.
Collapse
Affiliation(s)
- Aldi T Kraja
- Division of Statistical Genomics, Washington University School of Medicine, Saint Louis, Missouri, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Abstract
PURPOSE OF REVIEW Sortilins are sorting receptors that direct proteins through secretory and endocytic pathways of the cell. Previously, these receptors have been shown to play important roles in regulating protein transport in neurons and to control neuronal viability and death in many diseases of the nervous system. Recent data, including genome-wide association studies, now suggest equally important functions for sortilins in control of systemic lipoprotein metabolism and risk of cardiovascular disease. This review discusses the evidence implicating two members of this gene family, sortilin and SORLA, in cardiovascular processes. RECENT FINDINGS SORLA is a multifunctional receptor expressed in macrophages and vascular smooth muscle cells. It may act proatherogenic by promoting intimal SMC migration and by regulating apolipoprotein A-V dependent activation of lipoprotein lipase to modulate systemic triglyceride levels. Sortilin, encoded by the cardiovascular risk locus 1p13.3, is a novel regulator of hepatic lipoprotein production. It interacts with apolipoprotein B-100 to control release of very low-density lipoproteins, thereby affecting plasma cholesterol concentrations. SUMMARY Recent data shed light on the importance of sorting receptors in control of cellular and systemic lipoprotein metabolism and how altered trafficking pathways may represent a major risk factor for dyslipidemia and atherosclerosis in the human population.
Collapse
|
68
|
Klinger SC, Glerup S, Raarup MK, Mari MC, Nyegaard M, Koster G, Prabakaran T, Nilsson SK, Kjaergaard MM, Bakke O, Nykjær A, Olivecrona G, Petersen CM, Nielsen MS. SorLA regulates the activity of lipoprotein lipase by intracellular trafficking. J Cell Sci 2011; 124:1095-105. [PMID: 21385844 DOI: 10.1242/jcs.072538] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many different tissues and cell types exhibit regulated secretion of lipoprotein lipase (LPL). However, the sorting of LPL in the trans Golgi network has not, hitherto, been understood in detail. Here, we characterize the role of SorLA (officially known as SorLA-1 or sortilin-related receptor) in the intracellular trafficking of LPL. We found that LPL bound to SorLA under neutral and acidic conditions, and in cells this binding mainly occurred in vesicular structures. SorLA expression changed the subcellular distribution of LPL so it became more concentrated in endosomes. From the endosomes, LPL was further routed to the lysosomes, which resulted in a degradation of newly synthesized LPL. Consequently, an 80% reduction of LPL activity was observed in cells that expressed SorLA. By analogy, SorLA regulated the vesicle-like localization of LPL in primary neuronal cells. Thus, LPL binds to SorLA in the biosynthetic pathway and is subsequently transported to endosomes. As a result of this SorLA mediated-transport, newly synthesized LPL can be routed into specialized vesicles and eventually sent to degradation, and its activity thereby regulated.
Collapse
Affiliation(s)
- Stine C Klinger
- The MIND-Center, Department of Medical Biochemistry, University of Aarhus, Ole Worms Allé 1170, DK 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Blade AM, Fabritius MA, Hou L, Weinberg RB, Shelness GS. Biogenesis of apolipoprotein A-V and its impact on VLDL triglyceride secretion. J Lipid Res 2011; 52:237-44. [PMID: 21115968 PMCID: PMC3023543 DOI: 10.1194/jlr.m010793] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 11/09/2010] [Indexed: 12/12/2022] Open
Abstract
Apolipoprotein A-V (apoA-V) is a potent regulator of intravascular triglyceride (TG) metabolism, yet its plasma concentration is very low compared with that of other apolipoproteins. To examine the basis for its low plasma concentration, the secretion efficiency of apoA-V was measured in stably transfected McA-RH7777 rat hepatoma cells. Pulse-chase experiments revealed that only ∼20% of newly synthesized apoA-V is secreted into culture medium within 3 h postsynthesis and that ∼65% undergoes presecretory turnover; similar results were obtained with transfected nonhepatic Chinese hamster ovary cells. ApoA-V secreted by McA-RH7777 cells was not associated with cell surface heparin-competable binding sites. When stably transfected McA-RH7777 cells were treated with oleic acid, the resulting increase in TG synthesis caused a reduction in apoA-V secretion, a reciprocal increase in cell-associated apoA-V, and movement of apoA-V onto cytosolic lipid droplets. In a stably transfected doxycycline-inducible McA-RH7777 cell line, apoA-V expression inhibited TG secretion by ∼50%, increased cellular TG, and reduced Z-average VLDL(1) particle diameter from 81 to 67 nm; however, no impact on apoB secretion was observed. These data demonstrate that apoA-V inefficiently traffics within the secretory pathway, that its intracellular itinerary can be regulated by changes in cellular TG accumulation, and that apoA-V synthesis can modulate VLDL TG mobilization and secretion.
