51
|
Bian M, Sun Y, Liu Y, Xu Z, Fan R, Liu Z, Liu W. A Gold(I) Complex Containing an Oleanolic Acid Derivative as a Potential Anti‐Ovarian‐Cancer Agent by Inhibiting TrxR and Activating ROS‐Mediated ERS. Chemistry 2020; 26:7092-7108. [DOI: 10.1002/chem.202000045] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/03/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Mianli Bian
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 P. R. China
| | - Ying Sun
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 P. R. China
| | - Yuanhao Liu
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 P. R. China
| | - Zhongren Xu
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 P. R. China
| | - Rong Fan
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 P. R. China
| | - Ziwen Liu
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 P. R. China
| | - Wukun Liu
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 P. R. China
- State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing 210009 P. R. China
- State Key Laboratory of Coordination Chemistry Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
52
|
Liu Y, Feng X, Yu Y, Zhao Q, Tang C, Zhang J. A review of bioselenol-specific fluorescent probes: Synthesis, properties, and imaging applications. Anal Chim Acta 2020; 1110:141-150. [PMID: 32278389 DOI: 10.1016/j.aca.2020.03.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 01/25/2023]
Abstract
Bioselenols are important substances for the maintenance of physiological balance and offer anticancer properties; however, their causal mechanisms and effectiveness have not been assessed. One way to explore their physiological functions is the in vivo detection of bioselenols at the molecular level, and one of the most efficient ways to do so is to use fluorescent probes. Various types of bioselenol-specific fluorescent probes have been synthesized and optimized using chemical simulations and by improving biothiol fluorescent probes. Here, we review recent advances in bioselenol-specific fluorescent probes for selenocysteine (Sec), thioredoxin reductase (TrxR), and hydrogen selenide (H2Se). In particular, the molecular design principles of different types of bioselenols, their corresponding sensing mechanisms, and imaging applications are summarized.
Collapse
Affiliation(s)
- Yuning Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaohui Feng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yanan Yu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
53
|
Krasavin M, Žalubovskis R, Grandāne A, Domračeva I, Zhmurov P, Supuran CT. Sulfocoumarins as dual inhibitors of human carbonic anhydrase isoforms IX/XII and of human thioredoxin reductase. J Enzyme Inhib Med Chem 2020; 35:506-510. [PMID: 31928252 PMCID: PMC7006680 DOI: 10.1080/14756366.2020.1712596] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The hypothesis that sulfocoumarin acting as inhibitors of human carbonic anhydrase (CA, EC 4.2.1.1) cancer-associated isoforms hCA IX and – hCA XII is being able to also inhibit thioredoxin reductase was verified and confirmed. The dual targeting of two cancer cell defence mechanisms, i.e. hypoxia and oxidative stress, may both contribute to the observed antiproliferative profile of these compounds against many cancer cell lines. This unprecedented dual anticancer mechanism may lead to a new approach for designing innovative therapeutic agents.
Collapse
Affiliation(s)
- Mikhail Krasavin
- Department of Chemistry, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
| | - Aiga Grandāne
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | | | - Petr Zhmurov
- Department of Chemistry, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Claudiu T Supuran
- Neurofarba Department, Universita degli Studi di Firenze, Florence, Italy
| |
Collapse
|
54
|
Hartmann AK, Gudipati S, Pettenuzzo A, Ronconi L, Rouge JL. Chimeric siRNA-DNA Surfactants for the Enhanced Delivery and Sustained Cytotoxicity of a Gold(III) Metallodrug. Bioconjug Chem 2020; 31:1063-1069. [DOI: 10.1021/acs.bioconjchem.0c00047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Alyssa K. Hartmann
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Saketh Gudipati
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Andrea Pettenuzzo
- National University of Ireland Galway, School of Chemistry, University Road, H91 TK33 Galway, Ireland
| | - Luca Ronconi
- National University of Ireland Galway, School of Chemistry, University Road, H91 TK33 Galway, Ireland
| | - Jessica L. Rouge
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
55
|
Pickering IJ, Cheng Q, Rengifo EM, Nehzati S, Dolgova NV, Kroll T, Sokaras D, George GN, Arnér ESJ. Direct Observation of Methylmercury and Auranofin Binding to Selenocysteine in Thioredoxin Reductase. Inorg Chem 2020; 59:2711-2718. [DOI: 10.1021/acs.inorgchem.9b03072] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | | | | | | | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource (SSRL), SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource (SSRL), SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | | | - Elias S. J. Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| |
Collapse
|
56
|
Jovanović M, Zhukovsky D, Podolski-Renić A, Žalubovskis R, Dar'in D, Sharoyko V, Tennikova T, Pešić M, Krasavin M. Further exploration of DVD-445 as a lead thioredoxin reductase (TrxR) inhibitor for cancer therapy: Optimization of potency and evaluation of anticancer potential. Eur J Med Chem 2020; 191:112119. [PMID: 32087464 DOI: 10.1016/j.ejmech.2020.112119] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023]
Abstract
A series of analogs of the earlier reported lead compound DVD-445 (thioredoxin reductase inhibitor with anticancer activity) has been synthesized via a modified Ugi reaction and investigated. Seven most potent compounds (with IC50 below 5.00 μM against recombinant rTrxR1 enzyme) were examined for their effect on cell growth and viability, oxidative stress induction and P-glycoprotein (P-gp) inhibition in human glioblastoma cells cell line U87 and its corresponding multidrug resistant (MDR) cell line U87-TxR. Several of these frontrunner compounds were shown to be superior over DVD-445. Besides providing promising candidates for anticancer therapy, our study further validates the small electrophilic Ugi Michael acceptor (UMA) chemotype as efficacious inhibitor of thioredoxin reductase.
