51
|
Mundekkad D, Cho WC. Mitophagy Induced by Metal Nanoparticles for Cancer Treatment. Pharmaceutics 2022; 14:2275. [PMID: 36365094 PMCID: PMC9699542 DOI: 10.3390/pharmaceutics14112275] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022] Open
Abstract
Research on nanoparticles, especially metal nanoparticles, in cancer therapy is gaining momentum. The versatility and biocompatibility of metal nanoparticles make them ideal for various applications in cancer therapy. They can bring about apoptotic cell death in cancer cells. In addition to apoptosis, nanoparticles mediate a special type of autophagy facilitated through mitochondria called mitophagy. Interestingly, nanoparticles with antioxidant properties are capable of inducing mitophagy by altering the levels of reactive oxygen species and by influencing signaling pathways like PINK/Parkin pathway and P13K/Akt/mTOR pathway. The current review presents various roles of metal nanoparticles in inducing mitophagy in cancer cells. We envision this review sheds some light on the blind spots in the research related to mitophagy induced by nanoparticles for cancer treatment.
Collapse
Affiliation(s)
- Deepa Mundekkad
- Centre for NanoBioTechnology (CNBT), Vellore Institute of Technology, Vellore 632014, India
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| |
Collapse
|
52
|
Li J, Yang H, Shi H, Zhang J, Chen W. Expression Profiles of Differentially Expressed Circular RNAs and circRNA-miRNA-mRNA Regulatory Networks in SH-SY5Y Cells Infected with Coxsackievirus B5. Int J Genomics 2022; 2022:9298149. [PMID: 36267594 PMCID: PMC9577011 DOI: 10.1155/2022/9298149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Coxsackievirus B5 (CVB5) is the causative agent of hand, foot, and mouth disease (HFMD) that can cause neurological complications and fatalities. Circular RNA (circRNA) has been shown to play an important role in regulating pathogenic processes. However, the functions of circRNA in response to CVB5 infection remain unclear. In our research, RNA-seq was employed to analyze the expression profiles of circRNAs in SH-SY5Y cells with or without CVB5 infection. Out of 5,665 circRNAs identified to be expressed in SH-SY5Y cells, 163 circRNAs were found to be differentially expressed significantly. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the differentially expressed circRNAs were mainly involved in ubiquitin-mediated proteolysis and signaling pathways during CVB5 infection. Additionally, RT-qPCR was used to validate the RNA-seq data, and a circRNA-miRNA-mRNA interaction network was constructed based on two circRNAs, such as hsa_circ_0008378 and novel_circ_0014617, which were associated with the regulation of innate immune response in host cells. Additionally, we confirmed the two circRANs up-regulated the key factors in the IFN-I signaling pathway, hampering viral replication. Our data provide a new perspective that facilitates further understanding of the virus-host mechanism.
Collapse
Affiliation(s)
- Jing Li
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Heng Yang
- College of Agriculture and Life Sciences, Kunming University, Kunming, Yunnan Province, China
| | - Huaran Shi
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Jihong Zhang
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Wei Chen
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| |
Collapse
|
53
|
Yang X, Chen J, Lu Z, Huang S, Zhang S, Cai J, Zhou Y, Cao G, Yu J, Qin Z, Zhao W, Zhang B, Zhu L. Enterovirus A71 utilizes host cell lipid β-oxidation to promote its replication. Front Microbiol 2022; 13:961942. [PMID: 36246276 PMCID: PMC9554258 DOI: 10.3389/fmicb.2022.961942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Enterovirus A71 (EV-A71) is a major pathogen that causes severe and fatal cases of hand-foot-and-mouth disease (HFMD), which is an infectious disease that endangers children’s health. However, the pathogenic mechanisms underlying these severe clinical and pathological features remain incompletely understood. Metabolism and stress are known to play critical roles in multiple stages of the replication of viruses. Lipid metabolism and ER stress is an important characterization post viral infection. EV-A71 infection alters the perturbations of intracellular lipid homeostasis and induces ER stress. The characterizations induced by viral infections are essential for optimal virus replication and may be potential antiviral targets. In this study, we found that the addition of the chemical drug of ER stress, PKR IN, an inhibitor, or Tunicamycin, an activator, could significantly reduce viral replication with the decrease of lipid. The replication of viruses was reduced by Chemical reagent TOFA, an inhibitor of acetyl-CoA carboxylase (ACC) or C75, an inhibitor of fatty acid synthase (FASN), while enhanced by oleic acid (OA), which is a kind of exogenous supplement of triacylglycerol. The pharmacochemical reagent of carnitine palmitoyltransferase 1 (CPT1) called Etomoxir could knock down CPT1 to induce EV-A71 replication to decrease. This suggests that lipid, rather than ER stress, is the main factor affecting EV-A71 replication. In conclusion, this study revealed that it is the β-oxidation of lipid that plays a core role, not ER stress, which is only a concomitant change without restrictive effect, on virus replication.
Collapse
Affiliation(s)
- Xiuwen Yang
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiayi Chen
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zixin Lu
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shan Huang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shihao Zhang
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jintai Cai
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yezhen Zhou
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guanhua Cao
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jianhai Yu
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhiran Qin
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wei Zhao
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- *Correspondence: Wei Zhao,
| | - Bao Zhang
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Bao Zhang,
| | - Li Zhu
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Li Zhu,
| |
Collapse
|
54
|
Kang Z, Chen F, Wu W, Liu R, Chen T, Xu F. UPRmt and coordinated UPRER in type 2 diabetes. Front Cell Dev Biol 2022; 10:974083. [PMID: 36187475 PMCID: PMC9523447 DOI: 10.3389/fcell.2022.974083] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is a molecular mechanism that maintains mitochondrial proteostasis under stress and is closely related to various metabolic diseases, such as type 2 diabetes (T2D). Similarly, the unfolded protein response of the endoplasmic reticulum (UPRER) is responsible for maintaining proteomic stability in the endoplasmic reticulum (ER). Since the mitochondria and endoplasmic reticulum are the primary centers of energy metabolism and protein synthesis in cells, respectively, a synergistic mechanism must exist between UPRmt and UPRER to cooperatively resist stresses such as hyperglycemia in T2D. Increasing evidence suggests that the protein kinase RNA (PKR)-like endoplasmic reticulum kinase (PERK) signaling pathway is likely an important node for coordinating UPRmt and UPRER. The PERK pathway is activated in both UPRmt and UPRER, and its downstream molecules perform important functions. In this review, we discuss the mechanisms of UPRmt, UPRER and their crosstalk in T2D.
Collapse
Affiliation(s)
- Zhanfang Kang
- Department of Basic Medical Research, Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Feng Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Wanhui Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Rui Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Tianda Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Fang Xu
- Department of Basic Medical Research, Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Fang Xu,
| |
Collapse
|
55
|
Chandra P, Banerjee S, Saha P, Chawla-Sarkar M, Patra U. Sneaking into the viral safe-houses: Implications of host components in regulating integrity and dynamics of rotaviral replication factories. Front Cell Infect Microbiol 2022; 12:977799. [PMID: 36189370 PMCID: PMC9515456 DOI: 10.3389/fcimb.2022.977799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
The biology of the viral life cycle essentially includes two structural and functional entities—the viral genome and protein machinery constituting the viral arsenal and an array of host cellular components which the virus closely associates with—to ensure successful perpetuation. The obligatory requirements of the virus to selectively evade specific host cellular factors while exploiting certain others have been immensely important to provide the platform for designing host-directed antiviral therapeutics. Although the spectrum of host-virus interaction is multifaceted, host factors that particularly influence viral replication have immense therapeutic importance. During lytic proliferation, viruses usually form replication factories which are specialized subcellular structures made up of viral proteins and replicating nucleic acids. These viral niches remain distinct from the rest of the cellular milieu, but they effectively allow spatial proximity to selective host determinants. Here, we will focus on the interaction between the replication compartments of a double stranded RNA virus rotavirus (RV) and the host cellular determinants of infection. RV, a diarrheagenic virus infecting young animals and children, forms replication bodies termed viroplasms within the host cell cytoplasm. Importantly, viroplasms also serve as the site for transcription and early morphogenesis of RVs and are very dynamic in nature. Despite advances in the understanding of RV components that constitute the viroplasmic architecture, knowledge of the contribution of host determinants to viroplasm dynamicity has remained limited. Emerging evidence suggests that selective host determinants are sequestered inside or translocated adjacent to the RV viroplasms. Functional implications of such host cellular reprogramming are also ramifying—disarming the antiviral host determinants and usurping the pro-viral components to facilitate specific stages of the viral life cycle. Here, we will provide a critical update on the wide variety of host cellular pathways that have been reported to regulate the spatial and temporal dynamicity of RV viroplasms. We will also discuss the methods used so far to study the host-viroplasm interactions and emphasize on the potential host factors which can be targeted for therapeutic intervention in the future.
Collapse
Affiliation(s)
- Pritam Chandra
- Division of Virology, Indian Council of Medical Research National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shreya Banerjee
- Division of Virology, Indian Council of Medical Research National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Priyanka Saha
- Division of Virology, Indian Council of Medical Research National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Mamta Chawla-Sarkar
- Division of Virology, Indian Council of Medical Research National Institute of Cholera and Enteric Diseases, Kolkata, India
- *Correspondence: Mamta Chawla-Sarkar, , ; Upayan Patra,
| | - Upayan Patra
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
- *Correspondence: Mamta Chawla-Sarkar, , ; Upayan Patra,
| |
Collapse
|
56
|
Bello-Perez M, Hurtado-Tamayo J, Requena-Platek R, Canton J, Sánchez-Cordón PJ, Fernandez-Delgado R, Enjuanes L, Sola I. MERS-CoV ORF4b is a virulence factor involved in the inflammatory pathology induced in the lungs of mice. PLoS Pathog 2022; 18:e1010834. [PMID: 36129908 PMCID: PMC9491562 DOI: 10.1371/journal.ppat.1010834] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/26/2022] [Indexed: 01/18/2023] Open
Abstract
No vaccines or specific antiviral drugs are authorized against Middle East respiratory syndrome coronavirus (MERS-CoV) despite its high mortality rate and prevalence in dromedary camels. Since 2012, MERS-CoV has been causing sporadic zoonotic infections in humans, which poses a risk of genetic evolution to become a pandemic virus. MERS-CoV genome encodes five accessory proteins, 3, 4a, 4b, 5 and 8b for which limited information is available in the context of infection. This work describes 4b as a virulence factor in vivo, since the deletion mutant of a mouse-adapted MERS-CoV-Δ4b (MERS-CoV-MA-Δ4b) was completely attenuated in a humanized DPP4 knock-in mouse model, resulting in no mortality. Attenuation in the absence of 4b was associated with a significant reduction in lung pathology and chemokine expression levels at 4 and 6 days post-infection, suggesting that 4b contributed to the induction of lung inflammatory pathology. The accumulation of 4b in the nucleus in vivo was not relevant to virulence, since deletion of its nuclear localization signal led to 100% mortality. Interestingly, the presence of 4b protein was found to regulate autophagy in the lungs of mice, leading to upregulation of BECN1, ATG3 and LC3A mRNA. Further analysis in MRC-5 cell line showed that, in the context of infection, MERS-CoV-MA 4b inhibited autophagy, as confirmed by the increase of p62 and the decrease of ULK1 protein levels, either by direct or indirect mechanisms. Together, these results correlated autophagy activation in the absence of 4b with downregulation of a pathogenic inflammatory response, thus contributing to attenuation of MERS-CoV-MA-Δ4b.
