51
|
Homocysteine, Thioretinaco Ozonide, and Oxidative Phosphorylation in Cancer and Aging: A Proposed Clinical Trial Protocol. Methods Mol Biol 2019; 1866:285-310. [PMID: 30725425 DOI: 10.1007/978-1-4939-8796-2_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The objective of the proposed clinical interventional trial is to demonstrate the efficacy of a novel therapeutic strategy in subjects with cancer and hyperhomocysteinemia. Following discovery of abnormal homocysteine thiolactone metabolism in cultured malignant cells, thioretinamide, the amide synthesized from retinoic acid and homocysteine thiolactone, and thioretinaco, the complex formed from cobalamin and thioretinamide, were demonstrated to have antineoplastic, anticarcinogenic, and anti-atherogenic properties in animal models. Retinol, ascorbate, and homocysteine thiolactone are necessary for biosynthesis of thioretinamide and thioretinaco by cystathionine synthase and for formation of thioretinaco ozonide from thioretinamide, cobalamin, and ozone. Thioretinaco ozonide is required for prevention of abnormal oxidative metabolism, aerobic glycolysis, suppressed immunity, and hyperhomocysteinemia in cancer.The pancreatic enzyme therapy of cancer promotes catabolism of proteins, nucleic acids, and glycosaminoglycans with excess homocysteinylated amino groups resulting from abnormal accumulation of homocysteine thiolactone in malignant cells. Dietary deficiencies of pyridoxal, folate, cobalamin, and nitriloside contribute to hyperhomocysteinemia in cancer, and in protein energy malnutrition. A deficiency of dietary sulfur amino acids downregulates cystathionine synthase, causing hyperhomocysteinemia.The organic sulfur compound diallyl trisulfide increases hydrogen sulfide production from homocysteine in animal models, inhibits Stat3 signaling in cancer stem cells, and produces apoptosis of malignant cells. The furanonaphthoquinone compound napabucasin inhibits Stat3 signaling and causes mitochondrial dysfunction, decreased oxidative phosphorylation, and apoptosis of malignant cells. The protocol of the proposed clinical trial in subjects with myelodysplasia consists of thioretinamide and cobalamin as precursors of thioretinaco ozonide, combined with pancreatic enzyme extracts, diallyl trisulfide, napabucasin, nutritional modification to minimize processed foods, vitamin supplements, essential amino acids, and beneficial dietary fats and proteins.
Collapse
|
52
|
Vellecco V, Armogida C, Bucci M. Hydrogen sulfide pathway and skeletal muscle: an introductory review. Br J Pharmacol 2018; 175:3090-3099. [PMID: 29767441 PMCID: PMC6031874 DOI: 10.1111/bph.14358] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/18/2018] [Accepted: 04/30/2018] [Indexed: 12/13/2022] Open
Abstract
The presence of the H2 S pathway in skeletal muscle (SKM) has recently been established. SKM expresses the three constitutive H2 S-generating enzymes in animals and humans, and it actively produces H2 S. The main, recognized molecular targets of H2 S, that is, potassium channels and PDEs, have been evaluated in SKM physiology in order to hypothesize a role for H2 S signalling. SKM dysfunctions, including muscular dystrophy and malignant hyperthermia, have also been evaluated as conditions in which the H2 S and transsulfuration pathways have been suggested to be involved. The intrinsic complexity of the molecular mechanisms involved in excitation-contraction (E-C) coupling together with the scarcity of preclinical models of SKM-related disorders have hampered any advances in the knowledge of SKM function. Here, we have addressed the role of the H2 S pathway in E-C coupling and the relative importance of cystathionine β-synthase, cistathionine γ-lyase and 3-mercaptopyruvate sulfurtransferase in SKM diseases.
Collapse
Affiliation(s)
- Valentina Vellecco
- Department of Pharmacy, School of Medicine, University of Naples 'Federico II', Naples, 80131, Italy
| | - Chiara Armogida
- Department of Pharmacy, School of Medicine, University of Naples 'Federico II', Naples, 80131, Italy
| | - Mariarosaria Bucci
- Department of Pharmacy, School of Medicine, University of Naples 'Federico II', Naples, 80131, Italy
| |
Collapse
|
53
|
Cystathionine β-Synthase in Physiology and Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3205125. [PMID: 30050925 PMCID: PMC6046153 DOI: 10.1155/2018/3205125] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/29/2018] [Indexed: 01/20/2023]
Abstract
Cystathionine β-synthase (CBS) regulates homocysteine metabolism and contributes to hydrogen sulfide (H2S) biosynthesis through which it plays multifunctional roles in the regulation of cellular energetics, redox status, DNA methylation, and protein modification. Inactivating mutations in CBS contribute to the pathogenesis of the autosomal recessive disease CBS-deficient homocystinuria. Recent studies demonstrating that CBS promotes colon and ovarian cancer growth in preclinical models highlight a newly identified oncogenic role for CBS. On the contrary, tumor-suppressive effects of CBS have been reported in other cancer types, suggesting context-dependent roles of CBS in tumor growth and progression. Here, we review the physiological functions of CBS, summarize the complexities regarding CBS research in oncology, and discuss the potential of CBS and its key metabolites, including homocysteine and H2S, as potential biomarkers for cancer diagnosis or therapeutic targets for cancer treatment.
Collapse
|
54
|
Tu Y, Kreinbring CA, Hill M, Liu C, Petsko GA, McCune CD, Berkowitz DB, Liu D, Ringe D. Crystal Structures of Cystathionine β-Synthase from Saccharomyces cerevisiae: One Enzymatic Step at a Time. Biochemistry 2018; 57:3134-3145. [PMID: 29630349 DOI: 10.1021/acs.biochem.8b00092] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cystathionine β-synthase (CBS) is a key regulator of sulfur amino acid metabolism, taking homocysteine from the methionine cycle to the biosynthesis of cysteine via the trans-sulfuration pathway. CBS is also a predominant source of H2S biogenesis. Roles for CBS have been reported for neuronal death pursuant to cerebral ischemia, promoting ovarian tumor growth, and maintaining drug-resistant phenotype by controlling redox behavior and regulating mitochondrial bioenergetics. The trans-sulfuration pathway is well-conserved in eukaryotes, but the analogous enzymes have different enzymatic behavior in different organisms. CBSs from the higher organisms contain a heme in an N-terminal domain. Though the presence of the heme, whose functions in CBSs have yet to be elucidated, is biochemically interesting, it hampers UV-vis absorption spectroscopy investigations of pyridoxal 5'-phosphate (PLP) species. CBS from Saccharomyces cerevisiae (yCBS) naturally lacks the heme-containing N-terminal domain, which makes it an ideal model for spectroscopic studies of the enzymological reaction catalyzed and allows structural studies of the basic yCBS catalytic core (yCBS-cc). Here we present the crystal structure of yCBS-cc, solved to 1.5 Å. Crystal structures of yCBS-cc in complex with enzymatic reaction intermediates have been captured, providing a structural basis for residues involved in catalysis. Finally, the structure of the yCBS-cc cofactor complex generated by incubation with an inhibitor shows apparent off-pathway chemistry not normally seen with CBS.
Collapse
Affiliation(s)
- Yupeng Tu
- Department of Biochemistry , Brandeis University , Waltham , Massachusetts 02454 , United States
| | - Cheryl A Kreinbring
- Department of Biochemistry , Brandeis University , Waltham , Massachusetts 02454 , United States
| | - Megan Hill
- Department of Biology , Brandeis University , Waltham , Massachusetts 02454 , United States
| | - Cynthia Liu
- Department of Biochemistry , Brandeis University , Waltham , Massachusetts 02454 , United States
| | - Gregory A Petsko
- Department of Neurology and Neuroscience , Weill Cornell Medical College , New York , New York 10021 , United States
| | - Christopher D McCune
- Department of Biochemistry , University of Nebraska , Lincoln , Nebraska 68588 , United States
| | - David B Berkowitz
- Department of Biochemistry , University of Nebraska , Lincoln , Nebraska 68588 , United States
| | - Dali Liu
- Department of Chemistry and Biochemistry , Loyola University Chicago , Chicago , Illinois 60660 , United States
| | - Dagmar Ringe
- Department of Biochemistry , Brandeis University , Waltham , Massachusetts 02454 , United States.,Department of Chemistry , Brandeis University , Waltham , Massachusetts 02454 , United States.,Rosenstiel Basic Medical Sciences Research Center , Brandeis University , Waltham , Massachusetts 02454 , United States
| |
Collapse
|
55
|
Powell CR, Dillon KM, Matson JB. A review of hydrogen sulfide (H 2S) donors: Chemistry and potential therapeutic applications. Biochem Pharmacol 2018; 149:110-123. [PMID: 29175421 PMCID: PMC5866188 DOI: 10.1016/j.bcp.2017.11.014] [Citation(s) in RCA: 346] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/21/2017] [Indexed: 12/11/2022]
Abstract
Hydrogen sulfide (H2S) is a ubiquitous small gaseous signaling molecule, playing an important role in many physiological processes and joining nitric oxide and carbon monoxide in the group of signaling agents termed gasotransmitters. Endogenous concentrations of H2S are generally low, making it difficult to discern precise biological functions. As such, probing the physiological roles of H2S is aided by exogenous delivery of the gas in cell and animal studies. This need for an exogenous source of H2S provides a unique challenge for chemists to develop chemical tools that facilitate the study of H2S under biological conditions. Compounds that degrade in response to a specific trigger to release H2S, termed H2S donors, include a wide variety of functional groups and delivery systems, some of which mimic the tightly controlled endogenous production in response to specific, biologically relevant conditions. This review examines a variety of H2S donor systems classified by their H2S-releasing trigger as well as their H2S release profiles, byproducts, and potential therapeutic applications.
Collapse
Affiliation(s)
- Chadwick R Powell
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Kearsley M Dillon
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - John B Matson
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
56
|
Niu W, Wang J, Qian J, Wang M, Wu P, Chen F, Yan S. Allosteric control of human cystathionine β-synthase activity by a redox active disulfide bond. J Biol Chem 2018; 293:2523-2533. [PMID: 29298893 PMCID: PMC5818181 DOI: 10.1074/jbc.ra117.000103] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/27/2017] [Indexed: 01/10/2023] Open
Abstract
Cystathionine β-synthase (CBS) is the central enzyme in the trans-sulfuration pathway that converts homocysteine to cysteine. It is also one of the three major enzymes involved in the biogenesis of H2S. CBS is a complex protein with a modular three-domain architecture, the central domain of which contains a 272CXXC275 motif whose function has yet to be determined. In the present study, we demonstrated that the CXXC motif exists in oxidized and reduced states in the recombinant enzyme by mass spectroscopic analysis and a thiol labeling assay. The activity of reduced CBS is ∼2-3-fold greater than that of the oxidized enzyme, and substitution of either cysteine in CXXC motif leads to a loss of redox sensitivity. The Cys272-Cys275 disulfide bond in CBS has a midpoint potential of -314 mV at pH 7.4. Additionally, the CXXC motif also exists in oxidized and reduced states in HEK293 cells under oxidative and reductive conditions, and stressing these cells with DTT results in more reduced enzyme and a concomitant increase in H2S production in live HEK293 cells as determined using a H2S fluorescent probe. By contrast, incubation of cells with aminooxyacetic acid, an inhibitor of CBS and cystathionine γ-lyase, eliminated the increase of H2S production after the cells were exposed to DTT. These findings indicate that CBS is post-translationally regulated by a redox-active disulfide bond in the CXXC motif. The results also demonstrate that CBS-derived H2S production is increased in cells under reductive stress conditions.
