51
|
Sabzehmeidani MM, Kazemzad M. Quantum dots based sensitive nanosensors for detection of antibiotics in natural products: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151997. [PMID: 34848263 DOI: 10.1016/j.scitotenv.2021.151997] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 05/18/2023]
Abstract
Residual antibiotics in food products originated from administration of the antibiotics to animals may be accumulated through food metabolism in the human body and endanger safety and health. Thus, developing a prompt and accurate way for detection of antibiotics is a crucial issue. The zero-dimensional fluorescent probes including metals based, carbon and graphene quantum dots (QDs), are highly sensitive materials to use for the detection of a wide range of antibiotics in natural products. These QDs demonstrate unique optical properties like tunable photoluminescence (PL) and excitation-wavelength dependent emission. This study investigates the trends related to carbon and metal based QDs preparation and modification, and their diverse detection application. We discuss the performance of QDs based sensors application in various detection systems such as photoluminescence, photoelectrochemical, chemiluminescence, electrochemiluminescence, colorimetric, as well as describing their working principles in several samples. The detecting mechanism of a QDs-based sensor is dependent on its properties and specific interactions with particular antibiotics. This review also tries to describe environmental application and future perspective of QDs for antibiotics detection.
Collapse
Affiliation(s)
| | - Mahmood Kazemzad
- Department of Energy, Materials and Energy Research Center, Tehran 14155-477, Iran.
| |
Collapse
|
52
|
Liu B, Zheng S, Li H, Xu J, Tang H, Wang Y, Wang Y, Sun F, Zhao X. Ultrasensitive and facile detection of multiple trace antibiotics with magnetic nanoparticles and core-shell nanostar SERS nanotags. Talanta 2022; 237:122955. [PMID: 34736680 DOI: 10.1016/j.talanta.2021.122955] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 01/13/2023]
Abstract
Ultrasensitive, multiplex, rapid, and accurate quantitative determination of trace antibiotics remains a challenging issue, which is of importance to public health and safety. Herein, we presented a multiplex strategy based on magnetic nanoparticles and surface-enhanced Raman scattering (SERS) nanotags for simultaneous detection of chloramphenicol (CAP) and tetracycline (TTC). In practice, SERS nanotags based on Raman reporter probes (RRPs) encoded gold-silver core-shell nanostars were used as detection labels for identifying different types of antibiotics, and the magnetic nanoparticles could be separated simply by magnetic force, which significantly improves the detection efficiency, reduces the analysis cost, and simplifies the operation. Our results demonstrate that the as-proposed assay possesses the capacities of high sensitivity and multiplexing with the limits of detection (LODs) for CAP and TTC of 159.49 and 294.12 fg mL-1, respectively, as well as good stability and reproducibility, and high selectivity and reliability. We believe that this strategy holds a great promising perspective for the detection of trace amounts of antibiotics in microsystems, which is crucial to our life. Additionally, the assay can also be used to detect other illegal additives by altering the appropriate antibodies or aptamers.
Collapse
Affiliation(s)
- Bing Liu
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226001, China.
| | - Shiya Zheng
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Haitao Li
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226001, China
| | - Junjie Xu
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226001, China
| | - Hanyu Tang
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226001, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou, 310058, China
| | - Yingchao Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China
| | - Fei Sun
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226001, China.
| | - Xiangwei Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China; Southeast University Shenzhen Research Institute, Shenzhen, 518000, China.
| |
Collapse
|
53
|
Laser-Induced Graphene Electrodes Modified with a Molecularly Imprinted Polymer for Detection of Tetracycline in Milk and Meat. SENSORS 2021; 22:s22010269. [PMID: 35009811 PMCID: PMC8749683 DOI: 10.3390/s22010269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/31/2022]
Abstract
Tetracycline (TC) is a widely known antibiotic used worldwide to treat animals. Its residues in animal-origin foods cause adverse health effects to consumers. Low-cost and real-time measuring systems of TC in food samples are, therefore, extremely needed. In this work, a three-electrode sensitive and label-free sensor was developed to detect TC residues from milk and meat extract samples, using CO2 laser-induced graphene (LIG) electrodes modified with gold nanoparticles (AuNPs) and a molecularly imprinted polymer (MIP) used as a synthetic biorecognition element. LIG was patterned on a polyimide (PI) substrate, reaching a minimum sheet resistance (Rsh) of 17.27 ± 1.04 Ω/sq. The o-phenylenediamine (oPD) monomer and TC template were electropolymerized on the surface of the LIG working electrode to form the MIP. Surface morphology and electrochemical techniques were used to characterize the formation of LIG and to confirm each modification step. The sensitivity of the sensor was evaluated by differential pulse voltammetry (DPV), leading to a limit of detection (LOD) of 0.32 nM, 0.85 nM, and 0.80 nM in buffer, milk, and meat extract samples, respectively, with a working range of 5 nM to 500 nM and a linear response range between 10 nM to 300 nM. The sensor showed good LOD (0.32 nM), reproducibility, and stability, and it can be used as an alternative system to detect TC from animal-origin food products.
