51
|
Samara A, Anbar M, Shapira S, Zemlyansky A, Zozovsky A, Raanani P, Granot G, Rozovski U. Using natural killer cell-derived exosomes as a cell-free therapy for leukemia. Hematol Oncol 2023; 41:487-498. [PMID: 36451254 DOI: 10.1002/hon.3111] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 08/11/2023]
Abstract
Natural killer (NK) cells are components of the innate immune system which play a pivotal role in cancer cell surveillance. Despite promising results in clinical trials, the use of NK-based therapies is limited due to unsatisfactory efficiencies and safety issues. In recent years, exosomes have emerged as a powerful, natural therapeutic tool. Since exosomes are known to carry cargos that reflect the cellular makeup of their cell of origin, we were prompted to test whether NK-derived exosomes (NKexo) maintain the anti-leukemia capacity of NK-cells. We found NK92MI-cells to secrete large amounts of 100-200 nm cap-shaped particles expressing exosomal and NK biomarkers (CD63, CD81, CD56). We demonstrated that NKexo exert a potent, selective, anti-leukemia effect on all leukemia cell-lines tested. Furthermore, NKexo eliminated leukemia cells isolated from patients with acute and chronic leukemia and inhibited hematopoietic colony growth. While leukemia cells were targeted and severely affected by NKexo, healthy B-cells remained unaffected, indicating a selective effect. This selectivity was further confirmed by demonstrating that NKexo were specifically taken up by leukemic cells but not by healthy B-cells. Our in vivo data support our in vitro and ex vivo findings and demonstrate improved human-CD45+ leukemia blast counts and overall survival in NKexo treated humanized acute myeloid leukemia (HL-60) xenograft mice thus supporting the assumption that NKexo possess an anti-leukemia effect. Pending further analyses, our findings provide the pre-clinical evidence needed to test the NKexo approach in future pre-clinical and clinical studies to ultimately develop an acellular "off-the-shelf" product to treat leukemia.
Collapse
Affiliation(s)
- Aladin Samara
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Michael Anbar
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Saar Shapira
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Anna Zemlyansky
- The Rina Zaizov Pediatric Hematology and Oncology Division, Schneider Children's Medical Center, Rabin Medical Center, Petah Tikva, Israel
| | - Alla Zozovsky
- The Rina Zaizov Pediatric Hematology and Oncology Division, Schneider Children's Medical Center, Rabin Medical Center, Petah Tikva, Israel
| | - Pia Raanani
- Hematology Division, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galit Granot
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Uri Rozovski
- Hematology Division, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
52
|
Saftics A, Abuelreich S, Romano E, Ghaeli I, Jiang N, Spanos M, Lennon KM, Singh G, Das S, Van Keuren‐Jensen K, Jovanovic‐Talisman T. Single Extracellular VEsicle Nanoscopy. J Extracell Vesicles 2023; 12:e12346. [PMID: 37422692 PMCID: PMC10329735 DOI: 10.1002/jev2.12346] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/26/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023] Open
Abstract
Extracellular vesicles (EVs) and their cargo constitute novel biomarkers. EV subpopulations have been defined not only by abundant tetraspanins (e.g., CD9, CD63 and CD81) but also by specific markers derived from their source cells. However, it remains a challenge to robustly isolate and characterize EV subpopulations. Here, we combined affinity isolation with super-resolution imaging to comprehensively assess EV subpopulations from human plasma. Our Single Extracellular VEsicle Nanoscopy (SEVEN) assay successfully quantified the number of affinity-isolated EVs, their size, shape, molecular tetraspanin content, and heterogeneity. The number of detected tetraspanin-enriched EVs positively correlated with sample dilution in a 64-fold range (for SEC-enriched plasma) and a 50-fold range (for crude plasma). Importantly, SEVEN robustly detected EVs from as little as ∼0.1 μL of crude plasma. We further characterized the size, shape and molecular tetraspanin content (with corresponding heterogeneities) for CD9-, CD63- and CD81-enriched EV subpopulations. Finally, we assessed EVs from the plasma of four pancreatic ductal adenocarcinoma patients with resectable disease. Compared to healthy plasma, CD9-enriched EVs from patients were smaller while IGF1R-enriched EVs from patients were larger, rounder and contained more tetraspanin molecules, suggestive of a unique pancreatic cancer-enriched EV subpopulation. This study provides the method validation and demonstrates that SEVEN could be advanced into a platform for characterizing both disease-associated and organ-associated EV subpopulations.
Collapse
Affiliation(s)
- Andras Saftics
- Department of Cancer Biology and Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Sarah Abuelreich
- Department of Cancer Biology and Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Eugenia Romano
- Department of Cancer Biology and Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Ima Ghaeli
- Department of Cancer Biology and Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Nan Jiang
- Department of Cancer Biology and Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Michail Spanos
- Cardiology Division and Corrigan Minehan Heart CenterMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Kathleen M. Lennon
- Department of Cancer Biology and Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Gagandeep Singh
- Department of SurgeryCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Saumya Das
- Cardiology Division and Corrigan Minehan Heart CenterMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | | | - Tijana Jovanovic‐Talisman
- Department of Cancer Biology and Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| |
Collapse
|
53
|
Gail LM, Schell KJ, Łacina P, Strobl J, Bolton SJ, Steinbakk Ulriksen E, Bogunia-Kubik K, Greinix H, Crossland RE, Inngjerdingen M, Stary G. Complex interactions of cellular players in chronic Graft-versus-Host Disease. Front Immunol 2023; 14:1199422. [PMID: 37435079 PMCID: PMC10332803 DOI: 10.3389/fimmu.2023.1199422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/07/2023] [Indexed: 07/13/2023] Open
Abstract
Chronic Graft-versus-Host Disease is a life-threatening inflammatory condition that affects many patients after allogeneic hematopoietic stem cell transplantation. Although we have made substantial progress in understanding disease pathogenesis and the role of specific immune cell subsets, treatment options are still limited. To date, we lack a global understanding of the interplay between the different cellular players involved, in the affected tissues and at different stages of disease development and progression. In this review we summarize our current knowledge on pathogenic and protective mechanisms elicited by the major involved immune subsets, being T cells, B cells, NK cells and antigen presenting cells, as well as the microbiome, with a special focus on intercellular communication of these cell types via extracellular vesicles as up-and-coming fields in chronic Graft-versus-Host Disease research. Lastly, we discuss the importance of understanding systemic and local aberrant cell communication during disease for defining better biomarkers and therapeutic targets, eventually enabling the design of personalized treatment schemes.
Collapse
Affiliation(s)
- Laura Marie Gail
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kimberly Julia Schell
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Johanna Strobl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Steven J. Bolton
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Hildegard Greinix
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Rachel Emily Crossland
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
54
|
Kim IY, Kim HY, Song HW, Park JO, Choi YH, Choi E. Functional enhancement of exosomes derived from NK cells by IL-15 and IL-21 synergy against hepatocellular carcinoma cells: The cytotoxicity and apoptosis in vitro study. Heliyon 2023; 9:e16962. [PMID: 37484408 PMCID: PMC10361042 DOI: 10.1016/j.heliyon.2023.e16962] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 07/25/2023] Open
Abstract
Exosomes are released by various cells, including natural killer (NK) cells and transport signaling molecules for the intercellular communication. Hepatocellular carcinoma (HCC), also known as primary liver cancer, is often inoperable and difficult to accurate diagnosis. Notably, the prognosis and underlying mechanisms of HCC are not fully understood. Exosomes-derived NK cells (NK-exos) express unique cytotoxic proteins with a killing ability in tumors and can easily penetrate tumor tissues to improve their targeting ability. NK cell functions, inducing cellular cytotoxicity are modulated by cytokines such as interleukin (IL)-15 and IL-21. However, the mechanisms and effects of cytokines-stimulated NK-exos for the treatment of liver cancer, including HCC, are not well known. In this study, we aimed to investigate the synergistic anti-tumor effects of NK-exos stimulated with IL-15 and IL-21 (NK-exosIL-15/21) in Hep3B cells. Our findings revealed that NK-exosIL-15/21 expressed cytotoxic proteins (perforin and granzyme B) and contained typical exosome markers (CD9 and CD63) within the size range of 100-150 nm. Moreover, we demonstrated that NK-exosIL-15/21 induced the enhancement of cytotoxicity and apoptotic activity in Hep3B cells by activating the specific pro-apoptotic proteins (Bax, cleaved caspase 3, cleaved PARP, perforin, and granzyme B) and inhibiting the anti-apoptotic protein (Bcl-2). In summary, our results suggest that NK-exosIL-15/21 regulate strong anti-tumor effects of HCC cells, by increasing the cytotoxicity and apoptosis through the activation of specific cytotoxic molecules.
Collapse
Affiliation(s)
- In-Young Kim
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea
| | - Ho Yong Kim
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea
| | - Hyeong-woo Song
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea
| | - Jong-Oh Park
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea
| | - You Hee Choi
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea
| | - Eunpyo Choi
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| |
Collapse
|
55
|
Lizana-Vasquez GD, Torres-Lugo M, Dixon R, Powderly JD, Warin RF. The application of autologous cancer immunotherapies in the age of memory-NK cells. Front Immunol 2023; 14:1167666. [PMID: 37205105 PMCID: PMC10185894 DOI: 10.3389/fimmu.2023.1167666] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
Cellular immunotherapy has revolutionized the oncology field, yielding improved results against hematological and solid malignancies. NK cells have become an attractive alternative due to their capacity to activate upon recognition of "stress" or "danger" signals independently of Major Histocompatibility Complex (MHC) engagement, thus making tumor cells a perfect target for NK cell-mediated cancer immunotherapy even as an allogeneic solution. While this allogeneic use is currently favored, the existence of a characterized memory function for NK cells ("memory-like" NK cells) advocates for an autologous approach, that would benefit from the allogeneic setting discoveries, but with added persistence and specificity. Still, both approaches struggle to exert a sustained and high anticancer effect in-vivo due to the immunosuppressive tumor micro-environment and the logistical challenges of cGMP production or clinical deployment. Novel approaches focused on the quality enhancement and the consistent large-scale production of highly activated therapeutic memory-like NK cells have yielded encouraging but still unconclusive results. This review provides an overview of NK biology as it relates to cancer immunotherapy and the challenge presented by solid tumors for therapeutic NKs. After contrasting the autologous and allogeneic NK approaches for solid cancer immunotherapy, this work will present the current scientific focus for the production of highly persistent and cytotoxic memory-like NK cells as well as the current issues with production methods as they apply to stress-sensitive immune cells. In conclusion, autologous NK cells for cancer immunotherapy appears to be a prime alternative for front line therapeutics but to be successful, it will be critical to establish comprehensives infrastructures allowing the production of extremely potent NK cells while constraining costs of production.