Collapse
Affiliation(s)
- Weining Niu
- From the School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jun Wang
- From the School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jing Qian
- From the School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Mengying Wang
- From the School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ping Wu
- From the School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Fei Chen
- From the School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shasha Yan
- From the School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
57
|
Kumar A, Wißbrock A, Goradia N, Bellstedt P, Ramachandran R, Imhof D, Ohlenschläger O. Heme interaction of the intrinsically disordered N-terminal peptide segment of human cystathionine-β-synthase. Sci Rep 2018; 8:2474. [PMID: 29410458 PMCID: PMC5802807 DOI: 10.1038/s41598-018-20841-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/23/2018] [Indexed: 12/28/2022] Open
Abstract
Cystathionine-β-synthase (CBS) belongs to a large family of pyridoxal 5’-phosphate (PLP)-dependent enzymes, responsible for the sulfur metabolism. The heme-dependent protein CBS is part of regulatory pathways also involving the gasotransmitter hydrogen sulfide. Malfunction of CBS can lead to pathologic conditions like cancer, cardiovascular and neurodegenerative disorders. Truncation of residues 1–40, absent in X-ray structures of CBS, reduces but does not abolish the activity of the enzyme. Here we report the NMR resonance assignment and heme interaction studies for the N-terminal peptide stretch of CBS. We present NMR-spectral evidence that residues 1–40 constitute an intrinsically disordered region in CBS and interact with heme via a cysteine-proline based motif.
Collapse
Affiliation(s)
- Amit Kumar
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstr. 11, D-07745, Jena, Germany
| | - Amelie Wißbrock
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Nishit Goradia
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstr. 11, D-07745, Jena, Germany
| | - Peter Bellstedt
- Friedrich Schiller University, Faculty of Chemistry and Earth Sciences, Humboldtstr. 10, D-07743, Jena, Germany
| | - Ramadurai Ramachandran
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstr. 11, D-07745, Jena, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany.
| | - Oliver Ohlenschläger
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstr. 11, D-07745, Jena, Germany.
| |
Collapse
|
58
|
Majtan T, Krijt J, Sokolová J, Křížková M, Ralat MA, Kent J, Gregory JF, Kožich V, Kraus JP. Biogenesis of Hydrogen Sulfide and Thioethers by Cystathionine Beta-Synthase. Antioxid Redox Signal 2018; 28:311-323. [PMID: 28874062 DOI: 10.1089/ars.2017.7009] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
AIMS The transsulfuration pathway enzymes cystathionine beta-synthase (CBS) and cystathionine gamma-lyase are thought to be the major source of hydrogen sulfide (H2S). In this study, we assessed the role of CBS in H2S biogenesis. RESULTS We show that despite discouraging enzyme kinetics of alternative H2S-producing reactions utilizing cysteine compared with the canonical condensation of serine and homocysteine, our simulations of substrate competitions at biologically relevant conditions suggest that cysteine is able to partially compete with serine on CBS, thus leading to generation of appreciable amounts of H2S. The leading H2S-producing reaction is condensation of cysteine with homocysteine, while cysteine desulfuration plays a dominant role when cysteine is more abundant than serine and homocysteine is limited. We found that the serine-to-cysteine ratio is the main determinant of CBS H2S productivity. Abundance of cysteine over serine, for example, in plasma, allowed for up to 43% of CBS activity being responsible for H2S production, while excess of serine typical for intracellular levels effectively limited such activity to less than 1.5%. CBS also produced lanthionine from serine and cysteine and a third of lanthionine coming from condensation of two cysteines contributed to the H2S pool. INNOVATION Our study characterizes the H2S-producing potential of CBS under biologically relevant conditions and highlights the serine-to-cysteine ratio as the main determinant of H2S production by CBS in vivo. CONCLUSION Our data clarify the function of CBS in H2S biogenesis and the role of thioethers as surrogate H2S markers. Antioxid. Redox Signal. 28, 311-323.
Collapse
Affiliation(s)
- Tomas Majtan
- 1 Department of Pediatrics, University of Colorado , School of Medicine, Aurora, Colorado
| | - Jakub Krijt
- 2 Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital in Prague , Prague, Czech Republic
| | - Jitka Sokolová
- 2 Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital in Prague , Prague, Czech Republic
| | - Michaela Křížková
- 2 Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital in Prague , Prague, Czech Republic
| | - Maria A Ralat
- 3 Department of Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida , Gainesville, Florida
| | - Jana Kent
- 1 Department of Pediatrics, University of Colorado , School of Medicine, Aurora, Colorado
| | - Jesse F Gregory
- 3 Department of Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida , Gainesville, Florida
| | - Viktor Kožich
- 2 Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital in Prague , Prague, Czech Republic
| | - Jan P Kraus
- 1 Department of Pediatrics, University of Colorado , School of Medicine, Aurora, Colorado
| |
Collapse
|
59
|
Niu W, Chen F, Wang J, Qian J, Yan S. Antitumor effect of sikokianin C, a selective cystathionine β-synthase inhibitor, against human colon cancer in vitro and in vivo. MEDCHEMCOMM 2018; 9:113-120. [PMID: 30108905 PMCID: PMC6072513 DOI: 10.1039/c7md00484b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/15/2017] [Indexed: 11/21/2022]
Abstract
Cystathionine β-synthase (CBS) overexpression is related to the proliferation and migration of human colon cancers. Targeted therapy that inhibits CBS has achieved promising effects in colon cancer treatments, but no selective inhibitor of CBS is available. In our previous study, a natural biflavonoid compound, sikokianin C, was identified as a potent and selective inhibitor of CBS. However, the mode of action of this compound and its antitumor efficacy in vivo remain unknown. In the present study, we have demonstrated that sikokianin C selectively inhibits CBS activity in a competitive manner, and the five key residues involved in the binding of sikokianin C to the substrate channel of CBS protein were identified via a combination of molecular docking and site-directed mutagenesis. Additionally, we analyzed the antitumor efficacy of sikokianin C against human colon cancer cells in vitro and in vivo. Sikokianin C greatly suppressed the proliferation of HT29 colon cancer cells with an IC50 value of 1.6 μM, and CBS is the target of sikokianin C in mammalian cells, as evidenced by CBS knockdown analyses. Moreover, sikokianin C induced the apoptosis of HT29 cancer cells in a dose dependent manner. Treating mice with sikokianin C dramatically reduced the tumor volume and the weight of the colon cancer xenograft in vivo. These results indicate that the selective CBS inhibitor sikokianin C can potentially be used for the treatment of colon cancer.
Collapse
Affiliation(s)
- Weining Niu
- School of Life Sciences , Northwestern Polytechnical University , Xi'an , 710072 , China .
| | - Fei Chen
- School of Life Sciences , Northwestern Polytechnical University , Xi'an , 710072 , China .
| | - Jun Wang
- School of Life Sciences , Northwestern Polytechnical University , Xi'an , 710072 , China .
| | - Jing Qian
- School of Life Sciences , Northwestern Polytechnical University , Xi'an , 710072 , China .
| | - Shasha Yan
- School of Life Sciences , Northwestern Polytechnical University , Xi'an , 710072 , China .
| |
Collapse
|
60
|
Majtan T, Pey AL, Gimenez-Mascarell P, Martínez-Cruz LA, Szabo C, Kožich V, Kraus JP. Potential Pharmacological Chaperones for Cystathionine Beta-Synthase-Deficient Homocystinuria. Handb Exp Pharmacol 2018; 245:345-383. [PMID: 29119254 DOI: 10.1007/164_2017_72] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Classical homocystinuria (HCU) is the most common loss-of-function inborn error of sulfur amino acid metabolism. HCU is caused by a deficiency in enzymatic degradation of homocysteine, a toxic intermediate of methionine transformation to cysteine, chiefly due to missense mutations in the cystathionine beta-synthase (CBS) gene. As with many other inherited disorders, the pathogenic mutations do not target key catalytic residues, but rather introduce structural perturbations leading to an enhanced tendency of the mutant CBS to misfold and either to form nonfunctional aggregates or to undergo proteasome-dependent degradation. Correction of CBS misfolding would represent an alternative therapeutic approach for HCU. In this review, we summarize the complex nature of CBS, its multi-domain architecture, the interplay between the three cofactors required for CBS function [heme, pyridoxal-5'-phosphate (PLP), and S-adenosylmethionine (SAM)], as well as the intricate allosteric regulatory mechanism only recently understood, thanks to advances in CBS crystallography. While roughly half of the patients respond to treatment with a PLP precursor pyridoxine, many studies suggested usefulness of small chemicals, such as chemical and pharmacological chaperones or proteasome inhibitors, rescuing mutant CBS activity in cellular and animal models of HCU. Non-specific chemical chaperones and proteasome inhibitors assist in mutant CBS folding process and/or prevent its rapid degradation, thus resulting in increased steady-state levels of the enzyme and CBS activity. Recent interest in the field and available structural information will hopefully yield CBS-specific compounds, by using high-throughput screening and computational modeling of novel ligands, improving folding, stability, and activity of CBS mutants.
Collapse
Affiliation(s)
- Tomas Majtan
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, CO, USA.
| | - Angel L Pey
- Department of Physical Chemistry, University of Granada, Granada, Spain
| | - Paula Gimenez-Mascarell
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Technology Park of Bizkaia, Derio, Spain
| | - Luis Alfonso Martínez-Cruz
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Technology Park of Bizkaia, Derio, Spain
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Viktor Kožich
- Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague 2, Czech Republic
| | - Jan P Kraus
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, CO, USA
| |
Collapse
|
61
|
Reactive Cysteine Persulphides: Occurrence, Biosynthesis, Antioxidant Activity, Methodologies, and Bacterial Persulphide Signalling. Adv Microb Physiol 2018; 72:1-28. [PMID: 29778212 DOI: 10.1016/bs.ampbs.2018.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cysteine hydropersulphide (CysSSH) is a cysteine derivative having one additional sulphur atom bound to a cysteinyl thiol group. Recent advances in the development of analytical methods for detection and quantification of persulphides and polysulphides have revealed the biological presence, in both prokaryotes and eukaryotes, of hydropersulphides in diverse forms such as CysSSH, homocysteine hydropersulphide, glutathione hydropersulphide, bacillithiol hydropersulphide, coenzyme A hydropersulphide, and protein hydropersulphides. Owing to the chemical reactivity of the persulphide moiety, biological systems utilize persulphides as important intermediates in the synthesis of various sulphur-containing biomolecules. Accumulating evidence has revealed another important feature of persulphides: their potent reducing activity, which implies that they are implicated in the regulation of redox signalling and antioxidant functions. In this chapter, we discuss the biological occurrence and possible biosynthetic mechanisms of CysSSH and related persulphides, and we include descriptions of recent advances in the analytical methods that have been used to detect and quantitate persulphide species. We also discuss the antioxidant activity of persulphide species that contributes to protecting cells from reactive oxygen species-associated damage, and we examine the signalling roles of CysSSH in bacteria.
Collapse
|
62
|
Giménez-Mascarell P, Majtan T, Oyenarte I, Ereño-Orbea J, Majtan J, Klaudiny J, Kraus JP, Martínez-Cruz LA. Crystal structure of cystathionine β-synthase from honeybee Apis mellifera. J Struct Biol 2017; 202:82-93. [PMID: 29275181 DOI: 10.1016/j.jsb.2017.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/28/2017] [Accepted: 12/19/2017] [Indexed: 11/26/2022]
Abstract
Cystathionine β-synthase (CBS), the key enzyme in the transsulfuration pathway, links methionine metabolism to the biosynthesis of cellular redox controlling molecules. CBS catalyzes the pyridoxal-5'-phosphate-dependent condensation of serine and homocysteine to form cystathionine, which is subsequently converted into cysteine. Besides maintaining cellular sulfur amino acid homeostasis, CBS also catalyzes multiple hydrogen sulfide-generating reactions using cysteine and homocysteine as substrates. In mammals, CBS is activated by S-adenosylmethionine (AdoMet), where it can adopt two different conformations (basal and activated), but exists as a unique highly active species in fruit fly Drosophila melanogaster. Here we present the crystal structure of CBS from honeybey Apis mellifera, which shows a constitutively active dimeric species and let explain why the enzyme is not allosterically regulated by AdoMet. In addition, comparison of available CBS structures unveils a substrate-induced closure of the catalytic cavity, which in humans is affected by the AdoMet-dependent regulation and likely impaired by the homocystinuria causing mutation T191M.
