51
|
Qi T, Cao Y. In Translation: FcRn across the Therapeutic Spectrum. Int J Mol Sci 2021; 22:3048. [PMID: 33802650 PMCID: PMC8002405 DOI: 10.3390/ijms22063048] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
As an essential modulator of IgG disposition, the neonatal Fc receptor (FcRn) governs the pharmacokinetics and functions many therapeutic modalities. In this review, we thoroughly reexamine the hitherto elucidated biological and thermodynamic properties of FcRn to provide context for our assessment of more recent advances, which covers antigen-binding fragment (Fab) determinants of FcRn affinity, transgenic preclinical models, and FcRn targeting as an immune-complex (IC)-clearing strategy. We further comment on therapeutic antibodies authorized for treating SARS-CoV-2 (bamlanivimab, casirivimab, and imdevimab) and evaluate their potential to saturate FcRn-mediated recycling. Finally, we discuss modeling and simulation studies that probe the quantitative relationship between in vivo IgG persistence and in vitro FcRn binding, emphasizing the importance of endosomal transit parameters.
Collapse
Affiliation(s)
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA;
| |
Collapse
|
52
|
Nakamura G, Ozeki K, Takesue H, Tabo M, Hosoya KI. Prediction of Human Pharmacokinetics Profile of Monoclonal Antibody Using hFcRn Transgenic Mouse Model. Biol Pharm Bull 2021; 44:389-395. [PMID: 33642546 DOI: 10.1248/bpb.b20-00775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human pharmacokinetics (PK) profiles of monoclonal antibodies (mAbs) are usually predicted using non-human primates (NHP), but this comes with drawbacks in terms of cost and throughput. Therefore, we established a human PK profile prediction method using human neonatal Fc receptor (hFcRn) transgenic mice (TgM). We administered launched 13 mAbs to hFcRn TgM and measured the concentration in plasma using electro-chemiluminescence immunoassay. This was then used to calculate PK parameters and predict human PK profiles. The mAbs showed a bi-phased elimination pattern, and clearance (CL) (mL/d/kg) and distribution volume at steady state (Vdss) (mL/kg) ranges were 11.0 to 131 and 110 to 285, respectively. There was a correlation in half-life at elimination phase (t1/2β) between hFcRn TgM and humans for 10 mAbs showing CL of more than 80% in the elimination phase (R2 = 0.714). Human t1/2β was predicted using hFcRn TgM t1/2β; 9 out of 10 mAbs were within 2-fold the actual values, and all mAbs were within 3-fold. Regarding the predicted CL values, 7 out of 10 mAbs were within 2-fold the human values and all mAbs were within 3-fold. Furthermore, even on day 7 the predicted CL values of 8 out of 10 mAbs were within 2-fold the observed value, with all mAbs within 3-fold. These results suggest human PK profiles can be predicted using hFcRn TgM data. These methods can accelerate the development of antibody drugs while also reducing cost and improving throughput.
Collapse
Affiliation(s)
- Genki Nakamura
- Research Division, Chugai Pharmaceutical Co., Ltd.,Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | | | | | | | - Ken-Ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
53
|
Ko S, Jo M, Jung ST. Recent Achievements and Challenges in Prolonging the Serum Half-Lives of Therapeutic IgG Antibodies Through Fc Engineering. BioDrugs 2021; 35:147-157. [PMID: 33608823 PMCID: PMC7894971 DOI: 10.1007/s40259-021-00471-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2021] [Indexed: 01/02/2023]
Abstract
Association of FcRn molecules to the Fc region of IgG in acidified endosomes and subsequent dissociation of the interaction in neutral pH serum enables IgG molecules to be recycled for prolonged serum persistence after internalization by endothelial cells, rather than being degraded in the serum and in the lysosomes inside the cells. Exploiting this intracellular trafficking and recycling mechanism, many researchers have engineered the Fc region to further extend the serum half-lives of therapeutic antibodies by optimizing the pH-dependent IgG Fc-FcRn interaction, and have generated various Fc variants exhibiting significantly improved circulating half-lives of therapeutic IgG antibodies. In order to estimate pharmacokinetic profiles of IgG Fc variants in human serum, not only a variety of in vitro techniques to determine the equilibrium binding constants and instantaneous rate constants for pH-dependent FcRn binding, but also diverse in vivo animal models including wild-type mouse, human FcRn transgenic mouse (Tg32 and Tg276), humanized mouse (Scarlet), or cynomolgus monkey have been harnessed. Currently, multiple IgG Fc variants that have been validated for their prolonged therapeutic potency in preclinical models have been successfully entered into human clinical trials for cancer, infectious diseases, and autoimmune diseases.
Collapse
Affiliation(s)
- Sanghwan Ko
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.,Institute of Human Genetics, Korea University College of Medicine, Seoul, Republic of Korea
| | - Migyeong Jo
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.,BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sang Taek Jung
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea. .,Institute of Human Genetics, Korea University College of Medicine, Seoul, Republic of Korea. .,BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea. .,Department of Biomedical Sciences, Graduate School, Korea University, Seoul, Republic of Korea. .,Biomedical Research Center, Korea University Anam Hospital, Seoul, Republic of Korea.
| |
Collapse
|
54
|
Nakamura G, Ozeki K, Nagayasu M, Nambu T, Nemoto T, Hosoya KI. Predicting Method for the Human Plasma Concentration-Time Profile of a Monoclonal Antibody from the Half-life of Non-human Primates. Biol Pharm Bull 2021; 43:823-830. [PMID: 32378559 DOI: 10.1248/bpb.b19-01042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Efficiency (speed and cost) and animal welfare are important factors in the development of new drugs. A novel method (the half-life method) was developed to predict the human plasma concentration-time profile of a monoclonal antibody (mAb) after intravenous (i.v.) administration using less data compared to the conventional approach; moreover, predicted results were comparable to conventional method. This new method use human geometric means of pharmacokinetics (PK) parameters and the non-human primates (NHP) half-life of each mAb. PK data on mAbs in humans and NHPs were collected from literature focusing on linear elimination, and the two-compartment model was used for analysis. The following features were revealed in humans: 1) the coefficient of variation in the distribution volume of the central compartment and at steady state of mAbs was small (22.6 and 23.8%, respectively) and 2) half-life at the elimination phase (t1/2β) was the main contributor to plasma clearance. Moreover, distribution volume showed no significant correlation between humans and NHPs, and human t1/2β showed a good correlation with allometrically scaled t1/2β of NHP. Based on the features revealed in this study, we propose a new method for predicting the human plasma concentration-time profile of mAbs after i.v. dosing. When tested, this half-life method showed reasonable human prediction compared with a conventional empirical approach. The half-life method only requires t1/2β to predict human PK, and is therefore able to improve animal welfare and potentially accelerate the drug development process.