Collapse
Affiliation(s)
- Melissa Bello-Perez
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin, Madrid, Spain
| | - Jesús Hurtado-Tamayo
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin, Madrid, Spain
| | - Ricardo Requena-Platek
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin, Madrid, Spain
| | - Javier Canton
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin, Madrid, Spain
| | - Pedro José Sánchez-Cordón
- Veterinary Pathology Department, Animal Health Research Center (CISA), National Institute of Research, Agricultural and Food Technology (INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Raúl Fernandez-Delgado
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin, Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin, Madrid, Spain
| | - Isabel Sola
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin, Madrid, Spain
| |
Collapse
|
57
|
Krukiewicz K, Kazek-Kęsik A, Brzychczy-Włoch M, Łos MJ, Ateba CN, Mehrbod P, Ghavami S, Shyntum DY. Recent Advances in the Control of Clinically Important Biofilms. Int J Mol Sci 2022; 23:9526. [PMID: 36076921 PMCID: PMC9455909 DOI: 10.3390/ijms23179526] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Biofilms are complex structures formed by bacteria, fungi, or even viruses on biotic and abiotic surfaces, and they can be found in almost any part of the human body. The prevalence of biofilm-associated diseases has increased in recent years, mainly because of the frequent use of indwelling medical devices that create opportunities for clinically important bacteria and fungi to form biofilms either on the device or on the neighboring tissues. As a result of their resistance to antibiotics and host immunity factors, biofilms have been associated with the development or persistence of several clinically important diseases. The inability to completely eradicate biofilms drastically increases the burden of disease on both the patient and the healthcare system. Therefore, it is crucial to develop innovative ways to tackle the growth and development of biofilms. This review focuses on dental- and implant-associated biofilm infections, their prevalence in humans, and potential therapeutic intervention strategies, including the recent advances in pharmacology and biomedical engineering. It lists current strategies used to control the formation of clinically important biofilms, including novel antibiotics and their carriers, antiseptics and disinfectants, small molecule anti-biofilm agents, surface treatment strategies, and nanostructure functionalization, as well as multifunctional coatings particularly suitable for providing antibacterial effects to the surface of implants, to treat either dental- or implant-related bacterial infections.
Collapse
Affiliation(s)
- Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Alicja Kazek-Kęsik
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Silesian University of Technology, 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8 Street, 44-100 Gliwice, Poland
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Krakow, Poland
| | - Marek J. Łos
- Department of Pathology, Pomeranian Medical University, 71-344 Szczecin, Poland
| | - Collins Njie Ateba
- Food Security and Safety Niche Area, North West University, Private Bag X2046, Mahikeng 2735, South Africa
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Saeid Ghavami
- Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada
| | - Divine Yufetar Shyntum
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8 Street, 44-100 Gliwice, Poland
| |
Collapse
|
58
|
Liu M, Liu T, Wang X, Yu C, Qin T, Li J, Zhang M, Li Z, Cui X, Xu X, Liu Q. Cangma Huadu granules attenuate H1N1 virus-induced severe lung injury correlated with repressed apoptosis and altered gut microbiome. Front Microbiol 2022; 13:947112. [PMID: 36090063 PMCID: PMC9459666 DOI: 10.3389/fmicb.2022.947112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Severe influenza A virus infection leads to overwhelming inflammatory responses and cellular apoptosis, which causes lung injury and contributes to high mortality and morbidity. The gut microbiome altered in response to the infection might influence the disease progression and the treatment outcome. Cangma Huadu (CMHD) granules, an in-hospital preparation of traditional Chinese medicine, have been shown to be favorable in the clinical treatment of influenza. However, the effects and mechanisms of CMHD granules on severe influenza pneumonia and its mechanisms are not well-known. In this study, a lethal influenza A (H1N1) A/Puerto Rico/8/34 virus (PR8)-infected mice model was established, and the 16S ribosomal RNA (16S rRNA) V3–V4 region sequencing of the intestinal microbiome was conducted. We revealed that the oral administration of CMHD granules protects mice against higher mortality, enhanced weight loss, overwhelmed interferon-γ concentration, lung viral titers, and severe lung pathological injury in PR8-infected mice. CMHD granules’ administration downregulated the levels of interleukin (IL)-1β, tumor necrosis factor-α, and malondialdehyde, while it upregulated the levels of IL-10, superoxide dismutase, and glutathione peroxidase. Subsequently, it decreased the protein ratio of B-cell lymphoma-2/Bcl-2-associated X and the expression of cleaved caspase-3. The diversity and compositions of the gut microbes were altered profoundly after the administration of CMHD granules in PR8-infected mice. A higher abundance of Bifidobacterium, Parasutterella, Bacteroides, and Faecalibaculum was observed in the CMHD group, and a higher abundance of Lactobacillus and Turicibacter was observed in the positive drug Ribavirin group. The linear discriminant analysis effect size also revealed a higher proportion of Bacteroides and Bifidobacterium_pseudolongum characterized in the CMHD group. These results demonstrated that CMHD granules are a promising strategy for managing severe influenza and attenuating severe lung damage via reducing viral titer, inflammatory responses, and oxidative stress. The mechanisms are involved in repressed Bcl-2-regulated apoptosis and altered composition and diversity of the gut microbiome.
Collapse
Affiliation(s)
- Mingjiang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Tengwen Liu
- Chengdu University of Traditional Chinese Medicine, Basic Medical College, Chengdu, China
| | - Xuerui Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine on Infectious Diseases, Beijing, China
- Beijing Institute of Chinese Medicine, Beijing, China
| | - Chenglong Yu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jingui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Mina Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Zhenxuan Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Xuran Cui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine on Infectious Diseases, Beijing, China
- Beijing Institute of Chinese Medicine, Beijing, China
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine on Infectious Diseases, Beijing, China
- Beijing Institute of Chinese Medicine, Beijing, China
- *Correspondence: Xiaolong Xu,
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine on Infectious Diseases, Beijing, China
- Beijing Institute of Chinese Medicine, Beijing, China
- Qingquan Liu,
| |
Collapse
|
59
|
Ghavami S, Zamani M, Ahmadi M, Erfani M, Dastghaib S, Darbandi M, Darbandi S, Vakili O, Siri M, Grabarek BO, Boroń D, Zarghooni M, Wiechec E, Mokarram P. Epigenetic regulation of autophagy in gastrointestinal cancers. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166512. [PMID: 35931405 DOI: 10.1016/j.bbadis.2022.166512] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 11/09/2022]
Abstract
The development of novel therapeutic approaches is necessary to manage gastrointestinal cancers (GICs). Considering the effective molecular mechanisms involved in tumor growth, the therapeutic response is pivotal in this process. Autophagy is a highly conserved catabolic process that acts as a double-edged sword in tumorigenesis and tumor inhibition in a context-dependent manner. Depending on the stage of malignancy and cellular origin of the tumor, autophagy might result in cancer cell survival or death during the GICs' progression. Moreover, autophagy can prevent the progression of GIC in the early stages but leads to chemoresistance in advanced stages. Therefore, targeting specific arms of autophagy could be a promising strategy in the prevention of chemoresistance and treatment of GIC. It has been revealed that autophagy is a cytoplasmic event that is subject to transcriptional and epigenetic regulation inside the nucleus. The effect of epigenetic regulation (including DNA methylation, histone modification, and expression of non-coding RNAs (ncRNAs) in cellular fate is still not completely understood. Recent findings have indicated that epigenetic alterations can modify several genes and modulators, eventually leading to inhibition or promotion of autophagy in different cancer stages, and mediating chemoresistance or chemosensitivity. The current review focuses on the links between autophagy and epigenetics in GICs and discusses: 1) How autophagy and epigenetics are linked in GICs, by considering different epigenetic mechanisms; 2) how epigenetics may be involved in the alteration of cancer-related phenotypes, including cell proliferation, invasion, and migration; and 3) how epidrugs modulate autophagy in GICs to overcome chemoresistance.
Collapse
Affiliation(s)
- Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institute of Hematology and Oncology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland.
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mehran Erfani
- Department of Biochemistry, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran; Gene Therapy and Regenerative Medicine Research Center, Hope Generation Foundation, Tehran, Iran
| | - Sara Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran; Gene Therapy and Regenerative Medicine Research Center, Hope Generation Foundation, Tehran, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Morvarid Siri
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Beniamin Oskar Grabarek
- Department of Histology, Cytophysiology, and Embryology in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland; Department of Gynecology and Obstetrics in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Dariusz Boroń
- Department of Histology, Cytophysiology, and Embryology in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland; Department of Gynecology and Obstetrics in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Maryam Zarghooni
- Department of Laboratory Medicine and Pathobiology, University of Toronto Alumni, Toronto, Canada
| | - Emilia Wiechec
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
60
|
Gonçalves CA, Sesterheim P, Wartchow KM, Bobermin LD, Leipnitz G, Quincozes-Santos A. Why antidiabetic drugs are potentially neuroprotective during the Sars-CoV-2 pandemic: The focus on astroglial UPR and calcium-binding proteins. Front Cell Neurosci 2022; 16:905218. [PMID: 35966209 PMCID: PMC9374064 DOI: 10.3389/fncel.2022.905218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
We are living in a terrifying pandemic caused by Sars-CoV-2, in which patients with diabetes mellitus have, from the beginning, been identified as having a high risk of hospitalization and mortality. This viral disease is not limited to the respiratory system, but also affects, among other organs, the central nervous system. Furthermore, we already know that individuals with diabetes mellitus exhibit signs of astrocyte dysfunction and are more likely to develop cognitive deficits and even dementia. It is now being realized that COVID-19 incurs long-term effects and that those infected can develop several neurological and psychiatric manifestations. As this virus seriously compromises cell metabolism by triggering several mechanisms leading to the unfolded protein response (UPR), which involves endoplasmic reticulum Ca2+ depletion, we review here the basis involved in this response that are intimately associated with the development of neurodegenerative diseases. The discussion aims to highlight two aspects-the role of calcium-binding proteins and the role of astrocytes, glial cells that integrate energy metabolism with neurotransmission and with neuroinflammation. Among the proteins discussed are calpain, calcineurin, and sorcin. These proteins are emphasized as markers of the UPR and are potential therapeutic targets. Finally, we discuss the role of drugs widely prescribed to patients with diabetes mellitus, such as statins, metformin, and calcium channel blockers. The review assesses potential neuroprotection mechanisms, focusing on the UPR and the restoration of reticular Ca2+ homeostasis, based on both clinical and experimental data.
Collapse
Affiliation(s)
- Carlos-Alberto Gonçalves
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia Sesterheim
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Krista M. Wartchow
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
61
|
Yang J, Xu W, Wang W, Pan Z, Qin Q, Huang X, Huang Y. Largemouth Bass Virus Infection Induced Non-Apoptotic Cell Death in MsF Cells. Viruses 2022; 14:v14071568. [PMID: 35891548 PMCID: PMC9321053 DOI: 10.3390/v14071568] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 11/29/2022] Open
Abstract
Largemouth bass virus (LMBV), belonging to the genus Ranavirus, causes high mortality and heavy economic losses in largemouth bass aquaculture. In the present study, a novel cell line, designated as MsF, was established from the fin of largemouth bass (Micropterus salmoides), and applied to investigate the characteristics of cell death induced by LMBV. MsF cells showed susceptibility to LMBV, evidenced by the occurrence of a cytopathic effect (CPE), increased viral gene transcription, protein synthesis, and viral titers. In LMBV-infected MsF cells, two or more virus assembly sites were observed around the nucleus. Notably, no apoptotic bodies occurred in LMBV-infected MsF cells after nucleus staining, suggesting that cell death induced by LMBV in host cells was distinct from apoptosis. Consistently, DNA fragmentation was not detected in LMBV-infected MsF cells. Furthermore, only caspase-8 and caspase-3 were significantly activated in LMBV-infected MsF cells, suggesting that caspases were involved in non-apoptotic cell death induced by LMBV in host cells. In addition, the disruption of the mitochondrial membrane potential (ΔΨm) and reactive oxygen species (ROS) generation were detected in both LMBV-infected MsF cells and fathead minnow (FHM) cells. Combined with our previous study, we propose that cell death induced by LMBV infection was cell type dependent. Although LMBV-infected MsF cells showed the characteristics of non-apoptotic cell death, the signal pathways might crosstalk and interconnect between apoptosis and other PCD during LMBV infection. Together, our results not only established the in vitro LMBV infection model for the study of the interaction between LMBV and host cells but also shed new insights into the mechanisms of ranavirus pathogenesis.
Collapse
Affiliation(s)
- Jiahui Yang
- Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (J.Y.); (W.X.); (W.W.); (Z.P.); (Q.Q.)
| | - Weihua Xu
- Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (J.Y.); (W.X.); (W.W.); (Z.P.); (Q.Q.)
| | - Wenji Wang
- Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (J.Y.); (W.X.); (W.W.); (Z.P.); (Q.Q.)
| | - Zanbin Pan
- Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (J.Y.); (W.X.); (W.W.); (Z.P.); (Q.Q.)
| | - Qiwei Qin
- Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (J.Y.); (W.X.); (W.W.); (Z.P.); (Q.Q.)
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou 510642, China
| | - Xiaohong Huang
- Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (J.Y.); (W.X.); (W.W.); (Z.P.); (Q.Q.)
- Correspondence: (X.H.); (Y.H.)
| | - Youhua Huang
- Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (J.Y.); (W.X.); (W.W.); (Z.P.); (Q.Q.)