Collapse
Affiliation(s)
- Mirna Jovanović
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia
| | - Daniil Zhukovsky
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Ana Podolski-Renić
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, LV-1006, Latvia; Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, LV-1048, Latvia
| | - Dmitry Dar'in
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Vladimir Sharoyko
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Tatiana Tennikova
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Milica Pešić
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia.
| | - Mikhail Krasavin
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation.
| |
Collapse
|
57
|
Wang Y, Zhang W, Dong J, Gao J. Design, synthesis and bioactivity evaluation of coumarin-chalcone hybrids as potential anticancer agents. Bioorg Chem 2019; 95:103530. [PMID: 31887477 DOI: 10.1016/j.bioorg.2019.103530] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/25/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022]
Abstract
The selenoprotein thioredoxin reductases (TrxRs) have been extensively studied as a potential target for the development of anticancer drugs. Herein, we designed, synthesized, and evaluated a series of coumarin-chalcone hybrids as TrxR inhibitors. Most of them exhibited enhancing anticancer activity than Xanthohumol (Xn). The representative Xn-2 (IC50 = 3.6 μM) was a fluorescence agent, wherein drug uptake can be readily monitored in living cells by red fluorescence imaging. Xn-2 down-regulated the expression of TrxR, remarkedly induced ROS accumulation to activate mitochondrial apoptosis pathway. Furthermore, Xn-2 inhibited cancer cell metastasis and abolished the colony formation ability of cancer cells. Taken together, these results highlight that compound Xn-2 may be a promising theranostic TrxR inhibitor for human cancer therapy.
Collapse
Affiliation(s)
- Yu Wang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou 450052, Henan, China
| | - Wenda Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou 450052, Henan, China.
| | - Junqiang Dong
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou 450052, Henan, China
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou 450052, Henan, China.
| |
Collapse
|
58
|
Korman DB, Nekrasova EI, Ostrovskaya LA, Ryabaya OO, Bluhterova NV, Abzaeva KA. The Sensitivity of Human Tumor Cells to the Cytotoxicity of Gold Polyacrylate (Aurumacryl). Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919060125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
59
|
Wen C, Wang H, Wu X, He L, Zhou Q, Wang F, Chen S, Huang L, Chen J, Wang H, Ye W, Li W, Yang X, Liu H, Peng J. ROS-mediated inactivation of the PI3K/AKT pathway is involved in the antigastric cancer effects of thioredoxin reductase-1 inhibitor chaetocin. Cell Death Dis 2019; 10:809. [PMID: 31649256 PMCID: PMC6813365 DOI: 10.1038/s41419-019-2035-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 07/17/2019] [Accepted: 08/02/2019] [Indexed: 12/24/2022]
Abstract
Novel drugs are urgently needed for gastric cancer (GC) treatment. The thioredoxin-thioredoxin reductase (TRX-TRXR) system has been found to play a critical role in GC tumorigenesis and progression. Thus, agents that target the TRX-TRXR system may be highly efficacious as GC treatments. In this study, we showed that chaetocin, a natural product isolated from the Chaetomium species of fungi, inhibited proliferation, induced G2/M phase arrest and caspase-dependent apoptosis in both in vitro and in vivo models (cell xenografts and patient-derived xenografts) of GC. Chaetocin inactivated TRXR-1, resulting in the accumulation of reactive oxygen species (ROS) in GC cells; overexpression of TRX-1 as well as cotreatment of GC cells with the ROS scavenger N-acetyl-L-cysteine attenuated chaetocin-induced apoptosis; chaetocin-induced apoptosis was significantly increased when GC cells were cotreated with auranofin. Moreover, chaetocin was shown to inactivate the PI3K/AKT pathway by inducing ROS generation; AKT-1 overexpression also attenuated chaetocin-induced apoptosis. Taken together, these results reveal that chaetocin induces the excessive accumulation of ROS via inhibition of TRXR-1. This is followed by PI3K/AKT pathway inactivation, which ultimately inhibits proliferation and induces caspase-dependent apoptosis in GC cells. Chaetocin therefore may be a potential agent for GC treatment.