Collapse
Affiliation(s)
- Anna M. Blade
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Melissa A. Fabritius
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Li Hou
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Richard B. Weinberg
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
- Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Gregory S. Shelness
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
70
|
|
71
|
Willnow TE, Carlo AS, Rohe M, Schmidt V. SORLA/SORL1, a neuronal sorting receptor implicated in Alzheimer's disease. Rev Neurosci 2010; 21:315-29. [PMID: 21086763 DOI: 10.1515/revneuro.2010.21.4.315] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The proteolytic breakdown of the amyloid precursor protein (APP) to neurotoxic amyloid-beta peptides in the brain has been recognized as a major pathological pathway in Alzheimer's disease (AD). Yet, the factors that control the processing of APP and their potential contribution to the common sporadic form of AD remain poorly understood. Here, we review recent findings from studies in patients and in animal models that led to the identification of a unique sorting receptor for APP in neurons, designated SORLA/SORL1, that emerges as a key player in amyloidogenic processing and as major genetic risk factor for AD.
Collapse
Affiliation(s)
- Thomas E Willnow
- Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Str. 10, D-13125 Berlin, Germany.
| | | | | | | |
Collapse
|
72
|
De Caterina R, Talmud PJ, Merlini PA, Foco L, Pastorino R, Altshuler D, Mauri F, Peyvandi F, Lina D, Kathiresan S, Bernardinelli L, Ardissino D. Strong association of the APOA5-1131T>C gene variant and early-onset acute myocardial infarction. Atherosclerosis 2010; 214:397-403. [PMID: 21130994 DOI: 10.1016/j.atherosclerosis.2010.11.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/22/2010] [Accepted: 11/01/2010] [Indexed: 12/23/2022]
Abstract
BACKGROUND Epidemiological studies support the role for a strong genetic component in the occurrence of early-onset myocardial infarction (MI), although the specific genetic variants responsible for familial clustering remain largely unknown. METHODS The Italian study of early-onset MI is a nationwide case-control study involving 1864 case patients <45 years old who were hospitalized for a first MI, and age/sex/place of origin-matched controls (n = 1864). We investigated the association between early-onset MI, lipid levels and 20 single nucleotide polymorphisms (SNPs) in the candidate genes ADIPOQ, APOA5, ALOX5AP, CYBA, IL6, LPL, PECAM1, PLA2G2A and PLA2G7, chosen because of previously reported associations with Coronary Heart Disease (CHD) or with CHD risk factors. RESULTS Of all the SNPs investigated, APOA5-1131T>C [(rs662799), minor allele frequency 0.084 (95% confidence interval (CI) 0.07-0.09)] alone showed a statistically significant association with risk of early-onset MI (p = 6.7 × 10(-5)), after Bonferroni correction, with a per C allele odds ratio of 1.44 (95% CI 1.23-1.69). In controls, APOA5-1131T>C was significantly associated with raised plasma triglyceride levels (p = 0.001), compared with non-carriers, the per C allele increase being 11.4% (95% CI 4-19%), equivalent to 0.15 mmol/L (95% CI 0.11-0.20 mmol/L). In cases, the association with early MI risk remained statistically significant after adjustment for triglycerides (p = 0.006). CONCLUSIONS The APOA5-1131C allele, associated with higher fasting triglyceride levels, strongly affects the risk for early-onset MI, even after adjusting for triglycerides. This raises the possibility that APOA5-1131T>C may affect the risk of early MI over and above effects mediated by triglycerides.
Collapse
Affiliation(s)
- Raffaele De Caterina
- Institute of Cardiology and Center of Excellence on Aging, G d'Annunzio University-Chieti and Fondazione G Monasterio, Pisa, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Johansen CT, Lanktree MB, Hegele RA. Translating genomic analyses into improved management of coronary artery disease. Future Cardiol 2010; 6:507-21. [PMID: 20608823 DOI: 10.2217/fca.10.28] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human genetic variation can modulate pathophysiologic processes that alter susceptibility to complex disease. Recent genomic analyses have sought to identify how common genetic variation alters susceptibility to coronary artery disease (CAD). From genome-wide association studies (GWAS), common genetic variants in several novel chromosomal loci have been associated with CAD. GWAS identified the 9p21 locus as the strongest independent genetic CAD risk factor, along with 11 additional loci that harbor common genetic variants associated with increased CAD risk. A thorough understanding of human genetic variation and genomic analyses will be crucial to understand how GWAS-identified loci increase susceptibility to CAD. This article outlines the relevance of genetic variation in the elucidation of novel CAD risk factors and the clinical utility of genetic variants in the management and treatment of CAD.