Collapse
Affiliation(s)
- Gaby D. Lizana-Vasquez
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico
- Cancer Research Clinic, Carolina BioOncology Institute (CBOI), Huntersville, NC, United States
| | - Madeline Torres-Lugo
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico
| | - R. Brent Dixon
- Cancer Research Clinic, Carolina BioOncology Institute (CBOI), Huntersville, NC, United States
- Human Applications Lab (HAL) - BioCytics, Huntersville, NC, United States
| | - John D. Powderly
- Cancer Research Clinic, Carolina BioOncology Institute (CBOI), Huntersville, NC, United States
- Human Applications Lab (HAL) - BioCytics, Huntersville, NC, United States
| | - Renaud F. Warin
- Cancer Research Clinic, Carolina BioOncology Institute (CBOI), Huntersville, NC, United States
- Human Applications Lab (HAL) - BioCytics, Huntersville, NC, United States
| |
Collapse
|
56
|
Brezgin S, Parodi A, Kostyusheva A, Ponomareva N, Lukashev A, Sokolova D, Pokrovsky VS, Slatinskaya O, Maksimov G, Zamyatnin AA, Chulanov V, Kostyushev D. Technological aspects of manufacturing and analytical control of biological nanoparticles. Biotechnol Adv 2023; 64:108122. [PMID: 36813011 DOI: 10.1016/j.biotechadv.2023.108122] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/19/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived biological nanoparticles that gained great interest for drug delivery. EVs have numerous advantages compared to synthetic nanoparticles, such as ideal biocompatibility, safety, ability to cross biological barriers and surface modification via genetic or chemical methods. On the other hand, the translation and the study of these carriers resulted difficult, mostly because of significant issues in up-scaling, synthesis and impractical methods of quality control. However, current manufacturing advances enable EV packaging with any therapeutic cargo, including DNA, RNA (for RNA vaccines and RNA therapeutics), proteins, peptides, RNA-protein complexes (including gene-editing complexes) and small molecules drugs. To date, an array of new and upgraded technologies have been introduced, substantially improving EV production, isolation, characterization and standardization. The used-to-be "gold standards" of EV manufacturing are now outdated, and the state-of-art requires extensive revision. This review re-evaluates the pipeline for EV industrial production and provides a critical overview of the modern technologies required for their synthesis and characterization.
Collapse
Affiliation(s)
- Sergey Brezgin
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia
| | | | - Anastasiya Kostyusheva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia
| | - Natalia Ponomareva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia
| | - Alexander Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia
| | - Darina Sokolova
- Sirius University of Science and Technology, Sochi 354340, Russia; Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia; People's Friendship University, Moscow 117198, Russia
| | - Vadim S Pokrovsky
- Sirius University of Science and Technology, Sochi 354340, Russia; Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia; People's Friendship University, Moscow 117198, Russia
| | - Olga Slatinskaya
- Lomonosov Moscow State University, Faculty of Biology, Moscow 119991, Russia
| | - Georgy Maksimov
- Lomonosov Moscow State University, Faculty of Biology, Moscow 119991, Russia
| | - Andrey A Zamyatnin
- Sirius University of Science and Technology, Sochi 354340, Russia; Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7X, UK
| | - Vladimir Chulanov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia; Department of Infectious Diseases, Sechenov University, Moscow 119048, Russia; National Medical Research Center for Tuberculosis and Infectious Diseases, Moscow 127994, Russia
| | - Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia.
| |
Collapse
|
57
|
Greening DW, Xu R, Ale A, Hagemeyer CE, Chen W. Extracellular vesicles as next generation immunotherapeutics. Semin Cancer Biol 2023; 90:73-100. [PMID: 36773820 DOI: 10.1016/j.semcancer.2023.02.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Extracellular vesicles (EVs) function as a mode of intercellular communication and molecular transfer to elicit diverse biological/functional response. Accumulating evidence has highlighted that EVs from immune, tumour, stromal cells and even bacteria and parasites mediate the communication of various immune cell types to dynamically regulate host immune response. EVs have an innate capacity to evade recognition, transport and transfer functional components to target cells, with subsequent removal by the immune system, where the immunological activities of EVs impact immunoregulation including modulation of antigen presentation and cross-dressing, immune activation, immune suppression, and immune surveillance, impacting the tumour immune microenvironment. In this review, we outline the recent progress of EVs in immunorecognition and therapeutic intervention in cancer, including vaccine and targeted drug delivery and summarise their utility towards clinical translation. We highlight the strategies where EVs (natural and engineered) are being employed as a therapeutic approach for immunogenicity, tumoricidal function, and vaccine development, termed immuno-EVs. With seminal studies providing significant progress in the sequential development of engineered EVs as therapeutic anti-tumour platforms, we now require direct assessment to tune and improve the efficacy of resulting immune responses - essential in their translation into the clinic. We believe such a review could strengthen our understanding of the progress in EV immunobiology and facilitate advances in engineering EVs for the development of novel EV-based immunotherapeutics as a platform for cancer treatment.
Collapse
Affiliation(s)
- David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiovascular Research, Translation and Implementation, Australia; Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Victoria, Australia; Central Clinical School, Monash University, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia.
| | - Rong Xu
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Anukreity Ale
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Christoph E Hagemeyer
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Weisan Chen
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Victoria, Australia
| |
Collapse
|
58
|
Zhang E, Phan P, Zhao Z. Cellular nanovesicles for therapeutic immunomodulation: A perspective on engineering strategies and new advances. Acta Pharm Sin B 2023; 13:1789-1827. [PMID: 37250173 PMCID: PMC10213819 DOI: 10.1016/j.apsb.2022.08.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 02/08/2023] Open
Abstract
Cellular nanovesicles which are referred to as cell-derived, nanosized lipid bilayer structures, have emerged as a promising platform for regulating immune responses. Owing to their outstanding advantages such as high biocompatibility, prominent structural stability, and high loading capacity, cellular nanovesicles are suitable for delivering various immunomodulatory molecules, such as small molecules, nucleic acids, peptides, and proteins. Immunomodulation induced by cellular nanovesicles has been exploited to modulate immune cell behaviors, which is considered as a novel cell-free immunotherapeutic strategy for the prevention and treatment of diverse diseases. Here we review emerging concepts and new advances in leveraging cellular nanovesicles to activate or suppress immune responses, with the aim to explicate their applications for immunomodulation. We overview the general considerations and principles for the design of engineered cellular nanovesicles with tailored immunomodulatory activities. We also discuss new advances in engineering cellular nanovesicles as immunotherapies for treating major diseases.
Collapse
Affiliation(s)
- Endong Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Philana Phan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
- Translational Oncology Program, University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
59
|
Gečys D, Skredėnienė R, Gečytė E, Kazlauskas A, Balnytė I, Jekabsone A. Adipose Tissue-Derived Stem Cell Extracellular Vesicles Suppress Glioblastoma Proliferation, Invasiveness and Angiogenesis. Cells 2023; 12:cells12091247. [PMID: 37174646 PMCID: PMC10177295 DOI: 10.3390/cells12091247] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Extracellular vesicles (EVs) are attractive anticancer drug delivery candidates as they confer several fundamental properties, such as low immunogenicity and the ability to cross biological barriers. Mesenchymal stem cells (MSCs) are convenient producers for high EV yields, and patient-derived adipose tissue MSC-EVs could serve as personalised carriers. However, MSC-EV applications raise critical concerns as their natural cargo can affect tumour progression in both inducing and suppressing ways. In this study, we investigated the effect of adipose tissue-derived mesenchymal stem cell EVs (ASC-EVs) on several glioblastoma (GBM) cell lines to define their applicability for anticancer therapies. ASC-EVs were isolated from a cell-conditioned medium and characterised by size and specific markers. The internalisation of fluorescently labelled ASC-EVs by human GBM cells HROG36, U87 MG, and T98G was evaluated by fluorescent microscopy. Changes in GBM cell proliferation after ASC-EV application were determined by the metabolic PrestoBlue assay. Expression alterations in genes responsible for cell adhesion, proliferation, migration, and angiogenesis were evaluated by quantitative real-time PCR. ASC-EV effects on tumour invasiveness and neoangiogenesis in ovo were analysed on the chicken embryo chorioallantoic membrane model (CAM). ASC-EV treatment reduced GBM proliferation in vitro and significantly downregulated invasiveness-related genes ITGα5 (in T98G and HROG63) and ITGβ3 (in HROG36) and the vascularisation-inducing gene KDR (in all GBM lines). Additionally, an approximate 65% reduction in the GBM invasion rate was observed in CAM after ASC-EV treatment. Our study indicates that ASC-EVs possess antitumour properties, reducing GBM cell proliferation and invasiveness, and can be applied as anticancer therapeutics and medicine carriers.
Collapse
Affiliation(s)
- Dovydas Gečys
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania
- Laboratory of Molecular Cardiology, Institute of Cardiology, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania
| | - Rūta Skredėnienė
- Department of Histology and Embryology, Faculty of Medicine, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania
| | - Emilija Gečytė
- Laboratory of Molecular Cardiology, Institute of Cardiology, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania
| | - Arūnas Kazlauskas
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Ingrida Balnytė
- Department of Histology and Embryology, Faculty of Medicine, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania
| | - Aistė Jekabsone
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania
- Preclinical Research Laboratory for Medicinal Products, Institute of Cardiology, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania
| |
Collapse
|
60
|
Qi Y, Zhao X, Dong Y, Wang M, Wang J, Fan Z, Weng Q, Yu H, Li J. Opportunities and challenges of natural killer cell-derived extracellular vesicles. Front Bioeng Biotechnol 2023; 11:1122585. [PMID: 37064251 PMCID: PMC10102538 DOI: 10.3389/fbioe.2023.1122585] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Extracellular vesicles (EVs) are increasingly recognized as important intermediaries of intercellular communication. They have significant roles in many physiological and pathological processes and show great promise as novel biomarkers of disease, therapeutic agents, and drug delivery tools. Existing studies have shown that natural killer cell-derived EVs (NEVs) can directly kill tumor cells and participate in the crosstalk of immune cells in the tumor microenvironment. NEVs own identical cytotoxic proteins, cytotoxic receptors, and cytokines as NK cells, which is the biological basis for their application in antitumor therapy. The nanoscale size and natural targeting property of NEVs enable precisely killing tumor cells. Moreover, endowing NEVs with a variety of fascinating capabilities via common engineering strategies has become a crucial direction for future research. Thus, here we provide a brief overview of the characteristics and physiological functions of the various types of NEVs, focusing on their production, isolation, functional characterization, and engineering strategies for their promising application as a cell-free modality for tumor immunotherapy.
Collapse
Affiliation(s)
- Yuchen Qi
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiang Zhao
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Xiang Zhao, ; Hua Yu, ; Jianjun Li,
| | - Yan Dong
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Min Wang
- Department of General Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junyi Wang
- Department of General Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhichao Fan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qin Weng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hua Yu
- Department of General Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiang Zhao, ; Hua Yu, ; Jianjun Li,
| | - Jianjun Li
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Xiang Zhao, ; Hua Yu, ; Jianjun Li,
| |
Collapse
|
61
|
Chen BQ, Zhao Y, Zhang Y, Pan YJ, Xia HY, Kankala RK, Wang SB, Liu G, Chen AZ. Immune-regulating camouflaged nanoplatforms: A promising strategy to improve cancer nano-immunotherapy. Bioact Mater 2023; 21:1-19. [PMID: 36017071 PMCID: PMC9382433 DOI: 10.1016/j.bioactmat.2022.07.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/11/2022] [Accepted: 07/24/2022] [Indexed: 02/06/2023] Open
Abstract
Although nano-immunotherapy has advanced dramatically in recent times, there remain two significant hurdles related to immune systems in cancer treatment, such as (namely) inevitable immune elimination of nanoplatforms and severely immunosuppressive microenvironment with low immunogenicity, hampering the performance of nanomedicines. To address these issues, several immune-regulating camouflaged nanocomposites have emerged as prevailing strategies due to their unique characteristics and specific functionalities. In this review, we emphasize the composition, performances, and mechanisms of various immune-regulating camouflaged nanoplatforms, including polymer-coated, cell membrane-camouflaged, and exosome-based nanoplatforms to evade the immune clearance of nanoplatforms or upregulate the immune function against the tumor. Further, we discuss the applications of these immune-regulating camouflaged nanoplatforms in directly boosting cancer immunotherapy and some immunogenic cell death-inducing immunotherapeutic modalities, such as chemotherapy, photothermal therapy, and reactive oxygen species-mediated immunotherapies, highlighting the current progress and recent advancements. Finally, we conclude the article with interesting perspectives, suggesting future tendencies of these innovative camouflaged constructs towards their translation pipeline.