Collapse
Affiliation(s)
- Genki Nakamura
- Research Division, Chugai Pharmaceutical Co., Ltd.,Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | | | | | - Takeru Nambu
- Research Division, Chugai Pharmaceutical Co., Ltd
| | | | - Ken-Ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
55
|
Kraft TE, Richter WF, Emrich T, Knaupp A, Schuster M, Wolfert A, Kettenberger H. Heparin chromatography as an in vitro predictor for antibody clearance rate through pinocytosis. MAbs 2021; 12:1683432. [PMID: 31769731 PMCID: PMC6927760 DOI: 10.1080/19420862.2019.1683432] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The pharmacokinetic (PK) properties of therapeutic antibodies directly affect efficacy, dose and dose intervals, application route and tissue penetration. In indications where health-care providers and patients can choose between several efficacious and safe therapeutic options, convenience (determined by dosing interval or route of application), which is mainly driven by PK properties, can affect drug selection. Therapeutic antibodies can have greatly different PK even if they have identical Fc domains and show no target-mediated drug disposition. Biophysical properties like surface charge or hydrophobicity, and binding to surrogates for high abundant off-targets (e.g., baculovirus particles, Chinese hamster ovary cell membrane proteins) were proposed to be responsible for these differences. Here, we used heparin chromatography to separate a polyclonal mix of endogenous human IgGs (IVIG) into fractions that differ in their PK properties. Heparin was chosen as a surrogate for highly negatively charged glycocalyx components on endothelial cells, which are among the main contributors to nonspecific clearance. By directly correlating heparin retention time with clearance, we identified heparin chromatography as a tool to assess differences in unspecific cell-surface interaction and the likelihood for increased pinocytotic uptake and degradation. Building on these results, we combined predictors for FcRn-mediated recycling and cell-surface interaction. The combination of heparin and FcRn chromatography allow identification of antibodies with abnormal PK by mimicking the major root causes for fast, non-target-mediated, clearance of therapeutic, Fc-containing proteins.
Collapse
Affiliation(s)
- Thomas E Kraft
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Wolfgang F Richter
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Thomas Emrich
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Alexander Knaupp
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Michaela Schuster
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Andreas Wolfert
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Hubert Kettenberger
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
56
|
Germovsek E, Cheng M, Giragossian C. Allometric scaling of therapeutic monoclonal antibodies in preclinical and clinical settings. MAbs 2021; 13:1964935. [PMID: 34530672 PMCID: PMC8463036 DOI: 10.1080/19420862.2021.1964935] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/19/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Constant technological advancement enabled the production of therapeutic monoclonal antibodies (mAbs) and will continue to contribute to their rapid expansion. Compared to small-molecule drugs, mAbs have favorable characteristics, but also more complex pharmacokinetics (PK), e.g., target-mediated nonlinear elimination and recycling by neonatal Fc-receptor. This review briefly discusses mAb biology, similarities and differences in PK processes across species and within human, and provides a detailed overview of allometric scaling approaches for translating mAb PK from preclinical species to human and extrapolating from adults to children. The approaches described here will remain vital in mAb drug development, although more data are needed, for example, from very young patients and mAbs with nonlinear PK, to allow for more confident conclusions and contribute to further growth of this field. Improving mAb PK predictions will facilitate better planning of (pediatric) clinical studies and enable progression toward the ultimate goal of expediting drug development.
Collapse
Affiliation(s)
- Eva Germovsek
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany
| | - Ming Cheng
- Development Biologicals, Drug Metabolism And Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, US
| | - Craig Giragossian
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, US
| |
Collapse
|
57
|
Jones HM, Tolsma J, Zhang Z, Jasper P, Luo H, Weber GL, Wright K, Bard J, Bell R, Messing D, Kelleher K, Piche-Nicholas N, Webster R. A Physiologically-Based Pharmacokinetic Model for the Prediction of "Half-Life Extension" and "Catch and Release" Monoclonal Antibody Pharmacokinetics. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2020; 9:534-541. [PMID: 32697437 PMCID: PMC7499188 DOI: 10.1002/psp4.12547] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/21/2020] [Indexed: 12/28/2022]
Abstract
Monoclonal antibodies (mAbs) can be engineered to have “extended half‐life” and “catch and release” properties to improve target coverage. We have developed a mAb physiologically‐based pharmacokinetic model that describes intracellular trafficking, neonatal Fc receptor (FcRn) recycling, and nonspecific clearance of mAbs. We extended this model to capture target binding as a function of target affinity, expression, and turnover. For mAbs engineered to have an extended half‐life, the model was able to accurately predict the terminal half‐life (82% within 2‐fold error of the observed value) in the human FcRn transgenic (Tg32) homozygous mouse and human. The model also accurately captures the trend in pharmacokinetic and target coverage data for a set of mAbs with differing catch and release properties in the Tg32 mouse. The mechanistic nature of this model allows us to explore different engineering techniques early in drug discovery, potentially expanding the number of “druggable” targets.
Collapse
Affiliation(s)
- Hannah M Jones
- BioMedicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts, USA
| | | | | | | | - Haobin Luo
- RES Group Inc., Needham, Massachusetts, USA
| | - Gregory L Weber
- BioMedicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts, USA
| | - Katherine Wright
- BioMedicine Design, Pfizer Worldwide R&D, Andover, Massachusetts, USA
| | - Joel Bard
- BioMedicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts, USA
| | - Robert Bell
- Rare Disease Research Unit, Pfizer Worldwide R&D, Cambridge, Massachusetts, USA
| | - Dean Messing
- BioMedicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts, USA
| | - Kerry Kelleher
- BioMedicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts, USA
| | | | - Robert Webster
- BioMedicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts, USA
| |
Collapse
|
58
|
Conner KP, Devanaboyina SC, Thomas VA, Rock DA. The biodistribution of therapeutic proteins: Mechanism, implications for pharmacokinetics, and methods of evaluation. Pharmacol Ther 2020; 212:107574. [PMID: 32433985 DOI: 10.1016/j.pharmthera.2020.107574] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 04/30/2020] [Indexed: 02/08/2023]
Abstract
Therapeutic proteins (TPs) are a diverse drug class that include monoclonal antibodies (mAbs), recombinantly expressed enzymes, hormones and growth factors, cytokines (e.g. chemokines, interleukins, interferons), as well as a wide range of engineered fusion scaffolds containing IgG1 Fc domain for half-life extension. As the pharmaceutical industry advances more potent and selective protein-based medicines through discovery and into the clinical stages of development, it has become widely appreciated that a comprehensive understanding of the mechanisms of TP biodistribution can aid this endeavor. This review aims to highlight the literature that has advanced our understanding of the determinants of TP biodistribution. A particular emphasis is placed on the multi-faceted role of the neonatal Fc receptor (FcRn) in mAb and Fc-fusion protein disposition. In addition, characterization of the TP-target interaction at the cell-level is discussed as an essential strategy to establish pharmacokinetic-pharmacodynamic (PK/PD) relationships that may lead to more informed human dose projections during clinical development. Methods for incorporation of tissue and cell-level parameters defining these characteristics into higher-order mechanistic and semi-mechanistic PK models will also be presented.