Collapse
Affiliation(s)
- Christopher T Johansen
- Blackburn Cardiovascular Genetics Laboratory, Robarts Research Institute, University of Western Ontario, London, ON N6A 5K8, Canada
| | | | | |
Collapse
|
74
|
Kjolby M, Andersen OM, Breiderhoff T, Fjorback AW, Pedersen KM, Madsen P, Jansen P, Heeren J, Willnow TE, Nykjaer A. Sort1, encoded by the cardiovascular risk locus 1p13.3, is a regulator of hepatic lipoprotein export. Cell Metab 2010; 12:213-23. [PMID: 20816088 DOI: 10.1016/j.cmet.2010.08.006] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 07/08/2010] [Accepted: 08/03/2010] [Indexed: 01/17/2023]
Abstract
Recent genome-wide association studies (GWAS) have revealed strong association of hypercholesterolemia and myocardial infarction with SNPs on human chromosome 1p13.3. This locus covers three genes: SORT1, CELSR2, and PSRC1. We demonstrate that sortilin, encoded by SORT1, is an intracellular sorting receptor for apolipoprotein (apo) B100. It interacts with apoB100 in the Golgi and facilitates the formation and hepatic export of apoB100-containing lipoproteins, thereby regulating plasma low-density lipoprotein (LDL) cholesterol. Absence of sortilin in gene-targeted mice reduces secretion of lipoproteins from the liver and ameliorates hypercholesterolemia and atherosclerotic lesion formation in LDL receptor-deficient animals. In contrast, sortilin overexpression stimulates hepatic release of lipoproteins and increases plasma LDL levels. Our data have uncovered a regulatory pathway in hepatic lipoprotein export and suggest a molecular explanation for the cardiovascular risk being associated with 1p13.3.
Collapse
Affiliation(s)
- Mads Kjolby
- The Lundbeck Foundation Research Center MIND, Department of Medical Biochemistry, Aarhus University, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Vorup-Jensen T. Coping with complexity (in macromolecular interactions)-a comment on Rebecca L. Rich's and David G. Myszka's “Grading the commercial optical biosensor literature-Class of 2008: ‘The Mighty Binders”’. J Mol Recognit 2010; 23:389-91; author reply 392. [DOI: 10.1002/jmr.1046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
76
|
Sarwar N, Sandhu MS, Ricketts SL, Butterworth AS, Di Angelantonio E, Boekholdt SM, Ouwehand W, Watkins H, Samani NJ, Saleheen D, Lawlor D, Reilly MP, Hingorani AD, Talmud PJ, Danesh J. Triglyceride-mediated pathways and coronary disease: collaborative analysis of 101 studies. Lancet 2010; 375:1634-9. [PMID: 20452521 PMCID: PMC2867029 DOI: 10.1016/s0140-6736(10)60545-4] [Citation(s) in RCA: 538] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Whether triglyceride-mediated pathways are causally relevant to coronary heart disease is uncertain. We studied a genetic variant that regulates triglyceride concentration to help judge likelihood of causality. METHODS We assessed the -1131T>C (rs662799) promoter polymorphism of the apolipoprotein A5 (APOA5) gene in relation to triglyceride concentration, several other risk factors, and risk of coronary heart disease. We compared disease risk for genetically-raised triglyceride concentration (20,842 patients with coronary heart disease, 35,206 controls) with that recorded for equivalent differences in circulating triglyceride concentration in prospective studies (302 430 participants with no history of cardiovascular disease; 12,785 incident cases of coronary heart disease during 2.79 million person-years at risk). We analysed -1131T>C in 1795 people without a history of cardiovascular disease who had information about lipoprotein concentration and diameter obtained by nuclear magnetic resonance spectroscopy. FINDINGS The minor allele frequency of -1131T>C was 8% (95% CI 7-9). -1131T>C was not significantly associated with several non-lipid risk factors or LDL cholesterol, and it was modestly associated with lower HDL cholesterol (mean difference per C allele 3.5% [95% CI 2.6-4.6]; 0.053 mmol/L [0.039-0.068]), lower apolipoprotein AI (1.3% [0.3-2.3]; 0.023 g/L [0.005-0.041]), and higher apolipoprotein B (3.2% [1.3-5.1]; 0.027 g/L [0.011-0.043]). By contrast, for every C allele inherited, mean triglyceride concentration was 16.0% (95% CI 12.9-18.7), or 0.25 mmol/L (0.20-0.29), higher (p=4.4x10(-24)). The odds ratio for coronary heart disease was 1.18 (95% CI 1.11-1.26; p=2.6x10(-7)) per C allele, which was concordant with the hazard ratio of 1.10 (95% CI 1.08-1.12) per 16% higher triglyceride concentration recorded in prospective studies. -1131T>C was significantly associated with higher VLDL particle concentration (mean difference per C allele 12.2 nmol/L [95% CI 7.7-16.7]; p=9.3x10(-8)) and smaller HDL particle size (0.14 nm [0.08-0.20]; p=7.0x10(-5)), factors that could mediate the effects of triglyceride. INTERPRETATION These data are consistent with a causal association between triglyceride-mediated pathways and coronary heart disease. FUNDING British Heart Foundation, UK Medical Research Council, Novartis.
