51
|
Wang X, Hu W, Qu L, Wang J, Wu A, Lo HH, Ng JPL, Tang Y, Yun X, Wu J, Wong VKW, Chung SK, Wang L, Luo W, Ji X, Law BYK. Tricin promoted ATG-7 dependent autophagic degradation of α-synuclein and dopamine release for improving cognitive and motor deficits in Parkinson's disease. Pharmacol Res 2023; 196:106874. [PMID: 37586619 DOI: 10.1016/j.phrs.2023.106874] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Tricin, a natural nontoxic flavonoid distributed in grasses and euphorbia plants, has been reported to scavenge free radicals, possess anti-inflammatory and antioxidative effects. However, its autophagic effect on Parkinson's disease (PD) has not been elucidated. By adopting cellular and C. elegans models of PD, the autophagic effect of tricin was identified based on the level of autophagy markers (LC3-II and p62). Besides, the pharmacological effects on neurotransmitters (dopamine), inflammatory cytokines (IFN γ, TNFα, MCP-1, IL-10, IL-6 and IL-17A), histology (hematoxylin & eosin and Nissl staining) and behavioural pathology (open-field test, hindlimb clasping, Y-maze, Morris water-maze and nest building test) were also confirmed in the A53T-α-synuclein transgenic PD mouse model. Further experiments demonstrated that tricin induced autophagic flux and lowered the level of α-synuclein through AMPK-p70s6K- and ATG7-dependent mechanism. Compared to the existing clinical PD drugs, tricin mitigated pathogenesis and symptoms of PD with no observable side effects. In summary, tricin is proposed as a potential adjuvant remedy or nutraceutical for the prevention and treatment of PD.
Collapse
Affiliation(s)
- Xingxia Wang
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China; Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wei Hu
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Liqun Qu
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China; Marine Traditional Chinese Medicine Research Center, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jian Wang
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drug ability Evaluation, Luzhou Key Laboratory of Activity Screening and Draggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Hang Hong Lo
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Jerome P L Ng
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Yong Tang
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China; Sichuan Key Medical Laboratory of New Drug Discovery and Drug ability Evaluation, Luzhou Key Laboratory of Activity Screening and Draggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaoyun Yun
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Jianhui Wu
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Vincent Kam Wai Wong
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Sookja Kim Chung
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China; Faculty of Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Linna Wang
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Weidan Luo
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Xiang Ji
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Betty Yuen Kwan Law
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China.
| |
Collapse
|
52
|
Shi GS, Qin QL, Huang C, Li ZR, Wang ZH, Wang YY, He XY, Zhao XM. The Pathological Mechanism of Neuronal Autophagy-Lysosome Dysfunction After Ischemic Stroke. Cell Mol Neurobiol 2023; 43:3251-3263. [PMID: 37382853 DOI: 10.1007/s10571-023-01382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023]
Abstract
The abnormal initiation of autophagy flux in neurons after ischemic stroke caused dysfunction of autophagy-lysosome, which not only led to autophagy flux blockage, but also resulted in autophagic death of neurons. However, the pathological mechanism of neuronal autophagy-lysosome dysfunction did not form a unified viewpoint until now. In this review, taking the autophagy lysosomal dysfunction of neurons as a starting point, we summarized the molecular mechanisms that led to neuronal autophagy lysosomal dysfunction after ischemic stroke, which would provide theoretical basis for the clinical treatment of ischemic stroke.
Collapse
Affiliation(s)
- Guang-Sen Shi
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qi-Lin Qin
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Cheng Huang
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zi-Rong Li
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zi-Han Wang
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yong-Yan Wang
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiu-Ying He
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Xiao-Ming Zhao
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
53
|
Tian X, Yan X, Chen X, Liu P, Sun Z, Niu R. Identifying Serum Metabolites and Gut Bacterial Species Associated with Nephrotoxicity Caused by Arsenic and Fluoride Exposure. Biol Trace Elem Res 2023; 201:4870-4881. [PMID: 36692655 DOI: 10.1007/s12011-023-03568-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/11/2023] [Indexed: 01/25/2023]
Abstract
Co-contamination of arsenic (As) and fluoride (F) is widely distributed in groundwater, which are known risk factors for the nephrotoxicity. Emerging evidence has linked environmentally associated nephrotoxicity with the disturbance of gut microbiota and blood metabolites. In this study, we generated gut microbiota and blood metabolomic profile and identified multiple serum metabolites and gut bacteria species, which were associated with kidney injury on rat model exposed to As and F alone or combined. Combined As and F exposure significantly increased creatinine level. Abnormal autophagosomes and lysosome were observed, and the autophagic genes were enhanced in kidney tissue after single and combined As and F exposure. The metabolome data showed that single and combined As and F exposure remarkably altered the serum metabolites associated with the proximal tubule reabsorption function pathway, with glutamine and alpha-ketoglutarate level decreased in all exposed group. Furthermore, phosphatidylethanolamine (PE), the key contributor of autophagosomes, was decreased significantly in As and F + As exposed groups during the screen of autophagy-animal pathway. Multiple altered gut bacterial microbiota at phylum and species levels post As and F exposure were associated with targeted kidney injury, including p_Bacteroidetes, s_Chromohalobacter_unclassified, s_Halomonas_unclassified, s_Ignatzschineria_unclassified, s_Bacillus_subtilis, and s_Brevundimonas_sp._NA6. Meanwhile, our analysis indicated that As and F co-exposure possessed an interactive influence on gut microbiota. In conclusion, single or combined As and F exposure leads to the disruption of serum metabolic and gut microbiota profiles. Multiple metabolites and bacterial species are identified and associated with nephrotoxicity, which have potential to be developed as biomarkers of As and/or F-induced kidney damage.
Collapse
Affiliation(s)
- Xiaolin Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Xushen Chen
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, 14214, USA
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Penghui Liu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Zilong Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Ruiyan Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China.
| |
Collapse
|
54
|
Ding H, Cheng Q, Fang X, Wang Z, Fang J, Liu H, Zhang J, Chen C, Zhang W. Dihydromyricetin Alleviates Ischemic Brain Injury by Antagonizing Pyroptosis in Rats. Neurotherapeutics 2023; 20:1847-1858. [PMID: 37603215 PMCID: PMC10684453 DOI: 10.1007/s13311-023-01425-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 08/22/2023] Open
Abstract
Ischemic stroke is a worldwide disease that seriously threatens human health, and there are few effective drugs to treat it. Dihydromyricetin (DHM) has anti-inflammatory, antioxidant, and antiapoptotic functions. We identified pyroptosis following ischemic stroke. Here, we investigated the effect of DHM on ischemic stroke and pyroptosis. In the first part of the experiment, Sprague-Dawley rats were randomly divided into the sham group and MCAO group. The MCAO model was established by occlusion of the middle cerebral artery for 90 min using a silica gel suture. The ischemic penumbra was used for mRNA sequencing 1 day after reperfusion. In the second part, rats were divided into the sham group, MCAO group, and DHM group. DHM was injected intraperitoneally at the same time as reperfusion starting 90 min after embolization for 7 consecutive days. The changes in pyroptosis were observed by morphological and molecular methods. The transcriptomics results suggested the presence of NLRP3-mediated pyroptotic death pathway activation after modeling. The Longa score was increased after MCAO and decreased after DHM treatment. 2,3,5-Triphenyltetrazolium chloride (TTC) staining showed that DHM could reduce the infarct volume induced by MCAO. Nissl staining showed disordered neuronal arrangement and few Nissl bodies in the MCAO group, but this effect was reversed by DHM treatment. Analysis of pyroptosis-related molecules showed that the MCAO group had serious pyroptosis, and DHM effectively reduced pyroptosis. Our results demonstrate that DHM has a neuroprotective effect on ischemic stroke that is at least partly achieved by reducing pyroptosis.
Collapse
Affiliation(s)
- Huiru Ding
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Quancheng Cheng
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xuan Fang
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ziyuan Wang
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jinyu Fang
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Huaicun Liu
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Junwei Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Chunhua Chen
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Weiguang Zhang
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
55
|
Zang R, Ling F, Wu Z, Sun J, Yang L, Lv Z, Ji N. Ginkgo biloba extract (EGb-761) confers neuroprotection against ischemic stroke by augmenting autophagic/lysosomal signaling pathway. J Neuroimmunol 2023; 382:578101. [PMID: 37536050 DOI: 10.1016/j.jneuroim.2023.578101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 08/05/2023]
Abstract
Ginkgo biloba extract (EGb-761) is well-recognized to have neuroprotective properties. Meanwhile, autophagy machinery is extensively involved in the pathophysiological processes of ischemic stroke. The EGb-761 is widely used in the clinical treatment of stroke patients. However, its neuroprotective mechanisms against ischemic stroke are still not fully understood. The present study was conducted to uncover whether the pharmacological effects of EGb-761 can be executed by modulation of the autophagic/lysosomal signaling axis. A Sprague-Dawley rat model of ischemic stroke was established by middle cerebral artery occlusion (MCAO) for 90 min, followed by reperfusion. The EGb-761 was then administered to the MCAO rats once daily for a total of 7 days. Thereafter, the penumbral tissues were acquired to detect proteins involved in the autophagic/lysosomal pathway including Beclin1, LC-3, SQSTM1/p62, ubiquitin, cathepsin B, and cathepsin D by western blot and immunofluorescence, respectively. Subsequently, the therapeutic outcomes were evaluated by measuring the infarct volume, neurological deficits, and neuron survival. The results showed that the autophagic activities of Beclin1 and LC3-II in neurons were markedly promoted by 7 days of EGb-761 therapy. Meanwhile, the autophagic cargoes of insoluble p62 and ubiquitinated proteins were effectively degraded by EGb-761-augmented lysosomal activity of cathepsin B and cathepsin D. Moreover, the infarction size, neurological deficiencies, and neuron death were also substantially attenuated by EGb-761 therapy. Taken together, our study suggests that EGb-761 exerts a neuroprotective effect against ischemic stroke by promoting autophagic/lysosomal signaling in neurons at the penumbra. Thus, it might be a new therapeutic target for treating ischemic stroke.
Collapse
Affiliation(s)
- Rui Zang
- Department of Clinical Application of Traditional Chinese Medicine Integrated with Western Medicine, Zhaotong Hospital of Traditional Chinese Medicine, Zhaotong 657000, China
| | - Fayang Ling
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Traditional Chinese Medicine Clinic, Zhaotong Hospital of Traditional Chinese Medicine, Zhaotong 657000, China
| | - Zhiyuan Wu
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Jun Sun
- Department of Emergency, Zhaotong Hospital of Traditional Chinese Medicine, Zhaotong 657000, China
| | - Licong Yang
- Department of Clinical Application of Traditional Chinese Medicine Integrated with Western Medicine, Zhaotong Hospital of Traditional Chinese Medicine, Zhaotong 657000, China
| | - Zuyin Lv
- Department of Clinical Application of Traditional Chinese Medicine Integrated with Western Medicine, Zhaotong Hospital of Traditional Chinese Medicine, Zhaotong 657000, China
| | - Nengbo Ji
- Pain Management, Zhaotong Hospital of Traditional Chinese Medicine, No. 26, Unity Road, Zhaotong, City, Yunnan Province, 657000, China.
| |
Collapse
|
56
|
Feng L, Lo H, Hong Z, Zheng J, Yan Y, Ye Z, Chen X, Pan X. Microglial LRRK2-mediated NFATc1 attenuates α-synuclein immunotoxicity in association with CX3CR1-induced migration and the lysosome-initiated degradation. Glia 2023; 71:2266-2284. [PMID: 37300531 DOI: 10.1002/glia.24422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/22/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Synucleinopathies refer to a range of neurodegenerative diseases caused by abnormal α-synuclein (α-Syn) deposition, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). Their pathogenesis is strongly linked to microglial dysfunction and neuroinflammation, which involves the leucine-rich-repeat kinase 2 (LRRK2)-regulated nuclear factor of activated T-cells (NFAT). Of the NFAT family, NFATc1 has been found to be increasingly translocated into the nucleus in α-syn stimulation. However, the specific role of NFATc1-mediated intracellular signaling in PD remains elusive in regulating microglial functions. In the current study, we crossbred LRRK2 or NFATc1 conditional knockout mice with Lyz2Cre mice to generate mice with microglia-specific deletion of LRRK2 or NFATc1, and by stereotactic injection of fibrillary α-Syn, we generated PD models in these mice. We found that LRRK2 deficiency enhanced microglial phagocytosis in the mice after α-Syn exposure and that genetic inhibition of NFATc1 markedly diminished phagocytosis and α-Syn elimination. We further demonstrated that LRRK2 negatively regulated NFATc1 in α-Syn-treated microglia, in which microglial LRRK2-deficiency facilitated NFATc1 nuclear translocation, CX3CR1 upregulation, and microglia migration. Additionally, NFATc1 translocation upregulated the expression of Rab7 and promoted the formation of late lysosomes, resulting in α-Syn degradation. In contrast, the microglial NFATc1 deficiency impaired CX3CR1 upregulation and the formation of Rab7-mediated late lysosomes. These findings highlight the critical role of NFATc1 in modulating microglial migration and phagocytosis, in which the LRRK2-NFATc1 signaling pathway regulates the expression of microglial CX3CR1 and endocytic degradative Rab7 to attenuate α-synuclein immunotoxicity.