Collapse
Affiliation(s)
- Biao-Qi Chen
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, PR China
| | - Yi Zhao
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, PR China
| | - Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Yu-Jing Pan
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, PR China
| | - Hong-Ying Xia
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, PR China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, PR China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, PR China
| |
Collapse
|
62
|
Mahmoudi F, Hanachi P, Montaseri A. Extracellular vesicles of immune cells; immunomodulatory impacts and therapeutic potentials. Clin Immunol 2023; 248:109237. [PMID: 36669608 DOI: 10.1016/j.clim.2023.109237] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 12/08/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023]
Abstract
Extracellular vesicles (EVs) are a diverse collection of lipid bilayer-membrane-bound particles which are released from cells into the extracellular space and biologic fluids. In multicellular organisms, these vesicles facilitate the exchange of bioactive compounds such as RNA, DNA, proteins, various metabolites, and lipids between the cells. EVs are produced and released by almost all eukaryotic cells including immune cells and can have immunomodulating effects by either stimulation or suppression of their activities. This immune-modulating feature may provide a promising strategy for treating immune-mediated diseases such as cancer, neurodegenerative diseases, autoimmune disorders and graft-versus-host disease. Moreover, immune cell-derived EVs have received attention as potential biomarkers for being used as diagnostic tools and preventive strategies such as for developing vaccines. In this review, we focus on the EVs produced by different immune cell types, their effects on the immune system, and highlight their potential applications for immunotherapy.
Collapse
Affiliation(s)
- Fariba Mahmoudi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Parichehr Hanachi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Azadeh Montaseri
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
63
|
Chan AML, Cheah JM, Lokanathan Y, Ng MH, Law JX. Natural Killer Cell-Derived Extracellular Vesicles as a Promising Immunotherapeutic Strategy for Cancer: A Systematic Review. Int J Mol Sci 2023; 24:ijms24044026. [PMID: 36835438 PMCID: PMC9964266 DOI: 10.3390/ijms24044026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
Cancer is the second leading contributor to global deaths caused by non-communicable diseases. The cancer cells are known to interact with the surrounding non-cancerous cells, including the immune cells and stromal cells, within the tumor microenvironment (TME) to modulate the tumor progression, metastasis and resistance. Currently, chemotherapy and radiotherapy are the standard treatments for cancers. However, these treatments cause a significant number of side effects, as they damage both the cancer cells and the actively dividing normal cells indiscriminately. Hence, a new generation of immunotherapy using natural killer (NK) cells, cytotoxic CD8+ T-lymphocytes or macrophages was developed to achieve tumor-specific targeting and circumvent the adverse effects. However, the progression of cell-based immunotherapy is hindered by the combined action of TME and TD-EVs, which render the cancer cells less immunogenic. Recently, there has been an increase in interest in using immune cell derivatives to treat cancers. One of the highly potential immune cell derivatives is the NK cell-derived EVs (NK-EVs). As an acellular product, NK-EVs are resistant to the influence of TME and TD-EVs, and can be designed for "off-the-shelf" use. In this systematic review, we examine the safety and efficacy of NK-EVs to treat various cancers in vitro and in vivo.
Collapse
Affiliation(s)
- Alvin Man Lung Chan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Ming Medical Sdn Bhd, D3-3 (2nd Floor), Block D3 Dana 1 Commercial Centre, Jalan PJU 1a/22, Petaling Jaya 47101, Malaysia
| | - Jin Min Cheah
- Ming Medical Sdn Bhd, D3-3 (2nd Floor), Block D3 Dana 1 Commercial Centre, Jalan PJU 1a/22, Petaling Jaya 47101, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Correspondence: ; Tel.: +60-391-457677
| |
Collapse
|
64
|
Zhou Y, Cheng L, Liu L, Li X. NK cells are never alone: crosstalk and communication in tumour microenvironments. Mol Cancer 2023; 22:34. [PMID: 36797782 PMCID: PMC9933398 DOI: 10.1186/s12943-023-01737-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Immune escape is a hallmark of cancer. The dynamic and heterogeneous tumour microenvironment (TME) causes insufficient infiltration and poor efficacy of natural killer (NK) cell-based immunotherapy, which becomes a key factor triggering tumour progression. Understanding the crosstalk between NK cells and the TME provides new insights for optimising NK cell-based immunotherapy. Here, we present new advances in direct or indirect crosstalk between NK cells and 9 specialised TMEs, including immune, metabolic, innervated niche, mechanical, and microbial microenvironments, summarise TME-mediated mechanisms of NK cell function inhibition, and highlight potential targeted therapies for NK-TME crosstalk. Importantly, we discuss novel strategies to overcome the inhibitory TME and provide an attractive outlook for the future.
Collapse
Affiliation(s)
- Yongqiang Zhou
- grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000 China ,grid.412643.60000 0004 1757 2902Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China ,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Lu Cheng
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Lu Liu
- grid.412643.60000 0004 1757 2902Department of Pediatrics, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China. .,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China. .,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China.
| |
Collapse
|
65
|
Zheng Y, Zhao J, Shan Y, Guo S, Schrodi SJ, He D. Role of the granzyme family in rheumatoid arthritis: Current Insights and future perspectives. Front Immunol 2023; 14:1137918. [PMID: 36875082 PMCID: PMC9977805 DOI: 10.3389/fimmu.2023.1137918] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is a complex autoimmune disease characterized by chronic inflammation that affects synovial tissues of multiple joints. Granzymes (Gzms) are serine proteases that are released into the immune synapse between cytotoxic lymphocytes and target cells. They enter target cells with the help of perforin to induce programmed cell death in inflammatory and tumor cells. Gzms may have a connection with RA. First, increased levels of Gzms have been found in the serum (GzmB), plasma (GzmA, GzmB), synovial fluid (GzmB, GzmM), and synovial tissue (GzmK) of patients with RA. Moreover, Gzms may contribute to inflammation by degrading the extracellular matrix and promoting cytokine release. They are thought to be involved in RA pathogenesis and have the potential to be used as biomarkers for RA diagnosis, although their exact role is yet to be fully elucidated. The purpose of this review was to summarize the current knowledge regarding the possible role of the granzyme family in RA, with the aim of providing a reference for future research on the mechanisms of RA and the development of new therapies.
Collapse
Affiliation(s)
- Yixin Zheng
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yu Shan
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Steven J. Schrodi
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
66
|
Gong X, Chi H, Strohmer DF, Teichmann AT, Xia Z, Wang Q. Exosomes: A potential tool for immunotherapy of ovarian cancer. Front Immunol 2023; 13:1089410. [PMID: 36741380 PMCID: PMC9889675 DOI: 10.3389/fimmu.2022.1089410] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Ovarian cancer is a malignant tumor of the female reproductive system, with a very poor prognosis and high mortality rates. Chemotherapy and radiotherapy are the most common treatments for ovarian cancer, with unsatisfactory results. Exosomes are a subpopulation of extracellular vesicles, which have a diameter of approximately 30-100 nm and are secreted by many different types of cells in various body fluids. Exosomes are highly stable and are effective carriers of immunotherapeutic drugs. Recent studies have shown that exosomes are involved in various cellular responses in the tumor microenvironment, influencing the development and therapeutic efficacy of ovarian cancer, and exhibiting dual roles in inhibiting and promoting tumor development. Exosomes also contain a variety of genes related to ovarian cancer immunotherapy that could be potential biomarkers for ovarian cancer diagnosis and prognosis. Undoubtedly, exosomes have great therapeutic potential in the field of ovarian cancer immunotherapy. However, translation of this idea to the clinic has not occurred. Therefore, it is important to understand how exosomes could be used in ovarian cancer immunotherapy to regulate tumor progression. In this review, we summarize the biomarkers of exosomes in different body fluids related to immunotherapy in ovarian cancer and the potential mechanisms by which exosomes influence immunotherapeutic response. We also discuss the prospects for clinical application of exosome-based immunotherapy in ovarian cancer.
Collapse
Affiliation(s)
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Dorothee Franziska Strohmer
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Alexander Tobias Teichmann
- Sichuan Provincial Center for Gynecology and Breast Diseases (Gynecology), Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Qin Wang
- Sichuan Provincial Center for Gynecology and Breast Diseases (Gynecology), Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
67
|
Extracellular Vesicles: New Classification and Tumor Immunosuppression. BIOLOGY 2023; 12:biology12010110. [PMID: 36671802 PMCID: PMC9856004 DOI: 10.3390/biology12010110] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived membrane-surrounded vesicles carrying various types of molecules. These EV cargoes are often used as pathophysiological biomarkers and delivered to recipient cells whose fates are often altered in local and distant tissues. Classical EVs are exosomes, microvesicles, and apoptotic bodies, while recent studies discovered autophagic EVs, stressed EVs, and matrix vesicles. Here, we classify classical and new EVs and non-EV nanoparticles. We also review EVs-mediated intercellular communication between cancer cells and various types of tumor-associated cells, such as cancer-associated fibroblasts, adipocytes, blood vessels, lymphatic vessels, and immune cells. Of note, cancer EVs play crucial roles in immunosuppression, immune evasion, and immunotherapy resistance. Thus, cancer EVs change hot tumors into cold ones. Moreover, cancer EVs affect nonimmune cells to promote cellular transformation, including epithelial-to-mesenchymal transition (EMT), chemoresistance, tumor matrix production, destruction of biological barriers, angiogenesis, lymphangiogenesis, and metastatic niche formation.
Collapse
|
68
|
Crum RJ, Capella-Monsonís H, Chang J, Dewey MJ, Kolich BD, Hall KT, El-Mossier SO, Nascari DG, Hussey GS, Badylak SF. Biocompatibility and biodistribution of matrix-bound nanovesicles in vitro and in vivo. Acta Biomater 2023; 155:113-122. [PMID: 36423817 DOI: 10.1016/j.actbio.2022.11.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Matrix-bound nanovesicles (MBV) are a distinct subtype of extracellular vesicles that are firmly embedded within biomaterials composed of extracellular matrix (ECM). MBV both store and transport a diverse, tissue specific portfolio of signaling molecules including proteins, miRNAs, and bioactive lipids. MBV function as a key mediator in ECM-mediated control of the local tissue microenvironment. One of the most important mechanisms by which MBV in ECM bioscaffolds support constructive tissue remodeling following injury is immunomodulation and, specifically, the promotion of an anti-inflammatory, pro-remodeling immune cell activation state. Recent in vivo studies have shown that isolated MBV have therapeutic efficacy in rodent models of both retinal damage and rheumatoid arthritis through the targeted immunomodulation of pro-inflammatory macrophages towards an anti-inflammatory activation state. While these results show the therapeutic potential of MBV administered independent of the rest of the ECM, the in vitro and in vivo safety and biodistribution profile of MBV remain uncharacterized. The purpose of the present study was to thoroughly characterize the pre-clinical safety profile of MBV through a combination of in vitro cytotoxicity and MBV uptake studies and in vivo toxicity, immunotoxicity, and imaging studies. The results showed that MBV isolated from porcine urinary bladder are well-tolerated and are not cytotoxic in cell culture, are non-toxic to the whole organism, and are not immunosuppressive compared to the potent immunosuppressive drug cyclophosphamide. Furthermore, this safety profile was sustained across a wide range of MBV doses. STATEMENT OF SIGNIFICANCE: Matrix-bound nanovesicles (MBV) are a distinct subtype of bioactive extracellular vesicles that are embedded within biomaterials composed of extracellular matrix (ECM). Recent studies have shown therapeutic efficacy of MBV in models of both retinal damage and rheumatoid arthritis through the targeted immunomodulation of pro-inflammatory macrophages towards an anti-inflammatory activation state. While these results show the therapeutic potential of MBV, the in vitro and in vivo biocompatibility and biodistribution profile of MBV remain uncharacterized. The results of the present study showed that MBV are a well-tolerated ECM-derived therapy that are not cytotoxic in cell culture, are non-toxic to the whole organism, and are not immunosuppressive. Collectively, these data highlight the translational feasibility of MBV therapeutics across a wide variety of clinical applications.