- Correspondence: (X.H.); (Y.H.)
| |
Collapse
|
62
|
A new circular RNA-encoded protein BIRC6-236aa inhibits transmissible gastroenteritis virus (TGEV)-induced mitochondrial dysfunction. J Biol Chem 2022; 298:102280. [PMID: 35863430 PMCID: PMC9400091 DOI: 10.1016/j.jbc.2022.102280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/21/2022] Open
Abstract
Transmissible gastroenteritis virus (TGEV), a member of the coronavirus family, is the pathogen responsible for transmissible gastroenteritis, which results in mitochondrial dysfunction in host cells. Previously, we identified 123 differentially expressed circular RNAs (cRNA)from the TGEV-infected porcine intestinal epithelial cell line jejunum 2 (IPEC-J2). Previous bioinformatics analysis suggested that, of these, circBIRC6 had the potential to regulate mitochondrial function. Furthermore, mitochondrial permeability transition, a key step in the process of mitochondrial dysfunction, is known to be caused by abnormal opening of mitochondrial permeability transition pores (mPTPs) regulated by the voltage-dependent anion-selective channel protein 1 (VDAC)–Cyclophilin D (CypD) complex. Therefore, in the present study, we investigated the effects of circBIRC6-2 on mitochondrial dysfunction and opening of mPTPs. We found that TGEV infection reduced circBIRC6-2 levels, which in turn reduced mitochondrial calcium (Ca2+) levels, the decrease of mitochondrial membrane potential, and opening of mPTPs. In addition, we also identified ORFs and internal ribosomal entrance sites within the circBIRC6-2 RNA. We demonstrate circBIRC6-2 encodes a novel protein, BIRC6-236aa, which we show inhibits TGEV-induced opening of mPTPs during TGEV infection. Mechanistically, we identified an interaction between BIRC6-236aa and VDAC1, suggesting that BIRC6-236aa destabilizes the VDAC1–CypD complex. Taken together, the results suggest that the novel protein BIRC6-236aa encoded by cRNA circBIRC6-2 inhibits mPTP opening and subsequent mitochondrial dysfunction by interacting with VDAC1.
Collapse
|
63
|
Wang S, Qiao J, Chen Y, Tian L, Sun X. Urolithin A inhibits enterovirus 71 replication and promotes autophagy and apoptosis of infected cells in vitro. Arch Virol 2022; 167:1989-1997. [PMID: 35790643 DOI: 10.1007/s00705-022-05471-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 03/28/2022] [Indexed: 11/25/2022]
Abstract
Hand, foot, and mouth disease (HFMD) is a serious threat to the health of infants, and it can be caused by enterovirus 71 (EV71). The clinical symptoms are mostly self-limiting, but some infections develop into aseptic meningitis with poor prognosis and even death. In this study, urolithin A (UroA), an intestinal metabolite of ellagic acid, significantly inhibited the replication of EV71 in cells. Further evaluation showed that UroA was better than ribavirin in terms of its 50% cytopathic concentration (CC50), 50% inhibitory concentration (IC50), and selectivity index. Moreover, UroA inhibited the proliferation of EV71 by promoting autophagy and apoptosis of infected cells. Therefore, UroA is a candidate drug for the treatment of EV71 infection.
Collapse
Affiliation(s)
- Shengyu Wang
- Key Laboratory of Infectious Disease & Biosafety, Provincial Department of Education, Institute of Life Sciences, College of Preclinical Medicine, Zunyi Medical University, Guizhou, 563003, Zunyi, China.,Department of Microbiology, College of Preclinical Medicine, Zunyi Medical University, 563003, Zunyi, China
| | - Junhua Qiao
- Department of Microbiology, College of Preclinical Medicine, Zunyi Medical University, 563003, Zunyi, China
| | - Yaping Chen
- Department of Microbiology, College of Preclinical Medicine, Zunyi Medical University, 563003, Zunyi, China
| | - Langfei Tian
- Key Laboratory of Infectious Disease & Biosafety, Provincial Department of Education, Institute of Life Sciences, College of Preclinical Medicine, Zunyi Medical University, Guizhou, 563003, Zunyi, China
| | - Xin Sun
- Department of Microbiology, College of Preclinical Medicine, Zunyi Medical University, 563003, Zunyi, China.
| |
Collapse
|
64
|
Behrouj H, Vakili O, Sadeghdoust A, Aligolighasemabadi N, Khalili P, Zamani M, Mokarram P. Epigenetic regulation of autophagy in coronavirus disease 2019 (COVID-19). Biochem Biophys Rep 2022; 30:101264. [PMID: 35469237 PMCID: PMC9021360 DOI: 10.1016/j.bbrep.2022.101264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has become the most serious global public health issue in the past two years, requiring effective therapeutic strategies. This viral infection is a contagious disease caused by new coronaviruses (nCoVs), also called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Autophagy, as a highly conserved catabolic recycling process, plays a significant role in the growth and replication of coronaviruses (CoVs). Therefore, there is great interest in understanding the mechanisms that underlie autophagy modulation. The modulation of autophagy is a very complex and multifactorial process, which includes different epigenetic alterations, such as histone modifications and DNA methylation. These mechanisms are also known to be involved in SARS-CoV-2 replication. Thus, molecular understanding of the epigenetic pathways linked with autophagy and COVID-19, could provide novel therapeutic targets for COVID-19 eradication. In this context, the current review highlights the role of epigenetic regulation of autophagy in controlling COVID-19, focusing on the potential therapeutic implications.
Collapse
Affiliation(s)
- Hamid Behrouj
- Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Adel Sadeghdoust
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Aligolighasemabadi
- Department of Internal Medicine, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parnian Khalili
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Iran
| |
Collapse
|
65
|
The Contribution of Viral Proteins to the Synergy of Influenza and Bacterial Co-Infection. Viruses 2022; 14:v14051064. [PMID: 35632805 PMCID: PMC9143653 DOI: 10.3390/v14051064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
A severe course of acute respiratory disease caused by influenza A virus (IAV) infection is often linked with subsequent bacterial superinfection, which is difficult to cure. Thus, synergistic influenza-bacterial co-infection represents a serious medical problem. The pathogenic changes in the infected host are accelerated as a consequence of IAV infection, reflecting its impact on the host immune response. IAV infection triggers a complex process linked with the blocking of innate and adaptive immune mechanisms required for effective antiviral defense. Such disbalance of the immune system allows for easier initiation of bacterial superinfection. Therefore, many new studies have emerged that aim to explain why viral-bacterial co-infection can lead to severe respiratory disease with possible fatal outcomes. In this review, we discuss the key role of several IAV proteins-namely, PB1-F2, hemagglutinin (HA), neuraminidase (NA), and NS1-known to play a role in modulating the immune defense of the host, which consequently escalates the development of secondary bacterial infection, most often caused by Streptococcus pneumoniae. Understanding the mechanisms leading to pathological disorders caused by bacterial superinfection after the previous viral infection is important for the development of more effective means of prevention; for example, by vaccination or through therapy using antiviral drugs targeted at critical viral proteins.
Collapse
|
66
|
Alpinetin: a Dietary Flavonoid with Diverse Anticancer Effects. Appl Biochem Biotechnol 2022; 194:4220-4243. [PMID: 35567708 DOI: 10.1007/s12010-022-03960-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/02/2022] [Indexed: 11/02/2022]
Abstract
Cancer is a global burden and mechanistically complex disease with a plethora of genetic, physiological, metabolic, and environmental alterations. The development of dietary nutraceuticals into cancer chemotherapeutics has emerged as a new paradigm in cancer treatment. Alpinetin (ALPI) is a novel flavonoid component of multiple edible and medicinal plants and possesses a wide range of biological and pharmacological activities including antibacterial, anti-hemostatic, anti-oxidative, anti-hepatotoxic, stomachic, immunosuppressive, and anti-inflammatory. Recently, ALPI has been reported as a bioactive dietary nutraceutical with promising anticancer activity in various human cancers through multiple mechanisms. The purpose of this review is to compile the data on natural sources of ALPI, and its anticancer activity including cellular targets and anticancer mechanism in various human cancers. Moreover, this review will set the stage for further design and conduct pre-clinical and clinical trials to develop ALPI into a lead structure for oncological therapy.
Collapse
|
67
|
Wang C, Lashua LP, Carter CE, Johnson SK, Wang M, Ross TM, Ghedin E, Zhang B, Forst CV. Sex disparities in influenza: A multiscale network analysis. iScience 2022; 25:104192. [PMID: 35479404 PMCID: PMC9036134 DOI: 10.1016/j.isci.2022.104192] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 12/05/2021] [Accepted: 03/30/2022] [Indexed: 12/12/2022] Open
Abstract
Sex differences in the pathogenesis of infectious diseases because of differential immune responses between females and males have been well-documented for multiple pathogens. However, the molecular mechanism underlying the observed sex differences in influenza virus infection remains poorly understood. In this study, we used a network-based approach to characterize the blood transcriptome collected over the course of infection with influenza A virus from female and male ferrets to dissect sex-biased gene expression. We identified significant differences in the temporal dynamics and regulation of immune responses between females and males. Our results elucidate sex-differentiated pathways involved in the unfolded protein response (UPR), lipid metabolism, and inflammatory responses, including a female-biased IRE1/XBP1 activation and male-biased crosstalk between metabolic reprogramming and IL-1 and AP-1 pathways. Overall, our study provides molecular insights into sex differences in transcriptional regulation of immune responses and contributes to a better understanding of sex biases in influenza pathogenesis. Regulation of immune responses between females and males is significantly different Rapid activation of UPR in females triggers potent immune and inflammatory responses Male-specific regulatory pattern in the AP1 pathway indicate a bias in immune response
Collapse
Affiliation(s)
- Chang Wang
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Lauren P. Lashua
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Chalise E. Carter
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Scott K. Johnson
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York, NY 10029-6574, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029-6501, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Elodie Ghedin
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York, NY 10029-6574, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029-6501, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, NY 10029-6574, USA
| | - Christian V. Forst
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York, NY 10029-6574, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029-6501, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York, NY 10029-6574
- Corresponding author
| |
Collapse
|
68
|
Role of Apoptosis in HIV Pathogenesis. Adv Virol 2022; 2022:8148119. [PMID: 35462964 PMCID: PMC9023228 DOI: 10.1155/2022/8148119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/08/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
The apoptotic pathway is an important cell death pathway that contributes to the maintenance of homeostasis in living systems. However, variations in apoptosis have been linked to many diseases such as cancers and chronic infections. The HIV infection has contributed to increase mortality and morbidity worldwide, predominantly through the induction of gradual depletion of CD4+ T cells. The induction and mediation of both the intrinsic and extrinsic apoptotic pathways are crucial in HIV pathogenesis and intracellular survival. Consequently, a deep molecular understanding of how apoptosis is induced and modulated in HIV-mediated CD4+ T cell depletion is paramount, as this can lead to new portals of therapeutic intervention and control.
Collapse
|
69
|
Hydrophobic Residues at the Intracellular Domain of the M2 Protein Play an Important Role in Budding and Membrane Integrity of Influenza Virus. J Virol 2022; 96:e0037322. [DOI: 10.1128/jvi.00373-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
M2 plays a crucial role in the influenza virus life cycle. However, the function of the C-terminal intracellular domain of M2 protein remains largely unclear.
Collapse
|
70
|
The Anti-Cancer Potential of Heat-Killed Lactobacillus brevis KU15176 upon AGS Cell Lines through Intrinsic Apoptosis Pathway. Int J Mol Sci 2022; 23:ijms23084073. [PMID: 35456891 PMCID: PMC9024609 DOI: 10.3390/ijms23084073] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023] Open
Abstract
Recent research has focused on the anti-cancer properties of Lactobacillus strains isolated from fermented foods. Their anti-cancer effects are caused by the apoptosis induction in cancer cells. However, sepsis, which can occur when cancer patients consume living organisms, can cause serious conditions in patients with reduced immunity because of cancer. Therefore, this study was conducted using heat-killed Lactobacillus brevis KU15176 (KU15176). To determine the relationship between inflammation and cancer, the anti-inflammatory effect of KU15176 was evaluated using a nitric oxide (NO) assay. Then, 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay was conducted to select cancer cells that showed the anti-proliferative effect of KU15176. Next, reverse transcription-polymerase chain reaction (RT-PCR), 4′,6-diamidino-2-phenylindole (DAPI) staining, flow cytometry, and caspase colorimetric assay were performed. As a result, it was confirmed that KU15176 could cause the increasing expression of apoptosis-related genes (Bax, caspase-3, and caspase-9), DNA breakage, effective apoptosis rate, and increased caspase activity in the human stomach adenocarcinoma (AGS) gastric cancer cell line. In conclusion, these results suggest a potential prophylactic effect of KU15176 against cancer.