Collapse
Affiliation(s)
- Kip P Conner
- Dept. of Pharmacokinetics and Drug Metabolism, Amgen Inc, 1120 Veterans Blvd, South San Francisco, CA 94080, USA.
| | - Siva Charan Devanaboyina
- Dept. of Pharmacokinetics and Drug Metabolism, Amgen Inc, 1120 Veterans Blvd, South San Francisco, CA 94080, USA.
| | - Veena A Thomas
- Dept. of Pharmacokinetics and Drug Metabolism, Amgen Inc, 1120 Veterans Blvd, South San Francisco, CA 94080, USA.
| | - Dan A Rock
- Dept. of Pharmacokinetics and Drug Metabolism, Amgen Inc, 1120 Veterans Blvd, South San Francisco, CA 94080, USA.
| |
Collapse
|
59
|
Raje AA, Mahajan V, Pathade VV, Joshi K, Gavali A, Gaur A, Kandikere V. Capillary microsampling in mice: effective way to move from sparse sampling to serial sampling in pharmacokinetics profiling. Xenobiotica 2019; 50:663-669. [PMID: 31638457 DOI: 10.1080/00498254.2019.1683259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Pharmacokinetic studies are an integral part of drug discovery and development. Mice are the commonly used species for pharmacokinetics studies during early discovery studies. Conventionally, composite PK profiles are obtained from mice studies due to the physiological limitations of the total blood volume that can be drawn over a certain period.With advancements in bioanalytical instrumentation and in blood sampling techniques, analysis with small volume (<50 µL) became feasible enabling serial blood sampling from the mouse for PK studies. The objective of the current study was to develop and establish a serial blood sampling technique in mouse and compare it with the conventional sparse sampling method (composite PK) following oral administration of widely used NSAIDs, diclofenac, celecoxib and tenoxicam, into Swiss Albino mice.The pharmacokinetic parameters of all three probe drugs by serial blood sampling were comparable with that of sparse sampling method. There was no significant difference between the whole blood concentration time profiles of all three drugs between serial sampling and sparse sampling suggesting serial blood sampling method can be easily implemented for mice PK studies.Serial blood sampling technique requires use of fewer number of animals, less quantity of test compound and reduces the possible dosing errors as fewer number of animals need to be dosed resulting in quality PK data and enabling comparison of inter-animal differences in PK profile.
Collapse
Affiliation(s)
- Amol A Raje
- Drug Metabolism Pharmacokinetics and Clinical Pharmacology, Eurofins Advinus Ltd., (Formerly known as Advinus Therapeutics Ltd), Bengaluru, India
| | - Vallabh Mahajan
- Drug Metabolism Pharmacokinetics and Clinical Pharmacology, Eurofins Advinus Ltd., (Formerly known as Advinus Therapeutics Ltd), Bengaluru, India
| | - Vishal V Pathade
- Drug Metabolism Pharmacokinetics and Clinical Pharmacology, Eurofins Advinus Ltd., (Formerly known as Advinus Therapeutics Ltd), Bengaluru, India
| | - Kaushal Joshi
- Drug Metabolism Pharmacokinetics and Clinical Pharmacology, Eurofins Advinus Ltd., (Formerly known as Advinus Therapeutics Ltd), Bengaluru, India
| | - Ashutosh Gavali
- Drug Metabolism Pharmacokinetics and Clinical Pharmacology, Eurofins Advinus Ltd., (Formerly known as Advinus Therapeutics Ltd), Bengaluru, India
| | - Ashwani Gaur
- Drug Metabolism Pharmacokinetics and Clinical Pharmacology, Eurofins Advinus Ltd., (Formerly known as Advinus Therapeutics Ltd), Bengaluru, India
| | - Vishwottam Kandikere
- Drug Metabolism Pharmacokinetics and Clinical Pharmacology, Eurofins Advinus Ltd., (Formerly known as Advinus Therapeutics Ltd), Bengaluru, India
| |
Collapse
|
60
|
Datta-Mannan A. Mechanisms Influencing the Pharmacokinetics and Disposition of Monoclonal Antibodies and Peptides. Drug Metab Dispos 2019; 47:1100-1110. [PMID: 31043438 DOI: 10.1124/dmd.119.086488] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/22/2019] [Indexed: 12/15/2022] Open
Abstract
Monoclonal antibodies (mAbs) and peptides are an important class of therapeutic modalities that have brought improved health outcomes in areas with limited therapeutic optionality. Presently, there more than 90 mAb and peptide therapeutics on the United States market, with over 600 more in various clinical stages of development in a broad array of therapeutic areas, including diabetes, autoimmune disorders, oncology, neuroscience, and cardiovascular and infectious diseases. Notwithstanding this potential, there is high clinical rate of attrition, with approximately 10% reaching patients. A major contributor to the failure of the molecules is often times an incomplete or poor understanding of the pharmacokinetics (PK) and disposition profiles leading to limited or diminished efficacy. Increased and thorough characterization efforts directed at disseminating mechanisms influencing the PK and disposition of mAbs and peptides can aid in improving the design for their intended pharmacological activity, and thereby their clinical success. The PK and disposition factors for mAbs and peptides are broadly influenced by target-mediated drug disposition and nontarget-related clearance mechanisms related to the interplay between the relationship of the structure and physiochemical properties of mAbs and peptides with physiologic processes. This review focuses on nontarget-related factors influencing the disposition and PK of mAbs and peptides. Contemporary considerations around the increasing in silico approaches to identify nontarget-related molecule limitations and enhancing the druggability of mAbs and peptides, including parenteral and nonparenteral delivery strategies that are geared toward improving patient experience and compliance, are also discussed.
Collapse
Affiliation(s)
- Amita Datta-Mannan
- Department of Experimental Medicine and Pharmacology, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana
| |
Collapse
|
61
|
Jones HM, Zhang Z, Jasper P, Luo H, Avery LB, King LE, Neubert H, Barton HA, Betts AM, Webster R. A Physiologically-Based Pharmacokinetic Model for the Prediction of Monoclonal Antibody Pharmacokinetics From In Vitro Data. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2019; 8:738-747. [PMID: 31464379 PMCID: PMC6813168 DOI: 10.1002/psp4.12461] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/14/2019] [Indexed: 11/07/2022]
Abstract
Monoclonal antibody (mAb) pharmacokinetics (PK) have largely been predicted via allometric scaling with little consideration for cross-species differences in neonatal Fc receptor (FcRn) affinity or clearance/distribution mechanisms. To address this, we developed a mAb physiologically-based PK model that describes the intracellular trafficking and FcRn recycling of mAbs in a human FcRn transgenic homozygous mouse and human. This model uses mAb-specific in vitro data together with species-specific FcRn tissue expression, tissue volume, and blood-flow physiology to predict mAb in vivo linear PK a priori. The model accurately predicts the terminal half-life of 90% of the mAbs investigated within a twofold error. The mechanistic nature of this model allows us to not only predict linear PK from in vitro data but also explore the PK and target binding of mAbs engineered to have pH-dependent binding to its target or FcRn and could aid in the selection of mAbs with optimal PK and pharmacodynamic properties.