Collapse
Affiliation(s)
- Chuangyu Wen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huihui Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaobin Wu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lu He
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qian Zhou
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fang Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Siyu Chen
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Key Laboratory Animal Lab, Guangzhou, Guangdong, China
| | - Lanlan Huang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Junxiong Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huashe Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weibiao Ye
- Dongguan Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Wende Li
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Key Laboratory Animal Lab, Guangzhou, Guangdong, China
| | - Xiangling Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huanliang Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China. .,Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Junsheng Peng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China. .,Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China. .,School of Nursing, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
60
|
Abstract
Significance: Redox homeostasis is finely tuned and governed by distinct intracellular mechanisms. The dysregulation of this either by external or internal events is a fundamental pathophysiologic base for many pulmonary diseases. Recent Advances: Based on recent discoveries, it is increasingly clear that cellular redox state and oxidation of signaling molecules are critical modulators of lung disease and represent a final common pathway that leads to poor respiratory outcomes. Critical Issues: Based on the wide variety of stimuli that alter specific redox signaling pathways, improved understanding of the disease and patient-specific alterations are needed for the development of therapeutic targets. Further Directions: For the full comprehension of redox signaling in pulmonary disease, it is essential to recognize the role of reactive oxygen intermediates in modulating biological responses. This review summarizes current knowledge of redox signaling in pulmonary development and pulmonary vascular disease.
Collapse
Affiliation(s)
- Gaston Ofman
- Redox Biology Laboratory, Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Trent E Tipple
- Redox Biology Laboratory, Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
61
|
Ofman G, Tipple TE. Antioxidants & bronchopulmonary dysplasia: Beating the system or beating a dead horse? Free Radic Biol Med 2019; 142:138-145. [PMID: 30769161 DOI: 10.1016/j.freeradbiomed.2019.01.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/13/2019] [Accepted: 01/28/2019] [Indexed: 12/21/2022]
Abstract
Preterm birth is a primary cause of worldwide childhood mortality. Bronchopulmonary dysplasia, characterized by impaired alveolar and lung vascular development, affects 25-50% of extremely low birth weight (BW; <1 kg) infants. Abnormalities in lung function persist into childhood in affected infants and are second only to asthma in terms of childhood respiratory disease healthcare costs. While advances in the medical care of preterm infants have reduced mortality, the incidence of BPD has not decreased in the past 10 years. Reactive oxygen intermediates play a key role in the development of lung disease but, despite promising preclinical therapies, antioxidants have failed to translate into meaningful clinical interventions to decrease the incidence of lung disease in premature infants. In this review we will summarize the state of the art research developments in regards to antioxidants and premature lung disease and discuss the limitations of antioxidant therapies in order to more fully comprehend the reasons why therapeutic antioxidant administration failed to prevent BPD. Finally we will review promising therapeutic strategies and targets.
Collapse
Affiliation(s)
- Gaston Ofman
- Division of Neonatology, Neonatal Redox Biology Laboratory, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Trent E Tipple
- Division of Neonatology, Neonatal Redox Biology Laboratory, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
62
|
Jovanović M, Zhukovsky D, Podolski-Renić A, Domračeva I, Žalubovskis R, Senćanski M, Glišić S, Sharoyko V, Tennikova T, Dar'in D, Pešić M, Krasavin M. Novel electrophilic amides amenable by the Ugi reaction perturb thioredoxin system via thioredoxin reductase 1 (TrxR1) inhibition: Identification of DVD-445 as a new lead compound for anticancer therapy. Eur J Med Chem 2019; 181:111580. [PMID: 31400708 DOI: 10.1016/j.ejmech.2019.111580] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022]
Abstract
A series of peptidomimetic compounds incorporating an electrophilic moiety was synthesized using the Ugi reaction. These compounds (termed the Ugi Michael acceptors or UMAs) were designed to target the selenocysteine catalytic residue of thioredoxin reductase 1 (TrxR1), a promising cancer target. The compounds were assessed for their potential to inhibit TrxR1 using human neuroblastoma (SH-SY5Y) cell lysate. Based on this initial screening, six compounds were selected for testing against recombinant rat TrxR1 and in the insulin assay to reveal low-micromolar to submicromolar potency of these inhibitors. The same frontrunner compounds were evaluated for their ability to exert antiproliferative activity and induce cell death and this activity was compared to the UMA effects on the levels of reactive oxygen and nitrogen species (RONS). Collectively, the UMA compounds class presented itself as a rich source of leads for TrxR1 inhibitor discovery for anticancer application. Compound 7 (DVD-445) was nominated a lead for further optimization.