Collapse
Affiliation(s)
- Paula Giménez-Mascarell
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC Biogune), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Tomas Majtan
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Iker Oyenarte
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC Biogune), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - June Ereño-Orbea
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC Biogune), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Juraj Majtan
- Laboratory of Apidology and Apitherapy, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava 84551, Slovakia
| | - Jaroslav Klaudiny
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava 84538, Slovakia
| | - Jan P Kraus
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Luis Alfonso Martínez-Cruz
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC Biogune), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain.
| |
Collapse
|
63
|
Rossignoli G, Phillips RS, Astegno A, Menegazzi M, Voltattorni CB, Bertoldi M. Phosphorylation of pyridoxal 5'-phosphate enzymes: an intriguing and neglected topic. Amino Acids 2017; 50:205-215. [PMID: 29204749 DOI: 10.1007/s00726-017-2521-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/29/2017] [Indexed: 12/25/2022]
Abstract
Pyridoxal 5'-phosphate (PLP)-dependent enzymes catalyze a wide range of reactions of amino acids and amines, with the exception of glycogen phosphorylase which exhibits peculiar both substrate preference and chemical mechanism. They represent about 4% of the gene products in eukaryotic cells. Although structure-function investigations regarding these enzymes are copious, their regulation by post-translational modifications is largely unknown. Protein phosphorylation is the most common post-translational modification fundamental in mediating diverse cellular functions. This review aims at summarizing the current knowledge on regulation of PLP enzymes by phosphorylation. Starting from the paradigmatic PLP-dependent glycogen phosphorylase, the first phosphoprotein discovered, we collect data in literature regarding functional phosphorylation events of eleven PLP enzymes belonging to different fold types and discuss the impact of the modification in affecting their activity and localization as well as the implications on the pathogenesis of diseases in which many of these enzymes are involved. The pivotal question is to correlate the structural consequences of phosphorylation among PLP enzymes of different folds with the functional modifications exerted in terms of activity or conformational changes or others. Although the literature shows that the phosphorylation of PLP enzymes plays important roles in mediating diverse cellular functions, our recapitulation of clue findings in the field makes clear that there is still much to be learnt. Besides mass spectrometry-based proteomic analyses, further biochemical and structural studies on purified native proteins are imperative to fully understand and predict how phosphorylation regulates PLP enzymes and to find the relationship between addition of a phosphate moiety and physiological response.
Collapse
Affiliation(s)
- Giada Rossignoli
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Strada Le Grazie, 8, 37134, Verona, Italy
| | - Robert S Phillips
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Alessandra Astegno
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37134, Verona, Italy
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Strada Le Grazie, 8, 37134, Verona, Italy
| | - Carla Borri Voltattorni
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Strada Le Grazie, 8, 37134, Verona, Italy
| | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Strada Le Grazie, 8, 37134, Verona, Italy.
| |
Collapse
|
64
|
Wang H, Sun Q, Zhou Y, Zhang H, Luo C, Xu J, Dong Y, Wu Y, Liu H, Wang W. Nitration-mediated deficiency of cystathionine β-synthase activity accelerates the progression of hyperhomocysteinemia. Free Radic Biol Med 2017; 113:519-529. [PMID: 29102635 DOI: 10.1016/j.freeradbiomed.2017.10.389] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 10/08/2017] [Accepted: 10/31/2017] [Indexed: 01/07/2023]
Abstract
Deficiency of cystathionine β-synthase (CBS) activity is the most common cause of increased homocysteine (Hcy). However, until now the underlying mechanisms why CBS activity decreased still remain unresolved. The goal of this study was to explore the contribution of nitrative stress to deficiency of CBS activity, and further identify the possible nitration sites of CBS protein. Results showed that in elderly people, there was an increased nitrative stress level, which was relative to elevated Hcy level. In natural aging rats and diet-induced hyperhomocysteinemia (HHcy) rats, the levels of Hcy and nitrative stress were both elevated, and interestingly, pretreatment with peroxynitrite (ONOO-) scavenger FeTMPyP ameliorated the elevation of Hcy as well as nitrative stress. Further experiments showed the reduction of CBS bioactivity and elevation of CBS nitration in two rats models were both reversed by FeTMPyP pretreatment. In vitro, replacement of tyrosine (Tyr, Y) residue (Tyr163, Tyr223, Tyr381, Tyr518) in CBS with alanine (Ala, A) abolished the Hcy-mediated CBS inactivation. These results highlighted that deficiency of CBS activity was correlated with the nitration of CBS at Tyr163, Tyr223, Tyr381 and Tyr518, which may play a mutual role in the progression of HHcy. This discovery may shed a novel light on the pathogenesis of HHcy and provide a possible gene therapy target to HHcy.
Collapse
Affiliation(s)
- Huanyuan Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Qi Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing 100069, China
| | - Yi Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing 100069, China
| | - Hui Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing 100069, China
| | - Chenghua Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing 100069, China
| | - Jiahui Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing 100069, China
| | - Yu Dong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing 100069, China
| | - Ye Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing 100069, China
| | - Huirong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing 100069, China
| | - Wen Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing 100069, China.
| |
Collapse
|
65
|
Szabo C, Papapetropoulos A. International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H 2S Levels: H 2S Donors and H 2S Biosynthesis Inhibitors. Pharmacol Rev 2017; 69:497-564. [PMID: 28978633 PMCID: PMC5629631 DOI: 10.1124/pr.117.014050] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the last decade, hydrogen sulfide (H2S) has emerged as an important endogenous gasotransmitter in mammalian cells and tissues. Similar to the previously characterized gasotransmitters nitric oxide and carbon monoxide, H2S is produced by various enzymatic reactions and regulates a host of physiologic and pathophysiological processes in various cells and tissues. H2S levels are decreased in a number of conditions (e.g., diabetes mellitus, ischemia, and aging) and are increased in other states (e.g., inflammation, critical illness, and cancer). Over the last decades, multiple approaches have been identified for the therapeutic exploitation of H2S, either based on H2S donation or inhibition of H2S biosynthesis. H2S donation can be achieved through the inhalation of H2S gas and/or the parenteral or enteral administration of so-called fast-releasing H2S donors (salts of H2S such as NaHS and Na2S) or slow-releasing H2S donors (GYY4137 being the prototypical compound used in hundreds of studies in vitro and in vivo). Recent work also identifies various donors with regulated H2S release profiles, including oxidant-triggered donors, pH-dependent donors, esterase-activated donors, and organelle-targeted (e.g., mitochondrial) compounds. There are also approaches where existing, clinically approved drugs of various classes (e.g., nonsteroidal anti-inflammatories) are coupled with H2S-donating groups (the most advanced compound in clinical trials is ATB-346, an H2S-donating derivative of the non-steroidal anti-inflammatory compound naproxen). For pharmacological inhibition of H2S synthesis, there are now several small molecule compounds targeting each of the three H2S-producing enzymes cystathionine-β-synthase (CBS), cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase. Although many of these compounds have their limitations (potency, selectivity), these molecules, especially in combination with genetic approaches, can be instrumental for the delineation of the biologic processes involving endogenous H2S production. Moreover, some of these compounds (e.g., cell-permeable prodrugs of the CBS inhibitor aminooxyacetate, or benserazide, a potentially repurposable CBS inhibitor) may serve as starting points for future clinical translation. The present article overviews the currently known H2S donors and H2S biosynthesis inhibitors, delineates their mode of action, and offers examples for their biologic effects and potential therapeutic utility.
Collapse
Affiliation(s)
- Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Andreas Papapetropoulos
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| |
Collapse
|
66
|
Cirino G, Vellecco V, Bucci M. Nitric oxide and hydrogen sulfide: the gasotransmitter paradigm of the vascular system. Br J Pharmacol 2017; 174:4021-4031. [PMID: 28407204 DOI: 10.1111/bph.13815] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/06/2017] [Accepted: 03/19/2017] [Indexed: 01/20/2023] Open
Abstract
There are several reviews on NO and hydrogen sulfide (H2 S) and their role in vascular diseases in the current relevant literature. The aim of this review is to discuss, within the limits of present knowledge, the interconnection between these two gasotransmitters in vascular function. In particular, the review focuses on the role played by the balance between the NO and H2 S pathways in either physiological or pathological conditions. The distinction between physiology and pathology has been made in order to dissect the molecular basis of this crosstalk, highlighting how and if this balance varies, depending upon the vascular status. Perspectives and possible novel therapeutic approaches are also discussed. LINKED ARTICLES This article is part of a themed section on Targeting Inflammation to Reduce Cardiovascular Disease Risk. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc and http://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Valentina Vellecco
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Mariarosaria Bucci
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
67
|
Li T, Wang L, Hu Q, Liu S, Bai X, Xie Y, Zhang T, Bo S, Gao X, Wu S, Li G, Wang Z. Neuroprotective Roles of l-Cysteine in Attenuating Early Brain Injury and Improving Synaptic Density via the CBS/H 2S Pathway Following Subarachnoid Hemorrhage in Rats. Front Neurol 2017; 8:176. [PMID: 28512446 PMCID: PMC5411453 DOI: 10.3389/fneur.2017.00176] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/13/2017] [Indexed: 01/31/2023] Open
Abstract
l-Cysteine is a semi-essential amino acid and substrate for cystathionine-β-synthase (CBS) in the central nervous system. We previously reported that NaHS, an H2S donor, significantly alleviated brain damage after subarachnoid hemorrhage (SAH) in rats. However, the potential therapeutic value of l-cysteine and the molecular mechanism supporting these beneficial effects have not been determined. This study was designed to investigate whether l-cysteine could attenuate early brain injury following SAH and improve synaptic function by releasing endogenous H2S. Male Wistar rats were subjected to SAH induced by cisterna magna blood injection, and l-cysteine was intracerebroventricularly administered 30 min after SAH induction. Treatment with l-cysteine stimulated CBS activity in the prefrontal cortex (PFC) and H2S production. Moreover, l-cysteine treatment significantly ameliorated brain edema, improved neurobehavioral function, and attenuated neuronal cell death in the PFC; these effects were associated with a decrease in the Bax/Bcl-2 ratio and the suppression of caspase-3 activation 48 h after SAH. Furthermore, l-cysteine treatment activated the CREB-brain-derived neurotrophic factor (BDNF) pathway and intensified synaptic density by regulating synapse proteins 48 h after SAH. Importantly, all the beneficial effects of l-cysteine in SAH were abrogated by amino-oxyacetic acid, a CBS inhibitor. Based on these findings, l-cysteine may play a neuroprotective role in SAH by inhibiting cell apoptosis, upregulating CREB-BDNF expression, and promoting synaptic structure via the CBS/H2S pathway.
Collapse
Affiliation(s)
- Tong Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, China.,Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - Lingxiao Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, China.,Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - Quan Hu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, China.,Department of Neurosurgery, Taian Central Hospital, Taian, China
| | - Song Liu
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - Xuemei Bai
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - Yunkai Xie
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - Tiantian Zhang
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - Shishi Bo
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - Xiangqian Gao
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, China
| | - Shuhua Wu
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, China
| | - Zhen Wang
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| |
Collapse
|
68
|
Matoba Y, Yoshida T, Izuhara-Kihara H, Noda M, Sugiyama M. Crystallographic and mutational analyses of cystathionine β-synthase in the H 2 S-synthetic gene cluster in Lactobacillus plantarum. Protein Sci 2017; 26:763-783. [PMID: 28127810 DOI: 10.1002/pro.3123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/10/2017] [Accepted: 01/17/2017] [Indexed: 11/05/2022]
Abstract
Cystathionine β-synthase (CBS) catalyzes the formation of l-cystathionine from l-serine and l-homocysteine. The resulting l-cystathionine is decomposed into l-cysteine, ammonia, and α-ketobutylic acid by cystathionine γ-lyase (CGL). This reverse transsulfuration pathway, which is catalyzed by both enzymes, mainly occurs in eukaryotic cells. The eukaryotic CBS and CGL have recently been recognized as major physiological enzymes for the generation of hydrogen sulfide (H2 S). In some bacteria, including the plant-derived lactic acid bacterium Lactobacillus plantarum, the CBS- and CGL-encoding genes form a cluster in their genomes. Inactivation of these enzymes has been reported to suppress H2 S production in bacteria; interestingly, it has been shown that H2 S suppression increases their susceptibility to various antibiotics. In the present study, we characterized the enzymatic properties of the L. plantarum CBS, whose amino acid sequence displays a similarity with those of O-acetyl-l-serine sulfhydrylase (OASS) that catalyzes the generation of l-cysteine from O-acetyl-l-serine (l-OAS) and H2 S. The L. plantarum CBS shows l-OAS- and l-cysteine-dependent CBS activities together with OASS activity. Especially, it catalyzes the formation of H2 S in the presence of l-cysteine and l-homocysteine, together with the formation of l-cystathionine. The high affinity toward l-cysteine as a first substrate and tendency to use l-homocysteine as a second substrate might be associated with its enzymatic ability to generate H2 S. Crystallographic and mutational analyses of CBS indicate that the Ala70 and Glu223 residues at the substrate binding pocket are important for the H2 S-generating activity.
