51
|
Wheaton K, Sarkari F, Stanly Johns B, Davarinejad H, Egorova O, Kaustov L, Raught B, Saridakis V, Sheng Y. UbE2E1/UBCH6 Is a Critical in Vivo E2 for the PRC1-catalyzed Ubiquitination of H2A at Lys-119. J Biol Chem 2017; 292:2893-2902. [PMID: 28073915 DOI: 10.1074/jbc.m116.749564] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 01/09/2017] [Indexed: 11/06/2022] Open
Abstract
UbE2E1/UbcH6 is an E2 ubiquitin-conjugating enzyme that is regulated by USP7. We identified UbE2E1 as a novel component of Polycomb repressive complex 1 (PRC1), the E3 ligase complex responsible for histone H2A ubiquitination and gene silencing. We demonstrate that UbE2E1 is critical for the monoubiquitination of H2A at residue Lys-119 (uH2AK119) through its association with the PRC1 complex. UbE2E1 interacts with PRC1 subunits including Ring1A and Ring1B. Overexpression of UbE2E1 results in increased levels of uH2AK119, whereas overexpression of catalytically inactive UbE2E1_C131A or UbE2E1 knockdown results in decreased levels of uH2AK119. The down-regulation of H2A ubiquitination by loss of function of UbE2E1 is correlated with alleviated p16INK4a promoter repression and induced growth inhibition in HCT116 cells. These results are specific to UbE2E1 as knockdown of UbE2D E2s does not show any effect on uH2AK119. We extended the UbE2E1 regulation of uH2AK119 to USP7 and showed that USP7 is also a key regulator for monoubiquitination at H2A Lys-119 as both knockdown and deletion of USP7 results in decreased levels of uH2AK119. This study reveals that UbE2E1 is an in vivo E2 for the PRC1 ligase complex and thus plays an important role in the regulation of H2A Lys-119 monoubiquitination.
Collapse
Affiliation(s)
- Keith Wheaton
- From the Department of Biology, York University, Toronto, Ontario M3J1P3 and
| | - Feroz Sarkari
- From the Department of Biology, York University, Toronto, Ontario M3J1P3 and
| | - Beena Stanly Johns
- From the Department of Biology, York University, Toronto, Ontario M3J1P3 and
| | - Hossein Davarinejad
- From the Department of Biology, York University, Toronto, Ontario M3J1P3 and
| | - Olga Egorova
- From the Department of Biology, York University, Toronto, Ontario M3J1P3 and
| | - Lilia Kaustov
- the Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Brian Raught
- the Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Vivian Saridakis
- From the Department of Biology, York University, Toronto, Ontario M3J1P3 and
| | - Yi Sheng
- From the Department of Biology, York University, Toronto, Ontario M3J1P3 and
| |
Collapse
|
52
|
Zhao W, Tong H, Huang Y, Yan Y, Teng H, Xia Y, Jiang Q, Qin J. Essential Role for Polycomb Group Protein Pcgf6 in Embryonic Stem Cell Maintenance and a Noncanonical Polycomb Repressive Complex 1 (PRC1) Integrity. J Biol Chem 2017; 292:2773-2784. [PMID: 28049731 DOI: 10.1074/jbc.m116.763961] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/29/2016] [Indexed: 11/06/2022] Open
Abstract
The Polycomb group (PcG) proteins have an important role in controlling the expression of key genes implicated in embryonic development, differentiation, and decision of cell fates. Emerging evidence suggests that Polycomb repressive complexes 1 (PRC1) is defined by the six Polycomb group RING finger protein (Pcgf) paralogs, and Pcgf proteins can assemble into noncanonical PRC1 complexes. However, little is known about the precise mechanisms of differently composed noncanonical PRC1 in the maintenance of the pluripotent cell state. Here we disrupt the Pcgf genes in mouse embryonic stem cells by CRISPR-Cas9 and find Pcgf6 null embryonic stem cells display severe defects in self-renewal and differentiation. Furthermore, Pcgf6 regulates genes mostly involved in differentiation and spermatogenesis by assembling a noncanonical PRC1 complex PRC1.6. Notably, Pcgf6 deletion causes a dramatic decrease in PRC1.6 binding to target genes and no loss of H2AK119ub1. Thus, Pcgf6 is essential for recruitment of PRC1.6 to chromatin. Our results reveal a previously uncharacterized, H2AK119ub1-independent chromatin assembly associated with PRC1.6 complex.
Collapse
Affiliation(s)
- Wukui Zhao
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Huan Tong
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Yikai Huang
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Yun Yan
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Huajian Teng
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Yin Xia
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China, and
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing 210008, China
| | - Jinzhong Qin
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China,
| |
Collapse
|
53
|
Connelly KE, Dykhuizen EC. Compositional and functional diversity of canonical PRC1 complexes in mammals. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:233-245. [PMID: 28007606 DOI: 10.1016/j.bbagrm.2016.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 12/17/2022]
Abstract
The compositional complexity of Polycomb Repressive Complex 1 (PRC1) increased dramatically during vertebrate evolution. What is considered the "canonical" PRC1 complex consists of four subunits originally identified as regulators of body segmentation in Drosophila. In mammals, each of these four canonical subunits consists of two to six paralogs that associate in a combinatorial manner to produce over a hundred possible distinct PRC1 complexes with unknown function. Genetic studies have begun to define the phenotypic roles for different PRC1 paralogs; however, relating these phenotypes to unique biochemical and transcriptional function for the different paralogs has been challenging. In this review, we attempt to address how the compositional diversity of canonical PRC1 complexes relates to unique roles for individual PRC1 paralogs in transcriptional regulation. This review focuses primarily on PRC1 complex composition, genome targeting, and biochemical function.
Collapse
Affiliation(s)
- Katelyn E Connelly
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 201 S. University St., West Lafayette, IN 47907, USA
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 201 S. University St., West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907, USA.
| |
Collapse
|
54
|
Hauri S, Comoglio F, Seimiya M, Gerstung M, Glatter T, Hansen K, Aebersold R, Paro R, Gstaiger M, Beisel C. A High-Density Map for Navigating the Human Polycomb Complexome. Cell Rep 2016; 17:583-595. [PMID: 27705803 DOI: 10.1016/j.celrep.2016.08.096] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/23/2016] [Accepted: 08/30/2016] [Indexed: 12/20/2022] Open
Abstract
Polycomb group (PcG) proteins are major determinants of gene silencing and epigenetic memory in higher eukaryotes. Here, we systematically mapped the human PcG complexome using a robust affinity purification mass spectrometry approach. Our high-density protein interaction network uncovered a diverse range of PcG complexes. Moreover, our analysis identified PcG interactors linking them to the PcG system, thus providing insight into the molecular function of PcG complexes and mechanisms of recruitment to target genes. We identified two human PRC2 complexes and two PR-DUB deubiquitination complexes, which contain the O-linked N-acetylglucosamine transferase OGT1 and several transcription factors. Finally, genome-wide profiling of PR-DUB components indicated that the human PR-DUB and PRC1 complexes bind distinct sets of target genes, suggesting differential impact on cellular processes in mammals.
Collapse
Affiliation(s)
- Simon Hauri
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland; Competence Center Personalized Medicine UZH/ETH, 8044 Zürich, Switzerland
| | - Federico Comoglio
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Makiko Seimiya
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Moritz Gerstung
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Timo Glatter
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Klaus Hansen
- Biotech Research and Innovation Centre (BRIC) and Centre for Epigenetics, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland; Faculty of Science, University of Zürich, 8057 Zürich, Switzerland
| | - Renato Paro
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4056 Basel, Switzerland
| | - Matthias Gstaiger
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland; Competence Center Personalized Medicine UZH/ETH, 8044 Zürich, Switzerland.
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland.
| |
Collapse
|
55
|
Béguelin W, Teater M, Gearhart MD, Calvo Fernández MT, Goldstein RL, Cárdenas MG, Hatzi K, Rosen M, Shen H, Corcoran CM, Hamline MY, Gascoyne RD, Levine RL, Abdel-Wahab O, Licht JD, Shaknovich R, Elemento O, Bardwell VJ, Melnick AM. EZH2 and BCL6 Cooperate to Assemble CBX8-BCOR Complex to Repress Bivalent Promoters, Mediate Germinal Center Formation and Lymphomagenesis. Cancer Cell 2016; 30:197-213. [PMID: 27505670 PMCID: PMC5000552 DOI: 10.1016/j.ccell.2016.07.006] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 03/07/2016] [Accepted: 07/13/2016] [Indexed: 11/17/2022]
Abstract
The EZH2 histone methyltransferase mediates the humoral immune response and drives lymphomagenesis through formation of bivalent chromatin domains at critical germinal center (GC) B cell promoters. Herein we show that the actions of EZH2 in driving GC formation and lymphoma precursor lesions require site-specific binding by the BCL6 transcriptional repressor and the presence of a non-canonical PRC1-BCOR-CBX8 complex. The chromodomain protein CBX8 is induced in GC B cells, binds to H3K27me3 at bivalent promoters, and is required for stable association of the complex and the resulting histone modifications. Moreover, oncogenic BCL6 and EZH2 cooperate to accelerate diffuse large B cell lymphoma (DLBCL) development and combinatorial targeting of these repressors results in enhanced anti-lymphoma activity in DLBCLs.