Collapse
Affiliation(s)
- Mirna Jovanović
- Institute for Biological Research "Siniša Stanković", University of Belgrade, 11060, Belgrade, Serbia
| | - Daniil Zhukovsky
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Ana Podolski-Renić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, 11060, Belgrade, Serbia
| | - Ilona Domračeva
- Latvian Institute of Organic Synthesis, Riga, LV-1006, Latvia
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, LV-1006, Latvia; Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, LV-1048, Latvia
| | - Milan Senćanski
- Laboratory for Bioinformatics and Computational Chemistry, Institute of Nuclear Sciences VINCA, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| | - Sanja Glišić
- Laboratory for Bioinformatics and Computational Chemistry, Institute of Nuclear Sciences VINCA, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| | - Vladimir Sharoyko
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Tatiana Tennikova
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Dmitry Dar'in
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Milica Pešić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, 11060, Belgrade, Serbia.
| | - Mikhail Krasavin
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation.
| |
Collapse
|
63
|
Liao J, Wang L, Wu Z, Wang Z, Chen J, Zhong Y, Jiang F, Lu Y. Identification of phenazine analogue as a novel scaffold for thioredoxin reductase I inhibitors against Hep G2 cancer cell lines. J Enzyme Inhib Med Chem 2019; 34:1158-1163. [PMID: 31179772 PMCID: PMC6567043 DOI: 10.1080/14756366.2019.1624541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Even though phenazines have been extensively reported as anticancer molecules, the molecular target of these compounds is severely lagging behind. Our study consequently focuses on the anticancer target of a phenazine analogue (CPUL1) for its potently antitumor activities in initial stage. Along with redox status courses of Hep G2 cells, thioredoxin reductase I (TrxR1) was speculated as anticancer target of CPUL1. By virtue of zymologic, immunological and molecular biological experiments, we demonstrated that TrxR1 could be the anticancer target of CPUL1. The knowledge on phenazine targeting to TrxR1 have not been reported previously. Thus, it can provide valuable information for further development of the TrxR1 inhibitors.
Collapse
Affiliation(s)
- Jianming Liao
- a School of Life Science and Technology , China Pharmaceutical University , Nanjing , China
| | - Linlin Wang
- a School of Life Science and Technology , China Pharmaceutical University , Nanjing , China
| | - Zhongxi Wu
- b School of Engineering , China Pharmaceutical University , Nanjing , China
| | - Zhixiang Wang
- b School of Engineering , China Pharmaceutical University , Nanjing , China
| | - Jun Chen
- a School of Life Science and Technology , China Pharmaceutical University , Nanjing , China
| | - Yucheng Zhong
- a School of Life Science and Technology , China Pharmaceutical University , Nanjing , China
| | - Feng Jiang
- b School of Engineering , China Pharmaceutical University , Nanjing , China
| | - Yuanyuan Lu
- a School of Life Science and Technology , China Pharmaceutical University , Nanjing , China
| |
Collapse
|
64
|
Jia JJ, Geng WS, Wang ZQ, Chen L, Zeng XS. The role of thioredoxin system in cancer: strategy for cancer therapy. Cancer Chemother Pharmacol 2019; 84:453-470. [DOI: 10.1007/s00280-019-03869-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 05/04/2019] [Indexed: 01/16/2023]
|
65
|
Bian M, Fan R, Zhao S, Liu W. Targeting the Thioredoxin System as a Strategy for Cancer Therapy. J Med Chem 2019; 62:7309-7321. [PMID: 30963763 DOI: 10.1021/acs.jmedchem.8b01595] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Thioredoxin reductase (TrxR) participates in the regulation of redox reactions in organisms. It works mainly via its substrate molecule, thioredoxin, to maintain the redox balance and regulate signal transduction, which controls cell proliferation, differentiation, death, and other important physiological processes. In recent years, increasing evidence has shown that the overactivation of TrxR is related to the development of tumors. The exploration of TrxR-targeted antitumor drugs has attracted wide attention and is expected to provide new therapies for cancer treatment. In this perspective, we highlight the specific relationship between TrxR and apoptotic signaling pathways. The cytoplasm and mitochondria both contain TrxR, resulting in the activation of apoptosis. TrxR activity influences reactive oxygen species (ROS) and further regulates the inflammatory signaling pathway. In addition, we discuss representative TrxR inhibitors with anticancer activity and analyze the challenges in developing TrxR inhibitors as anticancer drugs.