Collapse
Affiliation(s)
- Linjuan Feng
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Hsuan Lo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhaoxiang Hong
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Neurology, The University of HongKong Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jiahao Zheng
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yuhong Yan
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Zucheng Ye
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China
| | - Xiaochun Chen
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xiaodong Pan
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China
| |
Collapse
|
57
|
Chen X, Gao R, Song Y, Xu T, Jin L, Zhang W, Chen Z, Wang H, Wu W, Zhang S, Zhang G, Zhang N, Chang L, Liu H, Li H, Wu Y. Astrocytic AT1R deficiency ameliorates Aβ-induced cognitive deficits and synaptotoxicity through β-arrestin2 signaling. Prog Neurobiol 2023; 228:102489. [PMID: 37355221 DOI: 10.1016/j.pneurobio.2023.102489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
Alzheimer's disease (AD) seriously influences human health, and there is no effective treatment to prevent or cure AD. Recent studies have shown that angiotensin II type 1 receptor (AT1R) blockers significantly reduce the prevalence of AD, while the precise role and mechanism of AT1R in AD remain obscure. In this study, for the first time, we identified that astrocytic but not neuronal AT1R levels were significantly increased in AD model rats and found that astrocyte-specific knockout of AT1R significantly ameliorated amyloid β (Aβ)-induced cognitive deficits and synaptotoxicity. Pretreating astrocytes with an AT1R blocker also alleviated Aβ-induced synaptotoxicity in the coculture system of hippocampal neurons and astrocytes. Moreover, AT1R could directly bind to Aβ1-42 and activate the astrocytic β-arrestin2 pathway in a biased manner, and biased inhibition of the astrocytic AT1R/β-arrestin2 pathway relieved Aβ-induced neurotoxicity. Furthermore, we demonstrated that astrocytic AT1R/β-arrestin2 pathway-mediated synaptotoxicity was associated with the aggregation of autophagosomes, which triggered the disordered degradation of Aβ. Our findings reveal a novel molecular mechanism of astrocytic AT1R in Aβ-induced neurodegeneration and might contribute to establishing new targets for AD prevention and therapy.
Collapse
Affiliation(s)
- Xinyue Chen
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Anatomy, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Ruiqi Gao
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Anatomy, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Yizhi Song
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Anatomy, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Tao Xu
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Anatomy, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Liangyun Jin
- Electron Microscope Room of Central Laboratory, Capital Medical University, Beijing 100069, China
| | - Wanning Zhang
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Anatomy, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Ziyan Chen
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Anatomy, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Hongqi Wang
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Anatomy, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Wenxing Wu
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Anatomy, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Suli Zhang
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Guitao Zhang
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Anatomy, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Ning Zhang
- Department of Neuropsychiatry and Behavioral Neurology and Clinical Psychology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Lirong Chang
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Anatomy, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Huirong Liu
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hui Li
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Anatomy, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Yan Wu
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Anatomy, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
58
|
Guo Z, Yu X, Zhao S, Zhong X, Huang D, Feng R, Li P, Fang Z, Hu Y, Zhang Z, Abdurahman M, Huang L, Zhao Y, Wang X, Ge J, Li H. SIRT6 deficiency in endothelial cells exacerbates oxidative stress by enhancing HIF1α accumulation and H3K9 acetylation at the Ero1α promoter. Clin Transl Med 2023; 13:e1377. [PMID: 37598403 PMCID: PMC10440057 DOI: 10.1002/ctm2.1377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND SIRT6, an important NAD+ -dependent protein, protects endothelial cells from inflammatory and oxidative stress injuries. However, the role of SIRT6 in cardiac microvascular endothelial cells (CMECs) under ischemia-reperfusion injury (IRI) remains unclear. METHODS The HUVECs model of oxygen-glucose deprivation/reperfusion (OGD/R) was established to simulate the endothelial IRI in vitro. Endoplasmic reticulum oxidase 1 alpha (Ero1α) mRNA and protein levels in SIRT6-overexpressing or SIRT6-knockdown cells were measured by qPCR and Western blotting. The levels of H2 O2 and mitochondrial reactive oxygen species (ROS) were detected to evaluate the status of oxidative stress. The effects of SIRT6 deficiency and Ero1α knockdown on cellular endoplasmic reticulum stress (ERS), inflammation, apoptosis and barrier function were detected by a series of molecular biological experiments and functional experiments in vitro. Chromatin immunoprecipitation, Western blotting, qPCR, and site-specific mutation experiments were used to examine the underlying molecular mechanisms. Furthermore, endothelial cell-specific Sirt6 knockout (ecSirt6-/- ) mice were subjected to cardiac ischemia-reperfusion surgery to investigate the effects of SIRT6 in CMECs in vivo. RESULTS The expression of Ero1α was significantly upregulated in SIRT6-knockdown endothelial cells, and high Ero1α expression correlated with the accumulation of H2 O2 and mitochondrial ROS. In addition, SIRT6 deficiency increased ERS, inflammation, apoptosis and endothelial permeability, and these effects could be significantly attenuated by Ero1α knockdown. The deacetylase catalytic activity of SIRT6 was important in regulating Ero1α expression and these biological processes. Mechanistically, SIRT6 inhibited the enrichment of HIF1α and p300 at the Ero1α promoter through deacetylating H3K9, thereby antagonizing HIF1α/p300-mediated Ero1α expression. Compared with SIRT6-wild-type (SIRT6-WT) cells, cells expressing the SIRT6-H133Y-mutant and SIRT6-R65A-mutant exhibited increased Ero1α expression. Furthermore, ecSirt6-/- mice subjected to ischemia-reperfusion surgery exhibited increased Ero1α expression and ERS in CMECs and worsened injuries to microvascular barrier function and cardiac function. CONCLUSIONS Our results revealed an epigenetic mechanism associated with SIRT6 and Ero1α expression and highlighted the therapeutic potential of targeting the SIRT6-HIF1α/p300-Ero1α axis.
Collapse
Affiliation(s)
- Zhenyang Guo
- Department of Cardiology, Zhongshan HospitalShanghai Institute of Cardiovascular Diseases, Fudan UniversityShanghaiChina
| | - Xueting Yu
- Department of Cardiology, Zhongshan HospitalShanghai Institute of Cardiovascular Diseases, Fudan UniversityShanghaiChina
| | - Shuang Zhao
- Department of Medical ExaminationShanghai Xuhui District Central HospitalShanghaiChina
| | - Xin Zhong
- Department of Cardiology, Zhongshan HospitalShanghai Institute of Cardiovascular Diseases, Fudan UniversityShanghaiChina
| | - Dong Huang
- Department of Cardiology, Zhongshan HospitalShanghai Institute of Cardiovascular Diseases, Fudan UniversityShanghaiChina
| | - Runyang Feng
- Department of Cardiology, Zhongshan HospitalShanghai Institute of Cardiovascular Diseases, Fudan UniversityShanghaiChina
| | - Peng Li
- Department of Cardiology, Zhongshan HospitalShanghai Institute of Cardiovascular Diseases, Fudan UniversityShanghaiChina
| | - Zheyan Fang
- Department of Cardiology, Zhongshan HospitalShanghai Institute of Cardiovascular Diseases, Fudan UniversityShanghaiChina
| | - Yiqing Hu
- Department of Cardiology, Zhongshan HospitalShanghai Institute of Cardiovascular Diseases, Fudan UniversityShanghaiChina
| | - Zhentao Zhang
- Department of Cardiology, Zhongshan HospitalShanghai Institute of Cardiovascular Diseases, Fudan UniversityShanghaiChina
| | - Mukaddas Abdurahman
- Department of Cardiology, Zhongshan HospitalShanghai Institute of Cardiovascular Diseases, Fudan UniversityShanghaiChina
| | - Lei Huang
- Department of MolecularCell and Cancer BiologyProgram in Molecular MedicineUniversity of Massachusetts Medical SchoolMAUSA
| | - Yun Zhao
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- State Key Laboratory of Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of SciencesShanghaiChina
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced Study, University of Chinese Academy of SciencesHangzhouChina
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Junbo Ge
- Department of Cardiology, Zhongshan HospitalShanghai Institute of Cardiovascular Diseases, Fudan UniversityShanghaiChina
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghaiChina
- National Clinical Research Center for Interventional MedicineShanghaiChina
- Shanghai Clinical Research Center for Interventional MedicineShanghaiChina
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghaiChina
- Key Laboratory of Viral Heart DiseasesChinese Academy of Medical SciencesShanghaiChina
| | - Hua Li
- Department of Cardiology, Zhongshan HospitalShanghai Institute of Cardiovascular Diseases, Fudan UniversityShanghaiChina
| |
Collapse
|
59
|
Pang P, Zhang X, Yuan J, Yan H, Yan D. Acrylamide interferes with autophagy and induces apoptosis in Neuro-2a cells by interfering with TFEB-regulated lysosomal function. Food Chem Toxicol 2023; 177:113818. [PMID: 37172712 DOI: 10.1016/j.fct.2023.113818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Acrylamide (ACR), a well-documented human neurotoxicant that is widely exists in starchy foods. More than 30% of human daily energy is provided by ACR-containing foods. Evidence indicated that ACR can induce apoptosis and inhibit autophagy, but the mechanisms are limited. Transcription Factor EB (TFEB) is a major transcriptional regulator of the autophagy-lysosomal biogenesis that regulates autophagy processes and cell degradation. Our study aimed to investigated the potential mechanisms of TFEB-regulated lysosomal function in ACR-caused autophagic flux inhibition and apoptosis in Neuro-2a cells. Our results found that ACR exposure inhibited the autophagic flux, as revealed by the elevated LC3-II/LC3-I and p62 levels and a notable increased autophagosomes. ACR exposure reduced the amounts of LAMP1 and mature cathepsin D and caused an accumulation of ubiquitinated proteins, which suggests lysosomal dysfunction. In addition, ACR increased cellular apoptosis via decreasing Bcl-2 expression, increasing Bax and cleaved caspase-3 expression, and raising the apoptotic rate. Interestingly, TFEB overexpression alleviated the ACR-induced lysosomal dysfunction, and then mitigated the autophagy flux inhibition and cellular apoptosis. On the other hand, TFEB knockdown exacerbated the ACR-induced lysosomal dysfunction, autophagy flux inhibition, and cellular apoptosis. These findings strongly suggested that TFEB- regulated lysosomal function is responsible for ACR-caused autophagic flux inhibition and apoptosis in Neuro-2a cells. The present study hopes to explore new sensitive indicators in the mechanism of ACR neurotoxicity and thus provide new targets for the prevention and treatment of ACR intoxication.
Collapse
Affiliation(s)
- Pengcheng Pang
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, PR China; Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, PR China
| | - Xing Zhang
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, PR China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, PR China
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, PR China
| | - Dandan Yan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, PR China; Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, PR China.
| |
Collapse
|
60
|
Liu J, Ke P, Guo H, Gu J, Liu Y, Tian X, Wang X, Xiao F. Activation of TLR7-mediated autophagy increases epileptic susceptibility via reduced KIF5A-dependent GABA A receptor transport in a murine model. Exp Mol Med 2023; 55:1159-1173. [PMID: 37258573 PMCID: PMC10317981 DOI: 10.1038/s12276-023-01000-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/02/2023] Open
Abstract
The pathophysiological mechanisms underlying epileptogenesis are poorly understood but are considered to actively involve an imbalance between excitatory and inhibitory synaptic transmission. Excessive activation of autophagy, a cellular pathway that leads to the removal of proteins, is known to aggravate the disease. Toll-like receptor (TLR) 7 is an innate immune receptor that regulates autophagy in infectious and noninfectious diseases. However, the relationship between TLR7, autophagy, and synaptic transmission during epileptogenesis remains unclear. We found that TLR7 was activated in neurons in the early stage of epileptogenesis. TLR7 knockout significantly suppressed seizure susceptibility and neuronal excitability. Furthermore, activation of TLR7 induced autophagy and decreased the expression of kinesin family member 5 A (KIF5A), which influenced interactions with γ-aminobutyric acid type A receptor (GABAAR)-associated protein and GABAARβ2/3, thus producing abnormal GABAAR-mediated postsynaptic transmission. Our results indicated that TLR7 is an important factor in regulating epileptogenesis, suggesting a possible therapeutic target for epilepsy.
Collapse
Affiliation(s)
- Jing Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
- Department of Neurology, Chongqing University Three Gorges Hospital, 165 Xincheng Road, Chongqing, 404100, China
| | - Pingyang Ke
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Haokun Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Juan Gu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Yan Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Xuefeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China.
| | - Fei Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China.
- Institute for Brain Science and Disease of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
61
|
Li J, Wu J, Zhou X, Lu Y, Ge Y, Zhang X. Targeting neuronal mitophagy in ischemic stroke: an update. BURNS & TRAUMA 2023; 11:tkad018. [PMID: 37274155 PMCID: PMC10232375 DOI: 10.1093/burnst/tkad018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/29/2023] [Accepted: 03/19/2023] [Indexed: 06/06/2023]
Abstract
Cerebral ischemia is a neurological disorder associated with complex pathological mechanisms, including autophagic degradation of neuronal mitochondria, or termed mitophagy, following ischemic events. Despite being well-documented, the cellular and molecular mechanisms underlying the regulation of neuronal mitophagy remain unknown. So far, the evidence suggests neuronal autophagy and mitophagy are separately regulated in ischemic neurons, the latter being more likely activated by reperfusional injury. Specifically, given the polarized morphology of neurons, mitophagy is regulated by different neuronal compartments, with axonal mitochondria being degraded by autophagy in the cell body following ischemia-reperfusion insult. A variety of molecules have been associated with neuronal adaptation to ischemia, including PTEN-induced kinase 1, Parkin, BCL2 and adenovirus E1B 19-kDa-interacting protein 3 (Bnip3), Bnip3-like (Bnip3l) and FUN14 domain-containing 1. Moreover, it is still controversial whether mitophagy protects against or instead aggravates ischemic brain injury. Here, we review recent studies on this topic and provide an updated overview of the role and regulation of mitophagy during ischemic events.