Collapse
|
71
|
Proteomic Analysis of Vero Cells Infected with Pseudorabies Virus. Viruses 2022; 14:v14040755. [PMID: 35458485 PMCID: PMC9029783 DOI: 10.3390/v14040755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 12/10/2022] Open
Abstract
Suid herpesvirus 1 (SuHV-1), known as pseudorabies virus (PRV), is one of the most devastating swine pathogens in China, particularly the sudden occurrence of PRV variants in 2011. The higher pathogenicity and cross-species transmission potential of the newly emerged variants caused not only colossal economic losses, but also threatened public health. To uncover the underlying pathogenesis of PRV variants, Tandem Mass Tag (TMT)-based proteomic analysis was performed to quantitatively screen the differentially expressed cellular proteins in PRV-infected Vero cells. A total of 7072 proteins were identified and 960 proteins were significantly regulated: specifically 89 upregulated and 871 downregulated. To make it more credible, the expression of XRCC5 and XRCC6 was verified by western blot and RT-qPCR, and the results dovetailed with the proteomic data. The differentially expressed proteins were involved in various biological processes and signaling pathways, such as chaperonin-containing T-complex, NIK/NF-κB signaling pathway, DNA damage response, and negative regulation of G2/M transition of mitotic cell cycle. Taken together, our data holistically outline the interactions between PRV and host cells, and our results may shed light on the pathogenesis of PRV variants and provide clues for pseudorabies prevention.
Collapse
|
72
|
ER-phagy in the Occurrence and Development of Cancer. Biomedicines 2022; 10:biomedicines10030707. [PMID: 35327508 PMCID: PMC8945671 DOI: 10.3390/biomedicines10030707] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
As an organelle, the endoplasmic reticulum (ER) is closely related to protein synthesis and modification. When physiological or pathological stimuli induce disorders of ER function, misfolded proteins trigger ER-phagy, which is beneficial for restoring cell homeostasis or promoting cell apoptosis. As a double-edged sword, ER-phagy actively participates in various stages of development and progression in tumor cells, regulating tumorigenesis and maintaining tumor cell homeostasis. Through the unfolded protein response (UPR), the B cell lymphoma 2 (BCL-2) protein family, the Caspase signaling pathway, and others, ER-phagy plays an initiating role in tumor occurrence, migration, stemness, and proliferation. At the same time, many vital proteins strongly associated with ER-phagy, such as family with sequence similarity 134 member B (FAM134B), translocation protein SEC62 (SEC62), and C/EBP-homologous protein (CHOP), can produce a marked effect in many complex environments, which ultimately lead to entirely different tumor fates. Our article comprehensively focused on introducing the relationship and interaction between ER-phagy and cancers, as well as their molecular mechanism and regulatory pathways. Via these analyses, we tried to clarify the possibility of ER-phagy as a potential target for cancer therapy and provide ideas for further research.
Collapse
|
73
|
Tian C, Liu Y, Li Z, Zhu P, Zhao M. Mitochondria Related Cell Death Modalities and Disease. Front Cell Dev Biol 2022; 10:832356. [PMID: 35321239 PMCID: PMC8935059 DOI: 10.3389/fcell.2022.832356] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are well known as the centre of energy metabolism in eukaryotic cells. However, they can not only generate ATP through the tricarboxylic acid cycle and oxidative phosphorylation but also control the mode of cell death through various mechanisms, especially regulated cell death (RCD), such as apoptosis, mitophagy, NETosis, pyroptosis, necroptosis, entosis, parthanatos, ferroptosis, alkaliptosis, autosis, clockophagy and oxeiptosis. These mitochondria-associated modes of cell death can lead to a variety of diseases. During cell growth, these modes of cell death are programmed, meaning that they can be induced or predicted. Mitochondria-based treatments have been shown to be effective in many trials. Therefore, mitochondria have great potential for the treatment of many diseases. In this review, we discuss how mitochondria are involved in modes of cell death, as well as basic research and the latest clinical progress in related fields. We also detail a variety of organ system diseases related to mitochondria, including nervous system diseases, cardiovascular diseases, digestive system diseases, respiratory diseases, endocrine diseases, urinary system diseases and cancer. We highlight the role that mitochondria play in these diseases and suggest possible therapeutic directions as well as pressing issues that need to be addressed today. Because of the key role of mitochondria in cell death, a comprehensive understanding of mitochondria can help provide more effective strategies for clinical treatment.
Collapse
Affiliation(s)
- Chuwen Tian
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yifan Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhuoshu Li
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Ping Zhu, ; Mingyi Zhao,
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Ping Zhu, ; Mingyi Zhao,
| |
Collapse
|
74
|
Wu CY, Cheng CW, Kung CC, Liao KS, Jan JT, Ma C, Wong CH. Glycosite-deleted mRNA of SARS-CoV-2 spike protein as a broad-spectrum vaccine. Proc Natl Acad Sci U S A 2022; 119:e2119995119. [PMID: 35149556 PMCID: PMC8892489 DOI: 10.1073/pnas.2119995119] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/04/2022] [Indexed: 12/11/2022] Open
Abstract
Development of the messenger RNA (mRNA) vaccine has emerged as an effective and speedy strategy to control the spread of new pathogens. After vaccination, the mRNA is translated into the real protein vaccine, and there is no need to manufacture the protein in vitro. However, the fate of mRNA and its posttranslational modification inside the cell may affect immune response. Here, we showed that the mRNA vaccine of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein with deletion of glycosites in the receptor-binding domain (RBD) or especially the subunit 2 (S2) domain to expose more conserved epitopes elicited stronger antibody and CD8+ T cell responses with broader protection against the alpha, beta, gamma, delta, and omicron variants, compared to the unmodified mRNA. Immunization of such mRNA resulted in accumulation of misfolded spike protein in the endoplasmic reticulum, causing the up-regulation of BiP/GRP78, XBP1, and p-eIF2α to induce cell apoptosis and strong CD8+ T cell response. In addition, dendritic cells (DCs) incubated with S2-glysosite deleted mRNA vaccine increased class I major histocompatibility complex (MHC I) expression. This study provides a direction for the development of broad-spectrum mRNA vaccines which may not be achieved with the use of expressed proteins as antigens.
Collapse
Affiliation(s)
- Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Cheng-Wei Cheng
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
- The Master Program of AI Application in Health Industry, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
| | - Chih-Chuan Kung
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Kuo-Shiang Liao
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Che Ma
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan;
- Department of Chemistry, Scripps Research, La Jolla, CA 92037
| |
Collapse
|
75
|
Liang Z, Zhang S, Zou Z, Li J, Wu R, Xia L, Shi G, Cai J, Tang J, Jian J. Functional characterization of BAG3 in orange-spotted grouper (Epinephelus coioides) during viral infection. FISH & SHELLFISH IMMUNOLOGY 2022; 122:465-475. [PMID: 35218970 DOI: 10.1016/j.fsi.2022.02.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/23/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Bcl-2-associated athanogene 3 (BAG3) is a cochaperone protein that interacts with Bcl-2 and mediate cell death. However, little is known about the roles of fish BAG3 during viral infection. In this study, we characterized a BAG3 homolog from orange-spotted grouper (Epinephelus coioides) (EcBAG3) and investigated its roles during viral infection. The EcBAG3 protein encoded 579 amino acids with typical WW, PXXP and BAG domains, which shared high identities with reported fish BAG3. Quantitative real-time PCR (qRT-PCR) analysis revealed that EcBAG3 was highly expressed in brain and heart. And the expression of EcBAG3 was significantly up-regulated after red-spotted grouper nervous necrosis virus (RGNNV) stimulation in vitro. EcBAG3 overexpression could promoted the expression of viral genes (coat protein (CP) and RNA-dependent RNA polymerase (RdRp)), which was enhanced by co-transfection with Hsp70 and Hsp22. Also, EcBAG3 overexpression up-regulated the expression of LC3-Ⅱ and down-regulated the expression of Bax and BNIP3, the IFN- (IRF1, IRF3, IRF7, IFP35, Mx1) or inflammation-related (IL-1β and TNFα) factors, as well as decreased the activities of NF-κB, ISRE and IFN-3. While knockdown of EcBAG3 decreased the transcripts of RGNNV CP gene and RdRp gene. Further studies showed that EcBAG3 knockdown impaired the expression level of autophagy factor LC3-Ⅱ, and promoted the expression level of Bax and BNIP3, inflammatory factors and interferon factors. These data indicate that EcBAG3 can affect viral infection through modulating virus-induced cell death, regulating the expression of IFN- and inflammation-related factors, which will be helpful to further explore the immune response of fish during viral infection.
Collapse
Affiliation(s)
- Zhenyu Liang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), 524002, PR China
| | - Shuping Zhang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), 524002, PR China
| | - Zihong Zou
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), 524002, PR China
| | - Jinze Li
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), 524002, PR China
| | - Rimin Wu
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), 524002, PR China
| | - Liqun Xia
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China
| | - Gang Shi
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China
| | - Jia Cai
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), 524002, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China; Guangxi Key Lab for Marine Natural Products and Combinational Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Centre, Guangxi Academy of Sciences, Nanning, 530007, PR China.
| | - Jufen Tang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), 524002, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| |
Collapse
|
76
|
DeMarino C, Cowen M, Khatkar P, Cotto B, Branscome H, Kim Y, Sharif SA, Agbottah ET, Zhou W, Costiniuk CT, Jenabian MA, Gelber C, Liotta LA, Langford D, Kashanchi F. Cannabinoids Reduce Extracellular Vesicle Release from HIV-1 Infected Myeloid Cells and Inhibit Viral Transcription. Cells 2022; 11:723. [PMID: 35203372 PMCID: PMC8869966 DOI: 10.3390/cells11040723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Of the 37.9 million individuals infected with human immunodeficiency virus type 1 (HIV-1), approximately 50% exhibit HIV-associated neurocognitive disorders (HAND). We and others previously showed that HIV-1 viral RNAs, such as trans-activating response (TAR) RNA, are incorporated into extracellular vesicles (EVs) and elicit an inflammatory response in recipient naïve cells. Cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), the primary cannabinoids present in cannabis, are effective in reducing inflammation. Studies show that cannabis use in people living with HIV-1 is associated with lower viral load, lower circulating CD16+ monocytes and high CD4+ T-cell counts, suggesting a potentially therapeutic application. Here, HIV-1 infected U1 monocytes and primary macrophages were used to assess the effects of CBD. Post-CBD treatment, EV concentrations were analyzed using nanoparticle tracking analysis. Changes in intracellular and EV-associated viral RNA were quantified using RT-qPCR, and changes in viral proteins, EV markers, and autophagy proteins were assessed by Western blot. Our data suggest that CBD significantly reduces the number of EVs released from infected cells and that this may be mediated by reducing viral transcription and autophagy activation. Therefore, CBD may exert a protective effect by alleviating the pathogenic effects of EVs in HIV-1 and CNS-related infections.
Collapse
Affiliation(s)
- Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 22030, USA; (C.D.); (M.C.); (P.K.); (H.B.); (Y.K.)
| | - Maria Cowen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 22030, USA; (C.D.); (M.C.); (P.K.); (H.B.); (Y.K.)
| | - Pooja Khatkar
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 22030, USA; (C.D.); (M.C.); (P.K.); (H.B.); (Y.K.)
| | - Bianca Cotto
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (B.C.); (D.L.)
| | - Heather Branscome
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 22030, USA; (C.D.); (M.C.); (P.K.); (H.B.); (Y.K.)
| | - Yuriy Kim
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 22030, USA; (C.D.); (M.C.); (P.K.); (H.B.); (Y.K.)
| | - Sarah Al Sharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz, University for Health Sciences, Jeddah 22384, Saudi Arabia;
| | | | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA; (W.Z.); (L.A.L.)
| | - Cecilia T. Costiniuk
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal, Montreal, QC H3C 3J7, Canada;
| | | | - Lance A. Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA; (W.Z.); (L.A.L.)
| | - Dianne Langford
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (B.C.); (D.L.)