Collapse
|
77
|
Kleber ME, Renner W, Grammer TB, Linsel-Nitschke P, Boehm BO, Winkelmann BR, Bugert P, Hoffmann MM, März W. Association of the single nucleotide polymorphism rs599839 in the vicinity of the sortilin 1 gene with LDL and triglyceride metabolism, coronary heart disease and myocardial infarction. Atherosclerosis 2010; 209:492-7. [DOI: 10.1016/j.atherosclerosis.2009.09.068] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 09/18/2009] [Accepted: 09/23/2009] [Indexed: 10/20/2022]
|
78
|
Rich RL, Myszka DG. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. J Mol Recognit 2010; 23:1-64. [PMID: 20017116 DOI: 10.1002/jmr.1004] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
79
|
Feng D, Kim T, Ozkan E, Light M, Torkin R, Teng KK, Hempstead BL, Garcia KC. Molecular and structural insight into proNGF engagement of p75NTR and sortilin. J Mol Biol 2009; 396:967-84. [PMID: 20036257 PMCID: PMC2847487 DOI: 10.1016/j.jmb.2009.12.030] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 12/15/2009] [Indexed: 12/21/2022]
Abstract
Nerve growth factor (NGF) is initially synthesized as a precursor, proNGF, that is cleaved to release its C-terminal mature form. Recent studies suggested that proNGF is not an inactive precursor but acts as a signaling ligand distinct from its mature counterpart. proNGF and mature NGF initiate opposing biological responses by utilizing both distinct and shared receptor components. In this study, we carried out structural and biochemical characterization of proNGF interactions with p75NTR and sortilin. We crystallized proNGF complexed to p75NTR and present the structure at 3.75-A resolution. The structure reveals a 2:2 symmetric binding mode, as compared with the asymmetric structure of a previously reported crystal structure of mature NGF complexed to p75NTR and the 2:2 symmetric complex of neurotrophin-3 (NT-3) and p75NTR. Here, we discuss the possible origins and implications of the different stoichiometries. In the proNGF-p75NTR complex, the pro regions of proNGF are mostly disordered and two hairpin loops (loop 2) at the top of the NGF dimer have undergone conformational changes in comparison with mature NT structures, suggesting possible interactions with the propeptide. We further explored the binding characteristics of proNGF to sortilin using surface plasmon resonance and cell-based assays and determined that calcium ions promote the formation of a stable ternary complex of proNGF-sortilin-p75NTR. These results, together with those of previous structural and mechanistic studies of NT-receptor interactions, suggest the potential for distinct signaling activities through p75NTR mediated by different NT-induced conformational changes.