Collapse
Affiliation(s)
- Raphael J Crum
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Héctor Capella-Monsonís
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA; Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Jordan Chang
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Marley J Dewey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA; Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Brian D Kolich
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Kelsey T Hall
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA; Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Salma O El-Mossier
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA; Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - David G Nascari
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA
| | - George S Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA; Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA; Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, USA; Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, USA.
| |
Collapse
|
69
|
Zafarani A, Taghavi-Farahabadi M, Razizadeh MH, Amirzargar MR, Mansouri M, Mahmoudi M. The Role of NK Cells and Their Exosomes in Graft Versus Host Disease and Graft Versus Leukemia. Stem Cell Rev Rep 2023; 19:26-45. [PMID: 35994137 DOI: 10.1007/s12015-022-10449-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2022] [Indexed: 02/07/2023]
Abstract
Natural killer (NK) cells are one of the innate immune cells that play an important role in preventing and controlling tumors and viral diseases, but their role in hematopoietic stem cell transplantation (HCT) is not yet fully understood. However, according to some research, these cells can prevent infections and tumor relapse without causing graft versus host disease (GVHD). In addition to NK cells, several studies are about the anti-leukemia effects of NK cell-derived exosomes that can highlight their roles in graft-versus-leukemia (GVL). In this paper, we intend to investigate the results of various articles on the role of NK cells in allogeneic hematopoietic cell transplantation and also their exosomes in GVL. Also, we have discussed the antiviral effects of these cells in post-HCT cytomegalovirus infection.
Collapse
Affiliation(s)
- Alireza Zafarani
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Taghavi-Farahabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Amirzargar
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mansoure Mansouri
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
70
|
Ghaedrahmati F, Esmaeil N, Abbaspour M. Targeting immune checkpoints: how to use natural killer cells for fighting against solid tumors. Cancer Commun (Lond) 2022; 43:177-213. [PMID: 36585761 PMCID: PMC9926962 DOI: 10.1002/cac2.12394] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/08/2022] [Accepted: 11/15/2022] [Indexed: 01/01/2023] Open
Abstract
Natural killer (NK) cells are unique innate immune cells that mediate anti-viral and anti-tumor responses. Thus, they might hold great potential for cancer immunotherapy. NK cell adoptive immunotherapy in humans has shown modest efficacy. In particular, it has failed to demonstrate therapeutic efficiency in the treatment of solid tumors, possibly due in part to the immunosuppressive tumor microenvironment (TME), which reduces NK cell immunotherapy's efficiencies. It is known that immune checkpoints play a prominent role in creating an immunosuppressive TME, leading to NK cell exhaustion and tumor immune escape. Therefore, NK cells must be reversed from their dysfunctional status and increased in their effector roles in order to improve the efficiency of cancer immunotherapy. Blockade of immune checkpoints can not only rescue NK cells from exhaustion but also augment their robust anti-tumor activity. In this review, we discussed immune checkpoint blockade strategies with a focus on chimeric antigen receptor (CAR)-NK cells to redirect NK cells to cancer cells in the treatment of solid tumors.
Collapse
Affiliation(s)
- Farhoodeh Ghaedrahmati
- Department of ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Nafiseh Esmaeil
- Department of ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran,Research Institute for Primordial Prevention of Non‐Communicable DiseaseIsfahan University of Medical SciencesIsfahanIran
| | - Maryam Abbaspour
- Department of Pharmaceutical BiotechnologyFaculty of PharmacyIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
71
|
Akbari A, Nazari-Khanamiri F, Ahmadi M, Shoaran M, Rezaie J. Engineered Exosomes for Tumor-Targeted Drug Delivery: A Focus on Genetic and Chemical Functionalization. Pharmaceutics 2022; 15:pharmaceutics15010066. [PMID: 36678695 PMCID: PMC9865907 DOI: 10.3390/pharmaceutics15010066] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Cancer is the main cause of death worldwide. The limitations in traditional cancer therapies provoked the advance and use of several nanotechnologies for more effective and nontoxic cancer treatment. Along with synthetic nanocarriers, extracellular vesicles (EVs)-mediated drug delivery systems have aroused substantial interest. The term EVs refers to cell-derived nanovesicles, such as exosomes, with phospholipid-bound structures, participating in cell-to-cell communication. Exosomes are 30-150 nm vesicles that can transfer many biological molecules between cells. From a drug delivery standpoint, exosomes can be loaded with various therapeutic cargo, with the several advantages of low immunogenicity, high biocompatibility, transformative, and effective tumor targeting aptitude. The exosomal surface can be functionalized to improve tumor targeting ability of them. Researchers have genetically expressed or chemically linked various molecules on the surface of exosomes. Despite extensive investigation, clinical translation of exosome-based drug delivery remains challenging. In this review, we discuss various methods used to loading exosomes with therapeutic cargo. We describe examples of functionalized exosomes surface using genetic and chemical modification methods. Finally, this review attempts to provide future outlooks for exosome-based targeted drug delivery.
Collapse
Affiliation(s)
- Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Fereshteh Nazari-Khanamiri
- Hematology, Immune Cell Therapy, and Stem Cells Transplantation Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Mahdi Ahmadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5665665811, Iran
| | - Maryam Shoaran
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz 5665665811, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
- Hematology, Immune Cell Therapy, and Stem Cells Transplantation Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
- Correspondence: ; Tel.: +98-914-854-8503; Fax: +98-443-222-2010
| |
Collapse
|
72
|
Wang S, Shi Y. Exosomes Derived from Immune Cells: The New Role of Tumor Immune Microenvironment and Tumor Therapy. Int J Nanomedicine 2022; 17:6527-6550. [PMID: 36575698 PMCID: PMC9790146 DOI: 10.2147/ijn.s388604] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/09/2022] [Indexed: 12/29/2022] Open
Abstract
Exosomes are small vesicles secreted by living cells, with a typical lipid bilayer structure. They carry a variety of proteins, lipids, RNA and other important information, play an important role in the transmission of substances and information between cells, and gradually become a marker for early diagnosis of many diseases and an important tool in drug delivery system. Immune cells are an important part of tumor microenvironment, and they can affect tumor progression by secreting a variety of immunoreactive substances. This review focuses on the effects of various immune cell-derived exosomes on tumor cells, different immune cells and other stromal cells in tumor microenvironment. Exosomes derived from different immune cells can not only reshape a pro-inflammatory microenvironment to inhibit tumor progression, but also promote tumor progression by inhibiting the killing effect of NK cells, CD8+T cells and other cells or promoting tumor cells and immunosuppressive immune cells. In addition, we also discussed that some exosomes derived from immune cells (such as DC, M1 macrophages and neutrophils) play a tumor inhibitory role after being engineered.
Collapse
Affiliation(s)
- Shiyang Wang
- Department of Geriatric Surgery, The First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China
| | - Yue Shi
- Department of Geriatric Surgery, The First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China,Correspondence: Yue Shi, Department of Geriatric Surgery, The First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China, Tel +86-13842073309, Email
| |
Collapse
|
73
|
Fan J, Shi J, Zhang Y, Liu J, An C, Zhu H, Wu P, Hu W, Qin R, Yao D, Shou X, Xu Y, Tong Z, Wen X, Xu J, Zhang J, Fang W, Lou J, Yin W, Chen W. NKG2D discriminates diverse ligands through selectively mechano-regulated ligand conformational changes. EMBO J 2022; 41:e107739. [PMID: 34913508 PMCID: PMC8762575 DOI: 10.15252/embj.2021107739] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 11/12/2022] Open
Abstract
Stimulatory immune receptor NKG2D binds diverse ligands to elicit differential anti-tumor and anti-virus immune responses. Two conflicting degeneracy recognition models based on static crystal structures and in-solution binding affinities have been considered for almost two decades. Whether and how NKG2D recognizes and discriminates diverse ligands still remain unclear. Using live-cell-based single-molecule biomechanical assay, we characterized the in situ binding kinetics of NKG2D interacting with different ligands in the absence or presence of mechanical force. We found that mechanical force application selectively prolonged NKG2D interaction lifetimes with the ligands MICA and MICB, but not with ULBPs, and that force-strengthened binding is much more pronounced for MICA than for other ligands. We also integrated steered molecular dynamics simulations and mutagenesis to reveal force-induced rotational conformational changes of MICA, involving formation of additional hydrogen bonds on its binding interface with NKG2D, impeding MICA dissociation under force. We further provided a kinetic triggering model to reveal that force-dependent affinity determines NKG2D ligand discrimination and its downstream NK cell activation. Together, our results demonstrate that NKG2D has a discrimination power to recognize different ligands, which depends on selective mechanical force-induced ligand conformational changes.
Collapse
Affiliation(s)
- Juan Fan
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiawei Shi
- Key Laboratory for Biomedical Engineering of the Ministry of EducationZhejiang UniversityHangzhouChina
| | - Yong Zhang
- Key Laboratory of RNA BiologyCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Junwei Liu
- Key Laboratory for Biomedical Engineering of the Ministry of EducationZhejiang UniversityHangzhouChina
- Department of Hepatobiliary and Pancreatic SurgeryThe Center for Integrated Oncology and Precision MedicineAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
| | - Chenyi An
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Huaying Zhu
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Peng Wu
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Wei Hu
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Rui Qin
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Danmei Yao
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xin Shou
- Institute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
| | - Yibing Xu
- Institute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
| | - Zhou Tong
- Department of Medical OncologyFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Xue Wen
- Department of PathologyThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Jianpo Xu
- Center for Stem Cell and Regenerative MedicineDepartment of Basic Medical SciencesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jin Zhang
- Center for Stem Cell and Regenerative MedicineDepartment of Basic Medical SciencesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Laboratory for Systems and Precision MedicineZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
| | - Weijia Fang
- Department of Medical OncologyFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Jizhong Lou
- Key Laboratory of RNA BiologyCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Weiwei Yin
- Key Laboratory for Biomedical Engineering of the Ministry of EducationZhejiang UniversityHangzhouChina
- Department of Thoracic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness AppraisalCollege of Biomedical Engineering and Instrument of ScienceZhejiang UniversityHangzhouChina
| | - Wei Chen
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory for Biomedical Engineering of the Ministry of EducationZhejiang UniversityHangzhouChina
- Department of Hepatobiliary and Pancreatic SurgeryThe Center for Integrated Oncology and Precision MedicineAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Laboratory for Systems and Precision MedicineZhejiang University Medical CenterHangzhouChina
- The MOE Frontier Science Center for Brain Science & Brain‐machine IntegrationZhejiang UniversityHangzhouChina
| |
Collapse
|
74
|
Kim HY, Min HK, Song HW, Yoo A, Lee S, Kim KP, Park JO, Choi YH, Choi E. Delivery of human natural killer cell-derived exosomes for liver cancer therapy: an in vivo study in subcutaneous and orthotopic animal models. Drug Deliv 2022; 29:2897-2911. [PMID: 36068970 PMCID: PMC9467548 DOI: 10.1080/10717544.2022.2118898] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exosomes are nanosized extracellular vesicles secreted by various cell types, including those of the immune system, such as natural killer (NK) cells. They play a role in intercellular communication by transporting signal molecules between the cells. Recent studies have reported that NK cell-derived exosomes (NK-exo) contain cytotoxic proteins-induced cell death. However, the characteristics and potential functions of NK-exo, especially for the liver cancer are poorly understood. In this study, we investigated the anti-tumor effects of NK-exo in the primary liver cancer, hepatocellular carcinoma (HCC), using the orthotopic and subcutaneous tumor model. We found that NK-exo expressed both typical exosomal markers (e.g. CD63, CD81, and Alix) and cytotoxic proteins (e.g. perforin, granzyme B, FasL, and TRAIL). NK-exo were selectively taken up by HCC cells (e.g. Hep3B, HepG2, and Huh 7). Interestingly, Hep3B cells induced the highest cytotoxicity compared with HepG2 and Huh7 cells, and substantially enhanced the apoptosis by NK-exo. Furthermore, we demonstrated that NK-exo inhibited the phosphorylation of serine/threonine protein kinases (e.g. AKT and ERK1/2), and enhanced the activation of specific apoptosis markers (e.g. caspase-3, -7, -8, -9, and PARP) in Hep3B cells. NK-exo also exhibit the active targeting ability and potent therapeutic effects in both orthotopic and subcutaneous HCC mouse models. Overall, these results suggest that NK-exo indicate strong anti-tumor effects in HCC, which are mediated by novel regulatory mechanisms involved in serine/threonine kinase pathway-associated cell proliferation and caspase activation pathway-associated apoptosis.