Collapse
MESH Headings
- Animals
- Enhancer of Zeste Homolog 2 Protein/metabolism
- Germinal Center/metabolism
- Germinal Center/pathology
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Mitochondrial Membrane Transport Proteins
- Polycomb Repressive Complex 1/metabolism
- Polycomb-Group Proteins/metabolism
- Promoter Regions, Genetic
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-bcl-6/metabolism
- Repressor Proteins/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Wendy Béguelin
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, Cornell University, 413 E 69(th) Street, New York, NY 10021, USA
| | - Matt Teater
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, Cornell University, 413 E 69(th) Street, New York, NY 10021, USA; Institute for Computational Biomedicine, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA
| | - Micah D Gearhart
- Department of Genetics, Cell Biology, and Development, Developmental Biology Center, Masonic Cancer Center, University of Minnesota, 6-160 Church Street SE, University of Minnesota, Minneapolis, MN 55455, USA
| | - María Teresa Calvo Fernández
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, Cornell University, 413 E 69(th) Street, New York, NY 10021, USA
| | - Rebecca L Goldstein
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, Cornell University, 413 E 69(th) Street, New York, NY 10021, USA
| | - Mariano G Cárdenas
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, Cornell University, 413 E 69(th) Street, New York, NY 10021, USA
| | - Katerina Hatzi
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, Cornell University, 413 E 69(th) Street, New York, NY 10021, USA
| | - Monica Rosen
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, Cornell University, 413 E 69(th) Street, New York, NY 10021, USA
| | - Hao Shen
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, Cornell University, 413 E 69(th) Street, New York, NY 10021, USA
| | - Connie M Corcoran
- Department of Genetics, Cell Biology, and Development, Developmental Biology Center, Masonic Cancer Center, University of Minnesota, 6-160 Church Street SE, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michelle Y Hamline
- Department of Genetics, Cell Biology, and Development, Developmental Biology Center, Masonic Cancer Center, University of Minnesota, 6-160 Church Street SE, University of Minnesota, Minneapolis, MN 55455, USA
| | - Randy D Gascoyne
- Departments of Pathology and Lymphoid Cancer Research, Centre for Lymphoid Cancer, British Columbia Cancer Agency, British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Jonathan D Licht
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Rita Shaknovich
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, Cornell University, 413 E 69(th) Street, New York, NY 10021, USA
| | - Olivier Elemento
- Institute for Computational Biomedicine, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA
| | - Vivian J Bardwell
- Department of Genetics, Cell Biology, and Development, Developmental Biology Center, Masonic Cancer Center, University of Minnesota, 6-160 Church Street SE, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Ari M Melnick
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, Cornell University, 413 E 69(th) Street, New York, NY 10021, USA.
| |
Collapse
|
56
|
Shiba N, Yoshida K, Shiraishi Y, Okuno Y, Yamato G, Hara Y, Nagata Y, Chiba K, Tanaka H, Terui K, Kato M, Park MJ, Ohki K, Shimada A, Takita J, Tomizawa D, Kudo K, Arakawa H, Adachi S, Taga T, Tawa A, Ito E, Horibe K, Sanada M, Miyano S, Ogawa S, Hayashi Y. Whole-exome sequencing reveals the spectrum of gene mutations and the clonal evolution patterns in paediatric acute myeloid leukaemia. Br J Haematol 2016; 175:476-489. [PMID: 27470916 DOI: 10.1111/bjh.14247] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/30/2016] [Indexed: 01/31/2023]
Abstract
Acute myeloid leukaemia (AML) is a molecularly and clinically heterogeneous disease. Targeted sequencing efforts have identified several mutations with diagnostic and prognostic values in KIT, NPM1, CEBPA and FLT3 in both adult and paediatric AML. In addition, massively parallel sequencing enabled the discovery of recurrent mutations (i.e. IDH1/2 and DNMT3A) in adult AML. In this study, whole-exome sequencing (WES) of 22 paediatric AML patients revealed mutations in components of the cohesin complex (RAD21 and SMC3), BCORL1 and ASXL2 in addition to previously known gene mutations. We also revealed intratumoural heterogeneities in many patients, implicating multiple clonal evolution events in the development of AML. Furthermore, targeted deep sequencing in 182 paediatric AML patients identified three major categories of recurrently mutated genes: cohesion complex genes [STAG2, RAD21 and SMC3 in 17 patients (8·3%)], epigenetic regulators [ASXL1/ASXL2 in 17 patients (8·3%), BCOR/BCORL1 in 7 patients (3·4%)] and signalling molecules. We also performed WES in four patients with relapsed AML. Relapsed AML evolved from one of the subclones at the initial phase and was accompanied by many additional mutations, including common driver mutations that were absent or existed only with lower allele frequency in the diagnostic samples, indicating a multistep process causing leukaemia recurrence.
Collapse
Affiliation(s)
- Norio Shiba
- Department of Haematology/Oncology, Gunma Children's Medical Centre, Shibukawa, Japan.,Department of Paediatrics, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuichi Shiraishi
- Laboratory of DNA Information Analysis, Human Genome Centre, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yusuke Okuno
- Department of Paediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Genki Yamato
- Department of Haematology/Oncology, Gunma Children's Medical Centre, Shibukawa, Japan.,Department of Paediatrics, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yusuke Hara
- Department of Haematology/Oncology, Gunma Children's Medical Centre, Shibukawa, Japan.,Department of Paediatrics, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yasunobu Nagata
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenichi Chiba
- Laboratory of DNA Information Analysis, Human Genome Centre, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroko Tanaka
- Laboratory of Sequence Analysis, Human Genome Centre, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kiminori Terui
- Department of Paediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Motohiro Kato
- Department of Paediatrics Haematology and Oncology Research, National Centre for Child Health and Development, Tokyo, Japan
| | - Myoung-Ja Park
- Department of Haematology/Oncology, Gunma Children's Medical Centre, Shibukawa, Japan
| | - Kentaro Ohki
- Department of Paediatrics Haematology and Oncology Research, National Centre for Child Health and Development, Tokyo, Japan
| | - Akira Shimada
- Department of Paediatrics, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Junko Takita
- Department of Paediatrics, The University of Tokyo, Tokyo, Japan
| | - Daisuke Tomizawa
- Division of Leukaemia and Lymphoma, Children's Cancer Centre, National Centre for Child Health and Development, Tokyo, Japan
| | - Kazuko Kudo
- Department of Paediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hirokazu Arakawa
- Department of Paediatrics, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Souichi Adachi
- Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Taga
- Department of Paediatrics, Shiga University of Medical Science, Ohtsu, Japan
| | - Akio Tawa
- Department of Paediatrics, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Etsuro Ito
- Department of Paediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Keizo Horibe
- Clinical Research Centre, National Hospital Organization Nagoya Medical Centre, Nagoya, Japan
| | - Masashi Sanada
- Clinical Research Centre, National Hospital Organization Nagoya Medical Centre, Nagoya, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Centre, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Laboratory of Sequence Analysis, Human Genome Centre, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhide Hayashi
- Department of Haematology/Oncology, Gunma Children's Medical Centre, Shibukawa, Japan. .,Japanese Red Cross Gunma Blood Centre, Maebashi, Japan.
| |
Collapse
|
57
|
Abstract
Hematopoietic stem cells are endowed with a distinct potential to bolster self-renewal and to generate progeny that differentiate into mature cells of myeloid and lymphoid lineages. Both hematopoietic stem cells and mature cells have the same genome, but their gene expression is controlled by an additional layer of epigenetics such as DNA methylation and post-translational histone modifications, enabling each cell-type to acquire various forms and functions. Until recently, several studies have largely focussed on the transcription factors andniche factors for the understanding of the molecular mechanisms by which hematopoietic cells replicate and differentiate. Several lines of emerging evidence suggest that epigenetic modifications eventually result in a defined chromatin structure and an “individual” gene expression pattern, which play an essential role in the regulation of hematopoietic stem cell self-renewal and differentiation. Distinct epigenetic marks decide which sets of genes may be expressed and which genes are kept silent. Epigenetic mechanisms are interdependent and ensure lifelong production of blood and bone marrow, thereby contributing to stem cell homeostasis. The epigenetic analysis of hematopoiesis raises the exciting possibility that chromatin structure is dynamic enough for regulated expression of genes. Though controlled chromatin accessibility plays an essential role in maintaining blood homeostasis; mutations in chromatin impacts on the regulation of genes critical to the development of leukemia. In this review, we explored the contribution of epigenetic machinery which has implications for the ramification of molecular details of hematopoietic self-renewal for normal development and underlying events that potentially co-operate to induce leukemia.
Collapse
Affiliation(s)
- Shilpa Sharma
- Division of Stem Cell Gene Therapy Research, Institute of Nuclear Medicine & Allied Sciences (INMAS), Delhi, India
| | - Gangenahalli Gurudutta
- Division of Stem Cell Gene Therapy Research, Institute of Nuclear Medicine & Allied Sciences (INMAS), Delhi, India
| |
Collapse
|
58
|
Piunti A, Shilatifard A. Epigenetic balance of gene expression by Polycomb and COMPASS families. Science 2016; 352:aad9780. [PMID: 27257261 DOI: 10.1126/science.aad9780] [Citation(s) in RCA: 353] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epigenetic regulation of gene expression in metazoans is central for establishing cellular diversity, and its deregulation can result in pathological conditions. Although transcription factors are essential for implementing gene expression programs, they do not function in isolation and require the recruitment of various chromatin-modifying and -remodeling machineries. A classic example of developmental chromatin regulation is the balanced activities of the Polycomb group (PcG) proteins within the PRC1 and PRC2 complexes, and the Trithorax group (TrxG) proteins within the COMPASS family, which are highly mutated in a large number of human diseases. In this review, we will discuss the latest findings regarding the properties of the PcG and COMPASS families and the insight they provide into the epigenetic control of transcription under physiological and pathological settings.
Collapse
Affiliation(s)
- Andrea Piunti
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 East Superior Street, Chicago, IL 60611, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 East Superior Street, Chicago, IL 60611, USA.
| |
Collapse
|
59
|
Entrevan M, Schuettengruber B, Cavalli G. Regulation of Genome Architecture and Function by Polycomb Proteins. Trends Cell Biol 2016; 26:511-525. [PMID: 27198635 DOI: 10.1016/j.tcb.2016.04.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 12/13/2022]
Abstract
Polycomb group (PcG) proteins dynamically define cellular identities through the epigenetic repression of key developmental regulatory genes. PcG proteins are recruited to specific regulatory elements to modify the chromatin surrounding them. In addition, they regulate the organization of their target genes in the 3D space of the nucleus, and this regulatory function of the 3D genome architecture is involved in cell differentiation and the maintenance of cellular memory. In this review we discuss recent advances in our understanding of how PcG proteins are recruited to chromatin to induce local and global changes in chromosome conformation and regulate their target genes.
Collapse
Affiliation(s)
- Marianne Entrevan
- Institute of Human Genetics, CNRS UPR1142 and University of Montpellier, 141 Rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Bernd Schuettengruber
- Institute of Human Genetics, CNRS UPR1142 and University of Montpellier, 141 Rue de la Cardonille, 34396, Montpellier Cedex 5, France.