Collapse
|
54
|
Li G, Row KH. Single-drop microextraction technique for the determination of antibiotics in environmental water. J Sep Sci 2021; 45:883-895. [PMID: 34919334 DOI: 10.1002/jssc.202100682] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 12/12/2022]
Abstract
Growing concerns related to antibiotic residues in environmental water have encouraged the development of rapid, sensitive, and accurate analytical methods. Single-drop microextraction has been recognized as an efficient approach for the isolation and preconcentration of several analytes from a complex sample matrix. Thus, single-drop microextraction techniques are cost-effective and less harmful to the environment, subscribing to green analytical chemistry principles. Herein, an overview and the current advances in single-drop microextraction for the determination of antibiotics in environmental water are presented were included. In particular, two main approaches used to perform single-drop microextraction (direct immersion-single-drop microextraction and headspace-single-drop microextraction) are reviewed. Furthermore, the impressive analytical features and future perspectives of single-drop microextraction are discussed in this review. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Guizhen Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong, 276005, P. R. China
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, 402751, Korea
| |
Collapse
|
55
|
Histidine Functionalized Gold Nanoparticles for Screening Aminoglycosides and Nanomolar Level Detection of Streptomycin in Water, Milk, and Whey. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9120358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aminoglycoside (AMG) antibiotics are being applied to treat infections caused by Gram-negative bacteria, mainly in livestock, and are prescribed only in severe cases because of their adverse impacts on human health and the environment. Monitoring antibiotic residues in dairy products relies on the accessibility of portable and efficient analytical techniques. Presently, high-throughput screening techniques have been proposed to detect several antimicrobial drugs having identical structural and functional features. The L-histidine functionalized gold nanoparticles (His@AuNPs) do not form a complex with other tested antibiotic classes but show high selectivity for AMG antibiotics. We used ligand-induced aggregation of His@AuNPs as a rapid and sensitive localized surface plasmon resonance (LSPR) assay for AMG antibiotics, producing longitudinal extinction shifts at 660 nm. Herein, we explore the practical application of His@AuNPs to detect streptomycin spiked in water, milk, and whey fraction of milk with nanomolar level sensitivity. The ability of the analytical method to recognize target analytes sensitively and rapidly is of great significance to perform monitoring, thus would certainly reassure widespread use of AMG antibiotics. The biosynthesis of hybrid organic–inorganic metal nanoparticles like His@AuNPs with desired size distribution, stability, and specific host–guest recognition proficiency, would further facilitate applications in various other fields.
Collapse
|
56
|
Zvereva EA, Sotnikov DV, Belichenko KA, Hendrickson OD, Shanin IA, Zherdev AV, Dzantiev BB. Development of Immunochromatographic Test System for Detection of Antibiotic Clinafloxacin and Its Application for Honey Control. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821060144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
57
|
Affibody Functionalized Beads for the Highly Sensitive Detection of Cancer Cell-Derived Exosomes. Int J Mol Sci 2021; 22:ijms222112014. [PMID: 34769444 PMCID: PMC8584739 DOI: 10.3390/ijms222112014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022] Open
Abstract
Exosomes belong to the class of extracellular vesicles of endocytic origin, which are regarded as a promising source of cancer biomarkers in liquid biopsy. As a result, an accurate, sensitive, and specific quantification of these nano-sized particles is of significant importance. Affinity-based approaches are recognized as the most valuable technique for exosome isolation and characterization. Indeed, Affibody biomolecules are a type of protein scaffold engineered with small size and enjoy the features of high thermal stability, affinity, and specificity. While the utilization of antibodies, aptamers, and other biologically active substances for exosome detection has been reported widely, there are no reports describing Affibody molecules’ usage for exosome detection. In this study, for the first time, we have proposed a novel strategy of using Affibody functionalized microbeads (AffiBeads) for exosome detection with a high degree of efficiency. As a proof-of-concept, anti-EGFR-AffiBeads were fabricated and applied to capture and detect human lung A549 cancer cell-derived EGFR-positive exosomes using flow cytometry and fluorescent microscopy. Moreover, the capture efficiency of the AffiBeads were compared with its counterpart antibody. Our results showed that the Affibody probe had a detection limit of 15.6 ng exosomes per mL (~12 exosomes per AffiBead). The approach proposed in the current study can be used for sensitive detection of low expression level markers on tumor-derived exosomes, providing a basis for early-stage cancer diagnosis.