Collapse
Affiliation(s)
- Yasuyuki Matoba
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551, Japan
| | - Tomoki Yoshida
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hisae Izuhara-Kihara
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551, Japan
| | - Masafumi Noda
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551, Japan
| | - Masanori Sugiyama
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
69
|
Niu W, Wu P, Chen F, Wang J, Shang X, Xu C. Discovery of selective cystathionine β-synthase inhibitors by high-throughput screening with a fluorescent thiol probe. MEDCHEMCOMM 2016; 8:198-201. [PMID: 30108705 DOI: 10.1039/c6md00493h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/14/2016] [Indexed: 01/27/2023]
Abstract
A high-throughput assay was developed to identify inhibitors of cystathionine β-synthase (CBS), which is one of three key enzymes involved in H2S biosynthesis. Screening of 6491 natural compounds identified several selective CBS inhibitors, which suppressed the proliferation of HT29 cancer cells, with IC50 values of less than 10 μM.
Collapse
Affiliation(s)
- Weining Niu
- Key Laboratory for Space Bioscience and Space Biotechnology , School of Life Sciences , Northwestern Polytechnical University , Xi'an , 710072 , China .
| | - Ping Wu
- Key Laboratory for Space Bioscience and Space Biotechnology , School of Life Sciences , Northwestern Polytechnical University , Xi'an , 710072 , China .
| | - Fei Chen
- Key Laboratory for Space Bioscience and Space Biotechnology , School of Life Sciences , Northwestern Polytechnical University , Xi'an , 710072 , China .
| | - Jun Wang
- Key Laboratory for Space Bioscience and Space Biotechnology , School of Life Sciences , Northwestern Polytechnical University , Xi'an , 710072 , China .
| | - Xiaoya Shang
- Key Laboratory for Space Bioscience and Space Biotechnology , School of Life Sciences , Northwestern Polytechnical University , Xi'an , 710072 , China .
| | - Chunlan Xu
- Key Laboratory for Space Bioscience and Space Biotechnology , School of Life Sciences , Northwestern Polytechnical University , Xi'an , 710072 , China .
| |
Collapse
|
70
|
Yagdi E, Cerella C, Dicato M, Diederich M. Garlic-derived natural polysulfanes as hydrogen sulfide donors: Friend or foe? Food Chem Toxicol 2016; 95:219-33. [DOI: 10.1016/j.fct.2016.07.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 02/06/2023]
|
71
|
Ueland PM, McCann A, Midttun Ø, Ulvik A. Inflammation, vitamin B6 and related pathways. Mol Aspects Med 2016; 53:10-27. [PMID: 27593095 DOI: 10.1016/j.mam.2016.08.001] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/27/2016] [Indexed: 12/11/2022]
Abstract
The active form of vitamin B6, pyridoxal 5'-phosphate (PLP), serves as a co-factor in more than 150 enzymatic reactions. Plasma PLP has consistently been shown to be low in inflammatory conditions; there is a parallel reduction in liver PLP, but minor changes in erythrocyte and muscle PLP and in functional vitamin B6 biomarkers. Plasma PLP also predicts the risk of chronic diseases like cardiovascular disease and some cancers, and is inversely associated with numerous inflammatory markers in clinical and population-based studies. Vitamin B6 intake and supplementation improve some immune functions in vitamin B6-deficient humans and experimental animals. A possible mechanism involved is mobilization of vitamin B6 to the sites of inflammation where it may serve as a co-factor in pathways producing metabolites with immunomodulating effects. Relevant vitamin B6-dependent inflammatory pathways include vitamin B6 catabolism, the kynurenine pathway, sphingosine 1-phosphate metabolism, the transsulfuration pathway, and serine and glycine metabolism.
Collapse
Affiliation(s)
- Per Magne Ueland
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Laboratory of Clinical Biochemistry, Haukeland University Hospital, 5021 Bergen, Norway.
| | | | | | - Arve Ulvik
- Bevital A/S, Laboratoriebygget, 5021 Bergen, Norway
| |
Collapse
|
72
|
Katsouda A, Bibli SI, Pyriochou A, Szabo C, Papapetropoulos A. Regulation and role of endogenously produced hydrogen sulfide in angiogenesis. Pharmacol Res 2016; 113:175-185. [PMID: 27569706 DOI: 10.1016/j.phrs.2016.08.026] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/05/2016] [Accepted: 08/24/2016] [Indexed: 01/16/2023]
Abstract
Recent studies have implicated endogenously produced H2S in the angiogenic process. On one hand, pharmacological inhibition and silencing of the enzymes involved in H2S synthesis attenuate the angiogenic properties of endothelial cells, including proliferation, migration and tube-like structure network formation. On the other hand, enhanced production of H2S by substrate supplementation or over-expression of H2S-producing enzymes leads to enhanced angiogenic responses in cultured endothelial cells. Importantly, H2S up-regulates expression of the key angiogenic factor vascular endothelial growth factor (VEGF) and contributes to the angiogenic signaling in response to VEGF. The signaling pathways mediating H2S-induced angiogenesis include mitogen-activated protein kinases, phosphoinositide-3 kinase, nitric oxide/cGMP-regulated cascades and ATP-sensitive potassium channels. Endogenously produced H2S has also been shown to facilitate neovascularization in prototypical model systems in vivo, and to contribute to wound healing, post-ischemic angiogenesis in the heart and other tissues, as well as in tumor angiogenesis. Targeting of H2S synthesizing enzymes might offer novel therapeutic opportunities for angiogenesis-related diseases.
Collapse
Affiliation(s)
- Antonia Katsouda
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece, Greece; Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Sofia-Iris Bibli
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece, Greece
| | - Anastasia Pyriochou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Greece
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece, Greece; Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Greece.
| |
Collapse
|
73
|
Druzhyna N, Szczesny B, Olah G, Módis K, Asimakopoulou A, Pavlidou A, Szoleczky P, Gerö D, Yanagi K, Törö G, López-García I, Myrianthopoulos V, Mikros E, Zatarain JR, Chao C, Papapetropoulos A, Hellmich MR, Szabo C. Screening of a composite library of clinically used drugs and well-characterized pharmacological compounds for cystathionine β-synthase inhibition identifies benserazide as a drug potentially suitable for repurposing for the experimental therapy of colon cancer. Pharmacol Res 2016; 113:18-37. [PMID: 27521834 PMCID: PMC5107130 DOI: 10.1016/j.phrs.2016.08.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 01/23/2023]
Abstract
Cystathionine-β-synthase (CBS) has been recently identified as a drug target for several forms of cancer. Currently no potent and selective CBS inhibitors are available. Using a composite collection of 8871 clinically used drugs and well-annotated pharmacological compounds (including the LOPAC library, the FDA Approved Drug Library, the NIH Clinical Collection, the New Prestwick Chemical Library, the US Drug Collection, the International Drug Collection, the ‘Killer Plates’ collection and a small custom collection of PLP-dependent enzyme inhibitors), we conducted an in vitro screen in order to identify inhibitors for CBS using a primary 7-azido-4-methylcoumarin (AzMc) screen to detect CBS-derived hydrogen sulfide (H2S) production. Initial hits were subjected to counterscreens using the methylene blue assay (a secondary assay to measure H2S production) and were assessed for their ability to quench the H2S signal produced by the H2S donor compound GYY4137. Four compounds, hexachlorophene, tannic acid, aurintricarboxylic acid and benserazide showed concentration-dependent CBS inhibitory actions without scavenging H2S released from GYY4137, identifying them as direct CBS inhibitors. Hexachlorophene (IC50: ∼60 μM), tannic acid (IC50: ∼40 μM) and benserazide (IC50: ∼30 μM) were less potent CBS inhibitors than the two reference compounds AOAA (IC50: ∼3 μM) and NSC67078 (IC50: ∼1 μM), while aurintricarboxylic acid (IC50: ∼3 μM) was equipotent with AOAA. The second reference compound NSC67078 not only inhibited the CBS-induced AzMC fluorescence signal (IC50: ∼1 μM), but also inhibited with the GYY4137-induced AzMC fluorescence signal with (IC50 of ∼6 μM) indicative of scavenging/non-specific effects. Hexachlorophene (IC50: ∼6 μM), tannic acid (IC50: ∼20 μM), benserazide (IC50: ∼20 μM), and NSC67078 (IC50: ∼0.3 μM) inhibited HCT116 colon cancer cells proliferation with greater potency than AOAA (IC50: ∼300 μM). In contrast, although a CBS inhibitor in the cell-free assay, aurintricarboxylic acid failed to inhibit HCT116 proliferation at lower concentrations, and stimulated cell proliferation at 300 μM. Copper-containing compounds present in the libraries, were also found to be potent inhibitors of recombinant CBS; however this activity was due to the CBS inhibitory effect of copper ions themselves. However, copper ions, up to 300 μM, did not inhibit HCT116 cell proliferation. Benserazide was only a weak inhibitor of the activity of the other H2S-generating enzymes CSE and 3-MST activity (16% and 35% inhibition at 100 μM, respectively) in vitro. Benserazide suppressed HCT116 mitochondrial function and inhibited proliferation of the high CBS-expressing colon cancer cell line HT29, but not the low CBS-expressing line, LoVo. The major benserazide metabolite 2,3,4-trihydroxybenzylhydrazine also inhibited CBS activity and suppressed HCT116 cell proliferation in vitro. In an in vivo study of nude mice bearing human colon cancer cell xenografts, benserazide (50 mg/kg/day s.q.) prevented tumor growth. In silico docking simulations showed that benserazide binds in the active site of the enzyme and reacts with the PLP cofactor by forming reversible but kinetically stable Schiff base-like adducts with the formyl moiety of pyridoxal. We conclude that benserazide inhibits CBS activity and suppresses colon cancer cell proliferation and bioenergetics in vitro, and tumor growth in vivo. Further pharmacokinetic, pharmacodynamic and preclinical animal studies are necessary to evaluate the potential of repurposing benserazide for the treatment of colorectal cancers.
Collapse
Affiliation(s)
- Nadiya Druzhyna
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Bartosz Szczesny
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Gabor Olah
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Katalin Módis
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA; Department of Surgery, The University of Texas Medical Branch, Galveston, TX, USA
| | - Antonia Asimakopoulou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Greece; Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Athanasia Pavlidou
- National and Kapodistrian University of Athens, School of Pharmacy, Athens, Greece
| | - Petra Szoleczky
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Domokos Gerö
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Kazunori Yanagi
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Gabor Törö
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Isabel López-García
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | | | - Emmanuel Mikros
- National and Kapodistrian University of Athens, School of Pharmacy, Athens, Greece
| | - John R Zatarain
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX, USA
| | - Celia Chao
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX, USA
| | - Andreas Papapetropoulos
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Greece; National and Kapodistrian University of Athens, School of Pharmacy, Athens, Greece
| | - Mark R Hellmich
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX, USA; CBS Therapeutics Inc., Galveston, TX, USA
| | - Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA; CBS Therapeutics Inc., Galveston, TX, USA.
| |
Collapse
|
74
|
Chinta KC, Saini V, Glasgow JN, Mazorodze JH, Rahman MA, Reddy D, Lancaster JR, Steyn AJC. The emerging role of gasotransmitters in the pathogenesis of tuberculosis. Nitric Oxide 2016; 59:28-41. [PMID: 27387335 DOI: 10.1016/j.niox.2016.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 06/30/2016] [Indexed: 12/17/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is a facultative intracellular pathogen and the second largest contributor to global mortality caused by an infectious agent after HIV. In infected host cells, Mtb is faced with a harsh intracellular environment including hypoxia and the release of nitric oxide (NO) and carbon monoxide (CO) by immune cells. Hypoxia, NO and CO induce a state of in vitro dormancy where Mtb senses these gases via the DosS and DosT heme sensor kinase proteins, which in turn induce a set of ∼47 genes, known as the Mtb Dos dormancy regulon. On the contrary, both iNOS and HO-1, which produce NO and CO, respectively, have been shown to be important against mycobacterial disease progression. In this review, we discuss the impact of O2, NO and CO on Mtb physiology and in host responses to Mtb infection as well as the potential role of another major endogenous gas, hydrogen sulfide (H2S), in Mtb pathogenesis.