Collapse
Affiliation(s)
- Ho Yong Kim
- Korea Institute of Medical Microrobotics, Buk-gu, Gwangju, Republic of Korea
| | - Hyun-Ki Min
- Korea Institute of Medical Microrobotics, Buk-gu, Gwangju, Republic of Korea
| | - Hyeong-Woo Song
- Korea Institute of Medical Microrobotics, Buk-gu, Gwangju, Republic of Korea
| | - Ami Yoo
- Korea Institute of Medical Microrobotics, Buk-gu, Gwangju, Republic of Korea
| | - Seonmin Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Songpa-Gu, Seoul, Republic of Korea
| | - Kyu-Pyo Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Songpa-Gu, Seoul, Republic of Korea
| | - Jong-Oh Park
- Korea Institute of Medical Microrobotics, Buk-gu, Gwangju, Republic of Korea.,School of Mechanical Engineering, Chonnam National University, Buk, Gwangju, Republic of Korea
| | - You Hee Choi
- Korea Institute of Medical Microrobotics, Buk-gu, Gwangju, Republic of Korea
| | - Eunpyo Choi
- Korea Institute of Medical Microrobotics, Buk-gu, Gwangju, Republic of Korea.,School of Mechanical Engineering, Chonnam National University, Buk, Gwangju, Republic of Korea
| |
Collapse
|
75
|
Modern Advances in CARs Therapy and Creating a New Approach to Future Treatment. Int J Mol Sci 2022; 23:ijms232315006. [PMID: 36499331 PMCID: PMC9739283 DOI: 10.3390/ijms232315006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Genetically engineered T and NK cells expressing a chimeric antigen receptor (CAR) are promising cytotoxic cells for the treatment of hematological malignancies and solid tumors. Despite the successful therapies using CAR-T cells, they have some disadvantages, such as cytokine release syndrome (CRS), neurotoxicity, or graft-versus-host-disease (GVHD). CAR-NK cells have lack or minimal cytokine release syndrome and neurotoxicity, but also multiple mechanisms of cytotoxic activity. NK cells are suitable for developing an "off the shelf" therapeutic product that causes little or no graft versus host disease (GvHD), but they are more sensitive to apoptosis and have low levels of gene expression compared to CAR-T cells. To avoid these adverse effects, further developments need to be considered to enhance the effectiveness of adoptive cellular immunotherapy. A promising approach to enhance the effectiveness of adoptive cellular immunotherapy is overcoming terminal differentiation or senescence and exhaustion of T cells. In this case, EVs derived from immune cells in combination therapy with drugs may be considered in the treatment of cancer patients, especially effector T and NK cells-derived exosomes with the cytotoxic activity of their original cells.
Collapse
|
76
|
Low JJW, Sulaiman SA, Johdi NA, Abu N. Immunomodulatory effects of extracellular vesicles in glioblastoma. Front Cell Dev Biol 2022; 10:996805. [PMID: 36467419 PMCID: PMC9708723 DOI: 10.3389/fcell.2022.996805] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2024] Open
Abstract
Glioblastoma (GB) is a type of brain cancer that can be considered aggressive. Glioblastoma treatment has significant challenges due to the immune privilege site of the brain and the presentation of an immunosuppressive tumor microenvironment. Extracellular vesicles (EVs) are cell-secreted nanosized vesicles that engage in intercellular communication via delivery of cargo that may cause downstream effects such as tumor progression and recipient cell modulation. Although the roles of extracellular vesicles in cancer progression are well documented, their immunomodulatory effects are less defined. Herein, we focus on glioblastoma and explain the immunomodulatory effects of extracellular vesicles secreted by both tumor and immune cells in detail. The tumor to immune cells, immune cells to the tumor, and intra-immune cells extracellular vesicles crosstalks are involved in various immunomodulatory effects. This includes the promotion of immunosuppressive phenotypes, apoptosis, and inactivation of immune cell subtypes, which affects the central nervous system and peripheral immune system response, aiding in its survival and progression in the brain.
Collapse
Affiliation(s)
| | | | | | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Universiti Kebangsaan Malaysia, Jalan Yaa’cob Latiff, Bandar Tun Razak, Kuala Lumpur, Malaysia
| |
Collapse
|
77
|
Srivastava A, Rathore S, Munshi A, Ramesh R. Organically derived exosomes as carriers of anticancer drugs and imaging agents for cancer treatment. Semin Cancer Biol 2022; 86:80-100. [PMID: 35192929 PMCID: PMC9388703 DOI: 10.1016/j.semcancer.2022.02.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs), is the umbrella term used for different types of vesicles produced by the cells, among which exosomes form the largest group. Exosomes perform intercellular communication by carrying several biologics from donor or parental cells and delivering them to recipient cells. Their unique cargo-carrying capacity has recently been explored for use as delivery vehicles of anticancer drugs and imaging agents. Being naturally produced, exosomes have many advantages over synthetic lipid-based nanoparticles currently being used clinically to treat cancer and other diseases. The finding of the role of exosomes in human diseases has led to numerous preclinical and clinical studies exploring their use as an amenable drug delivery vehicle and a theranostic in cancer diagnosis and treatment. However, there are certain limitations associated with exosomes, with the most important being the selection of the biological source for producing highly biocompatible exosomes on a large scale. This review article explores the various sources from which therapeutically viable exosomes can be isolated for use as drug carriers for cancer treatment. The methods of exosome isolation and the process of loading them with cancer therapeutics and imaging agents are also discussed in the follow-up sections. Finally, the article concludes with future directions for exosome-based applications in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Akhil Srivastava
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shipra Rathore
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Anupama Munshi
- Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
78
|
Qian K, Fu W, Li T, Zhao J, Lei C, Hu S. The roles of small extracellular vesicles in cancer and immune regulation and translational potential in cancer therapy. J Exp Clin Cancer Res 2022; 41:286. [PMID: 36167539 PMCID: PMC9513874 DOI: 10.1186/s13046-022-02492-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
Extracellular vesicles (EVs) facilitate the extracellular transfer of proteins, lipids, and nucleic acids and mediate intercellular communication among multiple cells in the tumour environment. Small extracellular vesicles (sEVs) are defined as EVs range in diameter from approximately 50 to 150 nm. Tumour-derived sEVs (TDsEVs) and immune cell-derived sEVs have significant immunological activities and participate in cancer progression and immune responses. Cancer-specific molecules have been identified on TDsEVs and can function as biomarkers for cancer diagnosis and prognosis, as well as allergens for TDsEVs-based vaccination. Various monocytes, including but not limited to dendritic cells (DCs), B cells, T cells, natural killer (NK) cells, macrophages, and myeloid-derived suppressor cells (MDSCs), secrete sEVs that regulate immune responses in the complex immune network with either protumour or antitumour effects. After engineered modification, sEVs from immune cells and other donor cells can provide improved targeting and biological effects. Combined with their naïve characteristics, these engineered sEVs hold great potential as drug carriers. When used in a variety of cancer therapies, they can adjunctly enhance the safety and antitumor efficacy of multiple therapeutics. In summary, both naïve sEVs in the tumour environment and engineered sEVs with effector cargoes are regarded as showing promising potential for use in cancer diagnostics and therapeutics.
Collapse
|
79
|
Aarsund M, Nyman TA, Stensland ME, Wu Y, Inngjerdingen M. Isolation of a cytolytic subpopulation of extracellular vesicles derived from NK cells containing NKG7 and cytolytic proteins. Front Immunol 2022; 13:977353. [PMID: 36189227 PMCID: PMC9520454 DOI: 10.3389/fimmu.2022.977353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
NK cells can broadly target and kill malignant cells via release of cytolytic proteins. NK cells also release extracellular vesicles (EVs) that contain cytolytic proteins, previously shown to induce apoptosis of a variety of cancer cells in vitro and in vivo. The EVs released by NK cells are likely very heterogeneous, as vesicles can be released from the plasma membrane or from different intracellular compartments. In this study, we undertook a fractionation scheme to enrich for cytolytic NK-EVs. NK-EVs were harvested from culture medium from the human NK-92 cell line or primary human NK cells grown in serum-free conditions. By combining ultracentrifugation with downstream density-gradient ultracentrifugation or size-exclusion chromatography, distinct EV populations were identified. Density-gradient ultracentrifugation led to separation of three subpopulations of EVs. The different EV isolates were characterized by label-free quantitative mass spectrometry and western blotting, and we found that one subpopulation was primarily enriched for plasma membrane proteins and tetraspanins CD37, CD82, and CD151, and likely represents microvesicles. The other major subpopulation was enriched in intracellularly derived markers with high expression of the endosomal tetraspanin CD63 and markers for intracellular organelles. The intracellularly derived EVs were highly enriched in cytolytic proteins, and possessed high apoptotic activity against HCT-116 colon cancer spheroids. To further enrich for cytolytic EVs, immunoaffinity pulldowns led to the isolation of a subset of EVs containing the cytolytic granule marker NKG7 and the majority of vesicular granzyme B content. We therefore propose that EVs containing cytolytic proteins may primarily be released via cytolytic granules.
Collapse
|
80
|
Onukwugha NE, Kang YT, Nagrath S. Emerging micro-nanotechnologies for extracellular vesicles in immuno-oncology: from target specific isolations to immunomodulation. LAB ON A CHIP 2022; 22:3314-3339. [PMID: 35980234 PMCID: PMC9474625 DOI: 10.1039/d2lc00232a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Extracellular vesicles (EVs) have been hypothesized to incorporate a variety of crucial roles ranging from intercellular communication to tumor pathogenesis to cancer immunotherapy capabilities. Traditional EV isolation and characterization techniques cannot accurately and with specificity isolate subgroups of EVs, such as tumor-derived extracellular vesicles (TEVs) and immune-cell derived EVs, and are plagued with burdensome steps. To address these pivotal issues, multiplex microfluidic EV isolation/characterization and on-chip EV engineering may be imperative towards developing the next-generation EV-based immunotherapeutics. Henceforth, our aim is to expound the state of the art in EV isolation/characterization techniques and their limitations. Additionally, we seek to elucidate current work on total analytical system based technologies for simultaneous isolation and characterization and to summarize the immunogenic capabilities of EV subgroups, both innate and adaptive. In this review, we discuss recent state-of-art microfluidic/micro-nanotechnology based EV screening methods and EV engineering methods towards therapeutic use of EVs in immune-oncology. By venturing in this field of EV screening and immunotherapies, it is envisioned that transition into clinical settings can become less convoluted for clinicians.