Collapse
|
58
|
Perdomo SA, Ortega V, Jaramillo-Botero A, Mancilla N, Mosquera-DeLaCruz JH, Valencia DP, Quimbaya M, Contreras JD, Velez GE, Loaiza OA, Gómez A, de la Roche J. SenSARS: A Low-Cost Portable Electrochemical System for Ultra-Sensitive, Near Real-Time, Diagnostics of SARS-CoV-2 Infections. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 2021; 70:4007710. [PMID: 35582002 PMCID: PMC8843068 DOI: 10.1109/tim.2021.3119147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/13/2021] [Accepted: 09/24/2021] [Indexed: 05/08/2023]
Abstract
A critical path to solving the SARS-CoV-2 pandemic, without further socioeconomic impact, is to stop its spread. For this to happen, pre- or asymptomatic individuals infected with the virus need to be detected and isolated opportunely. Unfortunately, there are no current ubiquitous (i.e., ultra-sensitive, cheap, and widely available) rapid testing tools capable of early detection of SARS-CoV-2 infections. In this article, we introduce an accurate, portable, and low-cost medical device and bio-nanosensing electrode dubbed SenSARS and its experimental validation. SenSARS' device measures the electrochemical impedance spectra of a disposable bio-modified screen-printed carbon-based working electrode (SPCE) to the changes in the concentration of SARS-CoV-2 antigen molecules ("S" spike proteins) contained within a sub-microliter fluid sample deposited on its surface. SenSARS offers real-time diagnostics and viral load tracking capabilities. Positive and negative control tests were performed in phosphate-buffered saline (PBS) at different concentrations (between 1 and 50 fg/mL) of SARS-CoV-2(S), Epstein-Barr virus (EBV) glycoprotein gp350, and Influenza H1N1 M1 recombinant viral proteins. We demonstrate that SenSARS is easy to use, with a portable and lightweight (< 200 g) instrument and disposable test electrodes (
Collapse
Affiliation(s)
- Sammy A. Perdomo
- Facultad de Ingeniería y CienciasPontificia Universidad JaverianaCali760031Colombia
| | - Viviana Ortega
- Facultad de Ciencias Naturales y ExactasUniversidad del ValleCali760032Colombia
| | - Andres Jaramillo-Botero
- Chemistry and Chemical Engineering DivisionCalifornia Institute of TechnologyPasadenaCA91125USA
- Omicas ProgramPontificia Universidad JaverianaCali760031Colombia
| | - Nelson Mancilla
- Facultad de Ingeniería y CienciasPontificia Universidad JaverianaCali760031Colombia
| | | | | | - Mauricio Quimbaya
- Facultad de Ingeniería y CienciasPontificia Universidad JaverianaCali760031Colombia
| | - Juan David Contreras
- Facultad de Ingeniería y CienciasPontificia Universidad JaverianaCali760031Colombia
| | | | - Oscar A. Loaiza
- Facultad de Ingeniería y CienciasPontificia Universidad JaverianaCali760031Colombia
| | - Adriana Gómez
- Facultad de Ingeniería y CienciasPontificia Universidad JaverianaCali760031Colombia
| | | |
Collapse
|
59
|
Khan NS, Pradhan D, Choudhary S, Saxena P, Poddar NK, Jain AK. Immunoassay-based approaches for development of screening of chlorpyrifos. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-021-00282-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractChlorpyrifos (CPF) is an extensively used organophosphate pesticide for crop protection. However, there are concerns of it contaminating the environment and human health with estimated three lakh deaths annually. Detection of CPF in blood samples holds significance to avoid severe health outcomes due to continuous exposure. The most common techniques for CPF detection are Gas chromatography (GC) and high-performance liquid chromatography (HPLC). However, these techniques might not be feasible at the community healthcare level due to high-cost instrumentation, time-consuming sample preparation protocol and skilled analysts. Therefore, rapid, effective and economical methods such as immunoassay would be imperative for CPF detection in biological samples. The vital step in immunoassay development is the design of a potent immunogen from non-immunogenic molecules. The molecular modelling protocol could assist in redesigning known CPF linkers and inserting them at different substitutable positions of CPF to get distinctive CPF derivatives. Molecular docking and binding free energy analysis can be used to identify the CPF derivatives having a better binding affinity with carrier protein compared to CPF. The top-ranked CPF derivatives based on docking score and binding energy could be ideal for synthesis and immunogen development. The present review will comprehend technological trends in immunoassay kits for detecting chlorpyrifos from biological samples.