Collapse
Affiliation(s)
- Mianli Bian
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China
| | - Rong Fan
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China
| | - Sai Zhao
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China.,Institute of New Medicine Research , Nanjing Hicin Pharmaceutical Co. Ltd. , Nanjing 210046 , P. R. China
| | - Wukun Liu
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China.,State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing 210009 , P. R. China
| |
Collapse
|
66
|
Bakulina O, Bannykh A, Jovanović M, Domračeva I, Podolski-Renić A, Žalubovskis R, Pešić M, Dar'in D, Krasavin M. Design, synthesis, and biological evaluation of novel derivatives of dithiodiglycolic acid prepared via oxidative coupling of thiols. J Enzyme Inhib Med Chem 2019; 34:665-671. [PMID: 30746961 PMCID: PMC6374954 DOI: 10.1080/14756366.2019.1575372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Human thioredoxin reductase 1 (TrxR1) is a selenocysteine-containing enzyme which plays a crucial role in regulating numerous redox signalling pathways within the cell. While its functioning is important in all cells, levels of TrxR1 expression are higher in cancer cells, possibly as an adaptation to much higher levels of reactive oxygen species and the need for more extensive DNA synthesis. This makes TrxR1 an attractive target for cancer therapy development. Inspired by the structure of disulphide compounds which have advanced through various stages of clinical development, we designed a series of dithiodiglycolic acid derivatives. These were prepared from respective thiol synthons using an iodine- or benzotriazolyl chloride-promoted oxidative disulphide bond formation. Inhibition of TrxR present in cell lysates from human neuroblastoma cells (SH-SY5Y) and rat liver cells indicated several compounds with a potential for TrxR inhibition. Some of these compounds were also tested for growth inhibition against two human cancer cell lines and normal human keratinocytes.
Collapse
Affiliation(s)
- Olga Bakulina
- a Saint Petersburg State University , Saint Petersburg , Russian Federation
| | - Anton Bannykh
- a Saint Petersburg State University , Saint Petersburg , Russian Federation
| | - Mirna Jovanović
- b Institute for Biological Research "Siniša Stanković", University of Belgrade , Belgrade , Serbia
| | | | - Ana Podolski-Renić
- b Institute for Biological Research "Siniša Stanković", University of Belgrade , Belgrade , Serbia
| | - Raivis Žalubovskis
- c Latvian Institute of Organic Synthesis , Riga , Latvia.,d Faculty of Materials Science and Applied Chemistry , Institute of Technology of Organic Chemistry, Riga Technical University , Riga , Latvia
| | - Milica Pešić
- b Institute for Biological Research "Siniša Stanković", University of Belgrade , Belgrade , Serbia
| | - Dmitry Dar'in
- a Saint Petersburg State University , Saint Petersburg , Russian Federation
| | - Mikhail Krasavin
- a Saint Petersburg State University , Saint Petersburg , Russian Federation
| |
Collapse
|
67
|
Zhang B, Liu Y, Li X, Xu J, Fang J. Small Molecules to Target the Selenoprotein Thioredoxin Reductase. Chem Asian J 2018; 13:3593-3600. [DOI: 10.1002/asia.201801136] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/11/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 China
| | - Yuxin Liu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 China
| | - Jianqiang Xu
- School of Life Science and Medicine & Panjin Industrial Technology Institute; Dalian University of Technology; Panjin 124221 China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 China
| |
Collapse
|
68
|
Dunigan K, Li Q, Li R, Locy ML, Wall S, Tipple TE. The thioredoxin reductase inhibitor auranofin induces heme oxygenase-1 in lung epithelial cells via Nrf2-dependent mechanisms. Am J Physiol Lung Cell Mol Physiol 2018; 315:L545-L552. [PMID: 30024305 PMCID: PMC6230877 DOI: 10.1152/ajplung.00214.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 11/22/2022] Open
Abstract