Collapse
Affiliation(s)
- Nna-Emeka Onukwugha
- Department of Chemical Engineering and Biointerface Institute, University of Michigan, 2800 Plymouth Road, NCRC B10-A184, Ann Arbor, MI 48109, USA.
| | - Yoon-Tae Kang
- Department of Chemical Engineering and Biointerface Institute, University of Michigan, 2800 Plymouth Road, NCRC B10-A184, Ann Arbor, MI 48109, USA.
| | - Sunitha Nagrath
- Department of Chemical Engineering and Biointerface Institute, University of Michigan, 2800 Plymouth Road, NCRC B10-A184, Ann Arbor, MI 48109, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
81
|
Determination of the Loading Capacity and Recovery of Extracellular Vesicles Derived from Human Embryonic Kidney Cells and Urine Matrices on Capillary-Channeled Polymer (C-CP) Fiber Columns. SEPARATIONS 2022. [DOI: 10.3390/separations9090251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) are 50–1000 nm membranous vesicles secreted from all cells that play important roles in many biological processes. Exosomes, a smaller-sized subset of EVs, have become of increasing interest in fundamental biochemistry and clinical fields due to their rich biological cargos and their roles in processes such as cell-signaling, maintaining homeostasis, and regulating cellular functions. To be implemented effectively in fundamental biochemistry and clinical diagnostics fields of study, and for their proposed use as vectors in gene therapies, there is a need for new methods for the isolation of large concentrations of high-purity exosomes from complex matrices in a timely manner. To address current limitations regarding recovery and purity, described here is a frontal throughput and recovery analysis of exosomes derived from human embryonic kidney (HEK) cell cultures and human urine specimens using capillary-channeled polymer (C-CP) fiber stationary phases via high performance liquid chromatography (HPLC). Using the C-CP fiber HPLC method for EV isolations, the challenge of recovering purified EVs from small sample volumes imparted by the traditional techniques was overcome while introducing significant benefits in processing, affordability (~5 $ per column), loading (~1012 particles), and recovery (1011–1012 particles) from whole specimens without further processing requirements.
Collapse
|
82
|
Extracellular vesicles as an emerging drug delivery system for cancer treatment: Current strategies and recent advances. Biomed Pharmacother 2022; 153:113480. [DOI: 10.1016/j.biopha.2022.113480] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/19/2022] Open
|
83
|
Aarsund M, Segers FM, Wu Y, Inngjerdingen M. Comparison of characteristics and tumor targeting properties of extracellular vesicles derived from primary NK cells or NK-cell lines stimulated with IL-15 or IL-12/15/18. Cancer Immunol Immunother 2022; 71:2227-2238. [PMID: 35119498 PMCID: PMC9374793 DOI: 10.1007/s00262-022-03161-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/19/2022] [Indexed: 12/17/2022]
Abstract
NK cell-based therapies have shown promise for hematological cancer forms, but their use against solid tumors is hampered by their poor ability to infiltrate the tumor. NK cells release extracellular vesicles (EVs) containing cytolytic proteins, indicating that NK-cell derived EVs may have therapeutic potential. In this study, we compared the tumor-targeting potential of EVs derived from either primary NK cells or the NK cell lines NK-92 and KHYG-1 cultured in IL-15 alone or in combination with IL-12 and IL-18. Primary NK cells were also stimulated through the activating receptor CD16. Tumor cell apoptosis was measured using a panel of human colon, melanoma, glioblastoma, prostate, breast, and ovarian tumor cell line spheroids. NK cells or NK-92 cells stimulated with IL-12, IL-15, and IL-18 generated EVs with higher efficiency than EVs from resting cells, although similar amounts of EVs were produced under both conditions. Proteomic analysis indicated similar distribution of cytolytic proteins in EVs from primary NK cells and NK-92, but lower levels in KHYG-1 EVs that translated into poor capacity for KHYG-1 EVs at targeting tumor cell lines. Further, we show that CD16-stimulated NK cells release low amounts of EVs devoid of cytolytic proteins. Importantly, EVs from cytokine-stimulated NK cells penetrate into the spheroid core, and tumor spheroid susceptibility to NK-cell derived EVs was linked to differential expression of the NKG2D ligands MICA/B, which was blocked with an anti-NKG2D antibody. We conclude that EVs from activated primary NK cells or NK-92 cells has the best potential to infiltrate and target solid tumors.
Collapse
Affiliation(s)
- Miriam Aarsund
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Filip M Segers
- Department of Pharmacology, Clinic of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Yunjie Wu
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Marit Inngjerdingen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
84
|
Jiang A, Nie W, Xie H. In Vivo Imaging for the Visualization of Extracellular Vesicle-Based Tumor Therapy. ChemistryOpen 2022; 11:e202200124. [PMID: 36101512 PMCID: PMC9471060 DOI: 10.1002/open.202200124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/01/2022] [Indexed: 12/04/2022] Open
Abstract
Extracellular vesicles (EVs) exhibiting versatile biological functions provide promising prospects as natural therapeutic agents and drug delivery vehicles. For future clinical translation, revealing the fate of EVs in vivo, especially their accumulation at lesion sites, is very important. The continuous development of in vivo imaging technology has made it possible to track the real-time distribution of EVs. This article reviews the applications of mammal-, plant-, and bacteria-derived EVs in tumor therapy, the labeling methods of EVs for in vivo imaging, the advantages and disadvantages of different imaging techniques, and possible improvements for future work.
Collapse
Affiliation(s)
- Anqi Jiang
- School of Life ScienceBeijing Institute of TechnologyBeijing100081P. R. China
| | - Weidong Nie
- School of Life ScienceBeijing Institute of TechnologyBeijing100081P. R. China
| | - Hai‐Yan Xie
- School of Life ScienceBeijing Institute of TechnologyBeijing100081P. R. China
| |
Collapse
|
85
|
Bioactivity of Exosomes Derived from Trained Natural Killer Cells versus Non-Trained One: More Functional and Antitumor Activity. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5396628. [PMID: 36060136 PMCID: PMC9433262 DOI: 10.1155/2022/5396628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022]
Abstract
Background Natural killer (NK) cells are cytotoxic lymphocytes of the innate immune system, capable of killing viral-infected and cancerous cells. NK cell-mediated immunotherapy has remarkably changed the current paradigm of cancer treatment in recent years. It emerged as a safe and effective therapeutic approach for patients with advanced-stage leukemia. Several immune-escape mechanisms can be enacted by cancer cells to avoid NK-mediated killing. Exosomes released by NK cells that carry proteins and miRNAs can exert an antitumor effect. In the present study, we hypothesized that maybe exosomes derived from trained natural killer cells show more antitumor effect in comparison to non-trained one. Methods PBMC was separated by the Ficoll method and cultured with IL-2 for 21 days to expand NK cells. The NK cells were co-cultured with K562 for 72 hours and exosome-derived co-cultured (as trained) and natural killer cell-derived exosomes (as non-trained) were extracted by Exo kit. The exosomes were confirmed by dynamic light scattering (DLS), transmission electron microscopy (TEM), flow cytometry, and western blotting. The K562 cells were separately treated by trained and non-trained exosomes and MTT assay, apoptosis, and real-time PCR were performed. Results Based on flow cytometry, CD56 marker was 89.7% and 40.1% for NK cells and NK-derived exosomes, respectively. CD63 and CD9 were positive for exosomes by western blotting. The morphology of exosome was confirmed by TEM. Treated K562 cells by trained exosomes indicated the diminished cell viability and higher apoptosis. Furthermore, the trained exosomes showed up-regulation in both P53 and caspase3 genes as compared with non-trained sample. Discussion. Trained Exos showed a potent inhibitory effect on proliferation and induced apoptosis on K562 cell lines compared to the same dose of non-trained Exos. According to the results of qRT-PCR, trained Exos exerted an antitumor activity through up-regulation of caspase 3 and P53 in the apoptotic signaling pathway in tumor cells. Our findings indicate an effective action of trained Exos against cancer cells.
Collapse
|
86
|
Kuo IY, Hsieh CH, Kuo WT, Chang CP, Wang YC. Recent advances in conventional and unconventional vesicular secretion pathways in the tumor microenvironment. J Biomed Sci 2022; 29:56. [PMID: 35927755 PMCID: PMC9354273 DOI: 10.1186/s12929-022-00837-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
All cells in the changing tumor microenvironment (TME) need a class of checkpoints to regulate the balance among exocytosis, endocytosis, recycling and degradation. The vesicular trafficking and secretion pathways regulated by the small Rab GTPases and their effectors convey cell growth and migration signals and function as meditators of intercellular communication and molecular transfer. Recent advances suggest that Rab proteins govern conventional and unconventional vesicular secretion pathways by trafficking widely diverse cargoes and substrates in remodeling TME. The mechanisms underlying the regulation of conventional and unconventional vesicular secretion pathways, their action modes and impacts on the cancer and stromal cells have been the focus of much attention for the past two decades. In this review, we discuss the current understanding of vesicular secretion pathways in TME. We begin with an overview of the structure, regulation, substrate recognition and subcellular localization of vesicular secretion pathways. We then systematically discuss how the three fundamental vesicular secretion processes respond to extracellular cues in TME. These processes are the conventional protein secretion via the endoplasmic reticulum-Golgi apparatus route and two types of unconventional protein secretion via extracellular vesicles and secretory autophagy. The latest advances and future directions in vesicular secretion-involved interplays between tumor cells, stromal cell and host immunity are also described.
Collapse
Affiliation(s)
- I-Ying Kuo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan.,Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hsiung Hsieh
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan
| | - Wan-Ting Kuo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan
| | - Chih-Peng Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
87
|
Zhang M, Shao W, Yang T, Liu H, Guo S, Zhao D, Weng Y, Liang X, Huang Y. Conscription of Immune Cells by Light-Activatable Silencing NK-Derived Exosome (LASNEO) for Synergetic Tumor Eradication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201135. [PMID: 35665496 PMCID: PMC9353410 DOI: 10.1002/advs.202201135] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/11/2022] [Indexed: 05/04/2023]
Abstract
Exosomes derived from natural killer (NK) cells (NEO) constitute promising antineoplastic nano-biologics because of their versatile functions in immune regulation. However, a significant augment of their immunomodulatory capability is an essential need to achieve clinically meaningful treatment outcomes. Light-activatable silencing NK-derived exosomes (LASNEO) are orchestrated by engineering the NEO with hydrophilic small interfering RNA (siRNA) and hydrophobic photosensitizer Ce6. Profiling of genes involved in apoptosis pathway with Western blot and RNA-seq in cells receiving NEO treatment reveals that NEO elicits effective NK cell-like cytotoxicity toward tumor cells. Meanwhile, reactive oxygen species (ROS) generation upon laser irradiation not only triggers substantial photodynamic therapy effect but also boosts M1 tumor-associated macrophages polarization and DC maturation in the tumor microenvironment (TME). In addition, ROS also accelerates the cellular entry and endosomal escape of siRNA in TME. Finally, siRNAs targeting PLK1 or PD-L1 induce robust gene silencing in cancer cells, and downregulation of PD-L1 restores the immunological surveillance of T cells in TME. Therefore, the proposed LASNEO exhibit excellent antitumor effects by conscripting multiple types of immune cells. Considering that its manufacture is quite simple and controllable, LASNEO show compelling potential for clinical translational application.