Collapse
|
60
|
Shaffaf T, Forouhi S, Ghafar-Zadeh E. Towards Fully Integrated Portable Sensing Devices for COVID-19 and Future Global Hazards: Recent Advances, Challenges, and Prospects. MICROMACHINES 2021; 12:915. [PMID: 34442537 PMCID: PMC8401608 DOI: 10.3390/mi12080915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 01/08/2023]
Abstract
Since the onset of the coronavirus disease 2019 (COVID-19) pandemic, this fatal disease has been the leading cause of the death of more than 3.9 million people around the world. This tragedy taught us that we should be well-prepared to control the spread of such infectious diseases and prevent future hazards. As a consequence, this pandemic has drawn the attention of many researchers to the development of portable platforms with short hands-on and turnaround time suitable for batch production in urgent pandemic situations such as that of COVID-19. Two main groups of diagnostic assays have been reported for the detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) including nucleic acid-based and protein-based assays. The main focus of this paper is on the latter, which requires a shorter time duration, less skilled technicians, and faces lower contamination. Furthermore, this paper gives an overview of the complementary metal-oxide-semiconductor (CMOS) biosensors, which are potentially useful for implementing point-of-care (PoC) platforms based on such assays. CMOS technology, as a predominant technology for the fabrication of integrated circuits, is a promising candidate for the development of PoC devices by offering the advantages of reliability, accessibility, scalability, low power consumption, and distinct cost.
Collapse
Affiliation(s)
- Tina Shaffaf
- Biologically Inspired Sensors and Actuators Laboratory (BioSA), York University, Toronto, ON M3J 1P3, Canada; (T.S.); (S.F.)
- Department of Biology, Faculty of Science, York University, Toronto, ON M3J 1P3, Canada
| | - Saghi Forouhi
- Biologically Inspired Sensors and Actuators Laboratory (BioSA), York University, Toronto, ON M3J 1P3, Canada; (T.S.); (S.F.)
- Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators Laboratory (BioSA), York University, Toronto, ON M3J 1P3, Canada; (T.S.); (S.F.)
- Department of Biology, Faculty of Science, York University, Toronto, ON M3J 1P3, Canada
- Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
61
|
Sbihi Y, El Abbadi N, Iddar A. Lateral flow immunogold assay as a rapid detection tool for screening of congenital hypothyroidism. J Immunoassay Immunochem 2021; 42:393-405. [PMID: 33634731 DOI: 10.1080/15321819.2021.1891931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Congenital hypothyroidism (CH) is one of the most common preventable causes of mental retardation. The majority of infants are diagnosed after detection through newborn screening programs using thyroid-stimulating hormone (TSH) test. A rapid immunochromatographic lateral flow assay based on monoclonal antibodies (MAbs) colloidal gold nanoparticles was developed in a sandwich format for the detection of TSH. Two MAbs binding distinct TSH epitopes are used; one is conjugated to the detection reagent while the other is immobilized at the test line on the membrane. The colloidal gold was prepared by the reduction of gold salt coupled with MAbs and this optimal concentration was determined by spectrophotometry method. The sensitivity of our developed lateral flow immunoassay was determined using 5, 10, 15, 25 and 50 μUI/mL of TSH. The color intensity of the test line was directly proportional to the TSH concentration and the visual limit of detection was 10 μUI/mL. Twenty samples of umbilical cord serum were analyzed by the developed strips and the intensity of the signal was in agreement with the results obtained by the conventional radioimmunoassay method. The results suggest that this rapid test can be used in initial screening for congenital hypothyroidism especially in rural areas.