Collapse
Affiliation(s)
- Jun Li
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road 79, Xiacheng District, Hangzhou, China
| | - Jiaying Wu
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road 79, Xiacheng District, Hangzhou, China
| | - Xinyu Zhou
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road 866, Xihu District, Hangzhou, China
| | - Yangyang Lu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road 866, Xihu District, Hangzhou, China
| | - Yuyang Ge
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road 866, Xihu District, Hangzhou, China
| | | |
Collapse
|
62
|
Yang Y, Zhang M, Li Z, He S, Ren X, Wang L, Wang Z, Shu S. Identification and cross-validation of autophagy-related genes in cardioembolic stroke. Front Neurol 2023; 14:1097623. [PMID: 37305740 PMCID: PMC10248509 DOI: 10.3389/fneur.2023.1097623] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Objective Cardioembolic stroke (CE stroke, also known as cardiogenic cerebral embolism, CCE) has the highest recurrence rate and fatality rate among all subtypes of ischemic stroke, the pathogenesis of which was unclear. Autophagy plays an essential role in the development of CE stroke. We aim to identify the potential autophagy-related molecular markers of CE stroke and uncover the potential therapeutic targets through bioinformatics analysis. Methods The mRNA expression profile dataset GSE58294 was obtained from the GEO database. The potential autophagy-related differentially expressed (DE) genes of CE stroke were screened by R software. Protein-protein interactions (PPIs), correlation analysis, and gene ontology (GO) enrichment analysis were applied to the autophagy-related DE genes. GSE66724, GSE41177, and GSE22255 were introduced for the verification of the autophagy-related DE genes in CE stroke, and the differences in values were re-calculated by Student's t-test. Results A total of 41 autophagy-related DE genes (37 upregulated genes and four downregulated genes) were identified between 23 cardioembolic stroke patients (≤3 h, prior to treatment) and 23 healthy controls. The KEGG and GO enrichment analysis of autophagy-related DE genes indicated several enriched terms related to autophagy, apoptosis, and ER stress. The PPI results demonstrated the interactions between these autophagy-related genes. Moreover, several hub genes, especially for CE stroke, were identified and re-calculated by Student's t-test. Conclusion We identified 41 potential autophagy-related genes associated with CE stroke through bioinformatics analysis. SERPINA1, WDFY3, ERN1, RHEB, and BCL2L1 were identified as the most significant DE genes that may affect the development of CE stroke by regulating autophagy. CXCR4 was identified as a hub gene of all types of strokes. ARNT, MAPK1, ATG12, ATG16L2, ATG2B, and BECN1 were identified as particular hub genes for CE stroke. These results may provide insight into the role of autophagy in CE stroke and contribute to the discovery of potential therapeutic targets for CE stroke treatment.
Collapse
Affiliation(s)
- Yufang Yang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziqing Li
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shen He
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueqi Ren
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linmei Wang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhifei Wang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shi Shu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
63
|
Zhang L, Li D, Yin L, Zhang C, Qu H, Xu J. Neuroglobin protects against cerebral ischemia/reperfusion injury in rats by suppressing mitochondrial dysfunction and endoplasmic reticulum stress-mediated neuronal apoptosis through synaptotagmin-1. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37195900 DOI: 10.1002/tox.23815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 03/22/2023] [Accepted: 04/16/2023] [Indexed: 05/19/2023]
Abstract
Cerebral ischemia/reperfusion (I/R) injury remains a grievous health threat, and herein effective therapy is urgently needed. This study explored the protection of neuroglobin (Ngb) in rats with cerebral I/R injury. The focal cerebral I/R rat models were established by middle cerebral artery occlusion (MCAO) and neuronal injury models were established by oxygen-glucose deprivation/reoxygenation (OGD/R) treatment. The brain injury of rats was assessed. Levels of Ngb, Bcl-2, Bax, endoplasmic reticulum stress (ERS)-related markers, and Syt1 were measured by immunofluorescence staining and Western blotting. The cytotoxicity in neurons was assessed by lactate dehydrogenase (LDH) release assay. Levels of intracellular Ca2+ and mitochondrial function-related indicators were determined. The binding between Ngb and Syt1 was detected by co-immunoprecipitation. Ngb was upregulated in cerebral I/R rats and its overexpression alleviated brain injury. In OGD/R-induced neurons, Ngb overexpression decreased LDH level and neuronal apoptosis, decreased Ca2+ content, and mitigated mitochondrial dysfunction and ERS-related apoptosis. However, Ngb silencing imposed the opposite effects. Importantly, Ngb could bind to Syt1. Syt1 knockdown partially counteracted the alleviation of Ngb on OGD/R-induced injury in neurons and cerebral I/R injury in rats. Briefly, Ngb extenuated cerebral I/R injury by repressing mitochondrial dysfunction and endoplasmic reticulum stress-mediated neuronal apoptosis through Syt1.
Collapse
Affiliation(s)
- Lihong Zhang
- Department of Neurointervention and Neurocritical Care, Dalian Central Hospital Affiliated to Dalian University of Technology, Dalian, China
| | - Di Li
- Department of Neurointervention and Neurocritical Care, Dalian Central Hospital Affiliated to Dalian University of Technology, Dalian, China
| | - Lin Yin
- Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ce Zhang
- Director's Office, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hong Qu
- Bidding and Procurement Office, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jianping Xu
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhouy, China
| |
Collapse
|
64
|
Lushnikova I, Kostiuchenko O, Kowalczyk M, Skibo G. mTOR/α-ketoglutarate signaling: impact on brain cell homeostasis under ischemic conditions. Front Cell Neurosci 2023; 17:1132114. [PMID: 37252190 PMCID: PMC10213632 DOI: 10.3389/fncel.2023.1132114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
The multifunctional molecules mechanistic target of rapamycin (mTOR) and α-ketoglutarate (αKG) are crucial players in the regulatory mechanisms that maintain cell homeostasis in an ever-changing environment. Cerebral ischemia is associated primarily with oxygen-glucose deficiency (OGD) due to circulatory disorders. Upon exceeding a threshold of resistance to OGD, essential pathways of cellular metabolism can be disrupted, leading to damage of brain cells up to the loss of function and death. This mini-review focuses on the role of mTOR and αKG signaling in the metabolic homeostasis of brain cells under OGD conditions. Integral mechanisms concerning the relative cell resistance to OGD and the molecular basis of αKG-mediated neuroprotection are discussed. The study of molecular events associated with cerebral ischemia and endogenous neuroprotection is relevant for improving the effectiveness of therapeutic strategies.
Collapse
Affiliation(s)
- Iryna Lushnikova
- Department of Cytology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Olha Kostiuchenko
- Department of Cytology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Kowalczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Galyna Skibo
- Department of Cytology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
65
|
Santovito D, Steffens S, Barachini S, Madonna R. Autophagy, innate immunity, and cardiac disease. Front Cell Dev Biol 2023; 11:1149409. [PMID: 37234771 PMCID: PMC10206260 DOI: 10.3389/fcell.2023.1149409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Autophagy is an evolutionarily conserved mechanism of cell adaptation to metabolic and environmental stress. It mediates the disposal of protein aggregates and dysfunctional organelles, although non-conventional features have recently emerged to broadly extend the pathophysiological relevance of autophagy. In baseline conditions, basal autophagy critically regulates cardiac homeostasis to preserve structural and functional integrity and protect against cell damage and genomic instability occurring with aging. Moreover, autophagy is stimulated by multiple cardiac injuries and contributes to mechanisms of response and remodeling following ischemia, pressure overload, and metabolic stress. Besides cardiac cells, autophagy orchestrates the maturation of neutrophils and other immune cells, influencing their function. In this review, we will discuss the evidence supporting the role of autophagy in cardiac homeostasis, aging, and cardioimmunological response to cardiac injury. Finally, we highlight possible translational perspectives of modulating autophagy for therapeutic purposes to improve the care of patients with acute and chronic cardiac disease.
Collapse
Affiliation(s)
- Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Unit of Milan, Institute for Genetic and Biomedical Research (IRGB), National Research Council, Milan, Italy
| | - Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Serena Barachini
- Hematology Division, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rosalinda Madonna
- Cardiology Division, Cardio-Thoracic and Vascular Department, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Surgical, Medical, Molecular Pathology & Critical Care Sciences, University of Pisa, Pisa, Italy
| |
Collapse
|
66
|
Gong C, Bonfili L, Zheng Y, Cecarini V, Cuccioloni M, Angeletti M, Dematteis G, Tapella L, Genazzani AA, Lim D, Eleuteri AM. Immortalized Alzheimer's Disease Astrocytes: Characterization of Their Proteolytic Systems. Mol Neurobiol 2023; 60:2787-2800. [PMID: 36729287 PMCID: PMC10039838 DOI: 10.1007/s12035-023-03231-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegeneration with dysfunctions in both the ubiquitin-proteasome system (UPS) and autophagy. Astroglia participation in AD is an attractive topic of research, but molecular patterns are partially defined and available in vitro models have technical limitations. Immortalized astrocytes from the hippocampus of 3xTg-AD and wild-type mice (3Tg-iAstro and WT-iAstro, respectively) have been obtained as an attempt to overcome primary cell line limitations and this study aims at characterizing their proteolytic systems, focusing on UPS and autophagy. Both 26S and 20S proteasomal activities were downregulated in 3Tg-iAstro, in which a shift in catalytic subunits from constitutive 20S proteasome to immunoproteasome occurred, with consequences on immune functions. In fact, immunoproteasome is the specific complex in charge of clearing damaged proteins under inflammatory conditions. Parallelly, augmented expression and activity of the lysosomal cathepsin B, enhanced levels of lysosomal-associated membrane protein 1, beclin1, and LC3-II, together with an increased uptake of monodansylcadaverine in autophagic vacuoles, suggested autophagy activation in 3Tg-iAstro. The two proteolytic pathways were linked by p62 that accumulated in 3Tg-iAstro due to both increased synthesis and decreased degradation in the UPS defective astrocytes. Treatment with 4-phenylbutyric acid, a neuroprotective small chemical chaperone, partially restored proteasome and autophagy-mediated proteolysis in 3Tg-iAstro. Our data shed light on the impaired proteostasis in 3Tg-iAstro with proteasome inhibition and autophagic compensatory activation, providing additional validation of this AD in vitro model, and propose a new mechanism of action of 4-phenylbutyric acid in neurodegenerative disorders.
Collapse
Affiliation(s)
- Chunmei Gong
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, MC, Italy
| | - Laura Bonfili
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, MC, Italy.
| | - Yadong Zheng
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, MC, Italy
| | - Valentina Cecarini
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, MC, Italy
| | - Massimiliano Cuccioloni
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, MC, Italy
| | - Mauro Angeletti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, MC, Italy
| | - Giulia Dematteis
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Via Bovio 6, 28100, Novara, Italy
| | - Laura Tapella
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Via Bovio 6, 28100, Novara, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Via Bovio 6, 28100, Novara, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Via Bovio 6, 28100, Novara, Italy.
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, MC, Italy.
| |
Collapse
|
67
|
Divya S, Ravanan P. Cellular battle against endoplasmic reticulum stress and its adverse effect on health. Life Sci 2023; 323:121705. [PMID: 37075943 DOI: 10.1016/j.lfs.2023.121705] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
The endoplasmic reticulum (ER) is a dynamic organelle and a reliable performer for precisely folded proteins. To maintain its function and integrity, arrays of sensory and quality control systems enhance protein folding fidelity and resolve the highest error-prone areas. Yet numerous internal and external factors disrupt its homeostasis and trigger ER stress responses. Cells try to reduce the number of misfolded proteins via the UPR mechanism, and ER-related garbage disposals systems like ER-associated degradation (ERAD), ER-lysosome-associated degradation (ERLAD), ER-Associated RNA Silencing (ERAS), extracellular chaperoning, and autophagy systems, which activates and increase the cell survival rate by degrading misfolded proteins, prevent the aggregated proteins and remove the dysfunctional organelles. Throughout life, organisms must confront environmental stress to survive and develop. Communication between the ER & other organelles, signaling events mediated by calcium, reactive oxygen species, and inflammation are linked to diverse stress signaling pathways and regulate cell survival or cell death mechanisms. Unresolved cellular damages can cross the threshold limit of their survival, resulting in cell death or driving for various diseases. The multifaceted ability of unfolded protein response facilitates the therapeutic target and a biomarker for various diseases, helping with early diagnosis and detecting the severity of diseases.