Thioredoxin reductase-1 (TXNRD1) inhibition effectively activates nuclear factor (erythroid-derived 2)-like 2 (Nrf2) responses and attenuates lung injury in acute respiratory distress syndrome (ARDS) and bronchopulmonary dysplasia (BPD) models. Upon TXNRD1 inhibition, heme oxygenase-1 (HO-1) is disproportionally increased compared with Nrf2 target NADPH quinone oxidoreductase-1 (Nqo1). HO-1 has been investigated as a potential therapeutic target in both ARDS and BPD. TXNRD1 is predominantly expressed in airway epithelial cells; however, the mechanism of HO-1 induction by TXNRD1 inhibitors is unknown. We tested the hypothesis that TXNRD1 inhibition induces HO-1 via Nrf2-dependent mechanisms. Wild-type (WT), Nrf2KO1.3, and Nrf2KO2.2 cells were morphologically indistinguishable, indicating that Nrf2 can be deleted from murine-transformed club cells (mtCCs) using CRISPR/Cas9 gene editing. Hemin, a Nrf2-independent HO-1-inducing agent, significantly increased HO-1 expression in WT, Nrf2KO1.3, and Nrf2KO2.2. Auranofin (AFN) (0.5 µM) inhibited TXNRD1 activity by 50% and increased Nqo1 and Hmox1 mRNA levels by 6- and 24-fold, respectively, in WT cells. Despite similar levels of TXNRD1 inhibition, Nqo1 mRNA levels were not different between control and AFN-treated Nrf2KO1.3 and Nrf2KO2.2. AFN slightly increased Hmox1 mRNA levels in Nrf2KO1.3 and Nrf2KO2.2 cells compared with controls. AFN failed to increase HO-1 protein in Nrf2KO1.3 and Nrf2KO2.2 compared with a 36-fold increase in WT mtCCs. Our data indicate that Nrf2 is the primary mechanism by which TXNRD1 inhibitors increase HO-1 in lung epithelia. Future studies will use ARDS and BPD models to define the role of HO-1 in attenuation of lung injury by TXNRD1 inhibitors.
Collapse
Affiliation(s)
- Katelyn Dunigan
- Neonatal Redox Biology Laboratory, Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham , Birmingham, Alabama
- University of Alabama at Birmingham , Birmingham, Alabama
| | - Qian Li
- Neonatal Redox Biology Laboratory, Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham , Birmingham, Alabama
- University of Alabama at Birmingham , Birmingham, Alabama
| | - Rui Li
- Neonatal Redox Biology Laboratory, Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham , Birmingham, Alabama
- University of Alabama at Birmingham , Birmingham, Alabama
| | - Morgan L Locy
- University of Alabama at Birmingham , Birmingham, Alabama
| | - Stephanie Wall
- Neonatal Redox Biology Laboratory, Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham , Birmingham, Alabama
- University of Alabama at Birmingham , Birmingham, Alabama
| | - Trent E Tipple
- Neonatal Redox Biology Laboratory, Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham , Birmingham, Alabama
- University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
69
|
Silvestri I, Lyu H, Fata F, Boumis G, Miele AE, Ardini M, Ippoliti R, Bellelli A, Jadhav A, Lea WA, Simeonov A, Cheng Q, Arnér ESJ, Thatcher GR, Petukhov PA, Williams DL, Angelucci F. Fragment-Based Discovery of a Regulatory Site in Thioredoxin Glutathione Reductase Acting as "Doorstop" for NADPH Entry. ACS Chem Biol 2018; 13:2190-2202. [PMID: 29800515 PMCID: PMC6905387 DOI: 10.1021/acschembio.8b00349] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Members of the FAD/NAD-linked reductase family are recognized as crucial targets in drug development for cancers, inflammatory disorders, and infectious diseases. However, individual FAD/NAD reductases are difficult to inhibit in a selective manner with off-target inhibition reducing usefulness of identified compounds. Thioredoxin glutathione reductase (TGR), a high molecular weight thioredoxin reductase-like enzyme, has emerged as a promising drug target for the treatment of schistosomiasis, a parasitosis afflicting more than 200 million people. Taking advantage of small molecules selected from a high-throughput screen and using X-ray crystallography, functional assays, and docking studies, we identify a critical secondary site of the enzyme. Compounds binding at this site interfere with well-known and conserved conformational changes associated with NADPH reduction, acting as a doorstop for cofactor entry. They selectively inhibit TGR from Schistosoma mansoni and are active against parasites in culture. Since many members of the FAD/NAD-linked reductase family have similar catalytic mechanisms, the unique mechanism of inhibition identified in this study for TGR broadly opens new routes to selectively inhibit homologous enzymes of central importance in numerous diseases.