Collapse
Affiliation(s)
- Younes Sbihi
- Biotechnology and Engineering of Biomolecules Unit, National Centre for Nuclear Energy, Science and Technology (Cnesten-morocco), Rabat, Morocco
| | - Najia El Abbadi
- Biotechnology and Engineering of Biomolecules Unit, National Centre for Nuclear Energy, Science and Technology (Cnesten-morocco), Rabat, Morocco
| | - Abdelghani Iddar
- Biotechnology and Engineering of Biomolecules Unit, National Centre for Nuclear Energy, Science and Technology (Cnesten-morocco), Rabat, Morocco
| |
Collapse
|
62
|
Yang H, He Q, Eremin SA, Pan J, Zou Y, Cui X, Zhao S. Fluorescence polarization immunoassay for rapid determination of dehydroepiandrosterone in human urine. Anal Bioanal Chem 2021; 413:4459-4469. [PMID: 34137913 DOI: 10.1007/s00216-021-03403-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/14/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022]
Abstract
In this paper, five fluorescein-labeled dehydroepiandrosterone (DHEA) derivatives (tracers) with different chain lengths between the fluorescein and hapten were synthesized and featured so as to establish a fluorescence polarization immunoassay (FPIA) for DHEA detection in human urine samples with previously prepared polyclonal antibody against DHEA. The outcomes of the structure of tracer on FPIA sensitivity were investigated. Under the optimal condition, the fluorescence polarization value (FP) decreases linearly in DHEA concentration, ranging from 1.6 to 243.3 ng mL-1, with the limit of detection of 1.1 ng mL-1 and IC50 value of 25.1 ng mL-1. Moreover, the developed FPIA was time-saving as it could complete the detection within 3 min. FPIA and commercial enzyme-linked immunosorbent assay kit were both applied to analyze the spiked human urine samples with DHEA. Excellent recoveries (92.1-108.0%) and satisfactory correlation coefficient (R2 = 0.98) were acquired with the two methods, indicating that the developed FPIA was a fast and efficient screening immunoassay with accuracy and sensitivity for DHEA detection in human urine samples. Graphical abstract.
Collapse
Affiliation(s)
- Huiyi Yang
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Qiyi He
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Sergei A Eremin
- Faculty of Chemistry, M. V. Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Junkang Pan
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Yikui Zou
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Xiping Cui
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China.
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China.
| |
Collapse
|
63
|
Geng Y, Zhang S, Wang Y, Ye N, Xiang Y. Aptamer act as fluorescence switching of bovine serum albumin stabilized gold nanoclusters for ultrasensitive detection of kanamycin in milk. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
64
|
Lu G, Chen Q, Li Y, Liu Y, Zhang Y, Huang Y, Zhu L. Status of antibiotic residues and detection techniques used in Chinese milk: A systematic review based on cross-sectional surveillance data. Food Res Int 2021; 147:110450. [PMID: 34399452 DOI: 10.1016/j.foodres.2021.110450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 01/18/2023]
Abstract
Antibiotic residues (ARs) in food of animal origin are of worldwide concern, particularly in China, the world's largest producer and consumer of antibiotics. Aiming to provide a reference for the use of antibiotics in dairy cows, for supervision and management departments in the detection of related antibiotics, and for guiding the safe use of antibiotics in food, this systematic review was carried out to determine the prevalence of ARs and antibiotic detection techniques in Chinese milk over the past three decades. The systematic review follows the PRSIMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines. Both English (Cochrane, Embase, MEDLINE, PubMed, and Web of Science) and Chinese databases (Chinese National Knowledge Infrastructure, China Science and Technology Journal Database, and WanFang Database) were systematically searched, from inception to 31 July 2020. Among the 3131 citations screened, 46 active surveillance cross-sectional studies published between 1988 and 2020 in 26 Chinese provinces were eligible, providing antibiotic levels for a total of 8788 milk samples. Although the AR rates in fresh and sterilized milk fluctuate, they have largely declined in recent years. Among the 18 evaluated antibiotics, sulfamethoxazole, chloramphenicol, and trimethoprim are primary antibiotics with high residual rates. The most frequently used technique to monitor antibiotic levels in milk is 2,3,5-Triphenyltetrazolium chloride (TTC) staining. This review confirmed the importance of food safety monitoring and surveillance systems in preventing antibiotic exceedances in food. Several lessons learned from antibiotic surveillance and supervision in China were revealed. The provision of education to rural farmers should be strengthened to enhance their knowledge on antibiotic use in animal agriculture. Moreover, a standard operational protocol for screening and targeting antibiotics in dairy products should be considered to increase the comparability between cross-sectional active surveillance studies of AR in milk.