Collapse
Affiliation(s)
- Subramaniyan Divya
- Functional Genomics Laboratory, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610005, Tamil Nadu, India
| | - Palaniyandi Ravanan
- Functional Genomics Laboratory, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610005, Tamil Nadu, India.
| |
Collapse
|
68
|
Gallizioli M, Arbaizar-Rovirosa M, Brea D, Planas AM. Differences in the post-stroke innate immune response between young and old. Semin Immunopathol 2023:10.1007/s00281-023-00990-8. [PMID: 37045990 DOI: 10.1007/s00281-023-00990-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023]
Abstract
Aging is associated to progressive changes impairing fundamental cellular and tissue functions, and the relationships amongst them through the vascular and immune systems. Aging factors are key to understanding the pathophysiology of stroke since they increase its risk and worsen its functional outcome. Most currently recognised hallmarks of aging are also involved in the cerebral responses to stroke. Notably, age-associated chronic low-grade inflammation is related to innate immune responses highlighted by induction of type-I interferon. The interferon program is prominent in microglia where it interrelates cell damage, danger signals, and phagocytosis with immunometabolic disturbances and inflammation. Microglia engulfment of damaged myelin and cell debris may overwhelm the cellular capacity for waste removal inducing intracellular lipid accumulation. Acute inflammation and interferon-stimulated gene expression are also typical features of acute stroke, where danger signal recognition by microglia trigger immunometabolic alterations underscored by lipid droplet biogenesis. Aging reduces the capacity to control these responses causing increased and persistent inflammation, metabolic dysregulation, and impaired cellular waste disposal. In turn, chronic peripheral inflammation during aging induces immunosenescence further worsening stroke-induced immunodepression, thus increasing the risk of post-stroke infection. Aging also alters gut microbiota composition inducing dysbiosis. These changes are enhanced by age-related diseases, such as atherosclerosis and type-II diabetes, that further promote vascular aging, predispose to stroke, and exacerbate brain inflammation after stroke. Current advances in aging research suggest that some age-associated alterations may be reversed. Future work will unravel whether such evolving anti-aging research may enable designing strategies to improve stroke outcome in the elderly.
Collapse
Affiliation(s)
- Mattia Gallizioli
- Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), S Rosselló 161, planta 6, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 153, 08036, Barcelona, Spain
| | - Maria Arbaizar-Rovirosa
- Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), S Rosselló 161, planta 6, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 153, 08036, Barcelona, Spain
| | - David Brea
- Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), S Rosselló 161, planta 6, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 153, 08036, Barcelona, Spain
| | - Anna M Planas
- Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), S Rosselló 161, planta 6, 08036, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 153, 08036, Barcelona, Spain.
| |
Collapse
|
69
|
Guo X, Liu R, Jia M, Wang Q, Wu J. Ischemia Reperfusion Injury Induced Blood Brain Barrier Dysfunction and the Involved Molecular Mechanism. Neurochem Res 2023:10.1007/s11064-023-03923-x. [PMID: 37017889 DOI: 10.1007/s11064-023-03923-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/06/2023]
Abstract
Stroke is characterized by the abrupt failure of blood flow to a specific brain region, resulting in insufficient supply of oxygen and glucose to the ischemic tissues. Timely reperfusion of blood flow can rescue dying tissue but can also lead to secondary damage to both the infarcted tissues and the blood-brain barrier, known as ischemia/reperfusion injury. Both primary and secondary damage result in biphasic opening of the blood-brain barrier, leading to blood-brain barrier dysfunction and vasogenic edema. Importantly, blood-brain barrier dysfunction, inflammation, and microglial activation are critical factors that worsen stroke outcomes. Activated microglia secrete numerous cytokines, chemokines, and inflammatory factors during neuroinflammation, contributing to the second opening of the blood-brain barrier and worsening the outcome of ischemic stroke. TNF-α, IL-1β, IL-6, and other microglia-derived molecules have been shown to be involved in the breakdown of blood-brain barrier. Additionally, other non-microglia-derived molecules such as RNA, HSPs, and transporter proteins also participate in the blood-brain barrier breakdown process after ischemic stroke, either in the primary damage stage directly influencing tight junction proteins and endothelial cells, or in the secondary damage stage participating in the following neuroinflammation. This review summarizes the cellular and molecular components of the blood-brain barrier and concludes the association of microglia-derived and non-microglia-derived molecules with blood-brain barrier dysfunction and its underlying mechanisms.
Collapse
Affiliation(s)
- Xi Guo
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 10070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China
| | - Ru Liu
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 10070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China
| | - Meng Jia
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 10070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China
| | - Qun Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China
| | - Jianping Wu
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 10070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China.
| |
Collapse
|
70
|
Xiaoqing S, Yinghua C, Xingxing Y. The autophagy in ischemic stroke: A regulatory role of non-coding-RNAs. Cell Signal 2023; 104:110586. [PMID: 36608737 DOI: 10.1016/j.cellsig.2022.110586] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/17/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023]
Abstract
Ischemic stroke (IS) is a central nervous system neurological disorder ascribed to an acute focal trauma, with high mortality and disability, leading to a heavy burden on family and society. Autophagy is a self-digesting process by which damaged organelles and useless proteins are recycled to maintain cellular homeostasis, and plays a pivotal role in the process of IS. Non-coding RNAs (ncRNAs), mainly contains microRNA, long non-coding RNA and circular RNA, have been extensively investigated on regulation of autophagy in human diseases. Recent studies have implied that ncRNAs-regulating autophagy participates in pathophysiological process of IS, including cell apoptosis, inflammation, oxidative stress, blood-brain barrier damage and glial activation, which indicates that regulating autophagy by ncRNAs may be beneficial for IS treatment. This review summarizes the role of autophagy in IS, as well as focuses on the role of ncRNAs-mediated autophagy in IS, for the development of potential therapeutic strategies in this disease.
Collapse
Affiliation(s)
- Su Xiaoqing
- The Fifth Department of Acupuncture, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, PR China
| | - Chen Yinghua
- The Fifth Department of Acupuncture, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, PR China.
| | - Yuan Xingxing
- Heilongjiang University of traditional Chinese Medicine, Harbin, Heilongjiang 150040, PR China; Department of internal medicine, Heilongjiang Academy of traditional Chinese Medicine, Harbin, Heilongjiang 150001, PR China.
| |
Collapse
|
71
|
Zhou Z, Zhang Y, Han F, Chen Z, Zheng Y. Umbelliferone protects against cerebral ischemic injury through selective autophagy of mitochondria. Neurochem Int 2023; 165:105520. [PMID: 36933866 DOI: 10.1016/j.neuint.2023.105520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Effective therapeutic treatments for ischemic stroke are limited. Previous studies suggest selective activation of mitophagy alleviates cerebral ischemic injury while excessive autophagy is detrimental. However, few compounds are available to selectively activate mitophagy without affecting autophagy flux. Here, we found that acute administration of Umbelliferone (UMB) upon reperfusion exerted neuroprotective effects against ischemic injury in mice subjected to transient middle cerebral artery occlusion (tMCAO) and suppressed oxygen-glucose deprivation reperfusion (OGD-R)-induced apoptosis in SH-SY5Y cells. Interestingly, UMB promoted the translocation of mitophagy adaptor SQSTM1 to mitochondria and further reduced the mitochondrial content as well as the expression of SQSTM1 in SHSY5Y cells after OGD-R. Importantly, both the mitochondrial loss and reduction of SQSTM1 expression after UMB incubation can be reversed by autophagy inhibitor chloroquine and wortmannin, proving the mitophagy activation by UMB. Nevertheless, UMB failed to further affect neither LC3 lipidation nor the number of autophagosomes after cerebral ischemia in vivo and in vitro. Furthermore, UMB facilitated OGD-R-induced mitophagy in a Parkin-dependent manner. Inhibition of autophagy/mitophagy either pharmaceutically or genetically abolished the neuroprotective effects of UMB. Taken all, these results suggest that UMB protects against cerebral ischemic injury, both in vivo and in vitro, via promoting mitophagy without increasing the autophagic flux. UMB might serve as a potential leading compound for selectively activating mitophagy and the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zhuchen Zhou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yan Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Feng Han
- Key Lab of Cardiovascular and Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 210023, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
72
|
Zhang Y, Liu L, Hou X, Zhang Z, Zhou X, Gao W. Role of Autophagy Mediated by AMPK/DDiT4/mTOR Axis in HT22 Cells Under Oxygen and Glucose Deprivation/Reoxygenation. ACS OMEGA 2023; 8:9221-9229. [PMID: 36936290 PMCID: PMC10018509 DOI: 10.1021/acsomega.2c07280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Background: cerebral ischemia/reperfusion (I/R) injury is an important complication of ischemic stroke, and autophagy is one of the mechanisms of it. In this study, we aimed to determine the role and mechanism of autophagy in cerebral I/R injury. Methods: the oxygen and glucose deprivation/reoxygenation (OGD/R) method was used to model cerebral I/R injury in HT22 cells. CCK-8 and LDH were conducted to detect viability and damage of the cells, respectively. Apoptosis was measured by flow cytometry and Tunel staining. Autophagic vesicles of HT22 cells were assessed by transmission electron microscopy. Western blotting analysis was used to examine the protein expression involving AMPK/DDiT4/mTOR axis and autophagy-related proteins. 3-Methyladenine and rapamycin were, respectively, used to inhibit and activate autophagy, compound C and AICAR acted as AMPK inhibitor and activator, respectively, and were used to control the starting link of AMPK/DDiT4/mTOR axis. Results: autophagy was activated in HT22 cells after OGD/R was characterized by an increased number of autophagic vesicles, the expression of Beclin1 and LC3II/LC3I, and a decrease in the expression of P62. Rapamycin could increase the viability, reduce LDH leakage rate, and alleviate cell apoptosis in OGD/R cells by activating autophagy. 3-Methyladenine played an opposite role to rapamycin in OGD/R cells. The expression of DDiT4 and the ratio of p-AMPK/AMPK were increased after OGD/R in HT22 cells. While the ratio of p-mTOR/mTOR was reduced by OGD/R, AICAR effectively increased the number of autophagic vesicles, improved viability, reduced LDH leakage rate, and alleviated apoptosis in HT22 cells which suffered OGD/R. However, the effects of compound C in OGD/R HT22 cells were opposite to that of AICAR. Conclusions: autophagy is activated after OGD/R; autophagy activator rapamycin significantly enhanced the protective effect of autophagy on cells of OGD/R. AMPK/DDiT4/mTOR axis is an important pathway to activate autophagy, and AMPK/DDiT4/mTOR-mediated autophagy significantly alleviates cell damage caused by OGD/R.
Collapse
Affiliation(s)
| | | | | | | | | | - Weijuan Gao
- . Phone: 86 311 89926007. Fax: (86) 311 89926000
| |
Collapse
|
73
|
Mechanistic Insights into the Role of OPN in Mediating Brain Damage via Triggering Lysosomal Damage in Microglia/Macrophage. Cells 2023; 12:cells12060854. [PMID: 36980197 PMCID: PMC10046941 DOI: 10.3390/cells12060854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
We previously found that osteopontin (OPN) played a role in hypoxia–ischemia (HI) brain damage. However, its underlying mechanism is still unknown. Bioinformatics analysis revealed that the OPN protein was linked to the lysosomal cathepsin B (CTSB) and galectin-3 (GAL-3) proteins after HI exposure. In the present study, we tested the hypothesis that OPN was able to play a critical role in the lysosomal damage of microglia/macrophages following HI insult in neonatal mice. The results showed that OPN expression was enhanced, especially in microglia/macrophages, and colocalized with lysosomal-associated membrane protein 1 (LAMP1) and GAL-3; this was accompanied by increased LAMP1 and GAL-3 expression, CTSB leakage, as well as impairment of autophagic flux in the early stage of the HI process. In addition, the knockdown of OPN expression markedly restored lysosomal function with significant improvements in the autophagic flux after HI insult. Interestingly, cleavage of OPN was observed in the ipsilateral cortex following HI. The wild-type OPN and C-terminal OPN (Leu152-Asn294), rather than N-terminal OPN (Met1-Gly151), interacted with GAL-3 to induce lysosomal damage. Furthermore, the secreted OPN stimulated lysosomal damage by binding to CD44 in microglia in vitro. Collectively, this study demonstrated that upregulated OPN in microglia/macrophages and its cleavage product was able to interact with GAL-3, and secreted OPN combined with CD44, leading to lysosomal damage and exacerbating autophagosome accumulation after HI exposure.
Collapse
|
74
|
Liao Y, Wang JY, Pan Y, Zou X, Wang C, Peng Y, Ao YL, Lam MF, Zhang X, Zhang XQ, Shi L, Zhang S. The Protective Effect of (-)-Tetrahydroalstonine against OGD/R-Induced Neuronal Injury via Autophagy Regulation. Molecules 2023; 28:molecules28052370. [PMID: 36903613 PMCID: PMC10005631 DOI: 10.3390/molecules28052370] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Here, (-)-Tetrahydroalstonine (THA) was isolated from Alstonia scholaris and investigated for its neuroprotective effect towards oxygen-glucose deprivation/re-oxygenation (OGD/R)-induced neuronal damage. In this study, primary cortical neurons were pre-treated with THA and then subjected to OGD/R induction. The cell viability was tested by the MTT assay, and the states of the autophagy-lysosomal pathway and Akt/mTOR pathway were monitored by Western blot analysis. The findings suggested that THA administration increased the cell viability of OGD/R-induced cortical neurons. Autophagic activity and lysosomal dysfunction were found at the early stage of OGD/R, which were significantly ameliorated by THA treatment. Meanwhile, the protective effect of THA was significantly reversed by the lysosome inhibitor. Additionally, THA significantly activated the Akt/mTOR pathway, which was suppressed after OGD/R induction. In summary, THA exhibited promising protective effects against OGD/R-induced neuronal injury by autophagy regulation through the Akt/mTOR pathway.