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 22030, USA; (C.D.); (M.C.); (P.K.); (H.B.); (Y.K.)
| |
Collapse
|
77
|
Wang C, Wang T, Duan L, Chen H, Hu R, Wang X, Jia Y, Chu Z, Liu H, Wang X, Zhang S, Xiao S, Wang J, Dang R, Yang Z. Evasion of Host Antiviral Innate Immunity by Paramyxovirus Accessory Proteins. Front Microbiol 2022; 12:790191. [PMID: 35173691 PMCID: PMC8841848 DOI: 10.3389/fmicb.2021.790191] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/22/2021] [Indexed: 01/01/2023] Open
Abstract
For efficient replication, viruses have developed multiple strategies to evade host antiviral innate immunity. Paramyxoviruses are a large family of enveloped RNA viruses that comprises diverse human and animal pathogens which jeopardize global public health and the economy. The accessory proteins expressed from the P gene by RNA editing or overlapping open reading frames (ORFs) are major viral immune evasion factors antagonizing type I interferon (IFN-I) production and other antiviral innate immune responses. However, the antagonistic mechanisms against antiviral innate immunity by accessory proteins differ among viruses. Here, we summarize the current understandings of immune evasion mechanisms by paramyxovirus accessory proteins, specifically how accessory proteins directly or indirectly target the adaptors in the antiviral innate immune signaling pathway to facilitate virus replication. Additionally, some cellular responses, which are also involved in viral replication, will be briefly summarized.
Collapse
|
78
|
Atif M, Naz F, Akhtar J, Imran M, Saleem S, Akram J, Imran M, Ullah MI. From Molecular Pathology of COVID 19 to Nigella Sativum as a Treatment Option: Scientific Based Evidence of Its Myth or Reality. Chin J Integr Med 2022; 28:88-95. [PMID: 34586557 PMCID: PMC8479716 DOI: 10.1007/s11655-021-3311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 11/06/2022]
Abstract
COVID-19 virus is a causative agent of viral pandemic in human beings which specifically targets respiratory system of humans and causes viral pneumonia. This unusual viral pneumonia is rapidly spreading to all parts of the world, currently affecting about 105 million people with 2.3 million deaths. Current review described history, genomic characteristics, replication, and pathogenesis of COVID-19 with special emphasis on Nigella sativum (N. sativum) as a treatment option. N. sativum seeds are historically and religiously used over the centuries, both for prevention and treatment of different diseases. This review summarizes the potential role of N. sativum seeds against COVID-19 infection at levels of in silico, cell lines and animal models.
Collapse
Affiliation(s)
- Muhammad Atif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 75471, Saudi Arabia
| | - Farrah Naz
- Department of Microbiology, Government College University, Faisalabad, 38000, Pakistan
| | - Junaid Akhtar
- Department of Microbiology, University of Health Sciences, Lahore, 54600, Pakistan
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha, 40100, Pakistan
| | - Muhammad Imran
- Department of Microbiology, University of Health Sciences, Lahore, 54600, Pakistan
| | - Sidrah Saleem
- Department of Microbiology, University of Health Sciences, Lahore, 54600, Pakistan
| | - Javed Akram
- University of Health Sciences, Lahore, 54600, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, 54590, Pakistan.
| | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 75471, Saudi Arabia
| |
Collapse
|
79
|
Weingartner M, Stücheli S, Jebbawi F, Gottstein B, Beldi G, Lundström-Stadelmann B, Wang J, Odermatt A. Albendazole reduces hepatic inflammation and endoplasmic reticulum-stress in a mouse model of chronic Echinococcus multilocularis infection. PLoS Negl Trop Dis 2022; 16:e0009192. [PMID: 35030165 PMCID: PMC8794265 DOI: 10.1371/journal.pntd.0009192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 01/27/2022] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Echinococcus multilocularis causes alveolar echinococcosis (AE), a rising zoonotic disease in the northern hemisphere. Treatment of this fatal disease is limited to chemotherapy using benzimidazoles and surgical intervention, with frequent disease recurrence in cases without radical surgery. Elucidating the molecular mechanisms underlying E. multilocularis infections and host-parasite interactions ultimately aids developing novel therapeutic options. This study explored an involvement of unfolded protein response (UPR) and endoplasmic reticulum-stress (ERS) during E. multilocularis infection in mice. METHODS E. multilocularis- and mock-infected C57BL/6 mice were subdivided into vehicle, albendazole (ABZ) and anti-programmed death ligand 1 (αPD-L1) treated groups. To mimic a chronic infection, treatments of mice started six weeks post i.p. infection and continued for another eight weeks. Liver tissue was then collected to examine inflammatory cytokines and the expression of UPR- and ERS-related genes. RESULTS E. multilocularis infection led to an upregulation of UPR- and ERS-related proteins in the liver, including ATF6, CHOP, GRP78, ERp72, H6PD and calreticulin, whilst PERK and its target eIF2α were not affected, and IRE1α and ATF4 were downregulated. ABZ treatment in E. multilocularis infected mice reversed, or at least tended to reverse, these protein expression changes to levels seen in mock-infected mice. Furthermore, ABZ treatment reversed the elevated levels of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α and interferon (IFN)-γ in the liver of infected mice. Similar to ABZ, αPD-L1 immune-treatment tended to reverse the increased CHOP and decreased ATF4 and IRE1α expression levels. CONCLUSIONS AND SIGNIFICANCE AE caused chronic inflammation, UPR activation and ERS in mice. The E. multilocularis-induced inflammation and consecutive ERS was ameliorated by ABZ and αPD-L1 treatment, indicating their effectiveness to inhibit parasite proliferation and downregulate its activity status. Neither ABZ nor αPD-L1 themselves affected UPR in control mice. Further research is needed to elucidate the link between inflammation, UPR and ERS, and if these pathways offer potential for improved therapies of patients with AE.
Collapse
Affiliation(s)
- Michael Weingartner
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Simon Stücheli
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Fadi Jebbawi
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Bruno Gottstein
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Guido Beldi
- Department of Visceral Surgery and Medicine, University Hospital of Bern, Bern, Switzerland
| | | | - Junhua Wang
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
80
|
Tavčar Verdev P, Potokar M, Korva M, Resman Rus K, Kolenc M, Avšič Županc T, Zorec R, Jorgačevski J. In human astrocytes neurotropic flaviviruses increase autophagy, yet their replication is autophagy-independent. Cell Mol Life Sci 2022; 79:566. [PMID: 36283999 PMCID: PMC9596533 DOI: 10.1007/s00018-022-04578-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 01/18/2023]
Abstract
Astrocytes, an abundant type of glial cells, are the key cells providing homeostasis in the central nervous system. Due to their susceptibility to infection, combined with high resilience to virus-induced cell death, astrocytes are now considered one of the principal types of cells, responsible for virus retention and dissemination within the brain. Autophagy plays an important role in elimination of intracellular components and in maintaining cellular homeostasis and is also intertwined with the life cycle of viruses. The physiological significance of autophagy in astrocytes, in connection with the life cycle and transmission of viruses, remains poorly investigated. In the present study, we investigated flavivirus-induced modulation of autophagy in human astrocytes by monitoring a tandem fluorescent-tagged LC3 probe (mRFP-EGFP-LC3) with confocal and super-resolution fluorescence microscopy. Astrocytes were infected with tick-borne encephalitis virus (TBEV) or West Nile virus (WNV), both pathogenic flaviviruses, and with mosquito-only flavivirus (MOF), which is considered non-pathogenic. The results revealed that human astrocytes are susceptible to infection with TBEV, WNV and to a much lower extent also to MOF. Infection and replication rates of TBEV and WNV are paralleled by increased rate of autophagy, whereas autophagosome maturation and the size of autophagic compartments are not affected. Modulation of autophagy by rapamycin and wortmannin does not influence TBEV and WNV replication rate, whereas bafilomycin A1 attenuates their replication and infectivity. In human astrocytes infected with MOF, the low infectivity and the lack of efficient replication of this flavivirus are mirrored by the absence of an autophagic response.
Collapse
Affiliation(s)
- Petra Tavčar Verdev
- grid.8954.00000 0001 0721 6013Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Potokar
- grid.8954.00000 0001 0721 6013Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia ,grid.433223.7Celica Biomedical, Ljubljana, Slovenia
| | - Miša Korva
- grid.8954.00000 0001 0721 6013Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Resman Rus
- grid.8954.00000 0001 0721 6013Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Kolenc
- grid.8954.00000 0001 0721 6013Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tatjana Avšič Županc
- grid.8954.00000 0001 0721 6013Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Zorec
- grid.8954.00000 0001 0721 6013Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia ,grid.433223.7Celica Biomedical, Ljubljana, Slovenia
| | - Jernej Jorgačevski
- grid.8954.00000 0001 0721 6013Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia ,grid.433223.7Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
81
|
Siriphanitchakorn T, Kini RM, Ooi EE, Choy MM. Revisiting dengue virus-mosquito interactions: molecular insights into viral fitness. J Gen Virol 2021; 102. [PMID: 34845981 PMCID: PMC8742994 DOI: 10.1099/jgv.0.001693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dengue virus (DENV), like other viruses, closely interacts with the host cell machinery to complete its life cycle. Over the course of infection, DENV interacts with several host factors with pro-viral activities to support its infection. Meanwhile, it has to evade or counteract host factors with anti-viral activities which inhibit its infection. These molecular virus-host interactions play a crucial role in determining the success of DENV infection. Deciphering such interactions is thus paramount to understanding viral fitness in its natural hosts. While DENV-mammalian host interactions have been extensively studied, not much has been done to characterize DENV-mosquito host interactions despite its importance in controlling DENV transmission. Here, to provide a snapshot of our current understanding of DENV-mosquito interactions, we review the literature that identified host factors and cellular processes related to DENV infection in its mosquito vectors, Aedes aegypti and Aedes albopictus, with a particular focus on DENV-mosquito omics studies. This knowledge provides fundamental insights into the DENV life cycle, and could contribute to the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Tanamas Siriphanitchakorn
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 169857 Singapore, Singapore.,Department of Biological Sciences, Faculty of Science, National University of Singapore, 117558 Singapore, Singapore
| | - R Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 117558 Singapore, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore, Singapore
| | - Eng Eong Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 169857 Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, 117549 Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore
| | - Milly M Choy
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 169857 Singapore, Singapore
| |
Collapse
|
82
|
Liu X, Wang Z, Wang X, Yan X, He Q, Liu S, Ye M, Li X, Yuan Z, Wu J, Yi J, Wen L, Li R. Involvement of endoplasmic reticulum stress-activated PERK-eIF2α-ATF4 signaling pathway in T-2 toxin-induced apoptosis of porcine renal epithelial cells. Toxicol Appl Pharmacol 2021; 432:115753. [PMID: 34637808 DOI: 10.1016/j.taap.2021.115753] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022]
Abstract
T-2 toxin is a highly toxic trichothecene that can induce toxic effects in a variety of organs and tissues, but the pathogenesis of its nephrotoxicity has not been elucidated. In this study, we assessed the involvement of protein kinase RNA-like ER kinase (PERK)-mediated endoplasmic reticulum (ER) stress and apoptosis in PK-15 cells cultured at different concentrations of T-2 toxin. Cell viability, antioxidant capacity, intracellular calcium (Ca2+) content, apoptotic rate, levels of ER stress, and apoptosis-related proteins were studied. T-2 toxin inhibited cell proliferation; increased the apoptosis rate; and was accompanied by increased cleaved caspase-3 expression, altered intracellular oxidative stress marker levels, and intracellular Ca2+ overloading. The ER stress inhibitor 4-phenylbutyrate (4-PBA) and PERK selective inhibitor GSK2606414 prevented the decrease of cell activity and apoptosis caused by T-2 toxin. The altered expression of glucose regulatory protein 78 (GRP78), C/EBP homologous protein (CHOP), and caspase-12 proved that ER stress was involved in cell injury triggered by T-2 toxin. T-2 toxin activated the phosphorylation of PERK and the alpha subunit of eukaryotic initiation factor 2 (eIF2α) and upregulated the activating transcription factor 4 (ATF4), thereby triggering ER stress via the GRP78/PERK/CHOP signaling pathway. This study provides a new perspective for understanding the nephrotoxicity of T-2 toxin.