Collapse
Affiliation(s)
- Guangyu Lu
- Department of Public Health and Preventative Medicine, Medical College of Yangzhou University, Yangzhou 225009, China.
| | - Qi Chen
- Heidelberg Institute of Global Health, Medical School, Ruprecht-Karls-University, Heidelberg 69117, Germany.
| | - Yuping Li
- Department of Neurosurgery, Jiangsu North People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou University, Yangzhou 225007, China.
| | - Yuting Liu
- Nursing School of Yangzhou University, Yangzhou University, Yangzhou 225009, China
| | - Yuying Zhang
- Department of Public Health and Preventative Medicine, Medical College of Yangzhou University, Yangzhou 225009, China
| | - Yujia Huang
- Department of Neurosurgery, Jiangsu North People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou University, Yangzhou 225007, China
| | - Lei Zhu
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
65
|
Zhou S, Xu L, Kuang H, Xiao J, Xu C. Immunoassays for rapid mycotoxin detection: state of the art. Analyst 2021; 145:7088-7102. [PMID: 32990695 DOI: 10.1039/d0an01408g] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The widespread presence of mycotoxins in nature not only poses a huge health risk to people in terms of food but also causes incalculable losses to the agricultural economy. As a rapidly developing technology in recent years, the mycotoxin immunoassay technology has approached or even surpassed the traditional chromatography technology in some aspects. Using this approach, the lateral flow immunoassay (LFIA) has attracted the interest of researchers due to its user-friendly operation, short time consumption, little interference, low cost, and ability to process a large number of samples at the same time. This paper provides an overview of the immunogens commonly used for mycotoxins, the development of antibodies, and the use of gold nanoparticles, quantum dots, carbon nanoparticles, enzymes, and fluorescent microsphere labeling materials for the construction of LFIAs to improve detection sensitivity. The analytical performance, detection substrates, detection limits or detection ranges of LFIA for mycotoxins have been listed in recent years. Finally, we describe the future outlook for the field, predicting that portable mobile detection devices and simultaneous quantitative detection of multiple mycotoxins is one of the important directions for future development.
Collapse
Affiliation(s)
- Shengyang Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, China.
| | | | | | | | | |
Collapse
|
66
|
Xiao X, Hu S, Lai X, Peng J, Lai W. Developmental trend of immunoassays for monitoring hazards in food samples: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
67
|
Shaffaf T, Ghafar-Zadeh E. COVID-19 Diagnostic Strategies Part II: Protein-Based Technologies. Bioengineering (Basel) 2021; 8:54. [PMID: 33925032 PMCID: PMC8145709 DOI: 10.3390/bioengineering8050054] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/08/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
After the initiation of the current outbreak, humans' lives have been profoundly impacted by COVID-19. During the first months, no rapid and reliable detecting tool was readily available to sufficiently respond to the requirement of massive testing. In this situation, when the development of an effective vaccine requires at least a few months, it is crucial to be prepared by developing and commercializing affordable, accurate, rapid and adaptable biosensors not only to fight Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) but also to be armed to avoid the pandemic in the earliest stages in the future. The COVID-19 diagnostic tools are categorized into two main groups of Nucleic Acid (NA)-based and protein-based tests. To date, nucleic acid-based detection has been announced as the gold-standard strategy for coronavirus detection; however, protein-based tests are promising alternatives for rapid and large-scale screening of susceptible groups. In this review, we discuss the current protein-based biosensing tools, the research advances and the potential protein-detecting strategies for COVID-19 detection. This narrative review aims to highlight the importance of the diagnostic tests, encourage the academic research groups and the companies to eliminate the shortcomings of the current techniques and step forward to mass-producing reliable point-of-care (POC) and point-of-need (PON) adaptable diagnostic tools for large-scale screening in the future outbreaks.