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS UPR1142 and University of Montpellier, 141 Rue de la Cardonille, 34396, Montpellier Cedex 5, France.
| |
Collapse
|
60
|
Cao Q, Gearhart MD, Gery S, Shojaee S, Yang H, Sun H, Lin DC, Bai JW, Mead M, Zhao Z, Chen Q, Chien WW, Alkan S, Alpermann T, Haferlach T, Müschen M, Bardwell VJ, Koeffler HP. BCOR regulates myeloid cell proliferation and differentiation. Leukemia 2016; 30:1155-65. [PMID: 26847029 PMCID: PMC5131645 DOI: 10.1038/leu.2016.2] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 12/03/2015] [Accepted: 12/18/2015] [Indexed: 02/05/2023]
Abstract
BCOR is a component of a variant Polycomb group repressive complex 1 (PRC1). Recently, we and others reported recurrent somatic BCOR loss-of-function mutations in myelodysplastic syndrome and acute myelogenous leukemia (AML). However, the role of BCOR in normal hematopoiesis is largely unknown. Here, we explored the function of BCOR in myeloid cells using myeloid murine models with Bcor conditional loss-of-function or overexpression alleles. Bcor mutant bone marrow cells showed significantly higher proliferation and differentiation rates with upregulated expression of Hox genes. Mutation of Bcor reduced protein levels of RING1B, an H2A ubiquitin ligase subunit of PRC1 family complexes and reduced H2AK119ub upstream of upregulated HoxA genes. Global RNA expression profiling in murine cells and AML patient samples with BCOR loss-of-function mutation suggested that loss of BCOR expression is associated with enhanced cell proliferation and myeloid differentiation. Our results strongly suggest that BCOR plays an indispensable role in hematopoiesis by inhibiting myeloid cell proliferation and differentiation and offer a mechanistic explanation for how BCOR regulates gene expression such as Hox genes.
Collapse
Affiliation(s)
- Qi Cao
- Department of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Micah D. Gearhart
- Department of Genetics, Cell Biology and Development and Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Sigal Gery
- Department of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Seyedmehdi Shojaee
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Haibo Sun
- Department of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - De-chen Lin
- Department of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jing-wen Bai
- Department of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA
- Changjiang Scholar’s Laboratory and Cancer Research Center, Shantou University Medical College, Shantou, China
| | - Monica Mead
- Department of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Zhiqiang Zhao
- Department of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qi Chen
- Department of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Wen-wen Chien
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Serhan Alkan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | | | - Markus Müschen
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Vivian J. Bardwell
- Department of Genetics, Cell Biology and Development and Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - H. Phillip Koeffler
- Department of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- National University Cancer Institute of Singapore, National University Hospital, Singapore
| |
Collapse
|
61
|
Chen DH, Huang Y, Ruan Y, Shen WH. The evolutionary landscape of PRC1 core components in green lineage. PLANTA 2016; 243:825-46. [PMID: 26729480 DOI: 10.1007/s00425-015-2451-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/16/2015] [Indexed: 05/20/2023]
Abstract
The origin and evolution of plant PRC1 core components. Polycomb repressive complex1 (PRC1) plays critical roles in epigenetic silencing of homeotic genes and determination of cell fate. Animal PRC1 has been well investigated for a long time, whereas plant PRC1 was just confirmed in recent years. It is enigmatic whether PRC1 core components in plants share a common ancestor with those in animals. We evaluated the origin of plant PRC1 RING-finger proteins (RING1 and BMI1) through comparing with the homologs in some representative unikonts and using BMI1- and RING1-like proteins as reciprocal outgroup, finding both PRC1 RING-finger proteins have the earliest origin in mosses, similar to LHP1. Additionally, the gene structure, copy number, and domain organization were analyzed to deeply understand the evolutionary history of plant PRC1 complex. In conclusion, PRC1 RING-finger proteins have independent origins in plants and animals, but convergent evolution might attribute to the conservation of PRC1 complex in plants and animals. Plant LHP1 as the homolog of non-PRC1 protein HP1 was recruited to fulfill the role of Pc counterpart. Gene duplication followed by functional divergence makes a great contribution to evolutionary progress of PRC1 in green plants.
Collapse
Affiliation(s)
- Dong-hong Chen
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Hunan Agricultural University, 410128, Changsha, China.
| | - Yong Huang
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Hunan Agricultural University, 410128, Changsha, China
| | - Ying Ruan
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Hunan Agricultural University, 410128, Changsha, China.
| | - Wen-Hui Shen
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Hunan Agricultural University, 410128, Changsha, China
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg Cedex, France
| |
Collapse
|
62
|
Aranda S, Mas G, Di Croce L. Regulation of gene transcription by Polycomb proteins. SCIENCE ADVANCES 2015; 1:e1500737. [PMID: 26665172 PMCID: PMC4672759 DOI: 10.1126/sciadv.1500737] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 09/17/2015] [Indexed: 05/14/2023]
Abstract
The Polycomb group (PcG) of proteins defines a subset of factors that physically associate and function to maintain the positional identity of cells from the embryo to adult stages. PcG has long been considered a paradigmatic model for epigenetic maintenance of gene transcription programs. Despite intensive research efforts to unveil the molecular mechanisms of action of PcG proteins, several fundamental questions remain unresolved: How many different PcG complexes exist in mammalian cells? How are PcG complexes targeted to specific loci? How does PcG regulate transcription? In this review, we discuss the diversity of PcG complexes in mammalian cells, examine newly identified modes of recruitment to chromatin, and highlight the latest insights into the molecular mechanisms underlying the function of PcGs in transcription regulation and three-dimensional chromatin conformation.
Collapse
Affiliation(s)
- Sergi Aranda
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Gloria Mas
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
- Institucio Catalana de Recerca i Estudis Avançats, Pg Lluis Companys 23, Barcelona 08010, Spain
- Corresponding author. E-mail:
| |
Collapse
|
63
|
Pérez-Campo FM, Riancho JA. Epigenetic Mechanisms Regulating Mesenchymal Stem Cell Differentiation. Curr Genomics 2015; 16:368-383. [PMID: 27019612 PMCID: PMC4765524 DOI: 10.2174/1389202916666150817202559] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 03/27/2015] [Accepted: 04/07/2015] [Indexed: 12/28/2022] Open
Abstract
Human Mesenchymal Stem Cells (hMSCs) have emerged in the last few years as one of the most promising therapeutic cell sources and, in particular, as an important tool for regenerative medicine of skeletal tissues. Although they present a more restricted potency than Embryonic Stem (ES) cells, the use of hMCS in regenerative medicine avoids many of the drawbacks characteristic of ES cells or induced pluripotent stem cells. The challenge in using these cells lies into developing precise protocols for directing cellular differentiation to generate a specific cell lineage. In order to achieve this goal, it is of the upmost importance to be able to control de process of fate decision and lineage commitment. This process requires the coordinate regulation of different molecular layers at transcriptional, posttranscriptional and translational levels. At the transcriptional level, switching on and off different sets of genes is achieved not only through transcriptional regulators, but also through their interplay with epigenetic modifiers. It is now well known that epigenetic changes take place in an orderly way through development and are critical in the determination of lineage-specific differentiation. More importantly, alteration of these epigenetic changes would, in many cases, lead to disease generation and even tumour formation. Therefore, it is crucial to elucidate how epigenetic factors, through their interplay with transcriptional regulators, control lineage commitment in hMSCs.
Collapse
Affiliation(s)
- Flor M. Pérez-Campo
- Department of Internal Medicine, Hospital U. Marqués de Valdecilla-IDIVAL Universidad de Cantabria, 39008 Santander, Cantabria, Spain
| | | |
Collapse
|
64
|
The quest for mammalian Polycomb response elements: are we there yet? Chromosoma 2015; 125:471-96. [PMID: 26453572 PMCID: PMC4901126 DOI: 10.1007/s00412-015-0539-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 12/12/2022]
Abstract
A long-standing mystery in the field of Polycomb and Trithorax regulation is how these proteins, which are highly conserved between flies and mammals, can regulate several hundred equally highly conserved target genes, but recognise these targets via cis-regulatory elements that appear to show no conservation in their DNA sequence. These elements, termed Polycomb/Trithorax response elements (PRE/TREs or PREs), are relatively well characterised in flies, but their mammalian counterparts have proved to be extremely difficult to identify. Recent progress in this endeavour has generated a wealth of data and raised several intriguing questions. Here, we ask why and to what extent mammalian PREs are so different to those of the fly. We review recent advances, evaluate current models and identify open questions in the quest for mammalian PREs.
Collapse
|
65
|
Taherbhoy AM, Huang OW, Cochran AG. BMI1–RING1B is an autoinhibited RING E3 ubiquitin ligase. Nat Commun 2015; 6:7621. [DOI: 10.1038/ncomms8621] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 05/26/2015] [Indexed: 01/21/2023] Open
|
66
|
Pluripotency and Epigenetic Factors in Mouse Embryonic Stem Cell Fate Regulation. Mol Cell Biol 2015; 35:2716-28. [PMID: 26031336 DOI: 10.1128/mcb.00266-15] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Embryonic stem cells (ESCs) are characterized by their ability to self-renew and to differentiate into all cell types of a given organism. Understanding the molecular mechanisms that govern the ESC state is of great interest not only for basic research-for instance, ESCs represent a perfect system to study cellular differentiation in vitro-but also for their potential implications in human health, as these mechanisms are likewise involved in cancer progression and could be exploited in regenerative medicine. In this minireview, we focus on the latest insights into the molecular mechanisms mediated by the pluripotency factors as well as their roles during differentiation. We also discuss recent advances in understanding the function of the epigenetic regulators, Polycomb and MLL complexes, in ESC biology.
Collapse
|
67
|
Bajusz I, Sipos L, Pirity MK. Nucleotide substitutions revealing specific functions of Polycomb group genes. Mol Genet Metab 2015; 114:547-56. [PMID: 25669595 DOI: 10.1016/j.ymgme.2015.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 01/22/2015] [Indexed: 01/22/2023]
Abstract
POLYCOMB group (PCG) proteins belong to the family of epigenetic regulators of genes playing important roles in differentiation and development. Mutants of PcG genes were isolated first in the fruit fly, Drosophila melanogaster, resulting in spectacular segmental transformations due to the ectopic expression of homeotic genes. Homologs of Drosophila PcG genes were also identified in plants and in vertebrates and subsequent experiments revealed the general role of PCG proteins in the maintenance of the repressed state of chromatin through cell divisions. The past decades of gene targeting experiments have allowed us to make significant strides towards understanding how the network of PCG proteins influences multiple aspects of cellular fate determination during development. Being involved in the transmission of specific expression profiles of different cell lineages, PCG proteins were found to control wide spectra of unrelated epigenetic processes in vertebrates, such as stem cell plasticity and renewal, genomic imprinting and inactivation of X-chromosome. PCG proteins also affect regulation of metabolic genes being important for switching programs between pluripotency and differentiation. Insight into the precise roles of PCG proteins in normal physiological processes has emerged from studies employing cell culture-based systems and genetically modified animals. Here we summarize the findings obtained from PcG mutant fruit flies and mice generated to date with a focus on PRC1 and PRC2 members altered by nucleotide substitutions resulting in specific alleles. We also include a compilation of lessons learned from these models about the in vivo functions of this complex protein family. With multiple knockout lines, sophisticated approaches to study the consequences of peculiar missense point mutations, and insights from complementary gain-of-function systems in hand, we are now in a unique position to significantly advance our understanding of the molecular basis of in vivo functions of PcG proteins.