Collapse
Affiliation(s)
- Dan Feng
- Department of Cellular and Molecular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Affiliation(s)
- Naomi Attar
- The Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | |
Collapse
|
81
|
Genetic basis of myocardial infarction: Novel insights from genome-wide association studies. CURRENT CARDIOVASCULAR RISK REPORTS 2009. [DOI: 10.1007/s12170-009-0063-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
82
|
Hermey G. The Vps10p-domain receptor family. Cell Mol Life Sci 2009; 66:2677-89. [PMID: 19434368 PMCID: PMC11115710 DOI: 10.1007/s00018-009-0043-1] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 04/21/2009] [Accepted: 04/21/2009] [Indexed: 12/24/2022]
Abstract
The family of mammalian type-I transmembrane receptors containing a Vps10p domain contains five members, Sortilin, SorCS1, SorCS2, SorCS3, and SorLA. The common characteristic of these receptors is an N-terminal Vps10p domain, which either represents the only module of the luminal/extracellular moiety or is combined with additional domains. Family members play roles in protein transport and signal transduction. The individual receptors bind and internalize a variety of ligands, such as neuropeptides and trophic factors, and Sortilin and SorLA mediate trans-Golgi network-to-endosome sorting. Their prominent neuronal expression, several of the identified ligands, and recent results support the notion that members of this receptor family have important functions in neurogenesis, plasticity-related processes, and functional maintenance of the nervous system. For instance, it has been demonstrated that Sortilin partakes in the transduction of proapoptotic effects, and there is converging biochemical and genetic evidence that implies that SorLA is an Alzheimer's disease risk factor.
Collapse
Affiliation(s)
- Guido Hermey
- Institute of Molecular and Cellular Cognition, Zentrum für Molekulare Neurobiologie Hamburg, Hamburg, Germany.
| |
Collapse
|
83
|
Platelet factor 4 regulates megakaryopoiesis through low-density lipoprotein receptor-related protein 1 (LRP1) on megakaryocytes. Blood 2009; 114:2290-8. [PMID: 19605848 DOI: 10.1182/blood-2009-04-216473] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Platelet factor 4 (PF4) is a negative regulator of megakaryopoiesis, but its mechanism of action had not been addressed. Low-density lipoprotein (LDL) receptor-related protein-1 (LRP1) has been shown to mediate endothelial cell responses to PF4 and so we tested this receptor's importance in PF4's role in megakaryopoiesis. We found that LRP1 is absent from megakaryocyte-erythrocyte progenitor cells, is maximally present on large, polyploidy megakaryocytes, and near absent on platelets. Blocking LRP1 with either receptor-associated protein (RAP), an antagonist of LDL family member receptors, or specific anti-LRP1 antibodies reversed the inhibition of megakaryocyte colony growth by PF4. In addition, using shRNA to reduce LRP1 expression was able to restore megakaryocyte colony formation in bone marrow isolated from human PF4-overexpressing mice (hPF4(High)). Further, shRNA knockdown of LRP1 expression was able to limit the effects of PF4 on megakaryopoiesis. Finally, infusion of RAP into hPF4(High) mice was able to increase baseline platelet counts without affecting other lineages, suggesting that this mechanism is important in vivo. These studies extend our understanding of PF4's negative paracrine effect in megakaryopoiesis and its potential clinical implications as well as provide insights into the biology of LRP1, which is transiently expressed during megakaryopoiesis.
Collapse
|
84
|
Linsel-Nitschke P, Heeren J, Aherrahrou Z, Bruse P, Gieger C, Illig T, Prokisch H, Heim K, Doering A, Peters A, Meitinger T, Wichmann HE, Hinney A, Reinehr T, Roth C, Ortlepp JR, Soufi M, Sattler AM, Schaefer J, Stark K, Hengstenberg C, Schaefer A, Schreiber S, Kronenberg F, Samani NJ, Schunkert H, Erdmann J. Genetic variation at chromosome 1p13.3 affects sortilin mRNA expression, cellular LDL-uptake and serum LDL levels which translates to the risk of coronary artery disease. Atherosclerosis 2009; 208:183-9. [PMID: 19660754 DOI: 10.1016/j.atherosclerosis.2009.06.034] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Revised: 06/28/2009] [Accepted: 06/29/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND A single nucleotide polymorphism (SNP) rs599839 located at chromosome 1p13.3 has previously been associated with risk of coronary artery disease (CAD) and with serum levels of low-density lipoprotein cholesterol (LDL-C). A functional link explaining the association of SNP rs599839 with LDL-C levels and CAD risk has not yet been elucidated. METHODS We analyzed the association of rs599839 with LDL-C in 6605 individuals across a wide age spectrum and with CAD in four case-control studies comprising 4287 cases and 7572 controls. Genome-wide expression array data was used to assess the association of SNP rs599839 with gene expression at chromosome 1p13. Finally, we overexpressed sortilin in transfected cells to study LDL-uptake in vitro. RESULTS Each copy of the G-allele of rs599839 associated with a decrease of serum LDL-C by 0.14 mmol/L (90% confidence interval (CI) 0.09-0.17 mmol/L, p=2.6 x 10(-11)). Moreover, each copy of the G-allele associated with a 9% decrease of CAD risk (90% CI 4-14%) in the presently studied four case-control samples and with a 13% decrease (90% CI 10-17%, p=2.18 x 10(-9)) in a pooled meta-analysis including recent genome-wide association studies on CAD. The same allele was associated with higher mRNA-expression levels of the multiligand receptor sortilin (log transformed mRNA AA vs. GG=8.31 vs. 8.55; p=0.01). Overexpression of SORT1 cDNA resulted in a significant increase in LDL-particle uptake (+23%, p=0.01). CONCLUSIONS Rs599839 associates with decreased LDL-C and a lower risk of CAD. Effects appear to be mediated by increased sortilin expression and subsequently enhanced LDL-uptake into cells.