Collapse
Affiliation(s)
- Xiangyan Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Ze Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Xianglin Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Xiaona Yan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Qing He
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Sha Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Mengke Ye
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Xiaowen Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Zhihang Yuan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China; Hunan Co-innovation Center of Animal Production Safety, Changsha City 410128, China
| | - Jing Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China; Hunan Co-innovation Center of Animal Production Safety, Changsha City 410128, China
| | - Jine Yi
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China; Hunan Co-innovation Center of Animal Production Safety, Changsha City 410128, China
| | - Lixin Wen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China; Hunan Co-innovation Center of Animal Production Safety, Changsha City 410128, China
| | - Rongfang Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China; Hunan Co-innovation Center of Animal Production Safety, Changsha City 410128, China.
| |
Collapse
|
83
|
Li J, Boix E. Host Defence RNases as Antiviral Agents against Enveloped Single Stranded RNA Viruses. Virulence 2021; 12:444-469. [PMID: 33660566 PMCID: PMC7939569 DOI: 10.1080/21505594.2021.1871823] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
Owing to the recent outbreak of Coronavirus Disease of 2019 (COVID-19), it is urgent to develop effective and safe drugs to treat the present pandemic and prevent other viral infections that might come in the future. Proteins from our own innate immune system can serve as ideal sources of novel drug candidates thanks to their safety and immune regulation versatility. Some host defense RNases equipped with antiviral activity have been reported over time. Here, we try to summarize the currently available information on human RNases that can target viral pathogens, with special focus on enveloped single-stranded RNA (ssRNA) viruses. Overall, host RNases can fight viruses by a combined multifaceted strategy, including the enzymatic target of the viral genome, recognition of virus unique patterns, immune modulation, control of stress granule formation, and induction of autophagy/apoptosis pathways. The review also includes a detailed description of representative enveloped ssRNA viruses and their strategies to interact with the host and evade immune recognition. For comparative purposes, we also provide an exhaustive revision of the currently approved or experimental antiviral drugs. Finally, we sum up the current perspectives of drug development to achieve successful eradication of viral infections.
Collapse
Affiliation(s)
- Jiarui Li
- Dpt. Of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma De Barcelona, Spain
| | - Ester Boix
- Dpt. Of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma De Barcelona, Spain
| |
Collapse
|
84
|
Patra U, Mukhopadhyay U, Mukherjee A, Dutta S, Chawla-Sarkar M. Treading a HOSTile path: Mapping the dynamic landscape of host cell-rotavirus interactions to explore novel host-directed curative dimensions. Virulence 2021; 12:1022-1062. [PMID: 33818275 PMCID: PMC8023246 DOI: 10.1080/21505594.2021.1903198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/20/2021] [Accepted: 03/10/2021] [Indexed: 12/27/2022] Open
Abstract
Viruses are intracellular pathogens and are dependent on host cellular resources to carry out their cycles of perpetuation. Obtaining an integrative view of host-virus interaction is of utmost importance to understand the complex and dynamic interplay between viral components and host machineries. Besides its obvious scholarly significance, a comprehensive host-virus interaction profile also provides a platform where from host determinants of pro-viral and antiviral importance can be identified and further be subjected to therapeutic intervention. Therefore, adjunct to conventional methods of prophylactic vaccination and virus-directed antivirals, this host-targeted antiviral approach holds promising therapeutic potential. In this review, we present a comprehensive landscape of host cellular reprogramming in response to infection with rotavirus (RV) which causes profuse watery diarrhea in neonates and infants. In addition, an emphasis is given on how host determinants are either usurped or subverted by RV in course of infection and how therapeutic manipulation of specific host factors can effectively modulate the RV life cycle.
Collapse
Affiliation(s)
- Upayan Patra
- Division of Virology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Urbi Mukhopadhyay
- Division of Virology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Arpita Mukherjee
- Division of Virology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| |
Collapse
|
85
|
Drożdżal S, Rosik J, Lechowicz K, Machaj F, Szostak B, Przybyciński J, Lorzadeh S, Kotfis K, Ghavami S, Łos MJ. An update on drugs with therapeutic potential for SARS-CoV-2 (COVID-19) treatment. Drug Resist Updat 2021; 59:100794. [PMID: 34991982 PMCID: PMC8654464 DOI: 10.1016/j.drup.2021.100794] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 02/07/2023]
Abstract
The COVID-19 pandemic is one of the greatest threats to human health in the 21st century with more than 257 million cases and over 5.17 million deaths reported worldwide (as of November 23, 2021. Various agents were initially proclaimed to be effective against SARS-CoV-2, the etiological agent of COVID-19. Hydroxychloroquine, lopinavir/ritonavir, and ribavirin are all examples of therapeutic agents, whose efficacy against COVID-19 was later disproved. Meanwhile, concentrated efforts of researchers and clinicians worldwide have led to the identification of novel therapeutic options to control the disease including PAXLOVID™ (PF-07321332). Although COVID-19 cases are currently treated using a comprehensive approach of anticoagulants, oxygen, and antibiotics, the novel Pfizer agent PAXLOVID™ (PF-07321332), an investigational COVID-19 oral antiviral candidate, significantly reduced hospitalization time and death rates, based on an interim analysis of the phase 2/3 EPIC-HR (Evaluation of Protease Inhibition for COVID-19 in High-Risk Patients) randomized, double-blind study of non-hospitalized adult patients with COVID-19, who are at high risk of progressing to severe illness. The scheduled interim analysis demonstrated an 89 % reduction in risk of COVID-19-related hospitalization or death from any cause compared to placebo in patients treated within three days of symptom onset (primary endpoint). However, there still exists a great need for the development of additional treatments, as the recommended therapeutic options are insufficient in many cases. Thus far, mRNA and vector vaccines appear to be the most effective modalities to control the pandemic. In the current review, we provide an update on the progress that has been made since April 2020 in clinical trials concerning the effectiveness of therapies available to combat COVID-19. We focus on currently recommended therapeutic agents, including steroids, various monoclonal antibodies, remdesivir, baricitinib, anticoagulants and PAXLOVID™ summarizing the latest original studies and meta-analyses. Moreover, we aim to discuss other currently and previously studied agents targeting COVID-19 that either show no or only limited therapeutic activity. The results of recent studies report that hydroxychloroquine and convalescent plasma demonstrate no efficacy against SARS-CoV-2 infection. Lastly, we summarize the studies on various drugs with incoherent or insufficient data concerning their effectiveness, such as amantadine, ivermectin, or niclosamide.
Collapse
Affiliation(s)
- Sylwester Drożdżal
- Department of Nephrology, Transplantation and Internal Medicine, Pomeranian Medical University in Szczecin, Poland
| | - Jakub Rosik
- Department of Physiology, Pomeranian Medical University in Szczecin, Poland
| | - Kacper Lechowicz
- Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, Poland
| | - Filip Machaj
- Department of Physiology, Pomeranian Medical University in Szczecin, Poland
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University in Szczecin, Poland
| | - Jarosław Przybyciński
- Department of Nephrology, Transplantation and Internal Medicine, Pomeranian Medical University in Szczecin, Poland
| | - Shahrokh Lorzadeh
- Department of Molecular Genetics, Science and Research Branch, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Katarzyna Kotfis
- Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, Poland
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran; Faculty of Medicine, Katowice School of Technology, 40-555 Katowice, Poland
| | - Marek J Łos
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland.
| |
Collapse
|
86
|
Klimentova EA, Suchkov IA, Egorov AA, Kalinin RE. Apoptosis and Cell Proliferation Markers in Inflammatory-Fibroproliferative Diseases of the Vessel Wall (Review). Sovrem Tekhnologii Med 2021; 12:119-126. [PMID: 34795999 PMCID: PMC8596273 DOI: 10.17691/stm2020.12.4.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Indexed: 12/11/2022] Open
Abstract
Apoptosis is the main feature of inflammatory-fibroproliferative disorders of the vessel wall. Studies in animal models have shown that smooth muscle cells (SMCs) cultured from endarterectomy specimens from the affected area proliferate more slowly and display higher apoptotic indices than SMCs derived from the normal vessel wall. Apoptotic cells were found in the destabilized atherosclerotic plaques, as well as in the samples with restenosis of the reconstruction area. Injury to the vessel wall causes two waves of apoptosis. The first wave is the rapid apoptosis in the media that occurs within a few hours after injury and leads to a marked reduction in the number of vascular wall cells. The second wave of apoptosis occurs much later (from several days to weeks) and is limited by the SMCs within the developing neointima. Up to 14% of the neointimal SMCs undergo apoptosis 20 days after balloon angioplasty. Ligation of the external carotid artery in a rabbit model led to a marked decrease in blood flow in the common carotid artery, which correlated with the increased apoptosis of endothelial cells and SMCs. Angioplasty-induced death of SMCs is regulated by a redox-sensitive signaling pathway, and topical administration of antioxidants can minimize vascular cell loss. On the whole, studies show that apoptosis is prevalent in vascular lesions, controlling the viability of both inflammatory and vascular cells, determining the cellular composition of the vessel wall. The main markers of apoptosis (Fas, Fas ligand, p53, Bcl-2, Bax) and cell proliferation (toll receptor) have been considered in the current review.
Collapse
Affiliation(s)
- E A Klimentova
- Department of Cardiovascular, X-ray Endovascular, Operative Surgery, and Topographic Anatomy; Ryazan State Medical University, 9 Vysokovoltnaya St., Ryazan, 390026, Russia
| | - I A Suchkov
- Professor, Department of Cardiovascular, X-ray Endovascular, Operative Surgery, and Topographic Anatomy; Ryazan State Medical University, 9 Vysokovoltnaya St., Ryazan, 390026, Russia
| | - A A Egorov
- Doctoral Student, Department of Cardiovascular, X-ray Endovascular, Operative Surgery, and Topographic Anatomy; Ryazan State Medical University, 9 Vysokovoltnaya St., Ryazan, 390026, Russia
| | - R E Kalinin
- Professor, Head of the Department of Cardiovascular, X-ray Endovascular, Operative Surgery, and Topographic Anatomy Ryazan State Medical University, 9 Vysokovoltnaya St., Ryazan, 390026, Russia
| |
Collapse
|
87
|
Zhou L, Bao L, Wang Y, Chen M, Zhang Y, Geng Z, Zhao R, Sun J, Bao Y, Shi Y, Yao R, Guo S, Cui X. An Integrated Analysis Reveals Geniposide Extracted From Gardenia jasminoides J.Ellis Regulates Calcium Signaling Pathway Essential for Influenza A Virus Replication. Front Pharmacol 2021; 12:755796. [PMID: 34867371 PMCID: PMC8640456 DOI: 10.3389/fphar.2021.755796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Geniposide, an iridoid glycoside purified from the fruit of Gardenia jasminoides J.Ellis, has been reported to possess pleiotropic activity against different diseases. In particular, geniposide possesses a variety of biological activities and exerts good therapeutic effects in the treatment of several strains of the influenza virus. However, the molecular mechanism for the therapeutic effect has not been well defined. This study aimed to investigate the mechanism of geniposide on influenza A virus (IAV). The potential targets and signaling pathways of geniposide in the IAV infection were predicted using network pharmacology analysis. According to the result of network pharmacology analysis, we validated the calcium signaling pathway induced by IAV and investigated the effect of geniposide extracted from Gardenia jasminoides J.Ellis on this pathway. The primary Gene Ontology (GO) biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways KEGG enrichment analysis indicated that geniposide has a multi-target and multi-pathway inhibitory effect against influenza, and one of the mechanisms involves calcium signaling pathway. In the current study, geniposide treatment greatly decreased the levels of RNA polymerase in HEK-293T cells infected with IAV. Knocking down CAMKII in IAV-infected HEK-293T cells enhanced virus RNA (vRNA) production. Geniposide treatment increased CAMKII expression after IAV infection. Meanwhile, the CREB and c-Fos expressions were inhibited by geniposide after IAV infection. The experimental validation data showed that the geniposide was able to alleviate extracellular Ca2+ influx, dramatically decreased neuraminidase activity, and suppressed IAV replication in vitro via regulating the calcium signaling pathway. These anti-IAV effects might be related to the disrupted interplay between IAV RNA polymerase and CAMKII and the regulation of the downstream calcium signaling pathway essential for IAV replication. Taken together, the findings reveal a new facet of the mechanism by which geniposide fights IAV in a way that depends on CAMKII replication.