Collapse
Affiliation(s)
- Izabella Bajusz
- Biological Research Centre, Hungarian Academy of Sciences, Institute of Genetics, H-6701 Szeged, Hungary.
| | - László Sipos
- Biological Research Centre, Hungarian Academy of Sciences, Institute of Genetics, H-6701 Szeged, Hungary
| | - Melinda K Pirity
- Biological Research Centre, Hungarian Academy of Sciences, Institute of Genetics, H-6701 Szeged, Hungary
| |
Collapse
|
68
|
Abstract
USP7 is a protein deubiquitinase with an essential role in development. Here, we provide evidence that USP7 regulates the activity of Polycomb repressive complex 1 (PRC1) in coordination with SCML2. There are six versions of PRC1 defined by the association of one of the PCGF homologues (PCGF1 to PCGF6) with the common catalytic subunit RING1B. First, we show that SCML2, a Polycomb group protein that associates with PRC1.2 (containing PCGF2/MEL18) and PRC1.4 (containing PCGF4/BMI1), modulates the localization of USP7 and bridges USP7 with PRC1.4, allowing for the stabilization of BMI1. Chromatin immunoprecipitation (ChIP) experiments demonstrate that USP7 is found at SCML2 and BMI1 target genes. Second, inhibition of USP7 leads to a reduction in the level of ubiquitinated histone H2A (H2Aub), the catalytic product of PRC1 and key for its repressive activity. USP7 regulates the posttranslational status of RING1B and BMI1, a specific component of PRC1.4. Thus, not only does USP7 stabilize PRC1 components, its catalytic activity is also necessary to maintain a functional PRC1, thereby ensuring appropriate levels of repressive H2Aub.
Collapse
|
69
|
Inagaki T, Iwasaki S, Matsumura Y, Kawamura T, Tanaka T, Abe Y, Yamasaki A, Tsurutani Y, Yoshida A, Chikaoka Y, Nakamura K, Magoori K, Nakaki R, Osborne TF, Fukami K, Aburatani H, Kodama T, Sakai J. The FBXL10/KDM2B scaffolding protein associates with novel polycomb repressive complex-1 to regulate adipogenesis. J Biol Chem 2014; 290:4163-77. [PMID: 25533466 DOI: 10.1074/jbc.m114.626929] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Polycomb repressive complex 1 (PRC1) plays an essential role in the epigenetic repression of gene expression during development and cellular differentiation via multiple effector mechanisms, including ubiquitination of H2A and chromatin compaction. However, whether it regulates the stepwise progression of adipogenesis is unknown. Here, we show that FBXL10/KDM2B is an anti-adipogenic factor that is up-regulated during the early phase of 3T3-L1 preadipocyte differentiation and in adipose tissue in a diet-induced model of obesity. Interestingly, inhibition of adipogenesis does not require the JmjC demethylase domain of FBXL10, but it does require the F-box and leucine-rich repeat domains, which we show recruit a noncanonical polycomb repressive complex 1 (PRC1) containing RING1B, SKP1, PCGF1, and BCOR. Knockdown of either RING1B or SKP1 prevented FBXL10-mediated repression of 3T3-L1 preadipocyte differentiation indicating that PRC1 formation mediates the inhibitory effect of FBXL10 on adipogenesis. Using ChIP-seq, we show that FBXL10 recruits RING1B to key specific genomic loci surrounding the key cell cycle and the adipogenic genes Cdk1, Uhrf1, Pparg1, and Pparg2 to repress adipogenesis. These results suggest that FBXL10 represses adipogenesis by targeting a noncanonical PRC1 complex to repress key genes (e.g. Pparg) that control conversion of pluripotent cells into the adipogenic lineage.
Collapse
Affiliation(s)
- Takeshi Inagaki
- From the Division of Metabolic Medicine, the Translational Systems Biology and Medicine Initiative Center for Disease Biology and Integrative Medicine, University of Tokyo, Tokyo 153-8904, Japan,
| | | | | | - Takeshi Kawamura
- the Translational Systems Biology and Medicine Initiative Center for Disease Biology and Integrative Medicine, University of Tokyo, Tokyo 153-8904, Japan, Laboratory for Systems Biology and Medicine
| | - Toshiya Tanaka
- From the Division of Metabolic Medicine, the Translational Systems Biology and Medicine Initiative Center for Disease Biology and Integrative Medicine, University of Tokyo, Tokyo 153-8904, Japan, Laboratory for Systems Biology and Medicine
| | - Yohei Abe
- From the Division of Metabolic Medicine
| | | | | | - Ayano Yoshida
- From the Division of Metabolic Medicine, the Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Science, Tokyo 192-0392, Japan
| | - Yoko Chikaoka
- the Translational Systems Biology and Medicine Initiative Center for Disease Biology and Integrative Medicine, University of Tokyo, Tokyo 153-8904, Japan, Laboratory for Systems Biology and Medicine
| | - Kanako Nakamura
- From the Division of Metabolic Medicine, the Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Science, Tokyo 192-0392, Japan
| | - Kenta Magoori
- From the Division of Metabolic Medicine, the Translational Systems Biology and Medicine Initiative Center for Disease Biology and Integrative Medicine, University of Tokyo, Tokyo 153-8904, Japan
| | - Ryo Nakaki
- Genome Science Division, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan
| | - Timothy F Osborne
- the Metabolic Disease Program, Sanford-Burnham Medical Research Institute, Orlando, Florida 32827, and
| | - Kiyoko Fukami
- the Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Science, Tokyo 192-0392, Japan
| | - Hiroyuki Aburatani
- the Translational Systems Biology and Medicine Initiative Center for Disease Biology and Integrative Medicine, University of Tokyo, Tokyo 153-8904, Japan, Genome Science Division, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan
| | | | - Juro Sakai
- From the Division of Metabolic Medicine, the Translational Systems Biology and Medicine Initiative Center for Disease Biology and Integrative Medicine, University of Tokyo, Tokyo 153-8904, Japan,
| |
Collapse
|
70
|
Schoenrock A, Samanfar B, Pitre S, Hooshyar M, Jin K, Phillips CA, Wang H, Phanse S, Omidi K, Gui Y, Alamgir M, Wong A, Barrenäs F, Babu M, Benson M, Langston MA, Green JR, Dehne F, Golshani A. Efficient prediction of human protein-protein interactions at a global scale. BMC Bioinformatics 2014; 15:383. [PMID: 25492630 PMCID: PMC4272565 DOI: 10.1186/s12859-014-0383-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 11/12/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Our knowledge of global protein-protein interaction (PPI) networks in complex organisms such as humans is hindered by technical limitations of current methods. RESULTS On the basis of short co-occurring polypeptide regions, we developed a tool called MP-PIPE capable of predicting a global human PPI network within 3 months. With a recall of 23% at a precision of 82.1%, we predicted 172,132 putative PPIs. We demonstrate the usefulness of these predictions through a range of experiments. CONCLUSIONS The speed and accuracy associated with MP-PIPE can make this a potential tool to study individual human PPI networks (from genomic sequences alone) for personalized medicine.
Collapse
Affiliation(s)
| | | | - Sylvain Pitre
- School of Computer Science, Carleton University, Ottawa, Canada.
| | | | - Ke Jin
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada.
| | - Charles A Phillips
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee, USA.
| | - Hui Wang
- Department of Pediatrics, Gothenburg University, Gothenburg, Sweden. .,The Centre for Individualized Medication, Linköping University, Linköping, Sweden.
| | - Sadhna Phanse
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada.
| | - Katayoun Omidi
- Department of Biology, Carleton University, Ottawa, Canada.
| | - Yuan Gui
- Department of Biology, Carleton University, Ottawa, Canada.
| | - Md Alamgir
- Department of Biology, Carleton University, Ottawa, Canada.
| | - Alex Wong
- Department of Biology, Carleton University, Ottawa, Canada.
| | - Fredrik Barrenäs
- Department of Pediatrics, Gothenburg University, Gothenburg, Sweden. .,The Centre for Individualized Medication, Linköping University, Linköping, Sweden.
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan, Canada.
| | - Mikael Benson
- Department of Pediatrics, Gothenburg University, Gothenburg, Sweden. .,The Centre for Individualized Medication, Linköping University, Linköping, Sweden.
| | - Michael A Langston
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee, USA.
| | - James R Green
- Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada.
| | - Frank Dehne
- School of Computer Science, Carleton University, Ottawa, Canada.
| | | |
Collapse
|
71
|
Fereres S, Simón R, Mohd-Sarip A, Verrijzer CP, Busturia A. dRYBP counteracts chromatin-dependent activation and repression of transcription. PLoS One 2014; 9:e113255. [PMID: 25415640 PMCID: PMC4240632 DOI: 10.1371/journal.pone.0113255] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/21/2014] [Indexed: 12/31/2022] Open
Abstract
Chromatin dependent activation and repression of transcription is regulated by the histone modifying enzymatic activities of the trithorax (trxG) and Polycomb (PcG) proteins. To investigate the mechanisms underlying their mutual antagonistic activities we analyzed the function of Drosophila dRYBP, a conserved PcG- and trxG-associated protein. We show that dRYBP is itself ubiquitylated and binds ubiquitylated proteins. Additionally we show that dRYBP maintains H2A monoubiquitylation, H3K4 monomethylation and H3K36 dimethylation levels and does not affect H3K27 trimethylation levels. Further we show that dRYBP interacts with the repressive SCE and dKDM2 proteins as well as the activating dBRE1 protein. Analysis of homeotic phenotypes and post-translationally modified histones levels show that dRYBP antagonizes dKDM2 and dBRE1 functions by respectively preventing H3K36me2 demethylation and H2B monoubiquitylation. Interestingly, our results show that inactivation of dBRE1 produces trithorax-like related homeotic transformations, suggesting that dBRE1 functions in the regulation of homeotic genes expression. Our findings indicate that dRYBP regulates morphogenesis by counteracting transcriptional repression and activation. Thus, they suggest that dRYBP may participate in the epigenetic plasticity important during normal and pathological development.