Collapse
Affiliation(s)
- Yumei Liao
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jun-Ya Wang
- Guangdong Provincial Engineering Research Center for Modernization of TCM, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yan Pan
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xueyi Zou
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Engineering Research Center for Modernization of TCM, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Chaoqun Wang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yinghui Peng
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yun-Lin Ao
- Guangdong Provincial Engineering Research Center for Modernization of TCM, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Mei Fong Lam
- Centro Hospitalar Conde de São Januário, Macau, China
| | - Xiaoshen Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Xiao-Qi Zhang
- Guangdong Provincial Engineering Research Center for Modernization of TCM, College of Pharmacy, Jinan University, Guangzhou 510632, China
- NMPA Key Laboratory for Quality Evaluation of TCM, Jinan University, Guangzhou 510632, China
- Correspondence: (X.-Q.Z.); (S.Z.)
| | - Lei Shi
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Shiqing Zhang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- Correspondence: (X.-Q.Z.); (S.Z.)
| |
Collapse
|
75
|
Cellular Prion Protein Attenuates OGD/R-Induced Damage by Skewing Microglia toward an Anti-inflammatory State via Enhanced and Prolonged Activation of Autophagy. Mol Neurobiol 2023; 60:1297-1316. [PMID: 36441478 DOI: 10.1007/s12035-022-03099-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022]
Abstract
Modulation of microglial pro/anti-inflammatory states and autophagy are promising new therapies for ischemic stroke, but the underlying mechanisms remain largely unexplored. The objective of the study is to determine the intrinsic role of PrPC (cellular prion protein) in the regulation of microglial inflammatory states and autophagy in ischemic stroke. PrPC was expressed in murine microglia, and an in vitro oxygen-glucose deprivation/reperfusion (OGD/R) model was established in microglia of different PRNP genotypes. During reperfusion following OGD, wild-type (WT) microglia had significantly increased pro/anti-inflammatory microglial percentages and related cytokine [interleukin [IL]-6, IL-10, IL-4, tumor necrosis factor, and interferon-gamma] release at reperfusion after 48 or 72 h. WT microglia also showed greater accumulation of the autophagy markers LC3B-II/I (microtubule-associated protein B-light chain 3), but not of p62 or LAMP1 (lysosome-associated membrane protein) at reperfusion after 24 h and 48 h. Inhibition of autophagy using 3-methyladenine or bafilomycin A1 aggravated the OGD/R-induced pro-inflammatory state, and the effect of 3-methyladenine was significantly stronger than that of bafilomycin A1. Concomitantly, PRNP knockout shortened the accumulation of LC3B-II/I, suppressed microglial anti-inflammatory states, and further aggravated the pro-inflammatory states. Conversely, PRNP overexpression had the opposite effects. Bafilomycin A1 reversed the effect of PrPC on microglial inflammatory state transformation. Moreover, microglia with PRNP overexpression exhibited higher levels of LAMP1 expression in the control and OGD/R groups and delayed the OGD/R-induced decrease of LAMP1 to reperfusion after 48 h. PrPC attenuates OGD/R-induced damage by skewing microglia toward an anti-inflammatory state via enhanced and prolonged activation of autophagy.
Collapse
|
76
|
Tedeschi V, Vinciguerra A, Sisalli MJ, Pignataro G, Secondo A. Pharmacological inhibition of lysosomal two-pore channel 2 (TPC2) confers neuroprotection in stroke via autophagy regulation. Neurobiol Dis 2023; 178:106020. [PMID: 36708960 DOI: 10.1016/j.nbd.2023.106020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/29/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Lysosomal function and organellar Ca2+ homeostasis become dysfunctional in Stroke causing disturbances in autophagy, the major process for the degradation of abnormal protein aggregates and dysfunctional organelles. However, the role of autophagy in Stroke is controversial since excessive or prolonged autophagy activation exacerbates ischemic brain injury. Of note, glutamate evokes NAADP-dependent Ca2+ release via lysosomal TPC2 channels thus controlling basal autophagy. Considering the massive release of excitotoxins in Stroke, autophagic flux becomes uncontrolled with abnormal formation of autophagosomes causing, in turn, disruption of excitotoxins clearance and neurodegeneration. Here, a fine regulation of autophagy via a proper pharmacological modulation of lysosomal TPC2 channel has been tested in preclinical Stroke models. Primary cortical neurons were subjected to oxygen and glucose deprivation+reoxygenation to reproduce in vitro brain ischemia. Focal brain ischemia was induced in rats by transient middle cerebral artery occlusion (tMCAO). Under these conditions, TPC2 protein expression as well as autophagy and endoplasmic reticulum (ER) stress markers were studied by Western blotting, while TPC2 localization and activity were measured by immunocytochemistry and single-cell video-imaging, respectively. TPC2 protein expression and immunosignal were highly modulated in primary cortical neurons exposed to extreme hypoxic conditions causing dysfunction in organellar Ca2+ homeostasis, ER stress and autophagy-induced cell death. TPC2 knocking down and pharmacological inhibition by Ned-19 during hypoxia induced neuroprotection. The effect of Ned-19 was reversed by the permeable form of TPC2 endogenous agonist, NAADP-AM. Of note, Ned-19 prevented ER stress, as measured by GRP78 (78 kDa glucose-regulated protein) protein reduction and caspase 9 downregulation. In this way Ned-19 restored organellar Ca2+ level. Interestingly, Ned-19 reduced the infarct volume and neurological deficits in rats subjected to tMCAO and prevented hypoxia-induced cell death by blocking autophagic flux. Collectively, the pharmacological inhibition of TPC2 lysosomal channel by Ned-19 protects from focal ischemia by hampering a hyperfunctional autophagy.
Collapse
Affiliation(s)
- Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Via Sergio Pansini 5, Naples 80131, Italy.
| | - Antonio Vinciguerra
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, Ancona 60126, Italy.
| | - Maria Josè Sisalli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Via Sergio Pansini 5, Naples 80131, Italy.
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Via Sergio Pansini 5, Naples 80131, Italy.
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Via Sergio Pansini 5, Naples 80131, Italy.
| |
Collapse
|
77
|
Tang B, Luo Z, Zhang R, Zhang D, Nie G, Li M, Dai Y. An update on the molecular mechanism and pharmacological interventions for Ischemia-reperfusion injury by regulating AMPK/mTOR signaling pathway in autophagy. Cell Signal 2023; 107:110665. [PMID: 37004834 DOI: 10.1016/j.cellsig.2023.110665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
AMP-activated protein kinase (5'-adenosine monophosphate-activated protein kinase, AMPK)/mammalian target of rapamycin (mTOR) is an important signaling pathway maintaining normal cell function and homeostasis in vivo. The AMPK/mTOR pathway regulates cellular proliferation, autophagy, and apoptosis. Ischemia-reperfusion injury (IRI) is secondary damage that frequently occurs clinically in various disease processes and treatments, and the exacerbated injury during tissue reperfusion increases disease-associated morbidity and mortality. IRI arises from multiple complex pathological mechanisms, among which cell autophagy is a focus of recent research and a new therapeutic target. The activation of AMPK/mTOR signaling in IRI can modulate cellular metabolism and regulate cell proliferation and immune cell differentiation by adjusting gene transcription and protein synthesis. Thus, the AMPK/mTOR signaling pathway has been intensively investigated in studies focused on IRI prevention and treatment. In recent years, AMPK/mTOR pathway-mediated autophagy has been found to play a crucial role in IRI treatment. This article aims to elaborate the action mechanisms of AMPK/mTOR signaling pathway activation in IRI and summarize the progress of AMPK/mTOR-mediated autophagy research in the field of IRI therapy.
Collapse
Affiliation(s)
- Bin Tang
- Department of Ultrasound, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Zhijian Luo
- Department of Ultrasound, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Rong Zhang
- Department of Ultrasound, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Dongmei Zhang
- Department of Ultrasound, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Guojun Nie
- The First Outpatient Department of People's Liberation Army Western Theater General Hospital, Cheng Du, Sichuan Province 61000, China
| | - Mingxing Li
- Department of Ultrasound, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Yan Dai
- Department of pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
78
|
Liang X, Shi L, Wang M, Zhang L, Gong Z, Luo S, Wang X, Zhang Q, Zhang X. Folic acid ameliorates synaptic impairment following cerebral ischemia/reperfusion injury via inhibiting excessive activation of NMDA receptors. J Nutr Biochem 2023; 112:109209. [PMID: 36370927 DOI: 10.1016/j.jnutbio.2022.109209] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/04/2022] [Accepted: 09/23/2022] [Indexed: 11/11/2022]
Abstract
Folic acid, a water-soluble B-vitamin, has been demonstrated to decrease the risk of first stroke and improve its poor prognosis. However, the molecular mechanisms responsible for the beneficial effect of folic acid on recovery from ischemic insult remain largely unknown. Excessive activation of the N-methyl-d-aspartate receptors (NMDARs) has been shown to trigger synaptic dysfunction and excitotoxic neuronal death in ischemic brains. Here, we hypothesized that the effects of folic acid on cognitive impairment may involve the changes in synapse loss and NMDAR expression and function following cerebral ischemia/reperfusion injury. The ischemic stroke models were established by middle cerebral artery occlusion/reperfusion (MCAO/R) and by oxygen-glucose deprivation and reperfusion (OGD/R)-treated primary neurons. The results showed that folic acid supplemented diets (8.0 mg/kg for 28 days) improved cognitive performances of rats after MCAO/R. Folic acid also caused a reduction in the number of neuronal death, an increase in the number of synapses and the expressions of synapse-related proteins including SNAP25, Syn, GAP-43 and PSD95, and a decrease in p-CAMKII expression in ischemic brains. Similar changes in synaptic functions were observed in folic acid (32 µM)-treated OGD/R neurons. Furthermore, NMDA treatment reduced folic acid-induced upregulations of synapse-associated proteins and Ca2+ influx, whereas downregulations of NMDARs by NR1 or both NR2A and NR2B siRNA further enhanced the expressions of synapse-related proteins raised by folic acid in OGD/R neurons. Our findings suggest that folic acid improves cognitive dysfunctions and ameliorates ischemic brain injury by strengthening synaptic functions via the NMDARs.
Collapse
Affiliation(s)
- Xiaoshan Liang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, TianjinHeping District, P R China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, Heping District, P R China
| | - Linran Shi
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, TianjinHeping District, P R China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, Heping District, P R China
| | - Meng Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, TianjinHeping District, P R China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, Heping District, P R China
| | - Liwen Zhang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, Heping District, P R China; Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, Heping District, P R China
| | - Zhongying Gong
- Department of Neurology, Tianjin First Center Hospital, School of Medicine, Nankai University, Tianjin, Heping District, P R China
| | - Suhui Luo
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, TianjinHeping District, P R China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, Heping District, P R China
| | - Xuan Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, TianjinHeping District, P R China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, Heping District, P R China
| | - Qiang Zhang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, Heping District, P R China; Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, Heping District, P R China
| | - Xumei Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, TianjinHeping District, P R China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, Heping District, P R China.
| |
Collapse
|
79
|
Yang M, Wang Y, Wang S, Guo Y, Gu T, Shi L, Zhang J, Tuo X, Liu X, Zhang M, Deng J, Fang Z, Lu Z. Electroacupuncture pretreatment induces ischemic tolerance by neuronal TREM2-mediated enhancement of autophagic flux. Brain Res Bull 2023; 193:27-36. [PMID: 36470555 DOI: 10.1016/j.brainresbull.2022.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022]
Abstract
The mechanism of electroacupuncture (EA) pretreatment-induced neuroprotection remains unclear. In this study, we found that neuronal Triggering receptor expressed on myeloid cells 2 (TREM2) expression was increased and peaked at 48 h and 72 h after ischemia/reperfusion. After specific knockdown of TREM2 in excitatory neurons, neurological function was damaged, and the infarct volume was enlarged. Furthermore, the expression of LC3II/LC3I and Beclin1 was decreased, while the expression of p62 was increased. EA pretreatment enhanced TREM2, LC3II/LC3I and Beclin1 expression while reducing p62 in the ischemic penumbra area. The EA-induced neuroprotective effects and improvements in autophagic flux were abolished by specific knockdown of TREM2 in excitatory neurons. Taken together, our findings provide novel mechanistic insight into EA-induced ischemic tolerance and suggest a promising therapeutic strategy of targeting neuronal TREM2 to treat brain ischemia.
Collapse
Affiliation(s)
- Manping Yang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Yunying Wang
- Department of Aerospace Physiology, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Shiquan Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Yaru Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Ting Gu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Liwen Shi
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Junbao Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Xiaoshuang Tuo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Xiaoyu Liu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Minjuan Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Jiao Deng
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Zongping Fang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China.
| | - Zhihong Lu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
80
|
Shi X, Wu Y, Ni H, Li M, Qi B, Xu Y. Macrophage migration inhibitory factor (MIF) inhibitor iSO-1 promotes staphylococcal protein A-induced osteogenic differentiation by inhibiting NF-κB signaling pathway. Int Immunopharmacol 2023; 115:109600. [PMID: 36577150 DOI: 10.1016/j.intimp.2022.109600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Osteomyelitis is among the most difficult to treat diseases in the field of orthopedics, and there is a lack of effective treatment modalities. Exploring the mechanisms of its development is beneficial for finding molecular targets for treatment. Increasing evidence suggests that macrophage migration inhibitory factor (MIF), as a proinflammatory mediator, is not only involved in various pathophysiological processes of inflammation but also plays an important role in osteogenic differentiation, while its specific regulatory mechanism in osteomyelitis remains unclear. METHODS In the present study, staphylococcal protein A (SPA)-treated rat bone marrow mesenchymal stem cells (rBMSCs) were used to construct cell models of osteomyelitis. Rat and cell models of osteomyelitis were used to validate the expression levels of MIF, and to further explore the regulatory mechanisms of the MIF inhibitor methyl ester of (S, R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid (iSO-1) and MIF knockdown on cell model of osteomyelitis toward osteogenic differentiation. RESULTS We found that the expression level of MIF was upregulated in rat and cell models of osteomyelitis and subsequently demonstrated by the GSE30119 dataset that the expression level of MIF was also significantly upregulated in patients with osteomyelitis. Furthermore, SPA promotes MIF expression in rBMSCs while inhibiting the expression of osteogenic-related genes such as Runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), osteopontin (OPN) and collagen type-1 (COL-1) through activation of the nuclear factor kappa-B (NF-κB) pathway. In vivo, we further demonstrated that local injection of iSO-1 significantly increased the osteogenic activity in rat model of osteomyelitis. Importantly, we also demonstrated that MIF knockdown and the MIF inhibitor iSO-1 reversed the SPA-mediated inhibition of osteogenic differentiation of rBMSCs by inhibiting the activation of the NF-κB pathway, as evidenced by the upregulation of osteogenic-related gene expression and enhanced bone mineralization. CONCLUSION ISO-1 and MIF knockdown can reverse the SPA-mediated inhibition of osteogenic differentiation in the rBMSCs model of osteomyelitis by inhibiting the NF-κB signaling pathway, providing a potential target for the treatment of osteomyelitis.