Collapse
Affiliation(s)
- Tina Shaffaf
- Biologically Inspired Sensors and Actuators Laboratory (BioSA), York University, Toronto, ON M3J1P3, Canada;
- Department of Biology, Faculty of Science, York University, Toronto, ON M3J1P3, Canada
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators Laboratory (BioSA), York University, Toronto, ON M3J1P3, Canada;
- Department of Biology, Faculty of Science, York University, Toronto, ON M3J1P3, Canada
- Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON M3J1P3, Canada
| |
Collapse
|
68
|
Poungmalai P, Buakeaw A, Puthong S, Khongchareonporn N. A specific monoclonal antibody for chlortetracycline detection in milk and honey samples based on ELISA. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1897531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Panicha Poungmalai
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Anumart Buakeaw
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Songchan Puthong
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Nanthika Khongchareonporn
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
- Food Risk Hub, Research Unit of Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
69
|
Ahmed B, Syed A, Ali K, Elgorban AM, Khan A, Lee J, Al-Shwaiman HA. Synthesis of gallotannin capped iron oxide nanoparticles and their broad spectrum biological applications. RSC Adv 2021; 11:9880-9893. [PMID: 35423492 PMCID: PMC8695504 DOI: 10.1039/d1ra00220a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022] Open
Abstract
Green synthesized nanoparticles (NPs) have attracted enormous attention for their clinical and non-clinical applications. A natural polyphenol, gallo-tannin (GT) was used to reduce and cap the Fe2O3-NPs. GT-Fe2O3-NPs were synthesized following co-precipitation of FeCl3 and FeSO4·7H2O with GT. Fe2O3-NPs absorbed light at 380 nm. Physicochemically, Fe2O3-NPs were spherical with slight aggregation and average diameter of 12.85 nm. X-ray diffraction confirmed crystallinity and EDX revealed the elemental percentage of iron and oxygen as 21.7% and 42.11%, respectively. FT-IR data confirmed the adsorption of gallo-tannin functional groups. Multiple drug-resistant (MDR) Escherichia coli (ESβL), Pseudomonas aeruginosa (ESβL), and Staphylococcus aureus were found susceptible to 500-1000 μg GT-Fe2O3-NPs per ml. In synergy, Fe2O3-NPs enhanced the efficiency of some antibiotics. GT-Fe2O3 NPs showed significant (P ≤ 0.05) inhibition of growth and biofilm against MDR E. coli, P. aeruginosa, and S. aureus causing morphological and biofilm destruction. Violacein production (quorum sensing mediated) by C. violaceum was inhibited by GT-Fe2O3-NPs in a concentration-dependent manner with a maximum decrease of 3.1-fold. A decrease of 11-fold and 2.32-fold in fungal mycelial growth and human breast cancer (MCF-7) cell viability, respectively was evident. This study suggests a plausible role of gallo-tannin capped Fe2O3-NPs as an alternative antibacterial, antiquorum sensing, antibiofilm, antifungal, and anti-proliferative agent.
Collapse
Affiliation(s)
- Bilal Ahmed
- School of Chemical Engineering, Yeungnam University Gyeongsan Republic of Korea
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University Aligarh 202002 India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Khursheed Ali
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University Aligarh 202002 India
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Afroz Khan
- Department of Physics, Faculty of Science, Aligarh Muslim University Aligarh 202002 India
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University Gyeongsan Republic of Korea
| | - Hind A Al-Shwaiman
- Department of Botany and Microbiology, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| |
Collapse
|
70
|
Liu Y, Liu B, Huang P, Wu FY, Ma L. Concentration-dependent photoluminescence carbon dots for visual recognition and detection of three tetracyclines. Anal Bioanal Chem 2021; 413:2565-2575. [PMID: 33651120 DOI: 10.1007/s00216-021-03221-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
Concentration-dependent photoluminescence carbon dots (CDs) have been successfully synthesized through the one-step hydrothermal treatment of o-phthalic acid and ethylenediamine. The CDs possessed higher fluorescence quantum yield, up to 39.22%, exhibiting distinguished optical property, water solubility, and stability. The CDs that emit strong blue-green fluorescence can visually identify and determine tetracycline (TC), oxytetracycline (OTC), and chlortetracycline (CTC). TC quenched the fluorescence of CDs at 500 nm owing to the inner filter effect; OTC behaved similarly, but the emission wavelength of CDs was red-shifted to 515 nm. Inversely, once CTC was introduced to CDs solution, the fluorescence increased and the emission peak was blue-shifted to 450 nm. Bandgap transition and electrostatic interaction were proposed to be the mechanisms for the detection of OTC and CTC by CDs. Wide linear relationships were established for TC, OTC, and CTC with the limits of detection to be 50 nM, 36 nM, and 373 nM, respectively. Furthermore, the nanoscale probe constructed by this system has been applied to detect tetracyclines (TCs) in complex samples with satisfying recoveries (93.2-114%) and was designed as a portable test strip sensor for visually on-site TCs of honey sample screening. Accordingly, the preparation process of the nano fluorescent probe is simple and environmentally friendly, and the probe has a specific recognition ability for tetracyclines. The synthesized CDs in this work provide a new orientation for fast, effective, and visual real-time detection of tetracycline in actual samples.