Collapse
Affiliation(s)
- Mengjie Zhang
- School of Life ScienceAdvanced Research Institute of Multidisciplinary ScienceSchool of Medical Technology (Institute of Engineering Medicine)Key Laboratory of Molecular Medicine and BiotherapyKey Laboratory of Medical Molecule Science and Pharmaceutics EngineeringBeijing Institute of TechnologyBeijing100081China
| | - Wanxuan Shao
- School of Life ScienceAdvanced Research Institute of Multidisciplinary ScienceSchool of Medical Technology (Institute of Engineering Medicine)Key Laboratory of Molecular Medicine and BiotherapyKey Laboratory of Medical Molecule Science and Pharmaceutics EngineeringBeijing Institute of TechnologyBeijing100081China
| | - Tongren Yang
- School of Life ScienceAdvanced Research Institute of Multidisciplinary ScienceSchool of Medical Technology (Institute of Engineering Medicine)Key Laboratory of Molecular Medicine and BiotherapyKey Laboratory of Medical Molecule Science and Pharmaceutics EngineeringBeijing Institute of TechnologyBeijing100081China
| | - Houli Liu
- School of Life ScienceAdvanced Research Institute of Multidisciplinary ScienceSchool of Medical Technology (Institute of Engineering Medicine)Key Laboratory of Molecular Medicine and BiotherapyKey Laboratory of Medical Molecule Science and Pharmaceutics EngineeringBeijing Institute of TechnologyBeijing100081China
| | - Shuai Guo
- School of Life ScienceAdvanced Research Institute of Multidisciplinary ScienceSchool of Medical Technology (Institute of Engineering Medicine)Key Laboratory of Molecular Medicine and BiotherapyKey Laboratory of Medical Molecule Science and Pharmaceutics EngineeringBeijing Institute of TechnologyBeijing100081China
| | - Deyao Zhao
- Department of Radiation Oncologythe First Affiliated Hospital of Zhengzhou UniversityErqiZhengzhou450000China
| | - Yuhua Weng
- School of Life ScienceAdvanced Research Institute of Multidisciplinary ScienceSchool of Medical Technology (Institute of Engineering Medicine)Key Laboratory of Molecular Medicine and BiotherapyKey Laboratory of Medical Molecule Science and Pharmaceutics EngineeringBeijing Institute of TechnologyBeijing100081China
| | - Xing‐Jie Liang
- Chinese Academy of Sciences (CAS) Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and TechnologyBeijing100190China
| | - Yuanyu Huang
- School of Life ScienceAdvanced Research Institute of Multidisciplinary ScienceSchool of Medical Technology (Institute of Engineering Medicine)Key Laboratory of Molecular Medicine and BiotherapyKey Laboratory of Medical Molecule Science and Pharmaceutics EngineeringBeijing Institute of TechnologyBeijing100081China
| |
Collapse
|
88
|
Dosil SG, Lopez-Cobo S, Rodriguez-Galan A, Fernandez-Delgado I, Ramirez-Huesca M, Milan-Rois P, Castellanos M, Somoza A, Gómez MJ, Reyburn HT, Vales-Gomez M, Sánchez Madrid F, Fernandez-Messina L. Natural killer (NK) cell-derived extracellular-vesicle shuttled microRNAs control T cell responses. eLife 2022; 11:76319. [PMID: 35904241 PMCID: PMC9366747 DOI: 10.7554/elife.76319] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 07/17/2022] [Indexed: 11/13/2022] Open
Abstract
Natural killer (NK) cells recognise and kill target cells undergoing different types of stress. NK cells are also capable of modulating immune responses. In particular, they regulate T cell functions. Small RNA next-generation sequencing of resting and activated human NK cells and their secreted EVs led to the identification of a specific repertoire of NK-EV-associated microRNAs and their post-transcriptional modifications signature. Several microRNAs of NK-EVs, namely miR-10b-5p, miR-92a-3p and miR-155-5p, specifically target molecules involved in Th1 responses. NK-EVs promote the downregulation of GATA3 mRNA in CD4+ T cells and subsequent TBX21 de-repression that leads to Th1 polarization and IFN-γ and IL-2 production. NK-EVs also have an effect on monocyte and moDCs function, driving their activation and increased presentation and co-stimulatory functions. Nanoparticle-delivered NK-EV microRNAs partially recapitulate NK-EV effects in mice. Our results provide new insights on the immunomodulatory roles of NK-EVs that may help to improve their use as immunotherapeutic tools.
Collapse
Affiliation(s)
- Sara G Dosil
- Servicio de Inmunología, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | - Marta Ramirez-Huesca
- Vascular Pathophysiology Area, National Center for Cardiovascular Research, Madrid, Spain
| | - Paula Milan-Rois
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & Nanobiotecnología (IMDEA-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología, Madrid, Spain
| | - Milagros Castellanos
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & Nanobiotecnología (IMDEA-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología, Madrid, Spain
| | - Alvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & Nanobiotecnología (IMDEA-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología, Madrid, Spain
| | - Manuel J Gómez
- Vascular Pathophysiology Area, National Center for Cardiovascular Research, Madrid, Spain
| | - Hugh T Reyburn
- Department of Immunology and Oncology, Spanish National Research Council, Madrid, Spain
| | - Mar Vales-Gomez
- Department of Immunology and Oncology, Spanish National Research Council, Madrid, Spain
| | | | | |
Collapse
|
89
|
Fekrirad Z, Barzegar Behrooz A, Ghaemi S, Khosrojerdi A, Zarepour A, Zarrabi A, Arefian E, Ghavami S. Immunology Meets Bioengineering: Improving the Effectiveness of Glioblastoma Immunotherapy. Cancers (Basel) 2022; 14:3698. [PMID: 35954362 PMCID: PMC9367505 DOI: 10.3390/cancers14153698] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma (GBM) therapy has seen little change over the past two decades. Surgical excision followed by radiation and chemotherapy is the current gold standard treatment. Immunotherapy techniques have recently transformed many cancer treatments, and GBM is now at the forefront of immunotherapy research. GBM immunotherapy prospects are reviewed here, with an emphasis on immune checkpoint inhibitors and oncolytic viruses. Various forms of nanomaterials to enhance immunotherapy effectiveness are also discussed. For GBM treatment and immunotherapy, we outline the specific properties of nanomaterials. In addition, we provide a short overview of several 3D (bio)printing techniques and their applications in stimulating the GBM microenvironment. Lastly, the susceptibility of GBM cancer cells to the various immunotherapy methods will be addressed.
Collapse
Affiliation(s)
- Zahra Fekrirad
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran 18735-136, Iran;
| | - Amir Barzegar Behrooz
- Brain Cancer Research Group, Department of Cancer, Asu Vanda Gene Industrial Research Company, Tehran 1533666398, Iran;
| | - Shokoofeh Ghaemi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran 14155-6619, Iran;
| | - Arezou Khosrojerdi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-111, Iran
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey;
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey;
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran 14155-6619, Iran;
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 14155-6559, Iran
| | - Saeid Ghavami
- Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
90
|
Liu C, Wang Y, Li L, He D, Chi J, Li Q, Wu Y, Zhao Y, Zhang S, Wang L, Fan Z, Liao Y. Engineered extracellular vesicles and their mimetics for cancer immunotherapy. J Control Release 2022; 349:679-698. [PMID: 35878728 DOI: 10.1016/j.jconrel.2022.05.062] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs) are heterogeneous membranous vesicles secreted by living cells that are involved in many physiological and pathological processes as intermediaries for intercellular communication and molecular transfer. Recent studies have shown that EVs can regulate the occurrence and development of tumors by transferring proteins, lipids and nucleic acids to immune cells as signaling molecules. As a new diagnostic biomarker and drug delivery system, EVs have broad application prospects in immunotherapy. In addition, the breakthrough of nanotechnology has promoted the development and exploration of engineered EVs for immune-targeted therapy. Herein, we review the uniqueness of EVs in immune regulation and the engineering strategies used for immunotherapy and highlight the logic of their design through typical examples. The present situation and challenges of clinical transformation are discussed, and the development prospects of EVs in immunotherapy are proposed. The goal of this review is to provide new insights into the design of immune-regulatory EVs and expand their application in cancer immunotherapy.
Collapse
Affiliation(s)
- Chunping Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, China
| | - Yichao Wang
- Department of Clinical Laboratory Medicine, Tai Zhou Central Hospital (Taizhou University Hospital), No.999 Donghai Road, Jiaojiang District, Taizhou, Zhejiang 318000, China
| | - Longmei Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Dongyue He
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Jiaxin Chi
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Qin Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Yixiao Wu
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Yunxuan Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Shihui Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Lei Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China.
| | - Zhijin Fan
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China; School of Medicine, South China University of Technology, Guangzhou, China.
| | - Yuhui Liao
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China.
| |
Collapse
|
91
|
The Regulatory Effects of MicroRNAs on Tumor Immunity. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2121993. [PMID: 35909469 PMCID: PMC9329000 DOI: 10.1155/2022/2121993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/24/2022] [Indexed: 12/13/2022]
Abstract
MicroRNAs are endogenous noncoding small RNAs that posttranscriptionally regulate the expressions of their target genes. Accumulating research shows that miRNAs are crucial regulators of immune cell growth and antitumor immune response. Studies on miRNAs and tumors primarily focus on the tumor itself. At the same time, relatively few studies on the indirect regulatory effects of miRNAs in the development of tumors are achieved by affecting the immune system of tumor hosts and altering their immune responses. This review discusses the influence of miRNAs on the antitumor immune system.
Collapse
|
92
|
Boyd-Gibbins N, Karagiannis P, Hwang DW, Kim SI. iPSCs in NK Cell Manufacturing and NKEV Development. Front Immunol 2022; 13:890894. [PMID: 35874677 PMCID: PMC9305199 DOI: 10.3389/fimmu.2022.890894] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/03/2022] [Indexed: 11/27/2022] Open
Abstract
Natural killer (NK) cell immunotherapies for cancer can complement existing T cell therapies while benefiting from advancements already made in the immunotherapy field. For NK cell manufacturing, induced pluripotent stem cells (iPSCs) offer advantages including eliminating donor variation and providing an ideal platform for genome engineering. At the same time, extracellular vesicles (EVs) have become a major research interest, and purified NK cell extracellular vesicles (NKEVs) have been shown to reproduce the key functions of their parent NK cells. NKEVs have the potential to be developed into a standalone therapeutic with reduced complexity and immunogenicity compared to cell therapies. This review explores the role iPSC technology can play in both NK cell manufacturing and NKEV development.
Collapse
Affiliation(s)
| | - Peter Karagiannis
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Do Won Hwang
- Research and Development Center, THERABEST Co., Ltd., Seoul, South Korea
| | - Shin-Il Kim
- THERABEST Japan, Inc., Kobe, Japan
- Research and Development Center, THERABEST Co., Ltd., Seoul, South Korea
| |
Collapse
|
93
|
Wu J, Wu D, Wu G, Bei HP, Li Z, Xu H, Wang Y, Wu D, Liu H, Shi S, Zhao C, Xu Y, He Y, Li J, Wang C, Zhao X, Wang S. Scale-out production of extracellular vesicles derived from natural killer cells via mechanical stimulation in a seesaw-motion bioreactor for cancer therapy. Biofabrication 2022; 14. [PMID: 35793612 DOI: 10.1088/1758-5090/ac7eeb] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/06/2022] [Indexed: 11/11/2022]
Abstract
Extracellular vesicles (EVs) derived from immune cells have shown great anti-cancer therapeutic potential. However, inefficiency in EV generation has considerably impeded the development of EV-based basic research and clinical translation. Here, we developed a seesaw-motion bioreactor (SMB) system by leveraging mechanical stimuli such as shear stress and turbulence for generating EVs with high quality and quantity from natural killer (NK) cells. Compared to EV production in traditional static culture (229 ± 74 particles per cell per day), SMB produced NK-92MI-derived EVs at a higher rate of 438 ± 50 particles per cell per day and yielded a total number of 2 × 1011 EVs over two weeks via continuous dynamic fluidic culture. In addition, the EVs generated from NK-92MI cells in SMB shared a similar morphology, size distribution, and protein profile to EVs generated from traditional static culture. Most importantly, the NK-92MI-derived EVs in SMB were functionally active in killing melanoma and liver cancer cells in both 2D and 3D culture conditions in vitro, as well as in suppressing melanoma growth in vivo. We believe that SMB is an attractive approach to producing EVs with high quality and quantity; it can additionally enhance EV production from NK92-MI cells and promote both the basic and translational research of EVs.