Collapse
Affiliation(s)
- Sol Fereres
- Centro de Biología Molecular “Severo Ochoa” CSIC-UAM, c) Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Rocío Simón
- Centro de Biología Molecular “Severo Ochoa” CSIC-UAM, c) Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Adone Mohd-Sarip
- Department of Biochemistry and Center for Biomedical Genetics, Erasmus University Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - C. Peter Verrijzer
- Department of Biochemistry and Center for Biomedical Genetics, Erasmus University Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Ana Busturia
- Centro de Biología Molecular “Severo Ochoa” CSIC-UAM, c) Nicolás Cabrera 1, 28049 Madrid, Spain
- * E-mail:
| |
Collapse
|
72
|
Corley M, Kroll KL. The roles and regulation of Polycomb complexes in neural development. Cell Tissue Res 2014; 359:65-85. [PMID: 25367430 DOI: 10.1007/s00441-014-2011-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 09/17/2014] [Indexed: 12/20/2022]
Abstract
In the developing mammalian nervous system, common progenitors integrate both cell extrinsic and intrinsic regulatory programs to produce distinct neuronal and glial cell types as development proceeds. This spatiotemporal restriction of neural progenitor differentiation is enforced, in part, by the dynamic reorganization of chromatin into repressive domains by Polycomb repressive complexes, effectively limiting the expression of fate-determining genes. Here, we review the distinct roles that Polycomb repressive complexes play during neurogenesis and gliogenesis, while also highlighting recent work describing the molecular mechanisms that govern their dynamic activity in neural development. Further investigation of the way in which Polycomb complexes are regulated in neural development will enable more precise manipulation of neural progenitor differentiation facilitating the efficient generation of specific neuronal and glial cell types for many biological applications.
Collapse
Affiliation(s)
- Matthew Corley
- Department of Developmental Biology, Washington University School of Medicine, 320 McDonnell Sciences Building, Campus Box 8103, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | |
Collapse
|
73
|
Zhen CY, Duc HN, Kokotovic M, Phiel CJ, Ren X. Cbx2 stably associates with mitotic chromosomes via a PRC2- or PRC1-independent mechanism and is needed for recruiting PRC1 complex to mitotic chromosomes. Mol Biol Cell 2014; 25:3726-39. [PMID: 25232004 PMCID: PMC4230780 DOI: 10.1091/mbc.e14-06-1109] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cbx2 is immobilized at mitotic chromosomes, and the immobilization is independent of PRC1 or PRC2. Cbx2 plays important roles in recruiting PRC1 complex to mitotic chromosomes. This study provides novel insights into the PcG epigenetic memory passing down through cell divisions. Polycomb group (PcG) proteins are epigenetic transcriptional factors that repress key developmental regulators and maintain cellular identity through mitosis via a poorly understood mechanism. Using quantitative live-cell imaging in mouse ES cells and tumor cells, we demonstrate that, although Polycomb repressive complex (PRC) 1 proteins (Cbx-family proteins, Ring1b, Mel18, and Phc1) exhibit variable capacities of association with mitotic chromosomes, Cbx2 overwhelmingly binds to mitotic chromosomes. The recruitment of Cbx2 to mitotic chromosomes is independent of PRC1 or PRC2, and Cbx2 is needed to recruit PRC1 complex to mitotic chromosomes. Quantitative fluorescence recovery after photobleaching analysis indicates that PRC1 proteins rapidly exchange at interphasic chromatin. On entry into mitosis, Cbx2, Ring1b, Mel18, and Phc1 proteins become immobilized at mitotic chromosomes, whereas other Cbx-family proteins dynamically bind to mitotic chromosomes. Depletion of PRC1 or PRC2 protein has no effect on the immobilization of Cbx2 on mitotic chromosomes. We find that the N-terminus of Cbx2 is needed for its recruitment to mitotic chromosomes, whereas the C-terminus is required for its immobilization. Thus these results provide fundamental insights into the molecular mechanisms of epigenetic inheritance.
Collapse
Affiliation(s)
- Chao Yu Zhen
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364
| | - Huy Nguyen Duc
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364
| | - Marko Kokotovic
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364
| | - Christopher J Phiel
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80217-3364
| | - Xiaojun Ren
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364
| |
Collapse
|
74
|
A developmental genetic analysis of the lysine demethylase KDM2 mutations in Drosophila melanogaster. Mech Dev 2014; 133:36-53. [PMID: 25016215 DOI: 10.1016/j.mod.2014.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 06/11/2014] [Accepted: 06/17/2014] [Indexed: 12/19/2022]
Abstract
Post-translational modification of histones plays essential roles in the transcriptional regulation of genes in eukaryotes. Methylation on basic residues of histones is regulated by histone methyltransferases and histone demethylases, and misregulation of these enzymes has been linked to a range of diseases such as cancer. Histone lysine demethylase 2 (KDM2) family proteins have been shown to either promote or suppress tumorigenesis in different human malignancies. However, the roles and regulation of KDM2 in development are poorly understood, and the exact roles of KDM2 in regulating demethylation remain controversial. Since KDM2 proteins are highly conserved in multicellular animals, we analyzed the KDM2 ortholog in Drosophila. We have observed that dKDM2 is a nuclear protein and its level fluctuates during fly development. We generated three deficiency lines that disrupt the dKdm2 locus, and together with 10 transposon insertion lines within the dKdm2 locus, we characterized the developmental defects of these alleles. The alleles of dKdm2 define three phenotypic classes, and the intragenic complementation observed among these alleles and our subsequent analyses suggest that dKDM2 is not required for viability. In addition, loss of dKDM2 appears to have rather weak effects on histone H3 lysine 36 and 4 methylation (H3K36me and H3K4me) in the third instar wandering larvae, and we observed no effect on methylation of H3K9me2, H3K27me2 and H3K27me3 in dKdm2 mutants. Taken together, these genetic, molecular and biochemical analyses suggest that dKDM2 is not required for viability of flies, indicating that dKdm2 is likely redundant with other histone lysine demethylases in regulating normal development in Drosophila.
Collapse
|
75
|
Blackledge NP, Farcas AM, Kondo T, King HW, McGouran JF, Hanssen LLP, Ito S, Cooper S, Kondo K, Koseki Y, Ishikura T, Long HK, Sheahan TW, Brockdorff N, Kessler BM, Koseki H, Klose RJ. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell 2014; 157:1445-1459. [PMID: 24856970 PMCID: PMC4048464 DOI: 10.1016/j.cell.2014.05.004] [Citation(s) in RCA: 572] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 03/10/2014] [Accepted: 05/02/2014] [Indexed: 11/30/2022]
Abstract
Chromatin modifying activities inherent to polycomb repressive complexes PRC1 and PRC2 play an essential role in gene regulation, cellular differentiation, and development. However, the mechanisms by which these complexes recognize their target sites and function together to form repressive chromatin domains remain poorly understood. Recruitment of PRC1 to target sites has been proposed to occur through a hierarchical process, dependent on prior nucleation of PRC2 and placement of H3K27me3. Here, using a de novo targeting assay in mouse embryonic stem cells we unexpectedly discover that PRC1-dependent H2AK119ub1 leads to recruitment of PRC2 and H3K27me3 to effectively initiate a polycomb domain. This activity is restricted to variant PRC1 complexes, and genetic ablation experiments reveal that targeting of the variant PCGF1/PRC1 complex by KDM2B to CpG islands is required for normal polycomb domain formation and mouse development. These observations provide a surprising PRC1-dependent logic for PRC2 occupancy at target sites in vivo.
Collapse
Affiliation(s)
- Neil P Blackledge
- Laboratory of Chromatin Biology and Transcription, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Anca M Farcas
- Laboratory of Chromatin Biology and Transcription, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Takashi Kondo
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Hamish W King
- Laboratory of Chromatin Biology and Transcription, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Joanna F McGouran
- Ubiquitin Proteolysis Group, Central Proteomics Facility, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7BN, UK
| | - Lars L P Hanssen
- Laboratory of Chromatin Biology and Transcription, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Shinsuke Ito
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Sarah Cooper
- Laboratory of Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Kaori Kondo
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yoko Koseki
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Tomoyuki Ishikura
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Hannah K Long
- Laboratory of Chromatin Biology and Transcription, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Thomas W Sheahan
- Laboratory of Chromatin Biology and Transcription, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Neil Brockdorff
- Laboratory of Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Benedikt M Kessler
- Ubiquitin Proteolysis Group, Central Proteomics Facility, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7BN, UK
| | - Haruhiko Koseki
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Robert J Klose
- Laboratory of Chromatin Biology and Transcription, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
76
|
Hatzi K, Melnick A. Breaking bad in the germinal center: how deregulation of BCL6 contributes to lymphomagenesis. Trends Mol Med 2014; 20:343-52. [PMID: 24698494 DOI: 10.1016/j.molmed.2014.03.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 01/06/2023]
Abstract
The B cell lymphoma 6 (BCL6) transcriptional repressor is a master regulator of the germinal center (GC) B cell program, required for their unique proliferative and stress tolerant phenotype. Most B cell lymphomas arise from GC B cells and are dependent on the continued or deregulated expression of BCL6 to maintain their survival. The actions of BCL6 in B cells involve formation of distinct chromatin modifying complexes that silence specific promoter and enhancer networks, respectively. The same biochemical mechanisms are maintained in malignant lymphoma cells. Targeted inhibition of these BCL6 functions has emerged as the basis for rational design of lymphoma therapies and combinatorial regimens. In this review, we summarize recent advances on BCL6 mechanisms of action and the deregulation of its target gene networks in lymphoma.
Collapse
Affiliation(s)
- Katerina Hatzi
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ari Melnick
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
77
|
KAP1 represses differentiation-inducible genes in embryonic stem cells through cooperative binding with PRC1 and derepresses pluripotency-associated genes. Mol Cell Biol 2014; 34:2075-91. [PMID: 24687849 DOI: 10.1128/mcb.01729-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Embryonic stem (ES) cells express pluripotency-associated genes and repress differentiation-inducible genes. The activities of these genes are coordinately reversed during differentiation. The changes in the transcriptome upon conditional KAP1 knockout in ES cells overlapped with the changes during embryoid body formation. KAP1 repressed differentiation-inducible genes and derepressed pluripotency-associated genes in ES cells. KAP1 formed complexes with polycomb repressive complexes 1 (PRC1) through an interaction that was mediated by the KAP1 coiled-coil region. KAP1 and PRC1 bound cooperatively at the promoters of differentiation-inducible genes and repressed their transcription. In contrast, KAP1 bound the transcribed and flanking sequences of pluripotency-associated genes, did not enhance PRC1 binding, and derepressed their transcription. KAP1 had opposite effects on differentiation-inducible and pluripotency-associated gene transcription both in ES cells and in differentiating embryoid bodies. The region of KAP1 that mediated the interaction with PRC1 was required for KAP1 enhancement of PRC1 binding and for KAP1 repression of transcription at differentiation-inducible promoters. This region of KAP1 was not required for KAP1 suppression of PRC1 binding or for KAP1 derepression of transcription at pluripotency-associated promoters. The opposite effects of KAP1 on the transcription of differentiation-inducible versus pluripotency-associated genes contributed to the reciprocal changes in their transcription during differentiation.