Collapse
Affiliation(s)
- Krishna C Chinta
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vikram Saini
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA; UAB Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joel N Glasgow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James H Mazorodze
- KwaZulu-Natal Research Institute for TB and HIV (KRITH), Durban, South Africa
| | - Md Aejazur Rahman
- KwaZulu-Natal Research Institute for TB and HIV (KRITH), Durban, South Africa
| | - Darshan Reddy
- Department of Cardiothoracic Surgery, Nelson R Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
| | - Jack R Lancaster
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adrie J C Steyn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA; KwaZulu-Natal Research Institute for TB and HIV (KRITH), Durban, South Africa; UAB Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
75
|
Kinetic stability of cystathionine beta-synthase can be modulated by structural analogs of S-adenosylmethionine: Potential approach to pharmacological chaperone therapy for homocystinuria. Biochimie 2016; 126:6-13. [DOI: 10.1016/j.biochi.2016.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 01/15/2016] [Indexed: 11/19/2022]
|
76
|
Kabil O, Yadav V, Banerjee R. Heme-dependent Metabolite Switching Regulates H2S Synthesis in Response to Endoplasmic Reticulum (ER) Stress. J Biol Chem 2016; 291:16418-16423. [PMID: 27365395 DOI: 10.1074/jbc.c116.742213] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Indexed: 12/31/2022] Open
Abstract
Substrate ambiguity and relaxed reaction specificity underlie the diversity of reactions catalyzed by the transsulfuration pathway enzymes, cystathionine β-synthase (CBS) and γ-cystathionase (CSE). These enzymes either commit sulfur metabolism to cysteine synthesis from homocysteine or utilize cysteine and/or homocysteine for synthesis of H2S, a signaling molecule. We demonstrate that a kinetically controlled heme-dependent metabolite switch in CBS regulates these competing reactions where by cystathionine, the product of CBS, inhibits H2S synthesis by the second enzyme, CSE. Under endoplasmic reticulum stress conditions, induction of CSE and up-regulation of the CBS inhibitor, CO, a product of heme oxygenase-1, flip the operating preference of CSE from cystathionine to cysteine, transiently stimulating H2S production. In contrast, genetic deficiency of CBS leads to chronic stimulation of H2S production. This metabolite switch from cystathionine to cysteine and/or homocysteine renders H2S synthesis by CSE responsive to the known modulators of CBS: S-adenosylmethionine, NO, and CO. Used acutely, it regulates H2S synthesis; used chronically, it might contribute to disease pathology.
Collapse
Affiliation(s)
- Omer Kabil
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Vinita Yadav
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Ruma Banerjee
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
77
|
Bublil EM, Majtan T, Park I, Carrillo RS, Hůlková H, Krijt J, Kožich V, Kraus JP. Enzyme replacement with PEGylated cystathionine β-synthase ameliorates homocystinuria in murine model. J Clin Invest 2016; 126:2372-84. [PMID: 27183385 DOI: 10.1172/jci85396] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/22/2016] [Indexed: 01/16/2023] Open
Abstract
Homocystinuria, which typically results from cystathionine β-synthase (CBS) deficiency, is the most common defect of sulfur amino acid metabolism. CBS condenses homocysteine and serine to cystathionine that is then converted to cysteine. Individuals with homocystinuria have markedly elevated plasma levels of homocysteine and methionine and reduced concentrations of cystathionine and cysteine. Clinical disease manifestations include thromboembolism and neuropsychiatric, ocular, and skeletal complications. Here, we have shown that administration of PEGylated CBS into the circulation of homocystinuria model mice alters the extra- and intracellular equilibrium of sulfur amino acids, resulting in a decrease of approximately 75% in plasma total homocysteine (tHcy) and normalization of cysteine concentrations. Moreover, the decrease in homocysteine and the normalization of cysteine in PEGylated CBS-treated model mice were accompanied by improvement of histopathological liver symptoms and increased survival. Together, these data suggest that CBS enzyme replacement therapy (ERT) is a promising approach for the treatment of homocystinuria and that ERT for metabolic diseases may not necessitate introduction of the deficient enzyme into its natural intracellular compartment.
Collapse
|
78
|
Saha S, Chakraborty PK, Xiong X, Dwivedi SKD, Mustafi SB, Leigh NR, Ramchandran R, Mukherjee P, Bhattacharya R. Cystathionine β-synthase regulates endothelial function via protein S-sulfhydration. FASEB J 2016; 30:441-56. [PMID: 26405298 PMCID: PMC4684530 DOI: 10.1096/fj.15-278648] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/14/2015] [Indexed: 12/31/2022]
Abstract
Deficiencies of the human cystathionine β-synthase (CBS) enzyme are characterized by a plethora of vascular disorders and hyperhomocysteinemia. However, several clinical trials demonstrated that despite reduction in homocysteine levels, disease outcome remained unaffected, thus the mechanism of endothelial dysfunction is poorly defined. Here, we show that the loss of CBS function in endothelial cells (ECs) leads to a significant down-regulation of cellular hydrogen sulfide (H2S) by 50% and of glutathione (GSH) by 40%. Silencing CBS in ECs compromised phenotypic and signaling responses to the VEGF that were potentiated by decreased transcription of VEGF receptor (VEGFR)-2 and neuropilin (NRP)-1, the primary receptors regulating endothelial function. Transcriptional down-regulation of VEGFR-2 and NRP-1 was mediated by a lack in stability of the transcription factor specificity protein 1 (Sp1), which is a sulfhydration target of H2S at residues Cys68 and Cys755. Reinstating H2S but not GSH in CBS-silenced ECs restored Sp1 levels and its binding to the VEGFR-2 promoter and VEGFR-2, NRP-1 expression, VEGF-dependent proliferation, and migration phenotypes. Thus, our study emphasizes the importance of CBS-mediated protein S-sulfhydration in maintaining vascular health and function.-Saha, S., Chakraborty, P. K., Xiong, X., Dwivedi, S. K. D., Mustafi, S. B., Leigh, N. R., Ramchandran, R., Mukherjee, P., Bhattacharya, R. Cystathionine β-synthase regulates endothelial function via protein S-sulfhydration.
Collapse
Affiliation(s)
- Sounik Saha
- *Peggy and Charles Stephenson Cancer Center, Department of Obstetrics and Gynecology, Department of Pathology, and Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA; and Developmental Vascular Biology Program and Zebrafish Drug Screening Core, Department of Obstetrics and Gynecology, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Prabir K Chakraborty
- *Peggy and Charles Stephenson Cancer Center, Department of Obstetrics and Gynecology, Department of Pathology, and Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA; and Developmental Vascular Biology Program and Zebrafish Drug Screening Core, Department of Obstetrics and Gynecology, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Xunhao Xiong
- *Peggy and Charles Stephenson Cancer Center, Department of Obstetrics and Gynecology, Department of Pathology, and Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA; and Developmental Vascular Biology Program and Zebrafish Drug Screening Core, Department of Obstetrics and Gynecology, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Shailendra Kumar Dhar Dwivedi
- *Peggy and Charles Stephenson Cancer Center, Department of Obstetrics and Gynecology, Department of Pathology, and Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA; and Developmental Vascular Biology Program and Zebrafish Drug Screening Core, Department of Obstetrics and Gynecology, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Soumyajit Banerjee Mustafi
- *Peggy and Charles Stephenson Cancer Center, Department of Obstetrics and Gynecology, Department of Pathology, and Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA; and Developmental Vascular Biology Program and Zebrafish Drug Screening Core, Department of Obstetrics and Gynecology, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Noah R Leigh
- *Peggy and Charles Stephenson Cancer Center, Department of Obstetrics and Gynecology, Department of Pathology, and Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA; and Developmental Vascular Biology Program and Zebrafish Drug Screening Core, Department of Obstetrics and Gynecology, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ramani Ramchandran
- *Peggy and Charles Stephenson Cancer Center, Department of Obstetrics and Gynecology, Department of Pathology, and Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA; and Developmental Vascular Biology Program and Zebrafish Drug Screening Core, Department of Obstetrics and Gynecology, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Priyabrata Mukherjee
- *Peggy and Charles Stephenson Cancer Center, Department of Obstetrics and Gynecology, Department of Pathology, and Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA; and Developmental Vascular Biology Program and Zebrafish Drug Screening Core, Department of Obstetrics and Gynecology, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Resham Bhattacharya
- *Peggy and Charles Stephenson Cancer Center, Department of Obstetrics and Gynecology, Department of Pathology, and Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA; and Developmental Vascular Biology Program and Zebrafish Drug Screening Core, Department of Obstetrics and Gynecology, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
79
|
ROCCHICCIOLI M, MOSCHINI R, CAPPIELLO L, BALESTRI F, CAPPIELLO M, MURA U, DEL-CORSO A. Colorimetric Coupled Enzyme Assay for Cystathionine β-Synthase. ANAL SCI 2016; 32:901-6. [DOI: 10.2116/analsci.32.901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | | | - Laura CAPPIELLO
- University of Pisa, Department of Biology, Biochemistry Unit
| | | | - Mario CAPPIELLO
- University of Pisa, Department of Biology, Biochemistry Unit
| | - Umberto MURA
- University of Pisa, Department of Biology, Biochemistry Unit
| | | |
Collapse
|
80
|
Holwerda KM, Weedon-Fekjær MS, Staff AC, Nolte IM, van Goor H, Lely AT, Faas MM. The association of single nucleotide polymorphisms of the maternal cystathionine-β-synthase gene with early-onset preeclampsia. Pregnancy Hypertens 2015; 6:60-5. [PMID: 26955774 DOI: 10.1016/j.preghy.2015.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/08/2015] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Preeclampsia (PE) is a pregnancy complication, characterized by hypertension and proteinuria. The transsulfuration pathway may be involved in its pathophysiology, since homocysteine, cystathionine and cysteine are increased in PE. Cystathionine-β-synthase (CBS) is a key-enzyme in the pathway, converting homocysteine into cysteine via cystathionine. Another product of CBS is hydrogen sulfide (H2S), a vasodilatory, proangiogenic and cytoprotective gas that is thought to play a role in placental and vascular function during pregnancy. Since single nucleotide polymorphisms (SNPs) can affect CBS expression and/or function, we studied tag-SNPs in the CBS gene in PE patients. STUDY DESIGN Controls (n=75), early-onset (n=45), and late-onset PE (n=52) cases were genotyped for six tag-SNPs in the CBS gene; rs12329764, rs2851391, rs234713, rs234706, rs1789953, and rs11203172. Plasma homocysteine, cysteine and cystathionine were determined during pregnancy. MAIN OUTCOME MEASURES Early-onset PE, late-onset PE. RESULTS Women with the minor allele of rs11203172 have a reduced risk for early-onset PE. Compared to women without the minor allele, normotensive pregnant women with the minor allele of rs11203172 and rs234713 have lower cysteine levels. Women with the minor allele of rs1789953 have increased levels of cysteine and cystathionine, compared to women without. CONCLUSION The CBS tag-SNP rs11203172 is associated with a decreased risk for early-onset PE. Decreased cysteine concentrations in normotensive pregnant women carrying the minor allele of rs11203172, may be due to increased cysteine conversion to H2S by CBS. Higher H2S levels may positively affect placentation and vascular function during pregnancy and decrease their risk for PE.