Collapse
Affiliation(s)
- Ying Liu
- College of Chemistry, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Bowen Liu
- College of Chemistry, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Pengcheng Huang
- College of Chemistry, Nanchang University, Nanchang, 330031, Jiangxi, China. .,Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, 330031, Jiangxi, China.
| | - Fang-Ying Wu
- College of Chemistry, Nanchang University, Nanchang, 330031, Jiangxi, China. .,Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, 330031, Jiangxi, China.
| | - Lihua Ma
- College of Science and Engineering, University of Houston at Clear Lake, 2700 Bay Area Blvd, Houston, TX, 77058, USA.
| |
Collapse
|
71
|
Recent development of antibiotic detection in food and environment: the combination of sensors and nanomaterials. Mikrochim Acta 2021; 188:21. [PMID: 33404741 DOI: 10.1007/s00604-020-04671-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
In recent years, the abuse of antibiotics has led to the pollution of soil and water environment, not only poultry husbandry and food manufacturing will be influenced to different degree, but also the human body will produce antibody. The detection of antibiotic content in production and life is imperative. In this review, we provide comprehensive information about chemical sensors and biosensors for antibiotic detection. We classify the currently reported antibiotic detection technologies into chromatography, mass spectrometry, capillary electrophoresis, optical detection, and electrochemistry, introduce some representative examples for each technology, and conclude the advantages and limitations. In particular, the optical and electrochemical methods based on nanomaterials are discussed and evaluated in detail. In addition, the latest research in the detection of antibiotics by photosensitive materials is discussed. Finally, we summarize the pros and cons of various antibiotic detection methods and present a discussion and outlook on the expansion of cross-scientific areas. The synthesis and application of optoelectronic nanomaterials and aptamer screening are discussed and prospected, and the future trends and potential impact of biosensors in antibiotic detection are outlined.Graphical abstract.
Collapse
|
72
|
A broad-spectrum sensing strategy for the tetracycline family of antibiotics based on an ovalbumin-stabilized gold nanocluster and its application in a pump-free microfluidic sensing platform. Biosens Bioelectron 2021; 171:112701. [PMID: 33096433 DOI: 10.1016/j.bios.2020.112701] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/26/2020] [Accepted: 10/06/2020] [Indexed: 11/23/2022]
Abstract
With increasing concerns related to the abuse of antibiotics in livestock production worldwide, simple and rapid screening methods for monitoring antibiotics in animal-derived foods are highly desirable. In this study, we propose a facile synthesis strategy for gold nanoclusters (AuNCs) exhibiting remarkable optical properties by employing ovalbumin (OVA) as the template. The OVA-stabilized AuNCs (AuNCs@OVA) manifest intriguing multicolour fluorescence and a gradually declining fluorescence intensity at 650 nm with an increasing concentration of tetracycline family antibiotics (TCs) including tetracycline, chlorotetracycline, oxytetracycline, and doxycycline, which are a widely used class of antibiotics for treating infections in food-producing animals. This performance makes AuNCs@OVA particularly attractive as a broad-spectrum detector for TCs sensing, and we demonstrate that this simple sensing procedure can be realized in real time by directly mixing the target sample and AuNCs@OVA components. Based on this sensing strategy, a microfluidic lab-on-a-chip platform was constructed for the ultrarapid detection of TCs within 30 s. The detection limit was determined to be 0.09 μg/mL in chicken muscle extract, with the recovery ranging from 86.20% to 93.57% in spiked samples. This work provides not only a broad-spectrum sensing strategy for TCs but also a pump-free microfluidic chip with the advantages of being portable, ultrarapid, and low cost, offering a viable alternative for on-the-spot ultrarapid screening of TCs.
Collapse
|
73
|
Khajavian Z, Esmaelpourfarkhani M, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. A highly sensitive, simple and label-free fluorescent aptasensor for tobramycin sensing based on PicoGreen intercalation into DNA duplex regions of three-way junction origami. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105657] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
74
|
Lei X, Xu X, Liu L, Kuang H, Xu L, Hao C. Immunochromatographic test strip for the rapid detection of tricaine in fish samples. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1752155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Xianlu Lei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Changlong Hao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| |
Collapse
|