Collapse
|
78
|
Yamamoto Y, Abe A, Emi N. Clarifying the Impact of Polycomb Complex Component Disruption in Human Cancers. Mol Cancer Res 2014; 12:479-84. [DOI: 10.1158/1541-7786.mcr-13-0596] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
79
|
Genome-wide co-localization of Polycomb orthologs and their effects on gene expression in human fibroblasts. Genome Biol 2014; 15:R23. [PMID: 24485159 PMCID: PMC4053772 DOI: 10.1186/gb-2014-15-2-r23] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/03/2014] [Indexed: 01/10/2023] Open
Abstract
Background Polycomb group proteins form multicomponent complexes that are important for establishing lineage-specific patterns of gene expression. Mammalian cells encode multiple permutations of the prototypic Polycomb repressive complex 1 (PRC1) with little evidence for functional specialization. An aim of this study is to determine whether the multiple orthologs that are co-expressed in human fibroblasts act on different target genes and whether their genomic location changes during cellular senescence. Results Deep sequencing of chromatin immunoprecipitated with antibodies against CBX6, CBX7, CBX8, RING1 and RING2 reveals that the orthologs co-localize at multiple sites. PCR-based validation at representative loci suggests that a further six PRC1 proteins have similar binding patterns. Importantly, sequential chromatin immunoprecipitation with antibodies against different orthologs implies that multiple variants of PRC1 associate with the same DNA. At many loci, the binding profiles have a distinctive architecture that is preserved in two different types of fibroblast. Conversely, there are several hundred loci at which PRC1 binding is cell type-specific and, contrary to expectations, the presence of PRC1 does not necessarily equate with transcriptional silencing. Interestingly, the PRC1 binding profiles are preserved in senescent cells despite changes in gene expression. Conclusions The multiple permutations of PRC1 in human fibroblasts congregate at common rather than specific sites in the genome and with overlapping but distinctive binding profiles in different fibroblasts. The data imply that the effects of PRC1 complexes on gene expression are more subtle than simply repressing the loci at which they bind.
Collapse
|
80
|
A potential molecular pathogenesis of cardiac/laterality defects in Oculo-Facio-Cardio-Dental syndrome. Dev Biol 2014; 387:28-36. [PMID: 24440151 DOI: 10.1016/j.ydbio.2014.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/04/2014] [Accepted: 01/09/2014] [Indexed: 01/16/2023]
Abstract
Pitx2 is the last effector of the left-right (LR) cascade known to date and plays a crucial role in the patterning of LR asymmetry. In Xenopus embryos, the expression of Pitx2 gene in the left lateral plate mesoderm (LPM) is directly regulated by Xnr1 signaling, which is mediated by Smads and FoxH1. Previous studies suggest that the suppression of Pitx2 gene in the left LPM is a potential cause of cardiac/laterality defects in Oculo-Facio-Cardio-Dental (OFCD) syndrome, which is known to be caused by mutations in BCL6 co-repressor (BCOR) gene. Recently, our work has revealed that the BCL6/BCOR complex blocks Notch-dependent transcriptional activity to protect the expression of Pitx2 in the left LPM from the inhibitory activity of Notch signaling. These studies indicated that uncontrolled Notch activity in the left LPM caused by dysfunction of BCOR may result in cardiac/laterality defects of OFCD syndrome. However, this Notch-dependent inhibitory mechanism of Pitx2 gene transcription still remains unknown. Here we report that transcriptional repressor ESR1, which acts downstream of Notch signaling, inhibits the expression of Pitx2 gene by binding to a left side-specific enhancer (ASE) region in Pitx2 gene and recruiting histone deacetylase 1 (HDAC1) to this region. Once HDAC1 is tethered, histone acetyltransferase p300 is no longer recruited to the Xnr1-dependent transcriptional complex on the ASE region, leading to the suppression of Pitx2 gene in the left LPM. The study presented here uncovers the regulatory mechanism of Pitx2 gene transcription which may contribute to an understanding of pathogenesis of OFCD syndrome.
Collapse
|
81
|
Transcriptional regulation by Polycomb group proteins. Nat Struct Mol Biol 2013; 20:1147-55. [PMID: 24096405 DOI: 10.1038/nsmb.2669] [Citation(s) in RCA: 677] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/12/2013] [Indexed: 12/12/2022]
Abstract
Polycomb group (PcG) proteins are epigenetic regulators of transcription that have key roles in stem-cell identity, differentiation and disease. Mechanistically, they function within multiprotein complexes, called Polycomb repressive complexes (PRCs), which modify histones (and other proteins) and silence target genes. The dynamics of PRC1 and PRC2 components has been the focus of recent research. Here we discuss our current knowledge of the PRC complexes, how they are targeted to chromatin and how the high diversity of the PcG proteins allows these complexes to influence cell identity.
Collapse
|
82
|
Cooper S, Brockdorff N. Genome-wide shRNA screening to identify factors mediating Gata6 repression in mouse embryonic stem cells. Development 2013; 140:4110-5. [PMID: 24046324 PMCID: PMC3775421 DOI: 10.1242/dev.094615] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The use of whole-genome pooled shRNA libraries in loss-of-function screening in tissue culture models provides an effective means to identify novel factors acting in pathways of interest. Embryonic stem cells (ESCs) offer a unique opportunity to study processes involved in stem cell pluripotency and differentiation. Here, we report a genome-wide shRNA screen in ESCs to identify novel components involved in repression of the Gata6 locus, using a cell viability-based screen, which offers the benefits of stable shRNA integration and a robust and simple protocol for hit identification. Candidate factors identified were enriched for transcription factors and included known Polycomb proteins and other chromatin-modifying factors. We identified the protein Bcor, which is known to associate in complexes with the Polycomb protein Ring1B, and verified its importance in Gata6 repression in ESCs. Potential further applications of such a screening strategy could allow the identification of factors important for regulation of gene expression and pluripotency.
Collapse
Affiliation(s)
- Sarah Cooper
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | | |
Collapse
|
83
|
Cdyl, a new partner of the inactive X chromosome and potential reader of H3K27me3 and H3K9me2. Mol Cell Biol 2013; 33:5005-20. [PMID: 24144980 DOI: 10.1128/mcb.00866-13] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
X chromosome inactivation is a remarkable example of chromosome-wide gene silencing and facultative heterochromatin formation. Numerous histone posttranslational modifications, including H3K9me2 and H3K27me3, accompany this process, although our understanding of the enzymes that lay down these marks and the factors that bind to them is still incomplete. Here we identify Cdyl, a chromodomain-containing transcriptional corepressor, as a new chromatin-associated protein partner of the inactive X chromosome (Xi). Using mouse embryonic stem cell lines with mutated histone methyltransferase activities, we show that Cdyl relies on H3K9me2 for its general association with chromatin in vivo. For its association with Xi, Cdyl requires the process of differentiation and the presence of H3K9me2 and H3K27me3, which both become chromosomally enriched following Xist RNA coating. We further show that the removal of the PRC2 component Eed and subsequent loss of H3K27me3 lead to a reduction of both Cdyl and H3K9me2 enrichment on inactive Xi. Finally, we show that Cdyl associates with the H3K9 histone methyltransferase G9a and the MGA protein, both of which are also found on Xi. We propose that the combination of H3K9me2 and H3K27me3 recruits Cdyl to Xi, and this, in turn, may facilitate propagation of the H3K9me2 mark by anchoring G9a.
Collapse
|
84
|
Nagamachi A, Matsui H, Asou H, Ozaki Y, Aki D, Kanai A, Takubo K, Suda T, Nakamura T, Wolff L, Honda H, Inaba T. Haploinsufficiency of SAMD9L, an endosome fusion facilitator, causes myeloid malignancies in mice mimicking human diseases with monosomy 7. Cancer Cell 2013; 24:305-17. [PMID: 24029230 DOI: 10.1016/j.ccr.2013.08.011] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 12/25/2012] [Accepted: 08/15/2013] [Indexed: 01/21/2023]
Abstract
Monosomy 7 and interstitial deletion of 7q (-7/7q-) are well-recognized nonrandom chromosomal abnormalities frequently found among patients with myelodysplastic syndromes (MDSs) and myeloid leukemias. We previously identified candidate myeloid tumor suppressor genes (SAMD9, SAMD9-like = SAMD9L, and Miki) in the 7q21.3 subband. We established SAMD9L-deficient mice and found that SAMD9L(+/-) mice as well as SAMD9L(-/-) mice develop myeloid diseases resembling human diseases associated with -7/7q-. SAMD9L-deficient hematopoietic stem cells showed enhanced colony formation potential and in vivo reconstitution ability. SAMD9L localizes in early endosomes. SAMD9L-deficient cells showed delays in homotypic endosome fusion, resulting in persistence of ligand-bound cytokine receptors. These findings suggest that haploinsufficiency of SAMD9L and/or SAMD9 gene(s) contributes to myeloid transformation.
Collapse
Affiliation(s)
- Akiko Nagamachi
- Department of Molecular Oncology and Leukemia Program Project, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Yuan G, Ma B, Yuan W, Zhang Z, Chen P, Ding X, Feng L, Shen X, Chen S, Li G, Zhu B. Histone H2A ubiquitination inhibits the enzymatic activity of H3 lysine 36 methyltransferases. J Biol Chem 2013; 288:30832-42. [PMID: 24019522 DOI: 10.1074/jbc.m113.475996] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Histone H3 lysine 27 (H3K27) methylation and H2A monoubiquitination (ubH2A) are two closely related histone modifications that regulate Polycomb silencing. Previous studies reported that H3K27 trimethylation (H3K27me3) rarely coexists with H3K36 di- or tri-methylation (H3K36me2/3) on the same histone H3 tails, which is partially controlled by the direct inhibition of the enzymatic activity of H3K27-specific methyltransferase PRC2. By contrast, H3K27 methylation does not affect the catalytic activity of H3K36-specific methyltransferases, suggesting other Polycomb mechanism(s) may negatively regulate the H3K36-specific methyltransferase(s). In this study, we established a simple protocol to purify milligram quantities of ubH2A from mammalian cells, which were used to reconstitute nucleosome substrates with fully ubiquitinated H2A. A number of histone methyltransferases were then tested on these nucleosome substrates. Notably, all of the H3K36-specific methyltransferases, including ASH1L, HYPB, NSD1, and NSD2 were inhibited by ubH2A, whereas the other histone methyltransferases, including PRC2, G9a, and Pr-Set7 were not affected by ubH2A. Together with previous reports, these findings collectively explain the mutual repulsion of H3K36me2/3 and Polycomb modifications.