Collapse
Affiliation(s)
| | - Yipeng Wu
- Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Haonan Ni
- Kunming Medical University, Kunming, China
| | - Mingjun Li
- Kunming Medical University, Kunming, China
| | | | - Yongqing Xu
- Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force, Kunming, China.
| |
Collapse
|
81
|
Yang CZ, Wang SH, Zhang RH, Lin JH, Tian YH, Yang YQ, Liu J, Ma YX. Neuroprotective effect of astragalin via activating PI3K/Akt-mTOR-mediated autophagy on APP/PS1 mice. Cell Death Dis 2023; 9:15. [PMID: 36681681 PMCID: PMC9867706 DOI: 10.1038/s41420-023-01324-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/22/2023]
Abstract
As a small molecule flavonoid, astragalin (AST) has anti-inflammatory, anti-cancer, and anti-oxidation effects. However, the impact and molecular mechanism of AST in Alzheimer's disease (AD) are still not clear. This study aims to investigate the neuroprotective effect and mechanism of AST on APP/PS1 mice and Aβ25-35-injured HT22 cells. In this study, we found that AST ameliorated cognitive dysfunction, reduced hippocampal neuronal damage and loss, and Aβ pathology in APP/PS1 mice. Subsequently, AST activated autophagy and up-regulated the levels of autophagic flux-related protein in APP/PS1 mice and Aβ25-35-induced injury in HT22 cells. Interestingly, AST down-regulated the phosphorylation level of PI3K/Akt-mTOR pathway-related proteins, which was reversed by autophagy inhibitors 3-Methyladenine (3-MA) or Bafilomycin A1 (Baf A1). At the same time, consistent with the impacts of Akt inhibitor MK2206 and mTOR inhibitor rapamycin, inhibited levels of autophagy in Aβ25-35-injured HT22 cells were activated by the administration of AST. Taken together, these results suggested that AST played key neuroprotective roles on AD via stimulating PI3K/Akt-mTOR pathway-mediated autophagy and autophagic flux. This study revealed a new mechanism of autophagy regulation behind the neuroprotection impact of AST for AD treatment.
Collapse
Affiliation(s)
- Cui-Zhu Yang
- grid.411847.f0000 0004 1804 4300Department of Anatomy, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shu-Han Wang
- grid.411847.f0000 0004 1804 4300Department of Anatomy, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Run-Heng Zhang
- grid.411847.f0000 0004 1804 4300Department of Anatomy, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jia-Hong Lin
- grid.411847.f0000 0004 1804 4300Department of Anatomy, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying-Hong Tian
- grid.284723.80000 0000 8877 7471Experiment Teaching & Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ya-Qi Yang
- grid.411847.f0000 0004 1804 4300Department of Anatomy, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jing Liu
- grid.411847.f0000 0004 1804 4300Department of Anatomy, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu-Xin Ma
- grid.411847.f0000 0004 1804 4300Department of Anatomy, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China ,grid.411847.f0000 0004 1804 4300Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
82
|
Mi Y, Xu J, Shi R, Meng Q, Xu L, Liu Y, Guo T, Zhou D, Liu J, Li W, Li N, Hou Y. Okanin from Coreopsis tinctoria Nutt. alleviates cognitive impairment in bilateral common carotid artery occlusion mice by regulating the miR-7/NLRP3 axis in microglia. Food Funct 2023; 14:369-387. [PMID: 36511396 DOI: 10.1039/d2fo01476a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cognitive impairment is the main clinical feature following stroke, and microglia-mediated inflammatory response is a major contributor to it. Coreopsis tinctoria Nutt., an edible chrysanthemum, is commonly used as a functional ingredient in healthcare beverages and food. Okanin, the main active ingredient of Coreopsis tinctoria Nutt. flower, inhibits microglial activation. However, the role of okanin in cognitive impairment following ischemic stroke is still unknown. In this study, we investigated the effect of okanin on ischemic stroke and its underlying mechanism both in vivo and in vitro. Okanin was found to attenuate cognitive impairment in bilateral common carotid artery occlusion (BCCAO) mice, inhibit neuronal loss and microglial activation, decrease NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation, and increase miR-7 expression. Okanin suppressed NLRP3 inflammasome activation in oxygen-glucose deprivation (OGD) and lipopolysaccharide (LPS)-stimulated microglia by increasing miR-7 expression and inhibited microglia-induced neuronal injury. This study provides new insights into the role of okanin in ischemic stroke and shows that the miR-7/NLRP3 axis plays an important role in mediating the beneficial effects of okanin on cerebral ischemia. These findings suggest that okanin has great potential as a functional food for stroke recovery.
Collapse
Affiliation(s)
- Yan Mi
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, China. .,Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China
| | - Jikai Xu
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, China. .,Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China
| | - Ruijia Shi
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, China.
| | - Qingqi Meng
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, China.
| | - Libin Xu
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, China.
| | - Yeshu Liu
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, China.
| | - Tingting Guo
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China.
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China.
| | - Jingyu Liu
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, China.
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China.
| | - Yue Hou
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, China. .,Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China
| |
Collapse
|
83
|
Fan XY, Shi G, Feng J, Jian LY. DNA hypomethylation promotes learning and memory recovery in a rat model of cerebral ischemia/reperfusion injury. Neural Regen Res 2023; 18:863-868. [PMID: 36204855 PMCID: PMC9700107 DOI: 10.4103/1673-5374.353494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Cerebral ischemia/reperfusion injury impairs learning and memory in patients. Studies have shown that synaptic function is involved in the formation and development of memory, and that DNA methylation plays a key role in the regulation of learning and memory. To investigate the role of DNA hypomethylation in cerebral ischemia/reperfusion injury, in this study, we established a rat model of cerebral ischemia/reperfusion injury by occlusion of the middle cerebral artery and then treated the rats with intraperitoneal 5-aza-2′-deoxycytidine, an inhibitor of DNA methylation. Our results showed that 5-aza-2′-deoxycytidine markedly improved the neurological function, and cognitive, social and spatial memory abilities, and dose-dependently increased the synaptic density and the expression of SYP and SHANK2 proteins in the hippocampus in a dose-dependent manner in rats with cerebral ischemia/reperfusion injury. The effects of 5-aza-2′-deoxycytidine were closely related to its reduction of genomic DNA methylation and DNA methylation at specific sites of the Syp and Shank2 genes in rats with cerebral ischemia/reperfusion injury. These findings suggest that inhibition of DNA methylation by 5-aza-2′-deoxycytidine promotes the recovery of learning and memory impairment in a rat model of cerebral ischemia/reperfusion injury. These results provide theoretical evidence for stroke treatment using epigenetic methods.
Collapse
|
84
|
Li B, Wang W, Li Y, Wang S, Liu H, Xia Z, Gao W, Zhao B. cGAS-STING pathway aggravates early cerebral ischemia-reperfusion injury in mice by activating NCOA4-mediated ferritinophagy. Exp Neurol 2023; 359:114269. [PMID: 36343680 DOI: 10.1016/j.expneurol.2022.114269] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Stroke patients are often complicated by cerebral ischemia-reperfusion injury (CIRI) after the restoration of cerebral perfusion, and how to prevent CIRI at an early stage has received close attention. The imbalance of iron metabolism is one of the essential factors in the aggravation of CIRI, and NCOA4-mediated ferritinophagy, as a critical pathway to regulate iron metabolism, is expected to be an effective intervention target. We established a mouse model of cerebral ischemia-reperfusion (CIR) with NCOA4 silencing. We found that activation of NCOA4-mediated ferritinophagy atthe early stage of CIR mediated the onset of oxidative stress and contributed to autophagy and apoptosis, and eventually resulted in increased brain injury. This suggests that NCOA4-mediated ferritinophagy plays a vital role in early CIR and can be an effective target to prevent and treat CIRI. We next explored the upstream regulatory targets of NCOA4-mediated ferritinophagy. The previous evidence for the cGAS-STING pathway's importance during CIR and its strong relationship with autophagy attracted our attention. To investigate whether the cGAS-STING pathway regulates NCOA4-mediated ferritinophagy, we further administered a cGAS inhibitor to mice with CIR and overexpressed NCOA4. Along with the inhibition of the cGAS-STING pathway, ferritinophagy, oxidative stress, autophagy, and apoptosis were inhibited, and CIRI was ameliorated, which was attenuated by NCOA4 overexpression. In conclusion, our results suggest that activation of the cGAS-STING pathway exacerbates CIRI at the early stage of CIR, which may be achieved by mediating NCOA4-mediated ferritinophagy.
Collapse
Affiliation(s)
- Bingyu Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wei Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yanan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Su Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hengjuan Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wenwei Gao
- Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
85
|
Ma W, Lu K, Liang HM, Zhang JY. Synapsin 1 Ameliorates Cognitive Impairment and Neuroinflammation in Rats with Alzheimer's Disease: An Experimental and Bioinformatics Study. Curr Alzheimer Res 2023; 20:648-659. [PMID: 38213171 DOI: 10.2174/0115672050276594231229050906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a persistent neuropathological injury that manifests via neuronal/synaptic death, age spot development, tau hyperphosphorylation, neuroinflammation, and apoptosis. Synapsin 1 (SYN1), a neuronal phosphoprotein, is believed to be responsible for the pathology of AD. OBJECTIVE This study aimed to elucidate the exact role of SYN1 in ameliorating AD and its potential regulatory mechanisms. METHODS The AD dataset GSE48350 was downloaded from the GEO database, and SYN1 was focused on differential expression analysis and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. After establishing an AD rat model, they were treated with RNAi lentivirus to trigger SYN1 overexpression. The amelioration of SYN1 in AD-associated behavior was validated using multiple experiments (water maze test and object recognition test). SYN1's repairing effect on the important factors in AD was confirmed by detecting the concentration of inflammatory factors (interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)-α), neurotransmitters (acetylcholine (ACh), dopamine (DA), and 5-hydroxytryptophan (5-HT)) and markers of oxidative stress (glutathione (GSH), malondialdehyde (MDA), reactive oxygen species (ROS)). Molecular biology experiments (qRT-PCR and western blot) were performed to examine AD-related signaling pathways after SYN1 overexpression. RESULTS Differential expression analysis yielded a total of 545 differentially expressed genes, of which four were upregulated and 541 were downregulated. The enriched pathways were basically focused on synaptic functions, and the analysis of the protein- protein interaction network focused on the key genes in SYN1. SYN1 significantly improved the spatial learning and memory abilities of AD rats. This enhancement was reflected in the reduced escape latency of the rats in the water maze, the significantly extended dwell time in the third quadrant, and the increased number of crossings. Furthermore, the results of the object recognition test revealed reduced time for rats to explore familiar and new objects. After SYN1 overexpression, the cAMP signaling pathway was activated, the phosphorylation levels of the CREB and PKA proteins were elevated, and the secretion of neurotransmitters such as ACh, DA, and 5-HT was promoted. Furthermore, oxidative stress was suppressed, as supported by decreased levels of MDA and ROS. Regarding inflammatory factors, the levels of IL-6, IL-1β, and TNF-α were significantly reduced in AD rats with SYN1 overexpression. CONCLUSION SYN1 overexpression improves cognitive function and promotes the release of various neurotransmitters in AD rats by inhibiting oxidative stress and inflammatory responses through cAMP signaling pathway activation. These findings may provide a theoretical basis for the targeted diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Wei Ma
- Department of Neurology, General Hospital of Ningxia Medical University. Yinchuan750004, China
| | - Kui Lu
- Department of Neurology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000, China
| | - Hua-Min Liang
- Department of Neurology, General Hospital of Ningxia Medical University. Yinchuan750004, China
| | - Jin-Yuan Zhang
- Department of Neurology, General Hospital of Ningxia Medical University. Yinchuan750004, China
| |
Collapse
|
86
|
Liang Z, Song J, Xu Y, Zhang X, Zhang Y, Qian H. Hesperidin Reversed Long-Term N-methyl- N-nitro- N-Nitroguanidine Exposure Induced EMT and Cell Proliferation by Activating Autophagy in Gastric Tissues of Rats. Nutrients 2022; 14:nu14245281. [PMID: 36558440 PMCID: PMC9781858 DOI: 10.3390/nu14245281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is a common malignant tumor worldwide. N-methyl-N-nitro-N-nitroguanidine (MNNG) is one of the most important inducing factors of gastric cancer. Autophagy can affect the occurrence and development of gastric cancer, but the mechanism is not clear. Chemoprevention has been shown to be a rational and very promising approach to the prevention of gastric cancer. Hesperidin is a citrus flavone, an abundant polyphenol in citrus fruits and traditional Chinese medicine. It has an excellent phytochemistry that plays an intervention role in gastric cancer. However, it is unclear whether long-term exposure to MNNG will affect the occurrence of gastric cancer by regulating autophagy and whether hesperidin can play an intervention role in this process. In the present study, we demonstrated that long-term MNNG exposure inhibits autophagy in stomach tissues of rats, promotes the epithelial-mesenchymal transition (EMT) process and cell proliferation and suppresses the activity of the PI3K/AKT pathway. We further found that after rapamycin-activated autophagy, long-term MNNG exposure promoted cell proliferation and EMT were inhibited. In addition, hesperidin promotes autophagy and the activity of the PI3K/AKT pathway, as well as the suppression of proliferation and EMT in the stomach tissues of rats. Our findings indicate that hesperidin reverses MNNG-induced gastric cancer by activating autophagy and the PI3K/AKT pathway, which may provide a new basis for the early prevention and treatment of MNNG-induced gastric cancer.