Collapse
Affiliation(s)
- Ilaria Silvestri
- Dept. of Life, Health and Environmental Sciences, University of L’Aquila, Italy,These authors contributed equally
| | - Haining Lyu
- Dept. of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL USA,These authors contributed equally
| | - Francesca Fata
- Dept. of Life, Health and Environmental Sciences, University of L’Aquila, Italy
| | - Giovanna Boumis
- Dept. of Biochemical Sciences, Sapienza University of Rome, Italy
| | - Adriana E. Miele
- Dept. of Biochemical Sciences, Sapienza University of Rome, Italy,UMR5246 ICBMS – CNRS – UCBL, Université de Lyon, France
| | - Matteo Ardini
- Dept. of Life, Health and Environmental Sciences, University of L’Aquila, Italy
| | - Rodolfo Ippoliti
- Dept. of Life, Health and Environmental Sciences, University of L’Aquila, Italy
| | - Andrea Bellelli
- Dept. of Biochemical Sciences, Sapienza University of Rome, Italy
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Wendy A. Lea
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA,Current address: The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Qing Cheng
- Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elias S. J. Arnér
- Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Gregory R. Thatcher
- Dept. of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL USA
| | - Pavel A. Petukhov
- Dept. of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL USA
| | - David L. Williams
- Dept. of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL USA,Senior authors,To whom correspondence should be addressed: David L. Williams (), Francesco Angelucci ()
| | - Francesco Angelucci
- Dept. of Life, Health and Environmental Sciences, University of L’Aquila, Italy,Senior authors,To whom correspondence should be addressed: David L. Williams (), Francesco Angelucci ()
| |
Collapse
|
70
|
Liu R, Shi D, Zhang J, Li X, Han X, Yao X, Fang J. Xanthatin Promotes Apoptosis via Inhibiting Thioredoxin Reductase and Eliciting Oxidative Stress. Mol Pharm 2018; 15:3285-3296. [PMID: 29939757 DOI: 10.1021/acs.molpharmaceut.8b00338] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Xanthatin (XT), a naturally occurring sesquiterpene lactone presented in cocklebur ( Xanthium strumarium L.), is under development as a potential anticancer agent. Despite the promising anticancer effect of XT, the molecular mechanism underlying its cellular action has not been well elucidated. The mammalian thioredoxin reductase (TrxR) enzymes, the essential seleno-flavoproteins containing a penultimate selenocysteine (Sec) residue at the C-terminus, represent a promising target for cancer chemotherapeutic agents. In this study, XT inhibits both the purified TrxR and the enzyme in cells. The possible binding mode of XT with the TrxR protein is predicted by the covalent docking method. Mechanism studies reveal that XT targets the Sec residue of TrxR and inhibits the enzyme activity irreversibly. Simultaneously, the inhibition of TrxR by XT promotes the oxidative stress-mediated apoptosis of HeLa cells. Importantly, the knockdown of the enzyme sensitizes the cells to XT treatment. Targeting TrxR thus discloses a novel molecular mechanism in accounting for the cellular action of XT and provides insights into the development of XT as an anticancer agent.