Collapse
Affiliation(s)
- Gang Yuan
- From the College of Life Sciences, Beijing Normal University, Beijing, 100875
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Hatzi K, Jiang Y, Huang C, Garrett-Bakelman F, Gearhart MD, Giannopoulou EG, Zumbo P, Kirouac K, Bhaskara S, Polo JM, Kormaksson M, MacKerell AD, Xue F, Mason CE, Hiebert SW, Prive GG, Cerchietti L, Bardwell VJ, Elemento O, Melnick A. A hybrid mechanism of action for BCL6 in B cells defined by formation of functionally distinct complexes at enhancers and promoters. Cell Rep 2013; 4:578-88. [PMID: 23911289 DOI: 10.1016/j.celrep.2013.06.016] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/13/2013] [Accepted: 06/11/2013] [Indexed: 11/28/2022] Open
Abstract
The BCL6 transcriptional repressor is required for the development of germinal center (GC) B cells and diffuse large B cell lymphomas (DLBCLs). Although BCL6 can recruit multiple corepressors, its transcriptional repression mechanism of action in normal and malignant B cells is unknown. We find that in B cells, BCL6 mostly functions through two independent mechanisms that are collectively essential to GC formation and DLBCL, both mediated through its N-terminal BTB domain. These are (1) the formation of a unique ternary BCOR-SMRT complex at promoters, with each corepressor binding to symmetrical sites on BCL6 homodimers linked to specific epigenetic chromatin features, and (2) the "toggling" of active enhancers to a poised but not erased conformation through SMRT-dependent H3K27 deacetylation, which is mediated by HDAC3 and opposed by p300 histone acetyltransferase. Dynamic toggling of enhancers provides a basis for B cells to undergo rapid transcriptional and phenotypic changes in response to signaling or environmental cues.
Collapse
Affiliation(s)
- Katerina Hatzi
- Division of Hematology and Medical Oncology, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Long H, Blackledge N, Klose R. ZF-CxxC domain-containing proteins, CpG islands and the chromatin connection. Biochem Soc Trans 2013; 41:727-40. [PMID: 23697932 PMCID: PMC3685328 DOI: 10.1042/bst20130028] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Indexed: 12/14/2022]
Abstract
Vertebrate DNA can be chemically modified by methylation of the 5 position of the cytosine base in the context of CpG dinucleotides. This modification creates a binding site for MBD (methyl-CpG-binding domain) proteins which target chromatin-modifying activities that are thought to contribute to transcriptional repression and maintain heterochromatic regions of the genome. In contrast with DNA methylation, which is found broadly across vertebrate genomes, non-methylated DNA is concentrated in regions known as CGIs (CpG islands). Recently, a family of proteins which encode a ZF-CxxC (zinc finger-CxxC) domain have been shown to specifically recognize non-methylated DNA and recruit chromatin-modifying activities to CGI elements. For example, CFP1 (CxxC finger protein 1), MLL (mixed lineage leukaemia protein), KDM (lysine demethylase) 2A and KDM2B regulate lysine methylation on histone tails, whereas TET (ten-eleven translocation) 1 and TET3 hydroxylate methylated cytosine bases. In the present review, we discuss the most recent advances in our understanding of how ZF-CxxC domain-containing proteins recognize non-methylated DNA and describe their role in chromatin modification at CGIs.
Collapse
Key Words
- chromatin
- cpg island
- dna demethylation
- dna methylation
- epigenetics
- transcription
- af9, all1–fused gene from chromosome 9 protein
- ash2l, absent, small or homeotic 2-like
- bah, bromo-adjacent homology
- cfp1, cxxc finger protein 1
- cgbp, cpg-binding protein
- cgi, cpg island
- chip-seq, chromatin immunoprecipitation sequencing
- dnmt1, dna methyltransferase 1
- dpy-30, dosage compensation protein 30
- enl, eleven-nineteen leukaemia
- esc, embryonic stem cell
- fbxl19, f-box and leucine-rich repeat protein 19
- hdac, histone deacetylase
- 5hmc, 5-hydroxymethylcytosine
- idax, inhibition of the dvl and axin complex protein
- jmjc, jumonji c
- kdm, lysine demethylase
- mbd, methyl-cpg-binding domain
- 5mc, 5-methylcytosine
- mll, mixed lineage leukaemia protein
- prc, polycomb group repressive complex
- phd, plant homeodomain
- rbbp5, retinoblastoma-binding protein 5
- rfts, replication foci-targeting sequence
- ring, really interesting new gene
- rnapii, rna polymerase ii
- sec, super-elongation complex
- setd1, set domain 1
- shrna, short hairpin rna
- tet, ten-eleven translocation
- wdr, wd40 repeat
- yy1, yin and yang 1
- zf-cxxc, zinc finger-cxxc
Collapse
Affiliation(s)
- Hannah K. Long
- *Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
- †Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, U.K
| | - Neil P. Blackledge
- *Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Robert J. Klose
- *Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| |
Collapse
|
88
|
Vissers JHA, van Lohuizen M, Citterio E. The emerging role of Polycomb repressors in the response to DNA damage. J Cell Sci 2013; 125:3939-48. [PMID: 23104738 DOI: 10.1242/jcs.107375] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Polycomb group (PcG) genes encode chromatin modifiers that are involved in the maintenance of cell identity and in proliferation, processes that are often deregulated in cancer. Interestingly, besides a role in epigenetic gene silencing, recent studies have begun to uncover a function for PcG proteins in the cellular response to DNA damage. In particular, PcG proteins have been shown to accumulate at sites of DNA double-strand breaks (DSBs). Several signaling pathways contribute to the recruitment of PcG proteins to DSBs, where they catalyze the ubiquitylation of histone H2A. The relevance of these findings is supported by the fact that loss of PcG genes decreases the efficiency of cells to repair DSBs and renders them sensitive to ionizing radiation. The recruitment of PcG proteins to DNA breaks suggests that they have a function in coordinating gene silencing and DNA repair at the chromatin flanking DNA lesions. In this Commentary, we discuss the current knowledge of the mechanisms that allow PcG proteins to exert their positive functions in genome maintenance.
Collapse
Affiliation(s)
- Joseph H A Vissers
- Division of Molecular Genetics, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
89
|
Chiacchiera F, Piunti A, Pasini D. Epigenetic methylations and their connections with metabolism. Cell Mol Life Sci 2013; 70:1495-508. [PMID: 23456257 PMCID: PMC11113834 DOI: 10.1007/s00018-013-1293-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 01/22/2023]
Abstract
Metabolic pathways play fundamental roles in several processes that regulate cell physiology and adaptation to environmental changes. Altered metabolic pathways predispose to several different pathologies ranging from diabetes to cancer. Specific transcriptional programs tightly regulate the enzymes involved in cell metabolism and dictate cell fate regulating the differentiation into specialized cell types that contribute to metabolic adaptation in higher organisms. For these reasons, it is of extreme importance to identify signaling pathways and transcription factors that positively and negatively regulate metabolism. Genomic organization allows a plethora of different strategies to regulate transcription. Importantly, large evidence suggests that the quality of diet and the caloric regimen can influence the epigenetic state of our genome and that certain metabolic pathways are also epigenetically controlled reveling a tight crosstalk between metabolism and epigenomes. Here we focus our attention on methylation-based epigenetic reactions, on how different metabolic pathways control these activities, and how these can influence metabolism. Altogether, the recent discoveries linking these apparent distant areas reveal that an exciting field of research is emerging.
Collapse
Affiliation(s)
- Fulvio Chiacchiera
- Department of Experimental Oncology, European Institute of Oncology (IEO), Via Adamello 16, 20139 Milan, Italy
| | - Andrea Piunti
- Department of Experimental Oncology, European Institute of Oncology (IEO), Via Adamello 16, 20139 Milan, Italy
| | - Diego Pasini
- Department of Experimental Oncology, European Institute of Oncology (IEO), Via Adamello 16, 20139 Milan, Italy
| |
Collapse
|
90
|
Max is a repressor of germ cell-related gene expression in mouse embryonic stem cells. Nat Commun 2013; 4:1754. [DOI: 10.1038/ncomms2780] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 03/20/2013] [Indexed: 12/23/2022] Open
|
91
|
Panagopoulos I, Thorsen J, Gorunova L, Haugom L, Bjerkehagen B, Davidson B, Heim S, Micci F. Fusion of the ZC3H7B and BCOR genes in endometrial stromal sarcomas carrying an X;22-translocation. Genes Chromosomes Cancer 2013; 52:610-8. [PMID: 23580382 DOI: 10.1002/gcc.22057] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 02/14/2013] [Indexed: 12/13/2022] Open
Abstract
Endometrial stromal sarcomas (ESS) are genetically heterogeneous uterine tumors in which a JAZF1-SUZ12 chimeric gene resulting from the chromosomal translocation t(7;17)(p15;q21) as well as PHF1 rearrangements (in chromosomal band 6p21) with formation of JAZF1-PHF1, EPC1-PHF1, and MEAF6-PHF1 chimeras have been described. Here, we investigated two ESS characterized cytogenetically by the presence of a der(22)t(X;22)(p11;q13). Whole transcriptome sequencing one of the tumors identified a ZC3H7-BCOR chimeric transcript. Reverse transciptase-PCR with the ZC3H7B forward and BCOR reverse primer combinations confirmed the presence of a ZC3H7-BCOR chimeric transcript in both ESS carrying a der(22)t(X;22) but not in a control ESS with t(1;6) and the MEAF6-PHF1 fusion. Sequencing of the amplified cDNA fragments showed that in both cases ESS exon 10 of ZC3H7B (from 22q13; accession number NM_017590 version 4) was fused to exon 8 of BCOR (from Xp11; accession number NM_001123385 version 1). Reciprocal multiple BCOR-ZC3H7B cDNA fragments were amplified in only one case suggesting that ZC3H7B-BCOR, on the der(22)t(X;22), is the pathogenetically important fusion gene. The putative ZC3H7B-BCOR protein would contain the tetratricopeptide repeats and LD motif from ZC3H7B and the AF9 binding site (1093-1233aa), the 3 ankyrin repeats (1410-1509 aa), and the NSPC1 binding site of BCOR. Although the presence of these motifs suggests various functions of the chimeric protein, it is possible that its most important role may be in epigenetic regulation. Whether or not the (patho)genetic subsets JAZF1-SUZ12, PHF1 rearrangements, and ZC3H7B-BCOR correspond to any phenotypic, let alone clinically important, differences in ESS remain unknown.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Medical Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Nonredundant and locus-specific gene repression functions of PRC1 paralog family members in human hematopoietic stem/progenitor cells. Blood 2013; 121:2452-61. [DOI: 10.1182/blood-2012-08-451666] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Key Points
Knockdown of individual PRC1 members in human stem/progenitor cells revealed a lack of redundancy between various paralog family members. CBX2 was identified as an important regulator of p21/CDKN1A independent of BMI1/PCGF4.