Collapse
Affiliation(s)
- Hannah M Jones
- BioMedicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts, USA
| | | | | | - Haobin Luo
- RES Group Inc, Needham, Massachusetts, USA
| | | | - Lindsay E King
- BioMedicine Design, Pfizer Worldwide R&D, Andover, Massachusetts, USA
| | - Hendrik Neubert
- BioMedicine Design, Pfizer Worldwide R&D, Andover, Massachusetts, USA
| | - Hugh A Barton
- BioMedicine Design, Pfizer Worldwide R&D, Groton, Connecticut, USA
| | - Alison M Betts
- BioMedicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts, USA
| | - Robert Webster
- BioMedicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts, USA
| |
Collapse
|
62
|
Fan YY, Farrokhi V, Caiazzo T, Wang M, O'Hara DM, Neubert H. Human FcRn Tissue Expression Profile and Half-Life in PBMCs. Biomolecules 2019; 9:biom9080373. [PMID: 31443181 PMCID: PMC6722552 DOI: 10.3390/biom9080373] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 12/25/2022] Open
Abstract
System-wide quantitative characterization of human neonatal Fc receptor (FcRn) properties is critical for understanding and predicting human PK (pharmacokinetics) as well as the distribution of mAbs and Fc-fusion proteins using PBPK (physiologically-based pharmacokinetic) modeling. To this end, tissue-specific FcRn expression and half-life are important model inputs. Herein, human FcRn tissue expression was measured by peptide immunoaffinity chromatography coupled with high-resolution mass spectrometry. FcRn concentrations across 14 human tissues ranged from low to 230 pmol per gram of tissue. Furthermore, the FcRn half-life was determined to be 11.1 h from a human stable isotope labelled leucine pulse labeling experiment. The spatial and temporal quantitative human FcRn data now promise to enable a refined PBPK model with improved accuracy of human PK predictions for Fc-containing biotherapeutics.
Collapse
Affiliation(s)
- Yao-Yun Fan
- Biomedicine Design, Pfizer Worldwide Research & Development, Andover, MA 01810, USA
| | - Vahid Farrokhi
- Biomedicine Design, Pfizer Worldwide Research & Development, Andover, MA 01810, USA
| | - Teresa Caiazzo
- Biomedicine Design, Pfizer Worldwide Research & Development, Andover, MA 01810, USA
| | - Mengmeng Wang
- Biomedicine Design, Pfizer Worldwide Research & Development, Andover, MA 01810, USA
| | - Denise M O'Hara
- Biomedicine Design, Pfizer Worldwide Research & Development, Andover, MA 01810, USA
| | - Hendrik Neubert
- Biomedicine Design, Pfizer Worldwide Research & Development, Andover, MA 01810, USA.
| |
Collapse
|
63
|
Walker KW, Salimi-Moosavi H, Arnold GE, Chen Q, Soto M, Jacobsen FW, Hui J. Pharmacokinetic comparison of a diverse panel of non-targeting human antibodies as matched IgG1 and IgG2 isotypes in rodents and non-human primates. PLoS One 2019; 14:e0217061. [PMID: 31120944 PMCID: PMC6533040 DOI: 10.1371/journal.pone.0217061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 05/03/2019] [Indexed: 11/24/2022] Open
Abstract
In this study we compared the pharmacokinetic profile of four unrelated antibodies, which do not bind to mammalian antigens, in IgG1 and IgG2 frameworks in both rats and non-human primates (NHP). This allowed for extensive cross comparison of the impact of antibody isotype, complementarity determining regions (CDR) and model species on pharmacokinetics without the confounding influence of antigen binding in the hosts. While antibody isotype had no significant impact on the pharmacokinetics, the CDRs do alter the profile, and there is an inverse correlation between the neonatal Fc receptor (FcRn) affinity and pharmacokinetic performance. Faster clearance rates were also associated with higher isoelectric points; however, although this panel of antibodies all possess basic isoelectric points, ranging from 8.44 to 9.18, they also have exceptional in vivo half-lives, averaging 369 hours, and low clearance rates, averaging 0.18 ml/h/kg in NHPs. This pattern of pharmacokinetic characteristics was conserved between rats and NHPs.
Collapse
Affiliation(s)
- Kenneth W. Walker
- Amgen Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, United States of America
- * E-mail:
| | - Hossein Salimi-Moosavi
- Amgen Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, United States of America
| | - Gregory E. Arnold
- Amgen Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, United States of America
| | - Qing Chen
- Amgen Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, United States of America
| | - Marcus Soto
- Amgen Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, United States of America
| | - Frederick W. Jacobsen
- Amgen Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, United States of America
| | - John Hui
- Amgen Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, United States of America
| |
Collapse
|
64
|
Chung S, Nguyen V, Lin YL, Lafrance-Vanasse J, Scales SJ, Lin K, Deng R, Williams K, Sperinde G, Li JJ, Zheng K, Sukumaran S, Tesar D, Ernst JA, Fischer S, Lazar GA, Prabhu S, Song A. An in vitro FcRn- dependent transcytosis assay as a screening tool for predictive assessment of nonspecific clearance of antibody therapeutics in humans. MAbs 2019; 11:942-955. [PMID: 30982394 PMCID: PMC6601550 DOI: 10.1080/19420862.2019.1605270] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A cell-based assay employing Madin–Darby canine kidney cells stably expressing human neonatal Fc receptor (FcRn) heavy chain and β2-microglobulin genes was developed to measure transcytosis of monoclonal antibodies (mAbs) under conditions relevant to the FcRn-mediated immunoglobulin G (IgG) salvage pathway. The FcRn-dependent transcytosis assay is modeled to reflect combined effects of nonspecific interactions between mAbs and cells, cellular uptake via pinocytosis, pH-dependent interactions with FcRn, and dynamics of intracellular trafficking and sorting mechanisms. Evaluation of 53 mAbs, including 30 marketed mAb drugs, revealed a notable correlation between the transcytosis readouts and clearance in humans. FcRn was required to promote efficient transcytosis of mAbs and contributed directly to the observed correlation. Furthermore, the transcytosis assay correctly predicted rank order of clearance of glycosylation and Fv charge variants of Fc-containing proteins. These results strongly support the utility of this assay as a cost-effective and animal-sparing screening tool for evaluation of mAb-based drug candidates during lead selection, optimization, and process development for desired pharmacokinetic properties.
Collapse
Affiliation(s)
- Shan Chung
- a Department of BioAnalytical Sciences , Genentech Inc ., South San Francisco , CA , USA
| | - Van Nguyen
- a Department of BioAnalytical Sciences , Genentech Inc ., South San Francisco , CA , USA
| | - Yuwen Linda Lin
- a Department of BioAnalytical Sciences , Genentech Inc ., South San Francisco , CA , USA
| | | | - Suzie J Scales
- c Department of Molecular Biology , Genentech Inc ., South San Francisco , CA , USA
| | - Kevin Lin
- d Department of Analytical Operations , Genentech Inc ., South San Francisco , CA , USA
| | - Rong Deng
- e Department of Clinical Pharmacology , Genentech Inc ., South San Francisco , CA , USA
| | - Kathi Williams
- a Department of BioAnalytical Sciences , Genentech Inc ., South San Francisco , CA , USA
| | - Gizette Sperinde
- a Department of BioAnalytical Sciences , Genentech Inc ., South San Francisco , CA , USA
| | - Juan Jenny Li
- f Department of Biochemistry and Cellular Pharmacology , Genentech Inc ., South San Francisco , CA , USA
| | - Kai Zheng
- g Department of Late Stage Pharmaceutical Development , Genentech Inc ., South San Francisco , CA , USA
| | - Siddharth Sukumaran
- h Department of Pharmacokinetics & Pharmacodynamics , Genentech Inc ., South San Francisco , CA , USA
| | - Devin Tesar
- i Department of Drug Delivery , Genentech Inc ., South San Francisco , CA , USA
| | - James A Ernst
- b Department of Protein Chemistry , Genentech Inc ., South San Francisco , CA , USA
| | - Saloumeh Fischer
- a Department of BioAnalytical Sciences , Genentech Inc ., South San Francisco , CA , USA
| | - Greg A Lazar
- j Department of Antibody Engineering , Genentech Inc ., South San Francisco , CA , USA
| | - Saileta Prabhu
- h Department of Pharmacokinetics & Pharmacodynamics , Genentech Inc ., South San Francisco , CA , USA
| | - An Song
- a Department of BioAnalytical Sciences , Genentech Inc ., South San Francisco , CA , USA
| |
Collapse
|
65
|
Starr CG, Tessier PM. Selecting and engineering monoclonal antibodies with drug-like specificity. Curr Opin Biotechnol 2019; 60:119-127. [PMID: 30822699 DOI: 10.1016/j.copbio.2019.01.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/16/2018] [Accepted: 01/19/2019] [Indexed: 11/19/2022]
Abstract
Despite the recent explosion in the use of monoclonal antibodies (mAbs) as drugs, it remains a significant challenge to generate antibodies with a combination of physicochemical properties that are optimal for therapeutic applications. We argue that one of the most important and underappreciated drug-like antibody properties is high specificity - defined here as low levels of antibody non-specific and self-interactions - which is linked to low off-target binding and slow antibody clearance in vivo and high solubility and low viscosity in vitro. Here, we review the latest advances in characterizing antibody specificity and elucidating its molecular determinants as well as using these findings to improve the selection and engineering of antibodies with extremely high, drug-like specificity.