Collapse
Affiliation(s)
- Lirun Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lei Bao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yaxin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengping Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zihan Geng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ronghua Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanyan Bao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujing Shi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rongmei Yao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shanshan Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolan Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
88
|
Shen F, Liu Y, Wang L, Chai X, Yang J, Feng Q, Li X. Identification of HIV-1-specific cascaded microRNA-mRNA regulatory relationships by parallel mRNA and microRNA expression profiling with AIDS patients after antiviral treatment. Medicine (Baltimore) 2021; 100:e27428. [PMID: 34871208 PMCID: PMC8568437 DOI: 10.1097/md.0000000000027428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/17/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The pathogenesis of human immunodeficiency virus 1 (HIV-1) infection is so complex that have not been clearly defined, despite intensive efforts have been made by many researchers. MicroRNA (miRNA) as regulation factor in various human diseases may influence the course of HIV-1 infection by targeting mRNAs. Thus, studies combining transcription of posttranscriptional miRNA regulation are required. METHODS With the purpose of identifying cascaded miRNA-mRNA regulatory relationships related to HIV infection in gene level, the parallel miRNA, and mRNA expression profiles were analyzed to select differential expressed miRNAs and mRNAs. Then, miRNA-mRNA interactions were predicted using 3 data sources and Pearson correlation coefficient was calculated based on the gene expression level for accuracy improvement. Furthermore, the calculation of the regulatory impact factors was conducted to reveal crucial regulators in HIV-1 infection. To give further insight into these transcription factor (TF) regulators, the differentially co-expression analysis was conducted to identify differentially co-expressed links and differential co-expressed genes and the co-expression gene modules were identified using a threshold-based hierarchical clustering method, then modules were combined into a miRNA-TF-mRNA network. RESULTS A total of 69,126 differentially co-expressed links and 626 differential co-expressed genes were identified. Functional enrichment analysis indicated that these co-expressed genes were significantly involved in immune response and apoptosis. Moreover, according to regulatory impact factors, 5 most influential TFs and miRNA in HIV-1 infection were identified and miRNA-TF-mRNA regulatory networks were built during the computing process. CONCLUSIONS In our study, a set of integrated methods was generated to identify important regulators and miRNA-TF-mRNA interactions. Parallel profiling analysis of the miRNAs and mRNAs expression of HIV/acquired immunodeficiency syndrome (AIDS) patients after antiretroviral therapy indicated that some regulators have wide impact on gene regulation and that these regulatory elements may bear significant implications on the underlying molecular mechanism and pathogenesis of AIDS occurrence.
Collapse
Affiliation(s)
- Fangyuan Shen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yefang Liu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- No. 3 Affiliated Hospital of Chengdu University of TCM (West District), Chengdu Pidu District Hospital of TCM, China
| | - Lanchun Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaoqiang Chai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jian Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Quansheng Feng
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
89
|
Zhu Z, Liu P, Yuan L, Lian Z, Hu D, Yao X, Li X. Induction of UPR Promotes Interferon Response to Inhibit PRRSV Replication via PKR and NF-κB Pathway. Front Microbiol 2021; 12:757690. [PMID: 34712218 PMCID: PMC8547762 DOI: 10.3389/fmicb.2021.757690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) was previously shown to induce a certain level of cellular stress during viral replication. Unfolded protein response (UPR) is a cellular stress response responsible for coping with stress and cellular survival. However, the pathway leading to the induction of UPR that may influence PRRSV replication is still unknown. Here, we found that PRRSV infection induced UPR prior to interferon response. Induction of UPR significantly enhanced the expression of interferon and interferon-related genes, thus leading to the suppression of PRRSV infection. Next, we explored the underlying mechanisms of UPR-induced antiviral response. We found that induction of UPR promoted the expression of protein kinase R (PKR), and PKR was highly correlated with the reduction of PRRSV replication. Furthermore, tunicamycin stimulation and PKR overexpression activated NF-κB and interferon response at the early stage of PRRSV infection, thus reinforcing the expression of type I interferons and proinflammatory cytokines and leading to inhibition of PRRSV. In addition, PRRSV nsp4 was shown to reduce the expression of PKR. These findings might have implications for our understandings of the host's immune mechanism against PRRSV and a new strategy of PRRSV to evade the host antiviral immunity.
Collapse
Affiliation(s)
- Zhenbang Zhu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Panrao Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Lili Yuan
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhengmin Lian
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Danhe Hu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiaohui Yao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiangdong Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
90
|
Chen J, Zhou Y, Zhu E, Yang P, Li M, Zhang S, Yue J, Wen M, Wang K, Cheng Z. Mycoplasma ovipneumoniae induces caspase-8-dependent extrinsic apoptosis and p53- and ROS-dependent intrinsic apoptosis in murine alveolar macrophages. Virulence 2021; 12:2703-2720. [PMID: 34678131 PMCID: PMC8923071 DOI: 10.1080/21505594.2021.1984714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mycoplasma ovipneumoniae (MO) is a principle causative agent of chronic respiratory disease in ruminants, including sheep, goats, and deer, posing a great threat to the ruminant industry worldwide. However, the pathogenesis of MO infection still remains not well understood and needs further clarification. Here we report a time-dependent apoptosis in cultured murine alveolar macrophage (MH-S) cell lines in response to MO infection in vitro. Mechanistically, MO infection activated apoptosis in MH-S cells through caspase-8-dependent extrinsic pathway and through tumor protein 53 (p53)- and reactive oxygen species (ROS)-dependent intrinsic mitochondrial pathways. Moreover, MO infection promoted both transcription and translation of proinflammatory cytokine genes including interleukin-1β (IL-1β), IL-18, and tumor necrosis factor-α (TNF-α), in a caspase-8-, p53-, and ROS-dependent manner, implying a potential link between MO-induced inflammation and apoptotic cell death. Collectively, our results suggest that MO infection induces the activation of extrinsic and intrinsic apoptotic pathways in cultured MH-S cells, which is related to upregulated expression of proinflammatory cytokines. Our findings will contribute to the elucidation of pathogenesis in MO infection and provide valuable reference for the development of new strategies for controlling MO infection.
Collapse
Affiliation(s)
- Jing Chen
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China.,Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Yi Zhou
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China.,Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Erpeng Zhu
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China.,Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Peng Yang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China.,Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Mei Li
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China.,Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Shuangxiang Zhang
- The Laboratory of Veterinary Medicine, Animal Disease Prevention and Control Center of Guizhou Province, Guiyang, China
| | - Jun Yue
- The Laboratory of Veterinary Medicine, Animal Disease Prevention and Control Center of Guizhou Province, Guiyang, China
| | - Ming Wen
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China.,Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Kaigong Wang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China.,Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Zhentao Cheng
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China.,Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
91
|
Blahove MR, Carter JR. Flavivirus Persistence in Wildlife Populations. Viruses 2021; 13:v13102099. [PMID: 34696529 PMCID: PMC8541186 DOI: 10.3390/v13102099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
A substantial number of humans are at risk for infection by vector-borne flaviviruses, resulting in considerable morbidity and mortality worldwide. These viruses also infect wildlife at a considerable rate, persistently cycling between ticks/mosquitoes and small mammals and reptiles and non-human primates and humans. Substantially increasing evidence of viral persistence in wildlife continues to be reported. In addition to in humans, viral persistence has been shown to establish in mammalian, reptile, arachnid, and mosquito systems, as well as insect cell lines. Although a considerable amount of research has centered on the potential roles of defective virus particles, autophagy and/or apoptosis-induced evasion of the immune response, and the precise mechanism of these features in flavivirus persistence have yet to be elucidated. In this review, we present findings that aid in understanding how vector-borne flavivirus persistence is established in wildlife. Research studies to be discussed include determining the critical roles universal flavivirus non-structural proteins played in flaviviral persistence, the advancement of animal models of viral persistence, and studying host factors that allow vector-borne flavivirus replication without destructive effects on infected cells. These findings underscore the viral–host relationships in wildlife animals and could be used to elucidate the underlying mechanisms responsible for the establishment of viral persistence in these animals.
Collapse
|
92
|
Abstract
Viruses are intracellular parasites that subvert the functions of their host cells to accomplish their infection cycle. The endoplasmic reticulum (ER)-residing chaperone proteins are central for the achievement of different steps of the viral cycle, from entry and replication to assembly and exit. The most abundant ER chaperones are GRP78 (78-kDa glucose-regulated protein), GRP94 (94-kDa glucose-regulated protein), the carbohydrate or lectin-like chaperones calnexin (CNX) and calreticulin (CRT), the protein disulfide isomerases (PDIs), and the DNAJ chaperones. This review will focus on the pleiotropic roles of ER chaperones during viral infection. We will cover their essential role in the folding and quality control of viral proteins, notably viral glycoproteins which play a major role in host cell infection. We will also describe how viruses co-opt ER chaperones at various steps of their infectious cycle but also in order to evade immune responses and avoid apoptosis. Finally, we will discuss the different molecules targeting these chaperones and the perspectives in the development of broad-spectrum antiviral drugs.
Collapse
|
93
|
Molecular Pathogenesis and Immune Evasion of Vesicular Stomatitis New Jersey Virus Inferred from Genes Expression Changes in Infected Porcine Macrophages. Pathogens 2021; 10:pathogens10091134. [PMID: 34578166 PMCID: PMC8469936 DOI: 10.3390/pathogens10091134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022] Open
Abstract
The molecular mechanisms associated with the pathogenesis of vesicular stomatitis virus (VSV) in livestock remain poorly understood. Several studies have highlighted the relevant role of macrophages in controlling the systemic dissemination of VSV during infection in different animal models, including mice, cattle, and pigs. To gain more insight into the molecular mechanisms used by VSV to impair the immune response in macrophages, we used microarrays to determine the transcriptomic changes produced by VSV infection in primary cultures of porcine macrophages. The results indicated that VSV infection induced the massive expression of multiple anorexic, pyrogenic, proinflammatory, and immunosuppressive genes. Overall, the interferon (IFN) response appeared to be suppressed, leading to the absence of stimulation of interferon-stimulated genes (ISG). Interestingly, VSV infection promoted the expression of several genes known to downregulate the expression of IFNβ. This represents an alternate mechanism for VSV control of the IFN response, beyond the recognized mechanisms mediated by the matrix protein. Although there was no significant differential gene expression in macrophages infected with a highly virulent epidemic strain compared to a less virulent endemic strain, the endemic strain consistently induced higher expression of all upregulated cytokines and chemokines. Collectively, this study provides novel insights into VSV molecular pathogenesis and immune evasion that warrant further investigation.
Collapse
|
94
|
A Biological Insight into the Susceptibility to Influenza Infection in Junior Rats by Comprehensive Analysis of lncRNA Profiles. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8112783. [PMID: 34447853 PMCID: PMC8384544 DOI: 10.1155/2021/8112783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/29/2021] [Accepted: 08/07/2021] [Indexed: 11/23/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been reported to participate in regulating many biological processes, including immune response to influenza A virus (IAV). However, the association between lncRNA expression profiles and influenza infection susceptibility has not been well elucidated. Here, we analyzed the expression profiles of lncRNAs, miRNAs, and mRNAs among IAV-infected adult rat (IAR), normal adult rat (AR), IAV-infected junior rat (IJR), and normal junior rat (JR) by RNA sequencing. Compared with differently expressed lncRNAs (DElncRNAs) between AR and IAR, 24 specific DElncRNAs were found between IJR and JR. Then, based on the fold changes and P value, the top 5 DElncRNAs, including 3 upregulated and 2 downregulated lncRNAs, were chosen to establish a ceRNA network for further disclosing their regulatory mechanisms. To visualize the differentially expressed genes in the ceRNA network, GO and KEGG pathway analysis was performed to further explore their roles in influenza infection of junior rats. The results showed that the downregulated DElncRNA-target genes were mostly enriched in the IL-17 signaling pathway. It indicated that the downregulated lncRNAs conferred the susceptibility of junior rats to IAV via mediating the IL-17 signaling pathway.