Collapse
Affiliation(s)
- Ruijuan Liu
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou 730000 , China.,School of Pharmacy , Lanzhou University , Lanzhou 730000 , China
| | - Danfeng Shi
- College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Junmin Zhang
- School of Pharmacy , Lanzhou University , Lanzhou 730000 , China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou 730000 , China.,College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Xiao Han
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou 730000 , China.,College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Xiaojun Yao
- College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou 730000 , China.,College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| |
Collapse
|
71
|
Zhang J, Zhang B, Li X, Han X, Liu R, Fang J. Small molecule inhibitors of mammalian thioredoxin reductase as potential anticancer agents: An update. Med Res Rev 2018; 39:5-39. [DOI: 10.1002/med.21507] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
- School of Pharmacy; Lanzhou University; Lanzhou China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Xiao Han
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Ruijuan Liu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
- School of Pharmacy; Lanzhou University; Lanzhou China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| |
Collapse
|
72
|
Stafford WC, Peng X, Olofsson MH, Zhang X, Luci DK, Lu L, Cheng Q, Trésaugues L, Dexheimer TS, Coussens NP, Augsten M, Ahlzén HSM, Orwar O, Östman A, Stone-Elander S, Maloney DJ, Jadhav A, Simeonov A, Linder S, Arnér ESJ. Irreversible inhibition of cytosolic thioredoxin reductase 1 as a mechanistic basis for anticancer therapy. Sci Transl Med 2018; 10:eaaf7444. [PMID: 29444979 PMCID: PMC7059553 DOI: 10.1126/scitranslmed.aaf7444] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 02/01/2017] [Accepted: 12/14/2017] [Indexed: 12/25/2022]
Abstract
Cancer cells adapt to their inherently increased oxidative stress through activation of the glutathione (GSH) and thioredoxin (TXN) systems. Inhibition of both of these systems effectively kills cancer cells, but such broad inhibition of antioxidant activity also kills normal cells, which is highly unwanted in a clinical setting. We therefore evaluated targeting of the TXN pathway alone and, more specifically, selective inhibition of the cytosolic selenocysteine-containing enzyme TXN reductase 1 (TXNRD1). TXNRD1 inhibitors were discovered in a large screening effort and displayed increased specificity compared to pan-TXNRD inhibitors, such as auranofin, that also inhibit the mitochondrial enzyme TXNRD2 and additional targets. For our lead compounds, TXNRD1 inhibition correlated with cancer cell cytotoxicity, and inhibitor-triggered conversion of TXNRD1 from an antioxidant to a pro-oxidant enzyme correlated with corresponding increases in cellular production of H2O2 In mice, the most specific TXNRD1 inhibitor, here described as TXNRD1 inhibitor 1 (TRi-1), impaired growth and viability of human tumor xenografts and syngeneic mouse tumors while having little mitochondrial toxicity and being better tolerated than auranofin. These results display the therapeutic anticancer potential of irreversibly targeting cytosolic TXNRD1 using small molecules and present potent and selective TXNRD1 inhibitors. Given the pronounced up-regulation of TXNRD1 in several metastatic malignancies, it seems worthwhile to further explore the potential benefit of specific irreversible TXNRD1 inhibitors for anticancer therapy.
Collapse
Affiliation(s)
- William C Stafford
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden
- Oblique Therapeutics AB, SE 413 46 Gothenburg, Sweden
| | - Xiaoxiao Peng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Maria Hägg Olofsson
- Department of Oncology-Pathology, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Xiaonan Zhang
- Department of Oncology-Pathology, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Diane K Luci
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-4874, USA
| | - Li Lu
- Karolinska Experimental Research and Imaging Center, Karolinska University Hospital, SE 171 76 Stockholm, Sweden
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Lionel Trésaugues
- Division of Biophysics, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Thomas S Dexheimer
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-4874, USA
| | - Nathan P Coussens
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-4874, USA
| | - Martin Augsten
- Department of Oncology-Pathology, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Hanna-Stina Martinsson Ahlzén
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Owe Orwar
- Oblique Therapeutics AB, SE 413 46 Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Arne Östman
- Department of Oncology-Pathology, Karolinska Institutet, SE 171 77 Stockholm, Sweden
- University of Bergen, Postboks 7804, N-5020 Bergen, Norway
| | - Sharon Stone-Elander
- Department of Neuroradiology, Positron Emission Tomography Radiochemistry, Karolinska University Hospital, SE 171 76 Stockholm, Sweden
- Department of Clinical Neurosciences, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - David J Maloney
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-4874, USA
| | - Ajit Jadhav
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-4874, USA
| | - Anton Simeonov
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-4874, USA
| | - Stig Linder
- Department of Oncology-Pathology, Karolinska Institutet, SE 171 77 Stockholm, Sweden
- Division of Drug Research, Department of Medicine and Health, Linköping University, SE 581 83 Linköping, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden.
| |
Collapse
|
73
|
Abstract
Thioredoxin (Trx) and thioredoxin reductase (TrxR) are essential components of the Trx system which plays pivotal roles in regulating multiple cellular redox signaling pathways. In recent years TrxR/Trx have been increasingly recognized as an important modulator of tumor development, and hence targeting TrxR/Trx is a promising strategy for cancer treatment. In this review we first discuss the structural details of TrxR, the functions of the Trx system, and the rational of targeting TrxR/Trx for cancer treatment. We also highlight small-molecule TrxR/Trx inhibitors that have potential anticancer activity and review their mechanisms of action. Finally, we examine the challenges of developing TrxR/Trx inhibitors as anticancer agents and perspectives for selectively targeting TrxR/Trx.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China; School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiao Han
- State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Ruijuan Liu
- State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China; School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|