Collapse
Affiliation(s)
- Kim M Holwerda
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30001, 9713 GZ Groningen, The Netherlands.
| | - M Susanne Weedon-Fekjær
- University of Oslo, Department of Obstetrics and Gynaecology, Oslo University Hospital, Ulleval, 0424 Oslo, Norway.
| | - Anne C Staff
- University of Oslo, Department of Obstetrics and Gynaecology, Oslo University Hospital, Ulleval, 0424 Oslo, Norway.
| | - Ilja M Nolte
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30001, 9713 GZ Groningen, The Netherlands.
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30001, 9713 GZ Groningen, The Netherlands.
| | - A Titia Lely
- Department of Obstetrics and Gynecology, University Medical Center Utrecht, University of Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Marijke M Faas
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30001, 9713 GZ Groningen, The Netherlands; Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
81
|
Gong B, Liu L, Li Z, Ye Z, Xiao Y, Zeng G, Shi Y, Wang Y, Feng X, Li X, Hao F, Liu X, Qu C, Li Y, Mu G, Yang Z. Novel Compound Heterozygous CBS Mutations Cause Homocystinuria in a Han Chinese Family. Sci Rep 2015; 5:17947. [PMID: 26667307 PMCID: PMC4678370 DOI: 10.1038/srep17947] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/09/2015] [Indexed: 11/09/2022] Open
Abstract
The cystathionine β-synthase (CBS) gene has been shown to be related to homocystinuria. This study was aimed to detect the mutations in CBS in a Han Chinese family with homocystinuria. A four-generation family from Shandong Province of China was recruited in this study. All available members of the family underwent comprehensive medical examinations. Genomic DNA was collected from peripheral blood of all the participants. The coding sequence of CBS was amplified by polymerase chain reaction (PCR), followed by direct DNA sequencing. Among all the family members, three affected individuals showed typical clinical features of homocystinuria. Two novel compound heterozygous mutations in the CBS gene, c.407T > C (p. L136P) and c.473C > T (p.A158V), were identified by sequencing analysis in this family. Both of the two missense mutations were detected in the three patients. Other available normal individuals, including the patients' parents, grand parents, her younger sister and brother in this family either carried one of the two mutations, or none. In addition, the two mutations were not found in 600 ethnically matched normal controls. This study provides a mutation spectrum of CBS resulting in homocystinuriain a Chinese population, which may shed light on the molecular pathogenesis and clinical diagnosis of CBS-associated homocystinuria.
Collapse
Affiliation(s)
- Bo Gong
- Sichuan Provincial Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liping Liu
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Zhiwei Li
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Zimeng Ye
- Sichuan Provincial Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Xiao
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Guangqun Zeng
- Sichuan Provincial Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yumeng Wang
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Xiaoyun Feng
- Sichuan Provincial Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiulan Li
- Sichuan Provincial Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Fang Hao
- Sichuan Provincial Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoqi Liu
- Sichuan Provincial Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chao Qu
- Department of Ophthalmology, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuanfeng Li
- Sichuan Provincial Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Guoying Mu
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
82
|
McCully KS. Homocysteine Metabolism, Atherosclerosis, and Diseases of Aging. Compr Physiol 2015; 6:471-505. [DOI: 10.1002/cphy.c150021] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
83
|
Su Y, Liu D, Liu Y, Zhang C, Wang J, Wang S. Physiologic Levels of Endogenous Hydrogen Sulfide Maintain the Proliferation and Differentiation Capacity of Periodontal Ligament Stem Cells. J Periodontol 2015; 86:1276-86. [DOI: 10.1902/jop.2015.150240] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
84
|
A Branch Point of Streptomyces Sulfur Amino Acid Metabolism Controls the Production of Albomycin. Appl Environ Microbiol 2015; 82:467-77. [PMID: 26519385 DOI: 10.1128/aem.02517-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/25/2015] [Indexed: 01/29/2023] Open
Abstract
Albomycin (ABM), also known as grisein, is a sulfur-containing metabolite produced by Streptomyces griseus ATCC 700974. Genes predicted to be involved in the biosynthesis of ABM and ABM-like molecules are found in the genomes of other actinomycetes. ABM has potent antibacterial activity, and as a result, many attempts have been made to develop ABM into a drug since the last century. Although the productivity of S. griseus can be increased with random mutagenesis methods, understanding of Streptomyces sulfur amino acid (SAA) metabolism, which supplies a precursor for ABM biosynthesis, could lead to improved and stable production. We previously characterized the gene cluster (abm) in the genome-sequenced S. griseus strain and proposed that the sulfur atom of ABM is derived from either cysteine (Cys) or homocysteine (Hcy). The gene product, AbmD, appears to be an important link between primary and secondary sulfur metabolic pathways. Here, we show that propargylglycine or iron supplementation in growth media increased ABM production by significantly changing the relative concentrations of intracellular Cys and Hcy. An SAA metabolic network of S. griseus was constructed. Pathways toward increasing Hcy were shown to positively impact ABM production. The abmD gene and five genes that increased the Hcy/Cys ratio were assembled downstream of hrdBp promoter sequences and integrated into the chromosome for overexpression. The ABM titer of one engineered strain, SCAK3, in a chemically defined medium was consistently improved to levels ∼400% of the wild type. Finally, we analyzed the production and growth of SCAK3 in shake flasks for further process development.
Collapse
|
85
|
Silao CLT, Fabella TDF, Rama KID, Estrada SC. Novel cystathionine β-synthase gene mutations in a Filipino patient with classic homocystinuria. Pediatr Int 2015; 57:884-7. [PMID: 25939784 DOI: 10.1111/ped.12666] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/10/2015] [Accepted: 03/06/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Classic homocystinuria due to cystathionine β-synthase (CBS) deficiency is an autosomal recessive disorder of sulfur metabolism. Clinical manifestations include mental retardation, dislocation of the optic lens (ectopia lentis), skeletal abnormalities and a tendency to thromboembolic episodes. We present the first mutational analysis of CBS in a Filipino patient with classic homocystinuria. METHODS Genomic DNA was extracted from peripheral blood collected from a diagnosed Filipino patient with classic homocystinuria. The entire coding region of CBS (17 exons) was amplified using polymerase chain reaction and bidirectionally sequenced using standard protocols. RESULTS The patient was found to be compound heterozygous for two novel mutations, g.13995G>A [c.982G>A; p.D328K] and g.15860-15868dupGCAGGAGCT [c.1083-1091dupGCAGGAGCT; p. Q362-L364dupQEL]. Four known single-nucleotide polymorphisms (rs234706, rs1801181, rs706208 and rs706209) were also detected in the present patient's CBS. The patient was heterozygous for all the identified alleles. CONCLUSIONS This is the first mutational analysis of CBS done in a Filipino patient with classic homocystinuria who presented with a novel duplication mutation and a novel missense mutation. Homocystinuria due to CBS deficiency is a heterogeneous disorder at the molecular level.
Collapse
Affiliation(s)
- Catherine Lynn T Silao
- Institute of Human Genetics, National Institutes of Health Philippines.,Department of Pediatrics, University of the Philippines College of Medicine-Philippine General Hospital, Manila, Philippines
| | | | | | - Sylvia C Estrada
- Institute of Human Genetics, National Institutes of Health Philippines.,Department of Pediatrics, University of the Philippines College of Medicine-Philippine General Hospital, Manila, Philippines
| |
Collapse
|
86
|
Zheng Y, Ji X, Ji K, Wang B. Hydrogen sulfide prodrugs-a review. Acta Pharm Sin B 2015; 5:367-77. [PMID: 26579468 PMCID: PMC4629439 DOI: 10.1016/j.apsb.2015.06.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/03/2015] [Indexed: 01/06/2023] Open
Abstract
Hydrogen sulfide (H2S) is recognized as one of three gasotransmitters together with nitric oxide (NO) and carbon monoxide (CO). As a signaling molecule, H2S plays an important role in physiology and shows great potential in pharmaceutical applications. Along this line, there is a need for the development of H2S prodrugs for various reasons. In this review, we summarize different H2S prodrugs, their chemical properties, and some of their potential therapeutic applications.
Collapse
|
87
|
Niu WN, Yadav PK, Adamec J, Banerjee R. S-glutathionylation enhances human cystathionine β-synthase activity under oxidative stress conditions. Antioxid Redox Signal 2015; 22:350-61. [PMID: 24893130 PMCID: PMC4307034 DOI: 10.1089/ars.2014.5891] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
AIMS Cystathionine β-synthase (CBS) catalyzes the first and rate-limiting step in the two-step trans-sulfuration pathway that converts homocysteine to cysteine. It is also one of three major enzymes responsible for the biogenesis of H2S, a signaling molecule. We have previously demonstrated that CBS is activated in cells challenged by oxidative stress, but the underlying molecular mechanism of this regulation has remained unclear. RESULTS Here, we demonstrate that S-glutathionylation of CBS enhances its activity ∼2-fold in vitro. Loss of this post-translational modification in the presence of dithiothreitol results in reversal to basal activity. Cys346 was identified as the site for S-glutathionylation by a combination of mass spectrometric, mutagenesis, and activity analyses. To test the physiological relevance of S-glutathionylation-dependent regulation of CBS, HEK293 cells were oxidatively challenged with peroxide, which is known to enhance the trans-sulfuration flux. Under these conditions, CBS glutathionylation levels increased and were correlated with a ∼3-fold increase in CBS activity. INNOVATION Collectively, our results reveal a novel post-translational modification of CBS, that is, glutathionylation, which functions as an allosteric activator under oxidative stress conditions permitting enhanced synthesis of both cysteine and H2S. CONCLUSIONS Our study elucidates a molecular mechanism for increased cysteine and therefore glutathione, synthesis via glutathionylation of CBS. They also demonstrate the potential for increased H2S production under oxidative stress conditions, particularly in tissues where CBS is a major source of H2S.
Collapse
Affiliation(s)
- Wei-Ning Niu
- 1 The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an, China
| | | | | | | |
Collapse
|
88
|
Hellmich MR, Coletta C, Chao C, Szabo C. The therapeutic potential of cystathionine β-synthetase/hydrogen sulfide inhibition in cancer. Antioxid Redox Signal 2015; 22:424-48. [PMID: 24730679 PMCID: PMC4307161 DOI: 10.1089/ars.2014.5933] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 04/14/2014] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Cancer represents a major socioeconomic problem; there is a significant need for novel therapeutic approaches targeting tumor-specific pathways. RECENT ADVANCES In colorectal and ovarian cancers, an increase in the intratumor production of hydrogen sulfide (H2S) from cystathionine β-synthase (CBS) plays an important role in promoting the cellular bioenergetics, proliferation, and migration of cancer cells. It also stimulates peritumor angiogenesis inhibition or genetic silencing of CBS exerts antitumor effects both in vitro and in vivo, and potentiates the antitumor efficacy of anticancer therapeutics. CRITICAL ISSUES Recently published studies are reviewed, implicating CBS overexpression and H2S overproduction in tumor cells as a tumor-growth promoting "bioenergetic fuel" and "survival factor," followed by an overview of the experimental evidence demonstrating the anticancer effect of CBS inhibition. Next, the current state of the art of pharmacological CBS inhibitors is reviewed, with special reference to the complex pharmacological actions of aminooxyacetic acid. Finally, new experimental evidence is presented to reconcile a controversy in the literature regarding the effects of H2S donor on cancer cell proliferation and survival. FUTURE DIRECTIONS From a basic science standpoint, future directions in the field include the delineation of the molecular mechanism of CBS up-regulation of cancer cells and the delineation of the interactions of H2S with other intracellular pathways of cancer cell metabolism and proliferation. From the translational science standpoint, future directions include the translation of the recently emerging roles of H2S in cancer into human diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Mark R. Hellmich
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Ciro Coletta
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Celia Chao
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
89
|
Wei L, Zhu Z, Li Y, Yi L, Xi Z. A highly selective and fast-response fluorescent probe for visualization of enzymatic H2S production in vitro and in living cells. Chem Commun (Camb) 2015; 51:10463-6. [DOI: 10.1039/c5cc03707g] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The o-fluorinated-azido-capped rhodamine probe was developed for visualization of enzymatic H2S production both in vitro and in living cells.