Collapse
Affiliation(s)
- Jianguo Wu
- Zhejiang University, 866 Yuhangtang Rd, Xihu, Hangzhou, Zhejiang, China, 310027, Hangzhou, Zhejiang Province, 310058, CHINA
| | - Di Wu
- Zhejiang University, 866 Yuhangtang Rd, Xihu, Hangzhou, Zhejiang, China, 310027, Hangzhou, Zhejiang Province, 310058, CHINA
| | - Guohua Wu
- Zhejiang University, 866 Yuhangtang Rd, Xihu, Hangzhou, Zhejiang, China, 310027, Hangzhou, Zhejiang Province, 310058, CHINA
| | - Ho-Pan Bei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong, Hong Kong SAR, HONG KONG
| | - Zihan Li
- Zhejiang University, 866 Yuhangtang Rd, Xihu, Hangzhou, Zhejiang, China, 310027, Hangzhou, Zhejiang Province, 310058, CHINA
| | - Han Xu
- Department of Building Environment and Energy Engineering, Xi'an Jiaotong University, 28 Xianning W Rd, Beilin, Xi'An, Shaanxi, China, 710049, Xi'an, Shanxi Province, 710049, CHINA
| | - Yimin Wang
- Institute of Translational Medicine, Zhejiang University, 866 Yuhangtang Rd, Xihu, Hangzhou, Zhejiang, China, 310027, HangZhou, 310027, CHINA
| | - Dan Wu
- Zhejiang University, 866 Yuhangtang Rd, Xihu, Hangzhou, Zhejiang, China, 310027, Hangzhou, Zhejiang Province, 310058, CHINA
| | - Hui Liu
- Zhejiang University, 866 Yuhangtang Rd, Xihu, Hangzhou, Zhejiang, China, 310027, Hangzhou, Zhejiang Province, 310058, CHINA
| | - Shengyu Shi
- Zhejiang University, 866 Yuhangtang Rd, Xihu, Hangzhou, Zhejiang, China, 310027, Hangzhou, Zhejiang Province, 310058, CHINA
| | - Chao Zhao
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, The Old Schools, Trinity Ln, Cambridge CB2 1TN, United Kingdom, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Yibing Xu
- Zhejiang University, 866 Yuhangtang Rd, Xihu, Hangzhou, Zhejiang, China, 310027, Hangzhou, Zhejiang Province, 310058, CHINA
| | - Yong He
- Department of Mechanical Engineering, Zhejiang University, 866 Yuhangtang Rd, Xihu, Hangzhou, Zhejiang, China, 310027, Hangzhou, ZheJiang, 310027, CHINA
| | - Jun Li
- Zhejiang University, 866 Yuhangtang Rd, Xihu, Hangzhou, Zhejiang, China, 310027, Hangzhou, Zhejiang Province, 310058, CHINA
| | - Changyong Wang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institude of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Academy of Military Medical Sciences, Taiping Rd. 27, 100850, Tianjin, Beijing, China, Beijing, 100850, CHINA
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong, Hong Kong SAR, 999077, HONG KONG
| | - Shuqi Wang
- Sichuan University, 252 Shuncheng Ave, Qingyang District, Chengdu, Sichuan, China, Chengdu, Sichuan, 610017, CHINA
| |
Collapse
|
94
|
Nguyen PH, Le AH, Pek JSQ, Pham TT, Jayasinghe MK, Do DV, Phung CD, Le MT. Extracellular vesicles and lipoproteins - Smart messengers of blood cells in the circulation. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e49. [PMID: 38938581 PMCID: PMC11080875 DOI: 10.1002/jex2.49] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/12/2022] [Accepted: 06/19/2022] [Indexed: 06/29/2024]
Abstract
Blood cell-derived extracellular vesicles (BCEVs) and lipoproteins are the major circulating nanoparticles in blood that play an important role in intercellular communication. They have attracted significant interest for clinical applications, given their endogenous characteristics which make them stable, biocompatible, well tolerated, and capable of permeating biological barriers efficiently. In this review, we describe the basic characteristics of BCEVs and lipoproteins and summarize their implications in both physiological and pathological processes. We also outline well accepted workflows for the isolation and characterization of these circulating nanoparticles. Importantly, we highlight the latest progress and challenges associated with the use of circulating nanoparticles as diagnostic biomarkers and therapeutic interventions in multiple diseases. We spotlight novel engineering approaches and designs to facilitate the development of these nanoparticles by enhancing their stability, targeting capability, and delivery efficiency. Therefore, the present work provides a comprehensive overview of composition, biogenesis, functions, and clinical translation of circulating nanoparticles from the bench to the bedside.
Collapse
Affiliation(s)
- Phuong H.D. Nguyen
- Department of Pharmacology and Institute for Digital MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Anh Hong Le
- Department of Pharmacology and Institute for Digital MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Jonetta Shi Qi Pek
- Department of Pharmacology and Institute for Digital MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Thach Tuan Pham
- Department of Pharmacology and Institute for Digital MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Migara Kavishka Jayasinghe
- Department of Pharmacology and Institute for Digital MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Immunology ProgrammeCancer Programme and Nanomedicine Translational ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of SurgeryYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Dang Vinh Do
- Department of Pharmacology and Institute for Digital MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Cao Dai Phung
- Department of Pharmacology and Institute for Digital MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Minh T.N. Le
- Department of Pharmacology and Institute for Digital MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Immunology ProgrammeCancer Programme and Nanomedicine Translational ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of SurgeryYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| |
Collapse
|
95
|
Chen H, Sun T, Jiang C. Extracellular vesicle-based macromolecule delivery systems in cancer immunotherapy. J Control Release 2022; 348:572-589. [PMID: 35714733 DOI: 10.1016/j.jconrel.2022.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/08/2023]
Abstract
Great attention has been paid to the impressive role the macromolecules played in cancer immunotherapy, however, the applications were largely limited by their poor circulation stability, low cellular uptake efficiency, and off-target effects. As an important messenger of intercellular communication, extracellular vesicles (EVs) exhibit unique advantages in macromolecule delivery compared to traditional synthetic carriers, offering new possibilities for modern drug delivery. These naturally derived carriers can achieve stable, efficient, and selective delivery of macromolecules and improve the efficacy and potentiality of macromolecular drugs in cancer immunotherapy. This review provides a brief overview of the unique features of EVs related to macromolecule delivery, the strategies and recent advances of using EVs as macromolecule delivery carriers in cancer immunotherapy.
Collapse
Affiliation(s)
- Hongyi Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
96
|
Jia Z, Jia J, Yao L, Li Z. Crosstalk of Exosomal Non-Coding RNAs in The Tumor Microenvironment: Novel Frontiers. Front Immunol 2022; 13:900155. [PMID: 35663957 PMCID: PMC9162146 DOI: 10.3389/fimmu.2022.900155] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/22/2022] [Indexed: 12/18/2022] Open
Abstract
The tumor microenvironment (TME) is defined as a complex and dynamic tissue entity composed of endothelial, stromal, immune cells, and the blood system. The homeostasis and evolution of the TME are governed by intimate interactions among cellular compartments. The malignant behavior of cancer cells, such as infiltrating growth, proliferation, invasion, and metastasis, is predominantly dependent on the bidirectional communication between tumor cells and the TME. And such dialogue mainly involves the transfer of multifunctional regulatory molecules from tumor cells and/or stromal cells within the TME. Interestingly, increasing evidence has confirmed that exosomes carrying regulatory molecules, proteins, and nucleic acids act as an active link in cellular crosstalk in the TME. Notably, extensive studies have identified non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), that could be encapsulated by exosomes, which regulate the coordinated function within the TME and thus participate in cancer development and progression. In this review, we summarize recent literature around the topic of the functions and mechanisms of exosomal ncRNAs in the TME and highlight their clinical significance.
Collapse
Affiliation(s)
- Zimo Jia
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China.,The Second General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jinlin Jia
- National Research Institute for Family Planning, National Human Genetic Resources Center, Beijing, China.,Graduate School, Peking Union Medical College, Beijing, China
| | - Lihui Yao
- Department of Otolaryngology, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Zhihan Li
- The Second General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
97
|
Hazrati A, Soudi S, Malekpour K, Mahmoudi M, Rahimi A, Hashemi SM, Varma RS. Immune cells-derived exosomes function as a double-edged sword: role in disease progression and their therapeutic applications. Biomark Res 2022; 10:30. [PMID: 35550636 PMCID: PMC9102350 DOI: 10.1186/s40364-022-00374-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/03/2022] [Indexed: 02/08/2023] Open
Abstract
Exosomes, ranging in size from 30 to 150 nm as identified initially via electron microscopy in 1946, are one of the extracellular vesicles (EVs) produced by many cells and have been the subject of many studies; initially, they were considered as cell wastes with the belief that cells produced exosomes to maintain homeostasis. Nowadays, it has been found that EVs secreted by different cells play a vital role in cellular communication and are usually secreted in both physiological and pathological conditions. Due to the presence of different markers and ligands on the surface of exosomes, they have paracrine, endocrine and autocrine effects in some cases. Immune cells, like other cells, can secrete exosomes that interact with surrounding cells via these vesicles. Immune system cells-derived exosomes (IEXs) induce different responses, such as increasing and decreasing the transcription of various genes and regulating cytokine production. This review deliberate the function of innate and acquired immune cells derived exosomes, their role in the pathogenesis of immune diseases, and their therapeutic appliances.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Kosar Malekpour
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arezou Rahimi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| |
Collapse
|
98
|
Li Y, Zhao W, Wang Y, Wang H, Liu S. Extracellular vesicle-mediated crosstalk between pancreatic cancer and stromal cells in the tumor microenvironment. J Nanobiotechnology 2022; 20:208. [PMID: 35501802 PMCID: PMC9063273 DOI: 10.1186/s12951-022-01382-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/17/2022] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) interacts closely with the tumor microenvironment (TME). The TME is remodeled by crosstalk between pancreatic cancer cells and stromal cells, and is critical for cancer progression. Extracellular vesicles (EVs), including exosomes and microvesicles, help facilitate an exchange of information both within the TME and to distant organs. EVs have also been identified as potential diagnostic biomarkers, therapeutic targets, and drug carriers for pancreatic cancer treatment. Thus, understanding the selective packaging of EVs cargo and its mechanistic impact will increase our understanding of cancer biology. In this review, we collect and analyze recent findings of the pancreatic cancer-stromal cell interactions mediated by EVs and the mechanisms involved in cancer-related immunity and chemoresistance. These studies demonstrate the vital role of EVs in pancreatic cancer reprogramming and TME remodeling. We also summarize the EVs identified as potential PDAC diagnostic biomarkers and possible therapeutic targets. This greater understanding is a promising avenue for transitioning EVs from bench to bedside.
Collapse
Affiliation(s)
- Ying Li
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjing Zhao
- Central Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yanli Wang
- Department of Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haiyan Wang
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shanglong Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
99
|
Liu S, Wu X, Chandra S, Lyon C, Ning B, jiang L, Fan J, Hu TY. Extracellular vesicles: Emerging tools as therapeutic agent carriers. Acta Pharm Sin B 2022; 12:3822-3842. [PMID: 36213541 PMCID: PMC9532556 DOI: 10.1016/j.apsb.2022.05.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/02/2022] [Accepted: 04/28/2022] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) are secreted by both eukaryotes and prokaryotes, and are present in all biological fluids of vertebrates, where they transfer DNA, RNA, proteins, lipids, and metabolites from donor to recipient cells in cell-to-cell communication. Some EV components can also indicate the type and biological status of their parent cells and serve as diagnostic targets for liquid biopsy. EVs can also natively carry or be modified to contain therapeutic agents (e.g., nucleic acids, proteins, polysaccharides, and small molecules) by physical, chemical, or bioengineering strategies. Due to their excellent biocompatibility and stability, EVs are ideal nanocarriers for bioactive ingredients to induce signal transduction, immunoregulation, or other therapeutic effects, which can be targeted to specific cell types. Herein, we review EV classification, intercellular communication, isolation, and characterization strategies as they apply to EV therapeutics. This review focuses on recent advances in EV applications as therapeutic carriers from in vitro research towards in vivo animal models and early clinical applications, using representative examples in the fields of cancer chemotherapeutic drug, cancer vaccine, infectious disease vaccines, regenerative medicine and gene therapy. Finally, we discuss current challenges for EV therapeutics and their future development.
Collapse
|
100
|
Wang T, Fu Y, Sun S, Huang C, Yi Y, Wang J, Deng Y, Wu M. Exosome-based drug delivery systems in cancer therapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|