Collapse
Affiliation(s)
- Zhaofeng Liang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated of Jiangsu University, Changzhou 213017, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
- Correspondence:
| | - Jiajia Song
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yumeng Xu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xinyi Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yue Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Hui Qian
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated of Jiangsu University, Changzhou 213017, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
87
|
Silver nanoparticle-induced impaired autophagic flux and lysosomal dysfunction contribute to the microglia inflammation polarization. Food Chem Toxicol 2022; 170:113469. [DOI: 10.1016/j.fct.2022.113469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022]
|
88
|
Li L, Pan G, Fan R, Li D, Guo L, Ma L, Liang H, Qiu J. Luteolin alleviates inflammation and autophagy of hippocampus induced by cerebral ischemia/reperfusion by activating PPAR gamma in rats. BMC Complement Med Ther 2022; 22:176. [PMID: 35778706 PMCID: PMC9248165 DOI: 10.1186/s12906-022-03652-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background Luteolin, a flavonoid compound with anti-inflammatory activity, has been reported to alleviate cerebral ischemia/reperfusion (I/R) injury. However, its potential mechanism remains unclear. Methods The binding activity of luteolin to peroxisome proliferator-activated receptor gamma (PPARγ) was calculated via molecular docking analysis. Rats were subjected to middle cerebral artery occlusion and reperfusion (MCAO/R). After reperfusion, vehicle, 25 mg/kg/d luteolin, 50 mg/kg/d luteolin, 10 mg/kg/d pioglitazone, 50 mg/kg/d luteolin combined with 10 mg/kg/d T0070907 (PPARγ inhibitor) were immediately orally treatment for 7 days. ELISA, TTC staining, H&E staining, immunohistochemistry, immunofluorescence and transmission electron microscope methods were performed to evaluate the inflammation and autophagy in damaged hippocampal region. The PPARγ, light chain 3 (LC3) B-II/LC3B-I and p-nuclear factor-κB (NF-κB) p65 proteins expression levels in damaged hippocampal region were analyzed. Results Luteolin showed good PPARγ activity according to docking score (score = − 8.2). Luteolin treatment downregulated the infarct area and the pro-inflammatory cytokines levels caused by MCAO/R injury. Moreover, luteolin administration ameliorated neuroinflammation and autophagy in damaged hippocampal region. Pioglitazone plays protective roles similar to luteolin. T0070907 concealed the neuroprotective roles of 50 mg/kg/d luteolin. Conclusions Luteolin exerts neuroprotective roles against inflammation and autophagy of hippocampus induced by cerebral I/R by activating PPARγ in rats. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03652-8.
Collapse
|
89
|
Kostiuchenko O, Lushnikova I, Kowalczyk M, Skibo G. mTOR/α-ketoglutarate-mediated signaling pathways in the context of brain neurodegeneration and neuroprotection. BBA ADVANCES 2022; 2:100066. [PMID: 37082603 PMCID: PMC10074856 DOI: 10.1016/j.bbadva.2022.100066] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Cerebral disorders are largely associated with impaired cellular metabolism, despite the regulatory mechanisms designed to ensure cell viability and adequate brain function. Mechanistic target of rapamycin (mTOR) signaling is one of the most crucial factors in the regulation of energy homeostasis and its imbalance is linked with a variety of neurodegenerative diseases. Recent advances in the metabolic pathways' modulation indicate the role of α-ketoglutarate (AKG) as a major signaling hub, additionally highlighting its anti-aging and neuroprotective properties, but the mechanisms of its action are not entirely clear. In this review, we analyzed the physiological and pathophysiological aspects of mTOR in the brain. We also discussed AKG's multifunctional properties, as well as mTOR/AKG-mediated functional communications in cellular metabolism. Thus, this article provides a broad overview of the mTOR/AKG-mediated signaling pathways, in the context of neurodegeneration and endogenous neuroprotection, with the aim to find novel therapeutic strategies.
Collapse
|
90
|
Gasdermin D mediates endoplasmic reticulum stress via FAM134B to regulate cardiomyocyte autophagy and apoptosis in doxorubicin-induced cardiotoxicity. Cell Death Dis 2022; 13:901. [PMID: 36289195 PMCID: PMC9606128 DOI: 10.1038/s41419-022-05333-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 01/23/2023]
Abstract
Cardiomyocyte pyroptosis and apoptosis play a vital role in the pathophysiology of several cardiovascular diseases. Our recent study revealed that gasdermin D (GSDMD) can promote myocardial I/R injury via the caspase-11/GSDMD pathway. We also found that GSDMD deletion attenuated myocardial I/R and MI injury by reducing cardiomyocyte apoptosis and pyroptosis. However, how GSDMD mediates cardiomyocyte apoptosis and protects myocardial function remains unclear. Here, we found that doxorubicin (DOX) treatment resulted in increased apoptosis and pyroptosis in cardiomyocytes and that caspase-11/GSDMD could mediate DOX-induced cardiotoxicity (DIC) injury. Interestingly, GSDMD overexpression promoted cardiomyocyte apoptosis, which was attenuated by GSDMD knockdown. Notably, GSDMD overexpression exacerbated DIC injury, impaired cardiac function in vitro and in vivo, and enhanced DOX-induced cardiomyocyte autophagy. Mechanistically, GSDMD regulated the activity of FAM134B, an endoplasmic reticulum autophagy receptor, by pore formation on the endoplasmic reticulum membrane via its N-terminus, thus activating endoplasmic reticulum stress. In turn, FAM134B interacted with autophagic protein LC3, thus inducing cardiac autophagy, promoting cardiomyocyte apoptosis, and aggravating DIC. These results suggest that GSDMD promotes autophagy and induces cardiomyocyte apoptosis by modulating the reaction of FAM134B and LC3, thereby promoting DIC injury. Targeted regulation of GSDMD may be a new target for the prevention and treatment of DIC.
Collapse
|
91
|
Docosahexaenoic Acid Alleviates Brain Damage by Promoting Mitophagy in Mice with Ischaemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3119649. [PMID: 36254232 PMCID: PMC9569200 DOI: 10.1155/2022/3119649] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/04/2022] [Accepted: 09/15/2022] [Indexed: 12/06/2022]
Abstract
Mitophagy, the selective removal of damaged mitochondria through autophagy, is crucial for mitochondrial turnover and quality control. Docosahexaenoic acid (DHA), an essential omega-3 fatty acid, protects mitochondria in various diseases. This study aimed to investigate the neuroprotective role of DHA in ischaemic stroke models in vitro and in vivo and its involvement in mitophagy and mitochondrial dysfunction. A mouse model of ischaemic stroke was established through middle cerebral artery occlusion (MCAO). To simulate ischaemic stroke in vitro, PC12 cells were subjected to oxygen–glucose deprivation (OGD). Immunofluorescence analysis, western blotting (WB), electron microscopy (EM), functional behavioural tests, and Seahorse assay were used for analysis. DHA treatment significantly alleviated the brain infarction volume, neuronal apoptosis, and behavioural dysfunction in mice with ischaemic stroke. In addition, DHA enhanced mitophagy by significantly increasing the number of autophagosomes and LC3-positive mitochondria in neurons. The Seahorse assay revealed that DHA increased glutamate and succinate metabolism in neurons after ischaemic stroke. JC-1 and MitoSox staining, and evaluation of ATP levels indicated that DHA-induced mitophagy alleviated reactive oxygen species (ROS) accumulation and mitochondrial injury. Mechanistically, DHA improved mitochondrial dynamics by increasing the expression of dynamin-related protein 1 (Drp1), LC3, and the mitophagy clearance protein Pink1/Parkin. Mdivi-1, a specific mitophagy inhibitor, abrogated the neuroprotective effects of DHA, indicating that DHA protected neurons by enhancing mitophagy. Therefore, DHA can protect against neuronal apoptosis after stroke by clearing the damaged mitochondria through Pink1/Parkin-mediated mitophagy and by alleviating mitochondrial dysfunction.
Collapse
|
92
|
Zhou RS, Zhao JZ, Guo LM, Guo JL, Makawy AE, Li ZY, Lee SC. The novel antitumor compound clinopodiside A induces cytotoxicity via autophagy mediated by the signaling of BLK and RasGRP2 in T24 bladder cancer cells. Front Pharmacol 2022; 13:982860. [PMID: 36199691 PMCID: PMC9527273 DOI: 10.3389/fphar.2022.982860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
In the study, we investigated the anti-cancer effect of clinopodiside A and the underlying mechanisms using T24 bladder cancer cells as an experimental model. We found that the compound inhibited the growth of the bladder cancer cells in vitro and in vivo in a in a concentration- and dose-dependent manner, respectively, which showed a combinational effect when used together with cisplatin. In the bladder cancer cells, clinopodiside A caused autophagy, which was mediated by the signaling of BLK and RasGRP2, independently. Inhibition of the autophagy by chemical inhibitor 3-methyladenine or by the inhibition of the signaling molecules attenuated the cytotoxicity of clinopodiside A. Further analyses showed that clinopodiside A acted in synergism with cisplatin which itself could trigger both autophagy and apoptosis, which occurred with concomitant enhancements in autophagy and the cisplatin-evoked apoptosis. In conclusion, our results suggest that clinopodiside A inhibits the growth of the bladder cancer cells via BLK- and RasGRP2-mediated autophagy. The synergistic effect between clinopodiside A and cisplatin is attributed to the increases in autophagy and autophagy-promoted apoptosis. Clinopodiside A is a promising investigational drug for the treatment of cancer, at least blabber, which can be used alone or in combination with clinical drug(s).
Collapse
Affiliation(s)
- Rong Sheng Zhou
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Ji Zhong Zhao
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | | | - Jia Li Guo
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Aida El Makawy
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Egypt
| | - Zong Yun Li
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
- *Correspondence: Zong Yun Li, ; Shao Chin Lee,
| | - Shao Chin Lee
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
- *Correspondence: Zong Yun Li, ; Shao Chin Lee,
| |
Collapse
|
93
|
Chen X, Liu H, Huang R, Wei R, Zhao Y, Li T. Screening of plasma exosomal lncRNAs to identify potential biomarkers for obstructive sleep apnea. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:936. [PMID: 36172105 PMCID: PMC9511177 DOI: 10.21037/atm-22-3818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/17/2022] [Indexed: 12/02/2022]
Abstract
Background Obstructive sleep apnea (OSA) is highly prevalent, but frequently undiagnosed. The existing biomarkers of OSA are relatively insensitive and inaccurate. Long non-coding RNAs (lncRNAs) have no protein-coding ability but have a role in regulating gene expression. They are stably expressed in exosomes, easily and rapidly measurable. Changes in expression of exosomal lncRNAs can be useful for disease diagnoses. However, there are few reports on the association of exosomal lncRNAs with OSA. We aimed to investigate the exosomal lncRNA profiles to establish the differences between non-OSA, OSA with or without hypertension (HTN) and serve as a potential diagnostic biomarker. Methods This diagnostic test included 63 participants: [normal control (NC) =25], (OSA =23), and (HTN-OSA =15). Expression profiling of lncRNAs in isolated exosomes was performed through high-throughput sequencing in 9 participants. Subsequently, OSA/HTN-OSA related lncRNAs were selected for validation by droplet digital polymerase chain reaction (ddPCR), receiver operating characteristic (ROC) curves were used to determine the diagnostic value. The reliabilities of the screened gene were further validated in another independent cohort: (NC =10), (OSA mild =10), (OSA moderate =11), and (OSA severe =10), the correlation between clinical features and its expression was analyzed. The MiRanda software was used to predict the binding sites of interaction between microRNA (miRNA) and target genes regulated by screened lncRNA. Results We identified the differentially expressed lncRNAs and mRNAs in plasma exosomes of the NC, OSA, HTN-OSA groups. Most pathways enriched in differentially expressed lncRNAs and mRNAs had previously been linked to OSA. Among them, ENST00000592016 enables discrimination between NC and OSA individuals [area under curve (AUC) =0.846, 95% confidence interval (CI): 0.72–0.97]. The severity of OSA was associated with changes in the ENST00000592016 expression. Furthermore, ENST00000592016 affected the PI3K-Akt, MAPK, and TNF pathways by regulating miRNA expressions. Conclusions This is the first report about differential expression of lncRNA in OSA and HTN-OSA exosomes. ENST00000592016 enables discrimination between NC and OSA individuals. This work enabled characterization of OSA and provided the preliminary work for the study of biomarker of OSA.