Collapse
Affiliation(s)
- Lv Wei
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology
- National Pesticide Engineering Research Center (Tianjin)
- Nankai University
- Tianjin
- China
| | - Zhentao Zhu
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Yanyan Li
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology
- National Pesticide Engineering Research Center (Tianjin)
- Nankai University
- Tianjin
- China
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Collaborative Innovation Center of Chemical Science and Engineering
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology
- National Pesticide Engineering Research Center (Tianjin)
- Nankai University
- Tianjin
- China
| |
Collapse
|
90
|
Xie M, Tang J, Wen Z, Huang W, Hou S. Effects of pyridoxine on growth performance and plasma aminotransferases and homocysteine of white pekin ducks. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:1744-8. [PMID: 25358368 PMCID: PMC4213686 DOI: 10.5713/ajas.2014.14252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 06/05/2014] [Accepted: 07/08/2014] [Indexed: 12/04/2022]
Abstract
A dose-response experiment with seven supplemental pyridoxine levels (0, 0.66, 1.32, 1.98, 2.64, 3.30, and 3.96 mg/kg) was conducted to investigate the effects of pyridoxine on growth performance and plasma aminotransferases and homocysteine of White Pekin ducks and to estimate pyridoxine requirement for these birds. A total of 336 one-day-old male White Pekin ducks were divided to 7 experimental treatments and each treatment contained 8 replicate pens with 6 birds per pen. Ducks were reared in raised wire-floor pens from hatch to 28 d of age. At 28 d of age, the weight gain, feed intake, feed/gain, and the aspartate aminotransferase, alanine aminotransferase, and homocysteine in plasma of ducks from each pen were all measured. In our study, the pyridoxine deficiency of ducks was characterized by growth depression, decreasing plasma aspartate aminotransferase activity and increasing plasma homocysteine. The ducks fed vitamin B6-deficient basal diets had the worst weight gain and feed/gain among all birds and this growth depression was alleviated (p<0.05) when pyridoxine was supplemented to basal diets. On the other hand, plasma aspartate aminotransferase and homocysteine may be the sensitive indicators for vitamin B6 status of ducks. The ducks fed basal diets had much lower aspartate aminotransferase activity and higher homocysteine level in plasma compared with other birds fed pyridoxine-supplemented diets (p<0.05). According to quadratic regression, the supplemental pyridoxine requirements of Pekin ducks from hatch to 28 days of age was 2.44 mg/kg for feed/gain and 2.08 mg/kg for plasma aspartate aminotransferase and the corresponding total requirements of this vitamin for these two criteria were 4.37 and 4.01 mg/kg when the pyridoxine concentration of basal diets was included, respectively. All data suggested that pyridoxine deficiency could cause growth retardation in ducks and the deficiency of this vitamin could be indicated by decreasing plasma aspartate aminotransferase activity and increasing plasma homocysteine.
Collapse
|
91
|
Structural insight into the molecular mechanism of allosteric activation of human cystathionine β-synthase by S-adenosylmethionine. Proc Natl Acad Sci U S A 2014; 111:E3845-52. [PMID: 25197074 DOI: 10.1073/pnas.1414545111] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cystathionine β-synthase (CBS) is a heme-dependent and pyridoxal-5'-phosphate-dependent protein that controls the flux of sulfur from methionine to cysteine, a precursor of glutathione, taurine, and H2S. Deficiency of CBS activity causes homocystinuria, the most frequent disorder of sulfur amino acid metabolism. In contrast to CBSs from lower organisms, human CBS (hCBS) is allosterically activated by S-adenosylmethionine (AdoMet), which binds to the regulatory domain and triggers a conformational change that allows the protein to progress from the basal toward the activated state. The structural basis of the underlying molecular mechanism has remained elusive so far. Here, we present the structure of hCBS with bound AdoMet, revealing the activated conformation of the human enzyme. Binding of AdoMet triggers a conformational change in the Bateman module of the regulatory domain that favors its association with a Bateman module of the complementary subunit to form an antiparallel CBS module. Such an arrangement is very similar to that found in the constitutively activated insect CBS. In the presence of AdoMet, the autoinhibition exerted by the regulatory region is eliminated, allowing for improved access of substrates to the catalytic pocket. Based on the availability of both the basal and the activated structures, we discuss the mechanism of hCBS activation by AdoMet and the properties of the AdoMet binding site, as well as the responsiveness of the enzyme to its allosteric regulator. The structure described herein paves the way for the rational design of compounds modulating hCBS activity and thus transsulfuration, redox status, and H2S biogenesis.
Collapse
|
92
|
Majtan T, Pey AL, Fernández R, Fernández JA, Martínez-Cruz LA, Kraus JP. Domain organization, catalysis and regulation of eukaryotic cystathionine beta-synthases. PLoS One 2014; 9:e105290. [PMID: 25122507 PMCID: PMC4133348 DOI: 10.1371/journal.pone.0105290] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/23/2014] [Indexed: 01/01/2023] Open
Abstract
Cystathionine beta-synthase (CBS) is a key regulator of sulfur amino acid metabolism diverting homocysteine, a toxic intermediate of the methionine cycle, via the transsulfuration pathway to the biosynthesis of cysteine. Although the pathway itself is well conserved among eukaryotes, properties of eukaryotic CBS enzymes vary greatly. Here we present a side-by-side biochemical and biophysical comparison of human (hCBS), fruit fly (dCBS) and yeast (yCBS) enzymes. Preparation and characterization of the full-length and truncated enzymes, lacking the regulatory domains, suggested that eukaryotic CBS exists in one of at least two significantly different conformations impacting the enzyme’s catalytic activity, oligomeric status and regulation. Truncation of hCBS and yCBS, but not dCBS, resulted in enzyme activation and formation of dimers compared to native tetramers. The dCBS and yCBS are not regulated by the allosteric activator of hCBS, S-adenosylmethionine (AdoMet); however, they have significantly higher specific activities in the canonical as well as alternative reactions compared to hCBS. Unlike yCBS, the heme-containing dCBS and hCBS showed increased thermal stability and retention of the enzyme’s catalytic activity. The mass-spectrometry analysis and isothermal titration calorimetry showed clear presence and binding of AdoMet to yCBS and hCBS, but not dCBS. However, the role of AdoMet binding to yCBS remains unclear, unlike its role in hCBS. This study provides valuable information for understanding the complexity of the domain organization, catalytic specificity and regulation among eukaryotic CBS enzymes.
Collapse
Affiliation(s)
- Tomas Majtan
- Department of Pediatrics, University of Colorado, School of Medicine, Aurora, Colorado, United States of America
| | - Angel L. Pey
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Roberto Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José A. Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | - Jan P. Kraus
- Department of Pediatrics, University of Colorado, School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
93
|
Zhang Y, Wang H, Sun HW, Chen YL, Ouyang JY, Wang Y, Wang L, Zhang XY. Correlation between cystathionine β-synthase T883C genetic polymorphism and primary hypertension. Exp Ther Med 2014; 8:713-718. [PMID: 25120587 PMCID: PMC4113645 DOI: 10.3892/etm.2014.1799] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 05/19/2014] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the correlation between cystathionine β-synthase (CBS) T833C polymorphisms and primary hypertension. A case-control study was conducted by genotyping the representative variation in 545 hypertensive individuals (aged 49.23±7.56 years) and 500 normotensive individuals (aged 49.90±10.01 years). The T833C genetic polymorphisms of the CBS enzyme were detected in all subjects by amplification refractory mutation system polymerase chain reaction (PCR) analysis. The CBS T833C polymorphism was successfully genotyped in the general population with a sample size of 1,045 (545+500) individuals. The genotypic and allelic frequency distributions of the CBS T833C polymorphism were not significantly different between the hypertensive and normotensive groups (P>0.05). The CC genotype was significantly different (P<0.05) from the CT and TT genotypes in terms of body mass index (BMI), and the levels of triglycerides (TG) and homocysteine (Hcy). Multiple logistic regression analysis revealed that BMI, total cholesterol (TC) level, smoking, plasma Hcy level and a family history of hypertension were the independent risk factors for hypertension in the population studied. The results indicate that the level of plasma Hcy was a risk factor for hypertension in the population studied. However, the mutation of the CBS T833C gene was not concluded to be an important hereditary factor for influencing the level of plasma Hcy.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Cadre Ward, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Hong Wang
- Department of Cadre Ward, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Huan-Wen Sun
- Department of Cadre Ward, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Yu-Lan Chen
- Department of Cadre Ward, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Ju-Yan Ouyang
- Department of Cadre Ward, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Yu Wang
- Department of Cadre Ward, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Ling Wang
- Department of Cadre Ward, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Xiang-Yang Zhang
- Department of Cadre Ward, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| |
Collapse
|
94
|
Cindrova-Davies T. The therapeutic potential of antioxidants, ER chaperones, NO and H2S donors, and statins for treatment of preeclampsia. Front Pharmacol 2014; 5:119. [PMID: 24904422 PMCID: PMC4034700 DOI: 10.3389/fphar.2014.00119] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/02/2014] [Indexed: 01/12/2023] Open
Abstract
Preeclampsia is a complex multifactorial disease. Placental oxidative stress, a result of deficient spiral artery remodeling, plays an important role in the pathophysiology of preeclampsia. Antiangiogenic factors secreted from malperfused placenta are instrumental in mediating maternal endothelial dysfunction and consequent symptoms of preeclampsia; the mechanism is likely to involve increased ET-1 secretion and reduced NO bioavailability. Therapeutic interventions so far remain only experimental and there is no established remedy for the treatment of preeclampsia. This review concentrates on the evidence for the therapeutic potential of antioxidants, ER chaperones, NO and H2S donors, and statins. These compounds display pleitropic antioxidant, anti-inflammatory, and pro-angiogenic effects in animal and in vitro studies. Although clinical trials on the use of antioxidant vitamins in pregnancy proved largely unsuccessful, the scope for their use still exists given the beneficial cardioprotective effects of antioxidant-rich Mediterranean diet, periconceptual vitamin use and the synergistic effect of vitamin C and L-arginine. Encouraging clinical evidence exists for the use of NO donors, and a clinical trial is underway testing the effect of statins in treatment of preeclampsia. H2S recently emerged as a novel therapeutic agent for cardiovascular disease, and its beneficial effects were also tested in animal models of preeclampsia. It is risky to prescribe any medication to pregnant women on a large scale, and any future therapeutic intervention has to be well tested and safe. Many of the compounds discussed could be potential candidates.
Collapse
Affiliation(s)
- Tereza Cindrova-Davies
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge Cambridge, UK
| |
Collapse
|
95
|
Pey AL, Majtan T, Kraus JP. The role of surface electrostatics on the stability, function and regulation of human cystathionine β-synthase, a complex multidomain and oligomeric protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1453-62. [PMID: 24780582 DOI: 10.1016/j.bbapap.2014.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/06/2014] [Accepted: 04/21/2014] [Indexed: 11/25/2022]
Abstract
Human cystathionine β-synthase (hCBS) is a key enzyme of sulfur amino acid metabolism, controlling the commitment of homocysteine to the transsulfuration pathway and antioxidant defense. Mutations in hCBS cause inherited homocystinuria (HCU), a rare inborn error of metabolism characterized by accumulation of toxic homocysteine in blood and urine. hCBS is a complex multidomain and oligomeric protein whose activity and stability are independently regulated by the binding of S-adenosyl-methionine (SAM) to two different types of sites at its C-terminal regulatory domain. Here we study the role of surface electrostatics on the complex regulation and stability of hCBS using biophysical and biochemical procedures. We show that the kinetic stability of the catalytic and regulatory domains is significantly affected by the modulation of surface electrostatics through noticeable structural and energetic changes along their denaturation pathways. We also show that surface electrostatics strongly affect SAM binding properties to those sites responsible for either enzyme activation or kinetic stabilization. Our results provide new insight into the regulation of hCBS activity and stability in vivo with implications for understanding HCU as a conformational disease. We also lend experimental support to the role of electrostatic interactions in the recently proposed binding modes of SAM leading to hCBS activation and kinetic stabilization.