Collapse
|
93
|
Junco SE, Wang R, Gaipa JC, Taylor AB, Schirf V, Gearhart MD, Bardwell VJ, Demeler B, Hart PJ, Kim CA. Structure of the polycomb group protein PCGF1 in complex with BCOR reveals basis for binding selectivity of PCGF homologs. Structure 2013; 21:665-71. [PMID: 23523425 DOI: 10.1016/j.str.2013.02.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/05/2013] [Accepted: 02/11/2013] [Indexed: 10/27/2022]
Abstract
Polycomb-group RING finger homologs (PCGF1, PCGF2, PCGF3, PCGF4, PCGF5, and PCGF6) are critical components in the assembly of distinct Polycomb repression complex 1 (PRC1)-related complexes. Here, we identify a protein interaction domain in BCL6 corepressor, BCOR, which binds the RING finger- and WD40-associated ubiquitin-like (RAWUL) domain of PCGF1 (NSPC1) and PCGF3 but not of PCGF2 (MEL18) or PCGF4 (BMI1). Because of the selective binding, we have named this domain PCGF Ub-like fold discriminator (PUFD). The structure of BCOR PUFD bound to PCGF1 reveals that (1) PUFD binds to the same surfaces as observed for a different Polycomb group RAWUL domain and (2) the ability of PUFD to discriminate among RAWULs stems from the identity of specific residues within these interaction surfaces. These data show the molecular basis for determining the binding preference for a PCGF homolog, which ultimately helps determine the identity of the larger PRC1-like assembly.
Collapse
Affiliation(s)
- Sarah E Junco
- Department of Biochemistry and CTRC, University of Texas Health Science Center at San Antonio, MSC 7760, 7703 Floyd Curl Drive, San Antonio, TX 78229-3990, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
He J, Shen L, Wan M, Taranova O, Wu H, Zhang Y. Kdm2b maintains murine embryonic stem cell status by recruiting PRC1 complex to CpG islands of developmental genes. Nat Cell Biol 2013; 15:373-84. [PMID: 23502314 DOI: 10.1038/ncb2702] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 02/01/2013] [Indexed: 12/14/2022]
Abstract
Polycomb group (PcG) proteins play important roles in repressing lineage-specific genes and maintaining the undifferentiated state of mouse embryonic stem cells (mESCs). However, how PcG proteins are recruited to their target genes is largely unknown. Here, we show that the H3K36-specific histone demethylase Kdm2b is highly expressed in mESCs and regulated by the pluripotent factors Oct4 and Sox2 directly. Depletion of Kdm2b in mESCs causes de-repression of lineage-specific genes and induces early differentiation. The function of Kdm2b depends on its CxxC-ZF domain, which mediates its genome-wide binding to CpG islands (CGIs). Kdm2b interacts with the core components of polycomb repressive complex 1 (PRC1) and recruits the complex to the CGIs of early lineage-specific genes. Thus, our study not only reveals an Oct4-Sox2-Kdm2b-PRC1-CGI regulatory axis and its function in maintaining the undifferentiated state of mESCs, but also demonstrates a critical function of Kdm2b in recruiting PRC1 to the CGIs of lineage-specific genes to repress their expression.
Collapse
Affiliation(s)
- Jin He
- Howard Hughes Medical Institute, WAB-149G, 200 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
95
|
H3K36me3 key to Polycomb-mediated gene silencing in lineage specification. Nat Struct Mol Biol 2013; 19:1214-5. [PMID: 23211767 DOI: 10.1038/nsmb.2458] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
96
|
Tzatsos A, Paskaleva P, Ferrari F, Deshpande V, Stoykova S, Contino G, Wong KK, Lan F, Trojer P, Park PJ, Bardeesy N. KDM2B promotes pancreatic cancer via Polycomb-dependent and -independent transcriptional programs. J Clin Invest 2013; 123:727-39. [PMID: 23321669 DOI: 10.1172/jci64535] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 11/26/2012] [Indexed: 12/13/2022] Open
Abstract
Epigenetic mechanisms mediate heritable control of cell identity in normal cells and cancer. We sought to identify epigenetic regulators driving the pathogenesis of pancreatic ductal adenocarcinoma (PDAC), one of the most lethal human cancers. We found that KDM2B (also known as Ndy1, FBXL10, and JHDM1B), an H3K36 histone demethylase implicated in bypass of cellular senescence and somatic cell reprogramming, is markedly overexpressed in human PDAC, with levels increasing with disease grade and stage, and highest expression in metastases. KDM2B silencing abrogated tumorigenicity of PDAC cell lines exhibiting loss of epithelial differentiation, whereas KDM2B overexpression cooperated with KrasG12D to promote PDAC formation in mouse models. Gain- and loss-of-function experiments coupled to genome-wide gene expression and ChIP studies revealed that KDM2B drives tumorigenicity through 2 different transcriptional mechanisms. KDM2B repressed developmental genes through cobinding with Polycomb group (PcG) proteins at transcriptional start sites, whereas it activated a module of metabolic genes, including mediators of protein synthesis and mitochondrial function, cobound by the MYC oncogene and the histone demethylase KDM5A. These results defined epigenetic programs through which KDM2B subverts cellular differentiation and drives the pathogenesis of an aggressive subset of PDAC.
Collapse
Affiliation(s)
- Alexandros Tzatsos
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Molitor A, Shen WH. The polycomb complex PRC1: composition and function in plants. J Genet Genomics 2013; 40:231-8. [PMID: 23706298 DOI: 10.1016/j.jgg.2012.12.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 12/17/2012] [Accepted: 12/24/2012] [Indexed: 11/24/2022]
Abstract
Polycomb group (PcG) proteins are crucial epigenetic regulators conferring transcriptional memory to cell lineages. They assemble into multi-protein complexes, e.g., Polycomb Repressive Complex 1 and 2 (PRC1, PRC2), which are thought to act in a sequential manner to stably maintain gene repression. PRC2 induces histone H3 lysine 27 (H3K27) trimethylation (H3K27me3), which is subsequently read by PRC1 that further catalyzes H2A monoubiquitination (H2Aub1), creating a transcriptional silent chromatin conformation. PRC2 components are conserved in plants and have been extensively characterized in Arabidopsis. In contrast, PRC1 composition and function are more diverged between animals and plants. Only more recently, PRC1 existence in plants has been documented. Here we review the aspects of plant specific and conserved PRC1 and highlight critical roles of PRC1 components in seed embryonic trait determinacy, shoot stem cell fate determinacy, and flower development in Arabidopsis.
Collapse
Affiliation(s)
- Anne Molitor
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | | |
Collapse
|
98
|
Kranenburg O, Emmink BL, Knol J, van Houdt WJ, Rinkes IHMB, Jimenez CR. Proteomics in studying cancer stem cell biology. Expert Rev Proteomics 2013; 9:325-36. [PMID: 22809210 DOI: 10.1586/epr.12.24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Normal multipotent tissue stem cells (SCs) are the driving force behind tissue turnover and repair. The cancer stem cell theory holds that tumors also contain stem-like cells that drive tumor growth and metastasis formation. However, very little is known about the regulation of SC maintenance pathways in cancer and how these are affected by cancer-specific genetic alterations and by treatment. Proteomics is emerging as a powerful tool to identify the signaling complexes and pathways that control multi- and pluri-potency and SC differentiation. Here, the authors review the novel insights that these studies have provided and present a comprehensive strategy for the use of proteomics in studying cancer SC biology.
Collapse
Affiliation(s)
- Onno Kranenburg
- Department of Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3584CX, The Netherlands.
| | | | | | | | | | | |
Collapse
|
99
|
Farcas AM, Blackledge NP, Sudbery I, Long HK, McGouran JF, Rose NR, Lee S, Sims D, Cerase A, Sheahan TW, Koseki H, Brockdorff N, Ponting CP, Kessler BM, Klose RJ. KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands. eLife 2012; 1:e00205. [PMID: 23256043 PMCID: PMC3524939 DOI: 10.7554/elife.00205] [Citation(s) in RCA: 356] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/12/2012] [Indexed: 12/18/2022] Open
Abstract
CpG islands (CGIs) are associated with most mammalian gene promoters. A subset of CGIs act as polycomb response elements (PREs) and are recognized by the polycomb silencing systems to regulate expression of genes involved in early development. How CGIs function mechanistically as nucleation sites for polycomb repressive complexes remains unknown. Here we discover that KDM2B (FBXL10) specifically recognizes non-methylated DNA in CGIs and recruits the polycomb repressive complex 1 (PRC1). This contributes to histone H2A lysine 119 ubiquitylation (H2AK119ub1) and gene repression. Unexpectedly, we also find that CGIs are occupied by low levels of PRC1 throughout the genome, suggesting that the KDM2B-PRC1 complex may sample CGI-associated genes for susceptibility to polycomb-mediated silencing. These observations demonstrate an unexpected and direct link between recognition of CGIs by KDM2B and targeting of the polycomb repressive system. This provides the basis for a new model describing the functionality of CGIs as mammalian PREs.DOI:http://dx.doi.org/10.7554/eLife.00205.001.
Collapse
Affiliation(s)
- Anca M Farcas
- Department of Biochemistry , University of Oxford , Oxford , UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Ballaré C, Lange M, Lapinaite A, Martin GM, Morey L, Pascual G, Liefke R, Simon B, Shi Y, Gozani O, Carlomagno T, Benitah SA, Di Croce L. Phf19 links methylated Lys36 of histone H3 to regulation of Polycomb activity. Nat Struct Mol Biol 2012; 19:1257-65. [PMID: 23104054 DOI: 10.1038/nsmb.2434] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 10/03/2012] [Indexed: 12/12/2022]
Abstract
Polycomb-group proteins are transcriptional repressors with essential roles in embryonic development. Polycomb repressive complex 2 (PRC2) contains the methyltransferase activity for Lys27. However, the role of other histone modifications in regulating PRC2 activity is just beginning to be understood. Here we show that direct recognition of methylated histone H3 Lys36 (H3K36me), a mark associated with activation, by the PRC2 subunit Phf19 is required for the full enzymatic activity of the PRC2 complex. Using NMR spectroscopy, we provide structural evidence for this interaction. Furthermore, we show that Phf19 binds to a subset of PRC2 targets in mouse embryonic stem cells and that this is required for their repression and for H3K27me3 deposition. These findings show that the interaction of Phf19 with H3K36me2 and H3K36me3 is essential for PRC2 complex activity and for proper regulation of gene repression in embryonic stem cells.
Collapse
Affiliation(s)
- Cecilia Ballaré
- Department of Gene Regulation and Stem Cells, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|