Collapse
Affiliation(s)
- Charles G Starr
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter M Tessier
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
66
|
Leipold D, Prabhu S. Pharmacokinetic and Pharmacodynamic Considerations in the Design of Therapeutic Antibodies. Clin Transl Sci 2018; 12:130-139. [PMID: 30414357 PMCID: PMC6440574 DOI: 10.1111/cts.12597] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022] Open
Abstract
The design and development of therapeutic monoclonal antibodies (mAbs) through optimizing their pharmacokinetic (PK) and pharmacodynamic (PD) properties is crucial to improve efficacy while minimizing adverse events. Many of these properties are interdependent, which highlights the inherent challenges in therapeutic antibody design, where improving one antibody property can sometimes lead to changes in others. Here, we discuss optimization approaches for PK/PD properties of therapeutic mAbs.
Collapse
Affiliation(s)
- Douglas Leipold
- Preclinical and Translational Pharmacokinetics/Pharmacodynamics, Genentech, South San Francisco, California, USA
| | - Saileta Prabhu
- Preclinical and Translational Pharmacokinetics/Pharmacodynamics, Genentech, South San Francisco, California, USA
| |
Collapse
|
67
|
Improvement of pharmacokinetic properties of therapeutic antibodies by antibody engineering. Drug Metab Pharmacokinet 2018; 34:25-41. [PMID: 30472066 DOI: 10.1016/j.dmpk.2018.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/13/2018] [Accepted: 10/23/2018] [Indexed: 01/17/2023]
Abstract
Monoclonal antibodies (mAbs) have become an important therapeutic option for several diseases. Since several mAbs have shown promising efficacy in clinic, the competition to develop mAbs has become severe. In efforts to gain a competitive advantage over other mAbs and provide significant benefits to patients, innovations in antibody engineering have aimed at improving the pharmacokinetic properties of mAbs. Because engineering can provide therapeutics that are more convenient, safer, and more efficacious for patients in several disease areas, it is an attractive approach to provide significant benefits to patients. Further advances in engineering mAbs to modulate their pharmacokinetics were driven by the increase of total soluble target antigen concentration that is often observed after injecting a mAb, which then requires a high dosage to antagonize. To decrease the required dosage, several antibody engineering techniques have been invented that reduce the total concentration of soluble target antigen. Here, we review the various ways that antibody engineering can improve the pharmacokinetic properties of mAbs.
Collapse
|
68
|
Li T, Balthasar JP. FcRn Expression in Wildtype Mice, Transgenic Mice, and in Human Tissues. Biomolecules 2018; 8:biom8040115. [PMID: 30326650 PMCID: PMC6316262 DOI: 10.3390/biom8040115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/29/2018] [Accepted: 10/05/2018] [Indexed: 12/21/2022] Open
Abstract
Quantitative real-time PCR and Western blot methods were developed to assess neonatal Fc-receptor (FcRn) mRNA and protein expression in human FcRn transgenic mice, Swiss Webster mice, and in select human tissues. Additionally, FcRn turnover was evaluated via pulse-chase. FcRn mRNA expression was significantly higher in transgenic mice when compared to mouse FcRn mRNA in Swiss Webster mice and it ranged from 184-fold higher in the kidney to 109,000-fold higher in the skin. FcRn protein expression was found to be 13-fold lower in kidney to 5.6-fold higher in lung obtained from transgenic mice compared to FcRn protein expression in lung samples obtained from Swiss Webster mice. FcRn protein expression in human liver and small intestine tissues matched more closely with FcRn expression in Swiss Webster mice but were significantly lower when compared to values found from Swiss Webster and transgenic mice. Although FcRn mRNA expression correlated significantly with protein expression (p < 0.0005), the correlation coefficient was only 0.113. As such, the measurement of FcRn protein may be preferred to FcRn mRNA for quantitative applications. Significant differences were found in FcRn expression in transgenic mice, Swiss Webster mice, and human tissues, which may have implications for the use of mouse models in the assessment of monoclonal antibody disposition, efficacy, and safety.
Collapse
Affiliation(s)
- Tommy Li
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| | - Joseph P Balthasar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
69
|
Liu W, Bennett AL, Ning W, Tan HY, Berwanger JD, Zeng X, Bruening ML. Monoclonal Antibody Capture and Analysis Using Porous Membranes Containing Immobilized Peptide Mimotopes. Anal Chem 2018; 90:12161-12167. [DOI: 10.1021/acs.analchem.8b03183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Austin L. Bennett
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Wenjing Ning
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | | | | | - Xiangqun Zeng
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| | | |
Collapse
|
70
|
Targeting FcRn to Generate Antibody-Based Therapeutics. Trends Pharmacol Sci 2018; 39:892-904. [PMID: 30143244 DOI: 10.1016/j.tips.2018.07.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 01/01/2023]
Abstract
The MHC class I-related receptor FcRn serves multiple roles ranging from the regulation of levels of IgG isotype antibodies and albumin throughout the body to the delivery of antigen into antigen loading compartments in specialized antigen-presenting cells. In parallel with studies directed towards understanding FcRn at the molecular and cellular levels, there has been an enormous expansion in the development of engineering strategies involving FcRn to modulate the dynamic behavior of antibodies, antigens, and albumin. In this review article, we focus on a discussion of FcRn-targeted approaches that have resulted in the production of novel antibody-based platforms with considerable potential for use in the clinic.