Collapse
Affiliation(s)
- Angel L Pey
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain.
| | - Tomas Majtan
- Department of Pediatrics, University of Colorado, School of Medicine, Aurora, CO 80045, USA
| | - Jan P Kraus
- Department of Pediatrics, University of Colorado, School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
96
|
Liu Y, Yang R, Liu X, Zhou Y, Qu C, Kikuiri T, Wang S, Zandi E, Du J, Ambudkar IS, Shi S. Hydrogen sulfide maintains mesenchymal stem cell function and bone homeostasis via regulation of Ca(2+) channel sulfhydration. Cell Stem Cell 2014; 15:66-78. [PMID: 24726192 DOI: 10.1016/j.stem.2014.03.005] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 02/14/2014] [Accepted: 03/12/2014] [Indexed: 01/15/2023]
Abstract
Gaseous signaling molecules such as hydrogen sulfide (H2S) are produced endogenously and mediate effects through diverse mechanisms. H2S is one such gasotransmitters that regulates multiple signaling pathways in mammalian cells, and abnormal H2S metabolism has been linked to defects in bone homeostasis. Here, we demonstrate that bone marrow mesenchymal stem cells (BMMSCs) produce H2S in order to regulate their self-renewal and osteogenic differentiation, and H2S deficiency results in defects in BMMSC differentiation. H2S deficiency causes aberrant intracellular Ca(2+) influx because of reduced sulfhydration of cysteine residues on multiple Ca(2+) TRP channels. This decreased Ca(2+) flux downregulates PKC/Erk-mediated Wnt/β-catenin signaling which controls osteogenic differentiation of BMMSCs. Consistently, H2S-deficient mice display an osteoporotic phenotype that can be rescued by small molecules that release H2S. These results demonstrate that H2S regulates BMMSCs and that restoring H2S levels via nontoxic donors may provide treatments for diseases such as osteoporosis that can arise from H2S deficiencies.
Collapse
Affiliation(s)
- Yi Liu
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA; Department of Periodontics, Capital Medical University School of Stomatology, Tian Tan Xi Li Number 4, Beijing 100050, China.
| | - Ruili Yang
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Xibao Liu
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | - Yu Zhou
- Department of Molecular Microbiology and Immunology, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Cunye Qu
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Takashi Kikuiri
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Songlin Wang
- Department of Periodontics, Capital Medical University School of Stomatology, Tian Tan Xi Li Number 4, Beijing 100050, China
| | - Ebrahim Zandi
- Department of Molecular Microbiology and Immunology, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Indu S Ambudkar
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | - Songtao Shi
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA.
| |
Collapse
|
97
|
Módis K, Coletta C, Asimakopoulou A, Szczesny B, Chao C, Papapetropoulos A, Hellmich MR, Szabo C. Effect of S-adenosyl-L-methionine (SAM), an allosteric activator of cystathionine-β-synthase (CBS) on colorectal cancer cell proliferation and bioenergetics in vitro. Nitric Oxide 2014; 41:146-56. [PMID: 24667534 DOI: 10.1016/j.niox.2014.03.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/17/2014] [Accepted: 03/06/2014] [Indexed: 02/06/2023]
Abstract
Recent data show that colon cancer cells selectively overexpress cystathionine-β-synthase (CBS), which produces hydrogen sulfide (H2S), to maintain cellular bioenergetics, support tumor growth and stimulate angiogenesis and vasorelaxation in the tumor microenvironment. The purpose of the current study was to investigate the effect of the allosteric CBS activator S-adenosyl-L-methionine (SAM) on the proliferation and bioenergetics of the CBS-expressing colon cancer cell line HCT116. The non-transformed, non-tumorigenic colon epithelial cell line NCM356 was used as control. For assessment of cell proliferation, the xCELLigence system was used. Bioenergetic function was measured by Extracellular Flux Analysis. Experiments using human recombinant CBS or HCT116 homogenates complemented the cell-based studies. SAM markedly enhanced CBS-mediated H2S production in vitro, especially when a combination of cysteine and homocysteine was used as substrates. Addition of SAM (0.1-3 mM) to HCT116 cells induced a concentration-dependent increase H2S production. SAM exerted time- and concentration-dependent modulatory effects on cell proliferation. At 0.1-1 mM SAM increased HCT116 proliferation between 0 and 12 h, while the highest SAM concentration (3 mM) inhibited proliferation. Over a longer time period (12-24 h), only the lowest concentration of SAM used (0.1 mM) stimulated cell proliferation; higher SAM concentrations produced a concentration-dependent inhibition. The short-term stimulatory effects of SAM were attenuated by the CBS inhibitor aminooxyacetic acid (AOAA) or by stable silencing of CBS. In contrast, the inhibitory effects of SAM on cell proliferation was unaffected by CBS inhibition or CBS silencing. In contrast to HCT116 cells, the lower rate of proliferation of the low-CBS expressor NCM356 cells was unaffected by SAM. Short-term (1 h) exposure of HCT116 cells to SAM induced a concentration-dependent increase in oxygen consumption and bioenergetic function at 0.1-1 mM, while 3 mM was inhibitory. Longer-term (72 h) exposure of HCT116 cells to all concentrations of SAM tested suppressed mitochondrial oxygen consumption rate, cellular ATP content and cell viability. The stimulatory effect of SAM on bioenergetics was attenuated in cells with stable CBS silencing, while the inhibitory effects were unaffected. In NCM356 cells SAM exerted smaller effects on cellular bioenergetics than in HCT116 cells. We have also observed a downregulation of CBS in response to prolonged exposure of SAM both in HCT116 and NCM356 cells. Taken together, the results demonstrate that H2S production in HCT116 cells is stimulated by the allosteric CBS activator, SAM. At low-to intermediate levels and early time periods the resulting H2S serves as an endogenous cancer cell growth and bioenergetic factor. In contrast, the inhibition of cell proliferation and bioenergetic function by SAM does not appear to relate to adverse autocrine effects of H2S resulting from CBS over-stimulation but, rather to CBS-independent pharmacological effects.
Collapse
Affiliation(s)
- Katalin Módis
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ciro Coletta
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Antonia Asimakopoulou
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology, University of Patras, Patras, Greece
| | - Bartosz Szczesny
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Celia Chao
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Andreas Papapetropoulos
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology, University of Patras, Patras, Greece
| | - Mark R Hellmich
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
98
|
Ereño-Orbea J, Majtan T, Oyenarte I, Kraus JP, Martínez-Cruz LA. Purification, crystallization and preliminary crystallographic analysis of the catalytic core of cystathionine β-synthase from Saccharomyces cerevisiae. Acta Crystallogr F Struct Biol Commun 2014; 70:320-5. [PMID: 24598918 PMCID: PMC3944693 DOI: 10.1107/s2053230x14001502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 01/21/2014] [Indexed: 11/10/2022] Open
Abstract
Cystathionine β-synthase (CBS; EC 4.2.1.22) catalyzes the condensation of homocysteine and serine to form cystathionine, with the release of water. In humans, deficiency in CBS activity is the most common cause of hyperhomocysteinaemia and homocystinuria. More than 160 pathogenic mutations in the human CBS gene have been described to date. Here, the purification and preliminary crystallographic analysis of the catalytic core of CBS from Saccharomyces cerevisiae (ScCBS) is described which, in contrast to other eukaryotic CBSs, lacks the N-terminal haem-binding domain and is considered to be a useful model for investigation of the pyridoxal-5'-phosphate-mediated reactions of human CBS (hCBS). The purified protein yielded two different crystal forms belonging to space groups P41212 and P212121, with unit-cell parameters a = b = 72.390, c = 386.794 Å and a = 58.156, b = 89.988, c = 121.687 Å, respectively. Diffraction data were collected to 2.7 and 3.1 Å resolution, respectively, using synchrotron radiation. Preliminary analysis of the X-ray data suggests the presence of ScCBS homodimers in both types of crystals.
Collapse
Affiliation(s)
- June Ereño-Orbea
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Edificio 800, 48160 Derio, Bizkaia , Spain
| | - Tomas Majtan
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Iker Oyenarte
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Edificio 800, 48160 Derio, Bizkaia , Spain
| | - Jan P. Kraus
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Luis Alfonso Martínez-Cruz
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Edificio 800, 48160 Derio, Bizkaia , Spain
| |
Collapse
|
99
|
Mendes MIS, Colaço HG, Smith DEC, Ramos RJJF, Pop A, van Dooren SJM, Tavares de Almeida I, Kluijtmans LAJ, Janssen MCH, Rivera I, Salomons GS, Leandro P, Blom HJ. Reduced response of Cystathionine Beta-Synthase (CBS) to S-Adenosylmethionine (SAM): Identification and functional analysis of CBS gene mutations in Homocystinuria patients. J Inherit Metab Dis 2014; 37:245-54. [PMID: 23974653 DOI: 10.1007/s10545-013-9647-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 11/29/2022]
Abstract
A reduced response of cystathionine beta-synthase (CBS) to its allosteric activator S-adenosylmethionine (SAM) has been reported to be a cause of CBS dysfunction in homocystinuria patients. In this work we performed a retrospective analysis of fibroblast data from 62 homocystinuria patients and found that 13 of them presented a disturbed SAM activation. Their genotypic background was identified and the corresponding CBS mutant proteins were produced in E. coli. Nine distinct mutations were detected in 22 independent alleles: the novel mutations p.K269del, p.P427L, p.S500L and p.L540Q; and the previously described mutations p.P49L, p.C165Rfs*2, p.I278T, p.R336H and p.D444N. Expression levels and residual enzyme activities, determined in the soluble fraction of E. coli lysates, strongly correlated with the localization of the affected amino acid residue. C-terminal mutations lead to activities in the range of the wild-type CBS and to oligomeric forms migrating faster than tetramers, suggesting an abnormal conformation that might be responsible for the lack of SAM activation. Mutations in the catalytic core were associated with low protein expression levels, decreased enzyme activities and a higher content of high molecular mass forms. Furthermore, the absence of SAM activation found in the patients' fibroblasts was confirmed for all but one of the characterized recombinant proteins (p.P49L). Our study experimentally supports a deficient regulation of CBS by SAM as a frequently found mechanism in CBS deficiency, which should be considered not only as a valuable diagnostic tool but also as a potential target for the development of new therapeutic approaches in classical homocystinuria.
Collapse
Affiliation(s)
- Marisa I S Mendes
- Metabolism and Genetics Group, Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Gherasim C, Yadav PK, Kabil O, Niu WN, Banerjee R. Nitrite reductase activity and inhibition of H₂S biogenesis by human cystathionine ß-synthase. PLoS One 2014; 9:e85544. [PMID: 24416422 PMCID: PMC3885727 DOI: 10.1371/journal.pone.0085544] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 12/04/2013] [Indexed: 12/18/2022] Open
Abstract
Nitrite was recognized as a potent vasodilator >130 years and has more recently emerged as an endogenous signaling molecule and modulator of gene expression. Understanding the molecular mechanisms that regulate nitrite metabolism is essential for its use as a potential diagnostic marker as well as therapeutic agent for cardiovascular diseases. In this study, we have identified human cystathionine ß-synthase (CBS) as a new player in nitrite reduction with implications for the nitrite-dependent control of H2S production. This novel activity of CBS exploits the catalytic property of its unusual heme cofactor to reduce nitrite and generate NO. Evidence for the possible physiological relevance of this reaction is provided by the formation of ferrous-nitrosyl (FeII-NO) CBS in the presence of NADPH, the human diflavin methionine synthase reductase (MSR) and nitrite. Formation of FeII-NO CBS via its nitrite reductase activity inhibits CBS, providing an avenue for regulating biogenesis of H2S and cysteine, the limiting reagent for synthesis of glutathione, a major antioxidant. Our results also suggest a possible role for CBS in intracellular NO biogenesis particularly under hypoxic conditions. The participation of a regulatory heme cofactor in CBS in nitrite reduction is unexpected and expands the repertoire of proteins that can liberate NO from the intracellular nitrite pool. Our results reveal a potential molecular mechanism for cross-talk between nitrite, NO and H2S biology.
Collapse
Affiliation(s)
- Carmen Gherasim
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Pramod K. Yadav
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Omer Kabil
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Wei-Ning Niu
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- School of Life Science, Northwestern Polytechnical University, Xi’an, China
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|