Collapse
Affiliation(s)
- Xunxun Chen
- Department of Sleep Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Hongbing Liu
- Department of Sleep Medicine Center, Affiliated Yunfu Hospital, Southern Medical University, Yunfu, China
| | - Rong Huang
- Department of Sleep Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ran Wei
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Yuchuan Zhao
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Taoping Li
- Department of Sleep Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
94
|
Excitatory Synaptic Transmission in Ischemic Stroke: A New Outlet for Classical Neuroprotective Strategies. Int J Mol Sci 2022; 23:ijms23169381. [PMID: 36012647 PMCID: PMC9409263 DOI: 10.3390/ijms23169381] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 01/01/2023] Open
Abstract
Stroke is one of the leading causes of death and disability in the world, of which ischemia accounts for the majority. There is growing evidence of changes in synaptic connections and neural network functions in the brain of stroke patients. Currently, the studies on these neurobiological alterations mainly focus on the principle of glutamate excitotoxicity, and the corresponding neuroprotective strategies are limited to blocking the overactivation of ionic glutamate receptors. Nevertheless, it is disappointing that these treatments often fail because of the unspecificity and serious side effects of the tested drugs in clinical trials. Thus, in the prevention and treatment of stroke, finding and developing new targets of neuroprotective intervention is still the focus and goal of research in this field. In this review, we focus on the whole processes of glutamatergic synaptic transmission and highlight the pathological changes underlying each link to help develop potential therapeutic strategies for ischemic brain damage. These strategies include: (1) controlling the synaptic or extra-synaptic release of glutamate, (2) selectively blocking the action of the glutamate receptor NMDAR subunit, (3) increasing glutamate metabolism, and reuptake in the brain and blood, and (4) regulating the glutamate system by GABA receptors and the microbiota–gut–brain axis. Based on these latest findings, it is expected to promote a substantial understanding of the complex glutamate signal transduction mechanism, thereby providing excellent neuroprotection research direction for human ischemic stroke (IS).
Collapse
|
95
|
Cheng X, Hu J, Liu X, Tibenda JJ, Wang X, Zhao Q. Therapeutic targets by traditional Chinese medicine for ischemia-reperfusion injury induced apoptosis on cardiovascular and cerebrovascular diseases. Front Pharmacol 2022; 13:934256. [PMID: 36060007 PMCID: PMC9437626 DOI: 10.3389/fphar.2022.934256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/30/2022] [Indexed: 12/02/2022] Open
Abstract
Traditional Chinese medicine (TCM) has a significant role in treating and preventing human diseases. Ischemic heart and cerebrovascular injuries are two types of diseases with different clinical manifestations with high prevalence and incidence. In recent years, it has been reported that many TCM has beneficial effects on ischemic diseases through the inhibition of apoptosis, which is the key target to treat myocardial and cerebral ischemia. This review provides a comprehensive summary of the mechanisms of various TCMs in treating ischemic cardiovascular and cerebrovascular diseases through anti-apoptotic targets and pathways. However, clinical investigations into elucidating the pharmacodynamic ingredients of TCM are still lacking, which should be further demystified in the future. Overall, the inhibition of apoptosis by TCM may be an effective strategy for treating ischemic cardio-cerebrovascular diseases.
Collapse
Affiliation(s)
- Xiuli Cheng
- Department of Pharmacy, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jin Hu
- Department of Preparation Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaofeng Liu
- Department of Pharmacy, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | | | - Xiaobo Wang
- Research Institute of Integrated TCM and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaobo Wang, ; Qipeng Zhao,
| | - Qipeng Zhao
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education (Ningxia Medical University), Yinchuan, China
- *Correspondence: Xiaobo Wang, ; Qipeng Zhao,
| |
Collapse
|
96
|
Zhang Y, Zhang T, Jia J, Jin C, Li Y. Analysis of differential gene expression profiles uncovers mechanisms of Xuesaitong injection against cerebral ischemia-reperfusion injury. PHYTOMEDICINE 2022; 103:154224. [PMID: 35691081 DOI: 10.1016/j.phymed.2022.154224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/30/2022] [Accepted: 05/29/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Xuesaitong injection (XST), a well-known traditional Chinese patent medicine, has been widely used in the treatment of cardiovascular and cerebrovascular diseases. The exact mechanisms of XST in ischemic stroke remain to be thoroughly elucidated. PURPOSE This study aims to characterize the candidate differentially expressed genes (DEGs) and pathways of XST in ischemic stroke by bioinformatics analysis, and to explore new clues for the underlying mechanisms of XST. METHODS A dataset (GSE61616) was performed to screen out DEGs for deep analysis. Series Test of Cluster analysis for DEGs was carried out. For all DEGs, Gene Ontology (GO) annotation analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed for visualization. The screened hub gene expression characteristics were verified in middle cerebral artery occlusion (MCAO) rats. In vivo studies have demonstrated the mechanisms of XST against cerebral ischemia-reperfusion (CIR) injury. RESULTS A total of 8066 DEGs were screened out and the expression of genes in profile 8 was suggested to have clinical significance. The MAPK signaling pathway was indicated as the most significantly enriched pathway in profile 8. Bdnf was identified as the most significant hub gene according to node degree. Animal experiments demonstrated that XST attenuated CIR injury. XST increased brain-derived neurotrophic factor (BDNF) and its high-affinity receptor tropomyosin-related kinase B (TrkB) levels in MCAO. Furthermore, the knockdown of BDNF by siRNA abolished the in vivo effects of XST on brain injury, neurodegeneration and apoptosis after CIR. CONCLUSION The integrated strategy, based on bioinformatics analyses with experimental verification, provides a novel cellular mechanism by which XST alleviates CIR injury. The BDNF-TrkB pathway was highly thought to play a vital role in the neuroprotective effects of XST.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tiejun Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Jia
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Chaohui Jin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuwen Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
97
|
Experimental Study on Danggui Shaoyao San Improving Renal Fibrosis by Promoting Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6761453. [PMID: 35958909 PMCID: PMC9357681 DOI: 10.1155/2022/6761453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/25/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
Renal fibrosis could lead to chronic kidney disease (CKD) developing into the end-stage with its pathological manifestation is the deposition of extracellular matrix (ECM). Danggui Shaoyao San (DSS) is one of the widely used herbal formulas in ancient China, which has been proven to have efficacy in the treatment of CKD. The experiment employed TGF-β1 to stimulate the NRK-52E cells to establish a renal fibrosis model. With rapamycin (RAPA) used as the positive control, we detected the expression of fibronectin (FN), caspase-3, and autophagy-related proteins in the NRK-52E cells treated with DSS by Western blot and immunofluorescence assay. In order to further verify autophagy-promoting effects of DSS, we adopted 3-MA to inhibit autophagy. The experiment has found that DSS can lower the protein levels of FN and caspase-3 in the NRK-52E cells induced by TGF-β1. After TGF-β1 stimulation, the expression of LC3 II/I and Beclin 1 has decreased, and the protein levels of mTOR and p62 have increased. Consistent with rapamycin, DSS has significantly reduced these effects of TGF-β1. It has also been found that DSS can increase the expression of LC3 II/I and Beclin 1 proteins and can reduce the level of mTOR in cells treated with 3-MA, suggesting that DSS can promote autophagy. In conclusion, DSS has been proved to reduce the apoptosis and fibrosis of NRK-52E cells induced by TGF-β1, which may be achieved by promoting autophagy.
Collapse
|
98
|
Hu X, Ma F, Cheng Z, Zeng S, Shen R, Li X, Hu J, Jin Z, Cheng J. LncRNA PEG11as silencing sponges miR-874-3p to alleviate cerebral ischemia stroke via regulating autophagy in vivo and in vitro. Aging (Albany NY) 2022; 14:5177-5194. [PMID: 35749138 PMCID: PMC9271312 DOI: 10.18632/aging.204140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/14/2022] [Indexed: 11/28/2022]
Abstract
Long non-coding RNAs (lncRNAs) are reportedly involved in the regulation of physiological and pathophysiological processes. However, the potential role of lncRNAs in stroke remains largely undefined. Here, RNA-Seq analysis of lncRNAs found that the lncRNA PEG11as (PEG11as) levels were significantly increased in ischemic brain tissue in a transient middle cerebral artery occlusion/reperfusion (tMCAO/R) mouse model of stroke. To explore the role of PEG11as in stroke, the lentivirus containing PEG11as silencing construct(siRNA-PEG11as) was microinjected intracerebroventricularly into male or transfected to N2a cells and then exposed to tMCAO/R or oxygen-glucose deprivation/reoxygenation (OGD/R). Knockdown of PEG11as expression significantly reduced infarct volume, alleviated neuronal deficits and inhibited neuronal apoptosis in tMCAO/R mice. Mechanistically, as an endogenous microRNA-874-3p (miR-874-3p) sponge, PEG11as silencing inhibited miR-874-3p activity, resulting in downregulation of ATG16L1 expression and subsequent inhibition of neuronal apoptosis by regulating autophagy. Overall, the results of this current study indicate that PEG11as is involved in the pathophysiology of cerebral ischemia, thus providing translational evidence that PEG11as can be envisioned as a novel biomarker or/and therapeutic target for stroke.
Collapse
Affiliation(s)
- Xiamin Hu
- College of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Fuyun Ma
- College of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Zhongliang Cheng
- Wuhan University of Science and Technology Affiliated Wuhan Resources and Wisco General Hospital, Wuhan, Hubei, China
| | - Suyou Zeng
- Wuhan University of Science and Technology Affiliated Wuhan Resources and Wisco General Hospital, Wuhan, Hubei, China
| | - Ruling Shen
- Shanghai Laboratory Animal Research Center, Shanghai, China
| | - Xuan Li
- Wuhan University of Science and Technology Affiliated Wuhan Resources and Wisco General Hospital, Wuhan, Hubei, China
| | - Junqi Hu
- University of California, San Diego, CA 92093, USA
| | - Zhigang Jin
- Wuhan University of Science and Technology Affiliated Wuhan Resources and Wisco General Hospital, Wuhan, Hubei, China
| | - Jinping Cheng
- Wuhan University of Science and Technology Affiliated Wuhan Resources and Wisco General Hospital, Wuhan, Hubei, China
| |
Collapse
|
99
|
Chen DQ, Guo Y, Li X, Zhang GQ, Li P. Small molecules as modulators of regulated cell death against ischemia/reperfusion injury. Med Res Rev 2022; 42:2067-2101. [PMID: 35730121 DOI: 10.1002/med.21917] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 11/11/2021] [Accepted: 06/07/2022] [Indexed: 12/13/2022]
Abstract
Ischemia/reperfusion (IR) injury contributes to disability and mortality worldwide. Due to the complicated mechanisms and lack of proper therapeutic targets, few interventions are available that specifically target the pathogenesis of IR injury. Regulated cell death (RCD) of endothelial and parenchymal cells is recognized as the promising intervening target. Recent advances in IR injury suggest that small molecules exhibit beneficial effects on various RCD against IR injury, including apoptosis, necroptosis, autophagy, ferroptosis, pyroptosis, and parthanatos. Here, we describe the mechanisms behind these novel promising therapeutic targets and explain the machinery powering the small molecules. These small molecules exert protection by targeting endothelial or parenchymal cells to alleviate IR injury. Therapies of the ideal combination of small molecules targeting multiple cell types have shown potent synergetic therapeutic effects, laying the foundation for novel strategies to attenuate IR injury.
Collapse
Affiliation(s)
- Dan-Qian Chen
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China.,Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Yan Guo
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Xin Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Guo-Qiang Zhang
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
100
|
Inhibiting Microglia-Derived NLRP3 Alleviates Subependymal Edema and Cognitive Dysfunction in Posthemorrhagic Hydrocephalus after Intracerebral Hemorrhage via AMPK/Beclin-1 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4177317. [PMID: 35620574 PMCID: PMC9129981 DOI: 10.1155/2022/4177317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/29/2022] [Indexed: 12/14/2022]
Abstract
For posthemorrhagic hydrocephalus (PHH) patients, whether occur subependymal edema indicates poor outcomes, partially manifested as cognitive impairment. In the brain, NLRP3 inflammasome mainly derived from microglia/macrophages is involved in proinflammatory and neurodeficits after hemorrhage, and autophagy is vital for neuronal homeostasis and functions. Accumulating evidence suggest that NLRP3 inflammasome and autophagy played an essential role after intracerebral hemorrhage (ICH). We aimed to dissect the mechanisms underlying subependymal edema formation and cognitive dysfunction. Here, based on the hydrocephalus secondary to ICH break into ventricular (ICH-IVH) in rats, this study investigated whether microglia/macrophage-derived NLRP3 induced subependymal edema formation and neuron apoptosis in subventricular zones (SVZ). In the acute phase of ICH-IVH, both the expression of NLRP3 inflammasome of microglia/macrophages and the autophagy of neurons were upregulated. The activated NLRP3 in microglia/macrophages promoted the release of IL-1beta to extracellular, which contributed to excessive autophagy, leading to neurons apoptosis both in vivo and in vitro through the AMPK/Beclin-1 pathway combined with transcriptomics. Administration of MCC950 (NLRP3 inflammasome specific inhibitor) after ICH-IVH significantly reduced edema formation and improved cognitive dysfunction. Thus, inhibiting NLRP3 activation in SVZ may be a promising therapeutic strategy for PHH patients that warrants further investigation.
Collapse
|