Collapse
|
95
|
Monsalve-Escudero LM, Loaiza-Cano V, Pájaro-González Y, Oliveros-Díaz AF, Diaz-Castillo F, Quiñones W, Robledo S, Martinez-Gutierrez M. Indole alkaloids inhibit zika and chikungunya virus infection in different cell lines. BMC Complement Med Ther 2021; 21:216. [PMID: 34454481 PMCID: PMC8397866 DOI: 10.1186/s12906-021-03386-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/05/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In recent years, an increase in the occurrence of illnesses caused by two clinically- important arboviruses has been reported: Zika virus (ZIKV) and Chikungunya virus (CHIKV). There is no licensed antiviral treatment for either of the two abovementioned viruses. Bearing in mind that the antiviral effect of indole alkaloids has been reported for other arboviral models, the present study proposed to evaluate the antiviral in vitro and in silico effects of four indole alkaloids on infections by these two viruses in different cell lines. METHODS The antiviral effects of voacangine (VOAC), voacangine-7-hydroxyindolenine (VOAC-OH), rupicoline and 3-oxo voacangine (OXO-VOAC) were evaluated in Vero, U937 and A549 cells using different experimental strategies (Pre, Trans, Post and combined treatment). Viral infection was quantified by different methodologies, including infectious viral particles by plating, viral genome by RT-qPCR, and viral protein by cell ELISA. Moreover, molecular docking was used to evaluate the possible interactions between structural and nonstructural viral proteins and the compounds. The results obtained from the antiviral strategies for each experimental condition were compared in all cases with the untreated controls. Statistically significant differences were identified using a parametric Student's t-test. In all cases, p values below 0.05 (p < 0.05) were considered statistically significant. RESULTS In the pre-treatment strategy in Vero cells, VOAC and VOAC-OH inhibited both viral models and OXO-VOAC inhibited only ZIKV; in U937 cells infected with CHIKV/Col, only VOAC-OH inhibited infection, but none of the compounds had activity in A549 cells; in U937 cells and A549 cells infected with ZIKV/Col, the three compounds that were effective in Vero cells also had antiviral activity. In the trans-treatment strategy, only VOAC-OH was virucidal against ZIKV/Col. In the post-treatment strategy, only rupicoline was effective in the CHIKV/Col model in Vero and A549 cells, whereas VOAC and VOAC-OH inhibited ZIKV infection in all three cell lines. In the combined strategy, VOAC, VOAC-OH and rupicoline inhibited CHIKV/Col and ZIKV/Col, but only rupicoline improved the antiviral effect of ZIKV/Col-infected cultures with respect to the individual strategies. Molecular docking showed that all the compounds had favorable binding energies with the structural proteins E2 and NSP2 (CHIKV) and E and NS5 (ZIKV). CONCLUSIONS The present study demonstrates that indole alkaloids are promising antiviral drugs in the process of ZIKV and CHIKV infection; however, the mechanisms of action evaluated in this study would indicate that the effect is different in each viral model and, in turn, dependent on the cell line.
Collapse
Affiliation(s)
- Laura Milena Monsalve-Escudero
- Grupo de Investigación en Ciencias Animales-GRICA. Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Vanessa Loaiza-Cano
- Grupo de Investigación en Ciencias Animales-GRICA. Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Yina Pájaro-González
- Laboratorio de Investigaciones Fitoquímicas y Farmacológicas de la Universidad de Cartagena - LIFFUC, Universidad de Cartagena, Cartagena, Colombia.,Grupo de Investigación en Farmacia Asistencial y Farmacología, Universidad del Atlántico, Barranquilla, Colombia
| | - Andrés Felipe Oliveros-Díaz
- Laboratorio de Investigaciones Fitoquímicas y Farmacológicas de la Universidad de Cartagena - LIFFUC, Universidad de Cartagena, Cartagena, Colombia
| | - Fredyc Diaz-Castillo
- Laboratorio de Investigaciones Fitoquímicas y Farmacológicas de la Universidad de Cartagena - LIFFUC, Universidad de Cartagena, Cartagena, Colombia
| | - Wiston Quiñones
- Grupo de Química Orgánica de Productos Naturales. Universidad de Antioquia, Medellín, Colombia
| | - Sara Robledo
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Universidad de Antioquia, Medellín, Colombia
| | - Marlen Martinez-Gutierrez
- Grupo de Investigación en Ciencias Animales-GRICA. Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia.
| |
Collapse
|
96
|
Liu Y, Tang Q, Rao Z, Fang Y, Jiang X, Liu W, Luan F, Zeng N. Inhibition of herpes simplex virus 1 by cepharanthine via promoting cellular autophagy through up-regulation of STING/TBK1/P62 pathway. Antiviral Res 2021; 193:105143. [PMID: 34303748 DOI: 10.1016/j.antiviral.2021.105143] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 02/08/2023]
Abstract
Cepharanthine (CEP), a naturally occurring isoquinoline alkaloid extracted from the genus CEP of the Tetrandrine family, was reported to possess many biological activities such as anti-inflammatory, antitumor, antiviral, and immune-enhancing effects. Nevertheless, the underlying mechanisms of CEP against herpes simplex virus type 1 (HSV-1) are still elusive. In this study, we explored the anti-HSV effects and mechanisms of CEP in vitro. The results showed that CEP possessed a strong inhibitory effect against HSV-1 infection with the TC50 of 5.4 μg/mL, the IC50 of 0.835 μg/mL, and the TI of 6.47. Most importantly, CEP could promote the phosphorylation of STING, TBK1, and P62 and the expression of LC3II without induction of interferon by directly targeting the STING/TBK1/P62 signaling pathways. Electron microscopy showed that autophagy induced by CEP could degrade viral particles and cellular components. RT-PCR results revealed that a sharp reduction of large numbers of virus gene transcription in 16 h after CEP treatment. Furthermore, CEP also reduced the HSV-1 gB and gC transcription. In conclusion, one of the effects of CEP was to promote interferon-independent autophagy through STING mediated signaling.
Collapse
Affiliation(s)
- Yao Liu
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610083, PR China
| | - Qiong Tang
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Zhili Rao
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Yang Fang
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Xinni Jiang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, Sichuan 610083, PR China
| | - Wenjun Liu
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, Sichuan 610083, PR China
| | - Fei Luan
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| | - Nan Zeng
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| |
Collapse
|
97
|
Ma M, Li H, Wang P, Yang W, Mi R, Zhuang J, Jiang Y, Lu Y, Shen X, Wu Y, Shen H. ATF6 aggravates angiogenesis-osteogenesis coupling during ankylosing spondylitis by mediating FGF2 expression in chondrocytes. iScience 2021; 24:102791. [PMID: 34296071 PMCID: PMC8281657 DOI: 10.1016/j.isci.2021.102791] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/30/2021] [Accepted: 06/24/2021] [Indexed: 01/02/2023] Open
Abstract
Although angiogenesis-osteogenesis coupling is important in ankylosing spondylitis (AS), therapeutic agents targeting the vasculature remain elusive. Here, we identified activating transcription factor 6 (ATF6) as an important regulator of angiogenesis in the pathogenesis of AS. First, we found that ATF6 and fibroblast growth factor 2 (FGF2) levels were higher in SKG mice and in cartilage of pateints with AS1. The proangiogenic activity of human chondrocytes was enhanced by the activation of the ATF6-FGF2 axis following 7 days of stimulation with inflammatory factors, e.g., tumor necrosis factor alpha (TNF-α), interferon-γ (IFN-γ) or interleukin-17 (IL-17). Mechanistically, ATF6 interacted with the FGF2 promotor and promoted its transcription. Treatment with the ATF6 inhibitor Ceapin-A7 inhibited angiogenesis in vitro and angiogenesis-osteogenesis coupling in vivo. ATF6 may aggravate angiogenesis-osteogenesis coupling during AS by mediating FGF2 transcription in chondrocytes, implying that ATF6 represents a promising therapeutic target for AS.
Collapse
Affiliation(s)
- Mengjun Ma
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Hongyu Li
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Wen Yang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Rujia Mi
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Jiahao Zhuang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Yuhang Jiang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Yixuan Lu
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Xin Shen
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Yanfeng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China
| |
Collapse
|
98
|
Feng J, Liu L, He Y, Wang M, Zhou D, Wang J. Novel insights into the pathogenesis of virus-induced ARDS: review on the central role of the epithelial-endothelial barrier. Expert Rev Clin Immunol 2021; 17:991-1001. [PMID: 34224287 DOI: 10.1080/1744666x.2021.1951233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: Respiratory viruses can directly or indirectly damage the pulmonary defense barrier, potentially contributing to acute respiratory distress syndrome (ARDS). Despite developments in the understanding of the pathogenesis of ARDS, the underlying pathophysiology still needs to be elucidated.Areas covered: The PubMed database was reviewed for relevant papers published up to 2021. This review summarizes the currently immunological and clinical studies to provide a systemic overview of the epithelial-endothelial barrier, given the recently published immunological profiles upon viral pneumonia, and the potentially detrimental contribution to respiratory function caused by damage to this barrier.Expert opinion: The biophysical structure of host pulmonary defense is intrinsically linked with the ability of alveolar epithelial and capillary endothelial cells, known as the epithelial-endothelial barrier, to respond to, and instruct the delicate immune system to protect the lungs from infections and injuries. Recently published immunological profiles upon viral infection, and its contributions to the damage of respiratory function, suggest a central role for the pulmonary epithelial and endothelial barrier in the pathogenesis of ARDS. We suggest a central role and common pathways by which the epithelial-endothelial barrier contributes to the pathogenesis of ARDS.
Collapse
Affiliation(s)
- Jun Feng
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lina Liu
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang He
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daixing Zhou
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junshuai Wang
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
99
|
Dhar S, Bhattacharjee P. Promising role of curcumin against viral diseases emphasizing COVID-19 management: A review on the mechanistic insights with reference to host-pathogen interaction and immunomodulation. J Funct Foods 2021; 82:104503. [PMID: 33897833 PMCID: PMC8057770 DOI: 10.1016/j.jff.2021.104503] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023] Open
Abstract
Curcumin has already acknowledged immense interest from both medical and scientific research because of its multifaceted activity. To date, the promising effects of curcumin were perceived against numerous inflammatory diseases. Besides, curcumin's role as a medicine has been studied in many virus infections like influenza, HIV, etc. There is a need to analyze the cellular mechanisms of curcumin including host-pathogen interaction and immunomodulatory effects, to explore the role of curcumin against COVID-19. With this background, our study suggests that curcumin can prevent COVID-19 infections by inhibiting the pathogen entry, viral genome replication and steps in the endosomal pathway along with inhibition of T-cell signalling by impairing the autophagy-mediated antigen-presenting pathway. This review explicit the possible mechanisms behind curcumin-induced cellular immunity and a therapeutive dosage of curcumin suggesting a preventive strategy against COVID-19.
Collapse
|
100
|
Land WG. Role of DAMPs in respiratory virus-induced acute respiratory distress syndrome-with a preliminary reference to SARS-CoV-2 pneumonia. Genes Immun 2021; 22:141-160. [PMID: 34140652 PMCID: PMC8210526 DOI: 10.1038/s41435-021-00140-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/28/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023]
Abstract
When surveying the current literature on COVID-19, the "cytokine storm" is considered to be pathogenetically involved in its severe outcomes such as acute respiratory distress syndrome, systemic inflammatory response syndrome, and eventually multiple organ failure. In this review, the similar role of DAMPs is addressed, that is, of those molecules, which operate upstream of the inflammatory pathway by activating those cells, which ultimately release the cytokines. Given the still limited reports on their role in COVID-19, the emerging topic is extended to respiratory viral infections with focus on influenza. At first, a brief introduction is given on the function of various classes of activating DAMPs and counterbalancing suppressing DAMPs (SAMPs) in initiating controlled inflammation-promoting and inflammation-resolving defense responses upon infectious and sterile insults. It is stressed that the excessive emission of DAMPs upon severe injury uncovers their fateful property in triggering dysregulated life-threatening hyperinflammatory responses. Such a scenario may happen when the viral load is too high, for example, in the respiratory tract, "forcing" many virus-infected host cells to decide to commit "suicidal" regulated cell death (e.g., necroptosis, pyroptosis) associated with release of large amounts of DAMPs: an important topic of this review. Ironically, although the aim of this "suicidal" cell death is to save and restore organismal homeostasis, the intrinsic release of excessive amounts of DAMPs leads to those dysregulated hyperinflammatory responses-as typically involved in the pathogenesis of acute respiratory distress syndrome and systemic inflammatory response syndrome in respiratory viral infections. Consequently, as briefly outlined in this review, these molecules can be considered valuable diagnostic and prognostic biomarkers to monitor and evaluate the course of the viral disorder, in particular, to grasp the eventual transition precociously from a controlled defense response as observed in mild/moderate cases to a dysregulated life-threatening hyperinflammatory response as seen, for example, in severe/fatal COVID-19. Moreover, the pathogenetic involvement of these molecules qualifies them as relevant future therapeutic targets to prevent severe/ fatal outcomes. Finally, a theory is presented proposing that the superimposition of coronavirus-induced DAMPs with non-virus-induced DAMPs from other origins such as air pollution or high age may contribute to severe and fatal courses of coronavirus pneumonia.
Collapse
Affiliation(s)
- Walter Gottlieb Land
- German Academy for Transplantation Medicine, Munich, Germany.
- Molecular ImmunoRheumatology, INSERM UMR_S1109, Laboratory of Excellence Transplantex, University of Strasbourg, Strasbourg, France.
| |
Collapse
|