Collapse
|
71
|
Betts A, Keunecke A, van Steeg TJ, van der Graaf PH, Avery LB, Jones H, Berkhout J. Linear pharmacokinetic parameters for monoclonal antibodies are similar within a species and across different pharmacological targets: A comparison between human, cynomolgus monkey and hFcRn Tg32 transgenic mouse using a population-modeling approach. MAbs 2018; 10:751-764. [PMID: 29634430 PMCID: PMC6150614 DOI: 10.1080/19420862.2018.1462429] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The linear pharmacokinetics (PK) of therapeutic monoclonal antibodies (mAbs) can be considered a class property with values that are similar to endogenous IgG. Knowledge of these parameters across species could be used to avoid unnecessary in vivo PK studies and to enable early PK predictions and pharmacokinetic/pharmacodynamic (PK/PD) simulations. In this work, population-pharmacokinetic (popPK) modeling was used to determine a single set of ‘typical’ popPK parameters describing the linear PK of mAbs in human, cynomolgus monkey and transgenic mice expressing the human neonatal Fc receptor (hFcRn Tg32), using a rich dataset of 27 mAbs. Non-linear PK was excluded from the datasets and a 2-compartment model was applied to describe mAb disposition. Typical human popPK estimates compared well with data from comparator mAbs with linear PK in the clinic. Outliers with higher than typical clearance were found to have non-specific interactions in an affinity-capture self-interaction nanoparticle spectroscopy assay, offering a potential tool to screen out these mAbs at an early stage. Translational strategies were investigated for prediction of human linear PK of mAbs, including use of typical human popPK parameters and allometric exponents from cynomolgus monkey and Tg32 mouse. Each method gave good prediction of human PK with parameters predicted within 2-fold. These strategies offer alternative options to the use of cynomolgus monkeys for human PK predictions of linear mAbs, based on in silico methods (typical human popPK parameters) or using a rodent species (Tg32 mouse), and call into question the value of completing extensive in vivo preclinical PK to inform linear mAb PK.
Collapse
Affiliation(s)
- Alison Betts
- a Department of Biomedicine Design , Pfizer Inc. , Cambridge , MA , USA
| | | | | | - Piet H van der Graaf
- c Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research , RA Leiden , The Netherlands
| | - Lindsay B Avery
- d Department of Biomedicine Design , Pfizer Inc. , Andover , MA , USA
| | - Hannah Jones
- a Department of Biomedicine Design , Pfizer Inc. , Cambridge , MA , USA
| | | |
Collapse
|
72
|
Richter WF, Christianson GJ, Frances N, Grimm HP, Proetzel G, Roopenian DC. Hematopoietic cells as site of first-pass catabolism after subcutaneous dosing and contributors to systemic clearance of a monoclonal antibody in mice. MAbs 2018; 10:803-813. [PMID: 29621428 DOI: 10.1080/19420862.2018.1458808] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The neonatal Fc receptor (FcRn) has been demonstrated to contribute to a high bioavailability of monoclonal antibodies (mAbs). In this study, we explored the cellular sites of FcRn-mediated protection after subcutaneous (SC) and intravenous (IV) administration. SC absorption and IV disposition kinetics of a mAb were studied in hFcRn transgenic (Tg) bone marrow chimeric mice in which hFcRn was restricted to radioresistant cells or hematopoietic cells. SC bioavailabilities close to 90% were observed in hFcRn Tg mice and chimeric mice with hFcRn expression in hematopoietic cells, whereas SC bioavailabilities were markedly lower when FcRn was missing in hematopoietic cells. Our study demonstrates: 1) FcRn in radiosensitive hematopoietic cells is required for high SC bioavailability, indicating first-pass catabolism after SC administration by hematopoietic cells; 2) FcRn-mediated transcytosis or recycling by radioresistent cells is not required for high SC bioavailability; and 3) after IV administration hematopoietic and radioresistent cells contribute about equally to clearance of the mAb. A pharmacokinetic model was devised to describe a mixed elimination via radioresistent and hematopoietic cells from vascular and extravascular compartments, respectively. Overall, the study indicates a relevant role of hematopoietic cells for first-pass clearance of mAbs after SC administration and confirms their role in the overall clearance of mAbs.
Collapse
Affiliation(s)
- Wolfgang F Richter
- a Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse , Basel , Switzerland
| | | | - Nicolas Frances
- a Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse , Basel , Switzerland
| | - Hans Peter Grimm
- a Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse , Basel , Switzerland
| | | | | |
Collapse
|
73
|
Avery LB, Wade J, Wang M, Tam A, King A, Piche-Nicholas N, Kavosi MS, Penn S, Cirelli D, Kurz JC, Zhang M, Cunningham O, Jones R, Fennell BJ, McDonnell B, Sakorafas P, Apgar J, Finlay WJ, Lin L, Bloom L, O'Hara DM. Establishing in vitro in vivo correlations to screen monoclonal antibodies for physicochemical properties related to favorable human pharmacokinetics. MAbs 2018; 10:244-255. [PMID: 29271699 DOI: 10.1080/19420862.2017.1417718] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Implementation of in vitro assays that correlate with in vivo human pharmacokinetics (PK) would provide desirable preclinical tools for the early selection of therapeutic monoclonal antibody (mAb) candidates with minimal non-target-related PK risk. Use of these tools minimizes the likelihood that mAbs with unfavorable PK would be advanced into costly preclinical and clinical development. In total, 42 mAbs varying in isotype and soluble versus membrane targets were tested in in vitro and in vivo studies. MAb physicochemical properties were assessed by measuring non-specific interactions (DNA- and insulin-binding ELISA), self-association (affinity-capture self-interaction nanoparticle spectroscopy) and binding to matrix-immobilized human FcRn (surface plasmon resonance and column chromatography). The range of scores obtained from each in vitro assay trended well with in vivo clearance (CL) using both human FcRn transgenic (Tg32) mouse allometrically projected human CL and observed human CL, where mAbs with high in vitro scores resulted in rapid CL in vivo. Establishing a threshold value for mAb CL in human of 0.32 mL/hr/kg enabled refinement of thresholds for each in vitro assay parameter, and using a combinatorial triage approach enabled the successful differentiation of mAbs at high risk for rapid CL (unfavorable PK) from those with low risk (favorable PK), which allowed mAbs requiring further characterization to be identified. Correlating in vitro parameters with in vivo human CL resulted in a set of in vitro tools for use in early testing that would enable selection of mAbs with the greatest likelihood of success in the clinic, allowing costly late-stage failures related to an inadequate exposure profile, toxicity or lack of efficacy to be avoided.