Collapse
|
85
|
Vaessen SFC, Dallinga-Thie GM, Ross CJD, Splint LJ, Castellani LW, Rensen PCN, Hayden MR, Schaap FG, Kuivenhoven JA. Plasma apolipoprotein AV levels in mice are positively associated with plasma triglyceride levels. J Lipid Res 2009; 50:880-4. [PMID: 19141870 DOI: 10.1194/jlr.m800551-jlr200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Apolipoprotein AV (apoAV) overexpression causes a decrease in plasma triglyceride (TG) levels, while deficiency of apoAV causes hypertriglyceridemia in both men and mice. However, contrary to what would be expected, plasma apoAV and TG levels in humans are positively correlated. To address this apparent paradox, we determined plasma apoAV levels in various mouse models with median TG levels ranging from 30 mg/dl in wild-type mice to 2089 mg/dl in glycosylphosphatidylinositol-anchored HDL binding protein 1-deficient mice. The data show that apoAV and TG levels are positively correlated in mice (r = +0.798, P < 0.001). In addition, we show that LPL gene transfer caused a simultaneous decrease in TG and apoAV in LPL-deficient mice. The combined data suggest that apoAV levels follow TG levels due to an intimate link between the apoAV molecule and TG-rich lipoproteins, comprising both secretion and removal of these lipoproteins. Taken together, the data suggest that higher plasma apoAV levels reflect an increased demand for plasma TG hydrolysis under normal physiological conditions.
Collapse
Affiliation(s)
- S F C Vaessen
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Ligands bind to Sortilin in the tunnel of a ten-bladed β-propeller domain. Nat Struct Mol Biol 2009; 16:96-8. [DOI: 10.1038/nsmb.1543] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 12/03/2008] [Indexed: 11/08/2022]
|
87
|
Forte TM, Shu X, Ryan RO. The ins (cell) and outs (plasma) of apolipoprotein A-V. J Lipid Res 2008; 50 Suppl:S150-5. [PMID: 19050314 DOI: 10.1194/jlr.r800050-jlr200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Apolipoprotein A-V (apoA-V) has a close interrelationship with plasma triglyceride (TG). Since the discovery of the apoA-V gene in 2001, we have learned that single nucleotide polymorphisms in this gene correlate with altered plasma TG levels in humans, while genetically engineered mice manifest unique TG phenotypes. Studies of recombinant apoA-V protein have revealed that it is composed of two independently folded structural domains. The C-terminal domain possesses high lipid binding affinity, while the N-terminal domain adopts a helix bundle molecular architecture. A sequence element with high positive charge character, between residues 185 and 228, functions in binding of apoA-V to heparan sulfate proteoglycans as well as to members of the low-density lipoprotein receptor family and glycosylphosphatidylinositol high-density lipoprotein binding protein1. These interactions may be related to the capacity of this protein to regulate TG levels. ApoA-V is poorly secreted from transfected cultured hepatoma cell lines and is present in plasma at exceedingly low levels. Studies of apoA-V intracellular trafficking revealed an association with cytosolic lipid droplets. Thus, it is conceivable that apoA-V may also modulate TG metabolism within the cell. Much remains to be learned about this fascinating yet confounding member of the class of exchangeable apolipoproteins.
Collapse
Affiliation(s)
- Trudy M Forte
- Center for Prevention of Obesity, Diabetes, and Cardiovascular Disease, Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA.
| | | | | |
Collapse
|
88
|
VPS10P-domain receptors — regulators of neuronal viability and function. Nat Rev Neurosci 2008; 9:899-909. [DOI: 10.1038/nrn2516] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|