Collapse
Affiliation(s)
| | - Jason Wade
- b BioMedicine Design, Pfizer Inc. , Cambridge , MA , USA
| | - Mengmeng Wang
- a BioMedicine Design, Pfizer Inc. , Andover , MA , USA
| | - Amy Tam
- b BioMedicine Design, Pfizer Inc. , Cambridge , MA , USA
| | - Amy King
- b BioMedicine Design, Pfizer Inc. , Cambridge , MA , USA
| | | | | | - Steve Penn
- a BioMedicine Design, Pfizer Inc. , Andover , MA , USA.,c Medicine Design, Pfizer Inc. , Cambridge , MA , USA
| | - David Cirelli
- d Pharmaceutical Sciences, Pfizer Inc. , Andover , MA , USA
| | | | - Minlei Zhang
- a BioMedicine Design, Pfizer Inc. , Andover , MA , USA
| | | | - Rhys Jones
- b BioMedicine Design, Pfizer Inc. , Cambridge , MA , USA.,f Currently Medicine Design, Pfizer Inc. , La Jolla , CA , USA
| | | | | | - Paul Sakorafas
- d Pharmaceutical Sciences, Pfizer Inc. , Andover , MA , USA
| | - James Apgar
- b BioMedicine Design, Pfizer Inc. , Cambridge , MA , USA
| | - William J Finlay
- e Biomedicine Design, Pfizer Inc. , Dublin , Ireland.,g Currently CodeBase , Edinburgh , UK
| | - Laura Lin
- b BioMedicine Design, Pfizer Inc. , Cambridge , MA , USA
| | - Laird Bloom
- b BioMedicine Design, Pfizer Inc. , Cambridge , MA , USA
| | | |
Collapse
|
74
|
Piche-Nicholas NM, Avery LB, King AC, Kavosi M, Wang M, O'Hara DM, Tchistiakova L, Katragadda M. Changes in complementarity-determining regions significantly alter IgG binding to the neonatal Fc receptor (FcRn) and pharmacokinetics. MAbs 2017; 10:81-94. [PMID: 28991504 PMCID: PMC5800364 DOI: 10.1080/19420862.2017.1389355] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A large body of data exists demonstrating that neonatal Fc receptor (FcRn) binding of an IgG via its Fc CH2-CH3 interface trends with the pharmacokinetics (PK) of IgG. We have observed that PK of IgG molecules vary widely, even when they share identical Fc domains. This led us to hypothesize that domains distal from the Fc could contribute to FcRn binding and affect PK. In this study, we explored the role of these IgG domains in altering the affinity between IgG and FcRn. Using a surface plasmon resonance-based assay developed to examine the steady-state binding affinity (KD) of IgG molecules to FcRn, we dissected the contributions of IgG domains in modulating the affinity between FcRn and IgG. Through analysis of a broad collection of therapeutic antibodies containing more than 50 unique IgG molecules, we demonstrated that variable domains, and in particular complementarity-determining regions (CDRs), significantly alter binding affinity to FcRn in vitro. Furthermore, a panel of IgG molecules differing only by 1–5 mutations in CDRs altered binding affinity to FcRn in vitro, by up to 79-fold, and the affinity values correlated with calculated isoelectric point values of both variable domains and CDR-L3. In addition, tighter affinity values trend with faster in vivo clearance of a set of IgG molecules differing only by 1–3 mutations in human FcRn transgenic mice. Understanding the role of CDRs in modulation of IgG affinity to FcRn in vitro and their effect on PK of IgG may have far-reaching implications in the optimization of IgG therapeutics.
Collapse
Affiliation(s)
| | | | - Amy C King
- a BioMedicine Design, Pfizer Inc. , Cambridge , MA , USA
| | - Mania Kavosi
- b BioMedicine Design, Pfizer Inc. , Andover , MA , USA
| | - Mengmeng Wang
- b BioMedicine Design, Pfizer Inc. , Andover , MA , USA
| | | | | | | |
Collapse
|
75
|
Bon C, Hofer T, Bousquet-Mélou A, Davies MR, Krippendorff BF. Capacity limits of asialoglycoprotein receptor-mediated liver targeting. MAbs 2017; 9:1360-1369. [PMID: 28876162 DOI: 10.1080/19420862.2017.1373924] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The abundant cell surface asialoglycoprotein receptor (ASGPR) is a highly selective receptor found on hepatocytes that potentially can be exploited as a selective shuttle for delivery. Various nucleic acid therapeutics that bind ASGPR are already in clinical development, but this receptor-mediated delivery mechanism can be saturated, which will likely result in reduced selectivity for the liver and therefore increase the likelihood for systemic adverse effects. Therefore, when aiming to utilize this mechanism, it is important to optimize both the administration protocol and the molecular properties. We here present a study using a novel ASGPR-targeted antibody to estimate ASGPR expression, turnover and internalization rates in vivo in mice. Using pharmacokinetic data (intravenous and subcutaneous dosing) and an in-silico target-mediated drug disposition (TMDD) model, we estimate an ASGPR expression level of 1.8 million molecules per hepatocyte. The half-life of the degradation of the receptor was found to be equal to 15 hours and the formed ligand-receptor complex is internalized with a half-life of 5 days. A biodistribution study was performed and confirmed the accuracy of the TMDD model predictions. The kinetics of the ASGPR shows that saturation of the shuttle at therapeutic concentrations is possible; however, simulation allows the dosing schedule to be optimized. The developed TMDD model can be used to support the development of therapies that use the ASGPR as a shuttle into hepatocytes.
Collapse
Affiliation(s)
- Charlotte Bon
- a Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel , Basel , Switzerland.,b Ecole Nationale Vétérinaire de Toulouse, Institut National de la Recherche Agronomique, TOXALIM , Université de Toulouse , Toulouse , France
| | - Thomas Hofer
- c Roche Pharmaceutical Research and Early Development, Roche Innovation Center Zurich , Zurich , Switzerland
| | - Alain Bousquet-Mélou
- b Ecole Nationale Vétérinaire de Toulouse, Institut National de la Recherche Agronomique, TOXALIM , Université de Toulouse , Toulouse , France
| | | | - Ben-Fillippo Krippendorff
- a Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel , Basel , Switzerland
| |
Collapse
|
76
|
Zhang D, Armstrong AA, Tam SH, McCarthy SG, Luo J, Gilliland GL, Chiu ML. Functional optimization of agonistic antibodies to OX40 receptor with novel Fc mutations to promote antibody multimerization. MAbs 2017; 9:1129-1142. [PMID: 28758875 PMCID: PMC5627589 DOI: 10.1080/19420862.2017.1358838] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Immunostimulatory receptors belonging to the tumor necrosis factor receptor (TNFR) superfamily are emerging as promising targets for cancer immunotherapies. To optimize the agonism of therapeutic antibodies to these receptors, Fc engineering of antibodies was applied to facilitate the clustering of cell surface TNFRs to activate downstream signaling pathways. One engineering strategy is to identify Fc mutations that facilitate antibody multimerization on the cell surface directly. From the analyses of the crystal packing of IgG1 structures, we identified a novel set of Fc mutations, T437R and K248E, that facilitated antibody multimerization upon binding to antigens on cell surface. In a NF-κB reporter assay, the engineered T437R/K248E mutations could facilitate enhanced agonism of an anti-OX40 antibody without the dependence on FcγRIIB crosslinking. Nonetheless, the presence of cells expressing FcγRIIB could facilitate a boost of the agonism of the engineered antibody with mutations on IgG1 Fc, but not on the silent IgG2σ Fc. The Fc engineered antibody also showed enhanced effector functions, including antibody-dependent cell-meditated cytotoxicity, antibody-dependent cellular phagocytosis, and complement-dependent cytotoxicity, depending on the IgG subtypes. Also, the engineered antibodies showed normal FcRn binding and pharmacokinetic profiles in mice. In summary, this study elucidated a novel Fc engineering approach to promote antibody multimerization on a cell surface, which could enhance agonism and improve effector function for anti-TNFR antibodies as well as other therapeutic antibodies.
Collapse
Affiliation(s)
- Di Zhang
- a Janssen Research and Development, L.L.C. , Spring House , PA , USA
| | | | - Susan H Tam
- a Janssen Research and Development, L.L.C. , Spring House , PA , USA
| | | | - Jinquan Luo
- a Janssen Research and Development, L.L.C. , Spring House , PA , USA
| | - Gary L Gilliland
- a Janssen Research and Development, L.L.C. , Spring House , PA , USA
| | - Mark L Chiu
- a Janssen Research and Development, L.L.C. , Spring House , PA , USA
| |
Collapse
|
77
|
Dostalek M, Prueksaritanont T, Kelley RF. Pharmacokinetic de-risking tools for selection of monoclonal antibody lead candidates. MAbs 2017; 9:756-766. [PMID: 28463063 DOI: 10.1080/19420862.2017.1323160] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Pharmacokinetic studies play an important role in all stages of drug discovery and development. Recent advancements in the tools for discovery and optimization of therapeutic proteins have created an abundance of candidates that may fulfill target product profile criteria. Implementing a set of in silico, small scale in vitro and in vivo tools can help to identify a clinical lead molecule with promising properties at the early stages of drug discovery, thus reducing the labor and cost in advancing multiple candidates toward clinical development. In this review, we describe tools that should be considered during drug discovery, and discuss approaches that could be included in the pharmacokinetic screening part of the lead candidate generation process to de-risk unexpected pharmacokinetic behaviors of Fc-based therapeutic proteins, with an emphasis on monoclonal antibodies.
Collapse
Affiliation(s)
- Miroslav Dostalek
- a Drug Metabolism and Pharmacokinetics, Global Nonclinical Development, Shire , Lexington , MA , USA
| | | | - Robert F Kelley
- c Department of Drug Delivery , Genentech Inc. , South San Francisco , CA , USA
| |
Collapse
|
78
|
Latvala S, Jacobsen B, Otteneder MB, Herrmann A, Kronenberg S. Distribution of FcRn Across Species and Tissues. J Histochem Cytochem 2017; 65:321-333. [PMID: 28402755 DOI: 10.1369/0022155417705095] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The neonatal Fc receptor (FcRn) is a major histocompatibility complex class I type molecule that binds to, transports, and recycles immunoglobulin G (IgG) and albumin, thereby protecting them from lysosomal degradation. Therefore, besides the knowledge of FcRn affinity, FcRn protein expression is critical in understanding the pharmacokinetic behavior of Fc-containing biotherapeutics such as monoclonal antibodies. The goal of this investigation was to achieve for the first time a comparative assessment of FcRn distribution across a variety of tissues and species. FcRn was mapped in about 20 tissues including placenta from human and the most frequently used species in non-clinical safety testing of monoclonal antibodies (mouse, rat, cynomolgus monkey). In addition, the FcRn expression pattern was characterized in two humanized transgenic mouse lines (Tg32 and Tg276) expressing human FcRn under different promoters, and in the severe combined immunodeficient (SCID) mouse. Consecutive sections were stained with specific markers, namely, anti-CD68 for macrophages and anti-von Willebrand Factor for endothelial cells. Overall, the FcRn expression pattern was comparable across species and tissues with consistent expression of FcRn in endothelial cells and interstitial macrophages, Kupffer cells, alveolar macrophages, enterocytes, and choroid plexus epithelium. The human FcRn transgenic mouse Tg276 showed a different and much more widespread staining pattern of FcRn. In addition, immunodeficiency and lack of IgG in SCID mice had no negative effect on FcRn expression compared with wild-type mice.
Collapse
Affiliation(s)
- Sari Latvala
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (SL, BJ, MBO, AH, SK)
| | - Bjoern Jacobsen
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (SL, BJ, MBO, AH, SK)
| | - Michael B Otteneder
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (SL, BJ, MBO, AH, SK)
| | - Annika Herrmann
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (SL, BJ, MBO, AH, SK)
| | - Sven Kronenberg
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (SL, BJ, MBO, AH, SK)
| |
Collapse
|
79
|
Translational pharmacokinetics and pharmacodynamics of monoclonal antibodies. DRUG DISCOVERY TODAY. TECHNOLOGIES 2016; 21-22:75-83. [PMID: 27978991 DOI: 10.1016/j.ddtec.2016.09.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/29/2016] [Accepted: 09/01/2016] [Indexed: 01/10/2023]
Abstract
Monoclonal antibodies (mAbs) are an important therapeutic class with complex pharmacology and interdependent pharmacokinetic (PK) and pharmacodynamics (PD) properties. Understanding the PK and PD of mAbs and their biological and mechanistic underpinnings are crucial in enabling their design and selection, designing appropriate efficacy and toxicity studies, translating PK/PD parameters to humans, and optimizing dose and regimen to maximize success in the clinic. Significant progress has been made in this field however many critical questions still remain. This article gives a brief overview of the PK and PD of mAbs, factors that influence them, and areas of ongoing inquiry. Current tools and translational approaches to predict the PK/PD of mAbs in humans are also discussed.
Collapse
|
80
|
Myzithras M, Bigwarfe T, Li H, Waltz E, Ahlberg J, Giragossian C, Roberts S. Utility of immunodeficient mouse models for characterizing the preclinical pharmacokinetics of immunogenic antibody therapeutics. MAbs 2016; 8:1606-1611. [PMID: 27598372 DOI: 10.1080/19420862.2016.1229721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Prior to clinical studies, the pharmacokinetics (PK) of antibody-based therapeutics are characterized in preclinical species; however, those species can elicit immunogenic responses that can lead to an inaccurate estimation of PK parameters. Immunodeficient (SCID) transgenic hFcRn and C57BL/6 mice were used to characterize the PK of three antibodies that were previously shown to be immunogenic in mice and cynomolgus monkeys. Four mouse strains, Tg32 hFcRn SCID, Tg32 hFcRn, SCID and C57BL/6, were administered adalimumab (Humira®), mAbX and mAbX-YTE at 1 mg/kg, and in SCID strains there was no incidence of immunogenicity. In non-SCID strains, drug-clearing ADAs appeared after 4-7 days, which affected the ability to accurately calculate PK parameters. Single species allometric scaling of PK data for Humira® in SCID and hFcRn SCID mice resulted in improved human PK predictions compared to C57BL/6 mice. Thus, the SCID mouse model was demonstrated to be a useful tool for assessing the preclinical PK of immunogenic therapeutics.
Collapse
Affiliation(s)
- Maria Myzithras
- a Immune Modulation and Biotherapeutics Discovery, Research, Boehringer Ingelheim , Ridgefield , CT , USA
| | - Tammy Bigwarfe
- a Immune Modulation and Biotherapeutics Discovery, Research, Boehringer Ingelheim , Ridgefield , CT , USA
| | - Hua Li
- a Immune Modulation and Biotherapeutics Discovery, Research, Boehringer Ingelheim , Ridgefield , CT , USA
| | - Erica Waltz
- a Immune Modulation and Biotherapeutics Discovery, Research, Boehringer Ingelheim , Ridgefield , CT , USA
| | - Jennifer Ahlberg
- a Immune Modulation and Biotherapeutics Discovery, Research, Boehringer Ingelheim , Ridgefield , CT , USA
| | - Craig Giragossian
- a Immune Modulation and Biotherapeutics Discovery, Research, Boehringer Ingelheim , Ridgefield , CT , USA
| | - Simon Roberts
- a Immune Modulation and Biotherapeutics Discovery, Research, Boehringer Ingelheim , Ridgefield , CT , USA
| |
Collapse
|