51
|
Intercellular mitochondrial transfer as a means of tissue revitalization. Signal Transduct Target Ther 2021; 6:65. [PMID: 33589598 PMCID: PMC7884415 DOI: 10.1038/s41392-020-00440-z] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/04/2020] [Accepted: 11/24/2020] [Indexed: 01/31/2023] Open
Abstract
As the crucial powerhouse for cell metabolism and tissue survival, the mitochondrion frequently undergoes morphological or positional changes when responding to various stresses and energy demands. In addition to intracellular changes, mitochondria can also be transferred intercellularly. Besides restoring stressed cells and damaged tissues due to mitochondrial dysfunction, the intercellular mitochondrial transfer also occurs under physiological conditions. In this review, the phenomenon of mitochondrial transfer is described according to its function under both physiological and pathological conditions, including tissue homeostasis, damaged tissue repair, tumor progression, and immunoregulation. Then, the mechanisms that contribute to this process are summarized, such as the trigger factors and transfer routes. Furthermore, various perspectives are explored to better understand the mysteries of cell-cell mitochondrial trafficking. In addition, potential therapeutic strategies for mitochondria-targeted application to rescue tissue damage and degeneration, as well as the inhibition of tumor progression, are discussed.
Collapse
|
52
|
TSUBOI M, HIRABAYASHI Y. New insights into the regulation of synaptic transmission and plasticity by the endoplasmic reticulum and its membrane contacts. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:559-572. [PMID: 34897182 PMCID: PMC8687855 DOI: 10.2183/pjab.97.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 10/18/2021] [Indexed: 06/14/2023]
Abstract
Mammalian neurons are highly compartmentalized yet very large cells. To provide each compartment with its distinct properties, metabolic homeostasis and molecular composition need to be precisely coordinated in a compartment-specific manner. Despite the importance of the endoplasmic reticulum (ER) as a platform for various biochemical reactions, such as protein synthesis, protein trafficking, and intracellular calcium control, the contribution of the ER to neuronal compartment-specific functions and plasticity remains elusive. Recent advances in the development of live imaging and serial scanning electron microscopy (sSEM) analysis have revealed that the neuronal ER is a highly dynamic organelle with compartment-specific structures. sSEM studies also revealed that the ER forms contacts with other membranes, such as the mitochondria and plasma membrane, although little is known about the functions of these ER-membrane contacts. In this review, we discuss the mechanisms and physiological roles of the ER structure and ER-mitochondria contacts in synaptic transmission and plasticity, thereby highlighting a potential link between organelle ultrastructure and neuronal functions.
Collapse
Affiliation(s)
- Masafumi TSUBOI
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
53
|
Koppers M, Özkan N, Farías GG. Complex Interactions Between Membrane-Bound Organelles, Biomolecular Condensates and the Cytoskeleton. Front Cell Dev Biol 2020; 8:618733. [PMID: 33409284 PMCID: PMC7779554 DOI: 10.3389/fcell.2020.618733] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
Membrane-bound and membraneless organelles/biomolecular condensates ensure compartmentalization into functionally distinct units enabling proper organization of cellular processes. Membrane-bound organelles form dynamic contacts with each other to enable the exchange of molecules and to regulate organelle division and positioning in coordination with the cytoskeleton. Crosstalk between the cytoskeleton and dynamic membrane-bound organelles has more recently also been found to regulate cytoskeletal organization. Interestingly, recent work has revealed that, in addition, the cytoskeleton and membrane-bound organelles interact with cytoplasmic biomolecular condensates. The extent and relevance of these complex interactions are just beginning to emerge but may be important for cytoskeletal organization and organelle transport and remodeling. In this review, we highlight these emerging functions and emphasize the complex interplay of the cytoskeleton with these organelles. The crosstalk between membrane-bound organelles, biomolecular condensates and the cytoskeleton in highly polarized cells such as neurons could play essential roles in neuronal development, function and maintenance.
Collapse
Affiliation(s)
| | | | - Ginny G. Farías
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
54
|
Long RKM, Moriarty KP, Cardoen B, Gao G, Vogl AW, Jean F, Hamarneh G, Nabi IR. Super resolution microscopy and deep learning identify Zika virus reorganization of the endoplasmic reticulum. Sci Rep 2020; 10:20937. [PMID: 33262363 PMCID: PMC7708840 DOI: 10.1038/s41598-020-77170-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/28/2020] [Indexed: 01/08/2023] Open
Abstract
The endoplasmic reticulum (ER) is a complex subcellular organelle composed of diverse structures such as tubules, sheets and tubular matrices. Flaviviruses such as Zika virus (ZIKV) induce reorganization of ER membranes to facilitate viral replication. Here, using 3D super resolution microscopy, ZIKV infection is shown to induce the formation of dense tubular matrices associated with viral replication in the central ER. Viral non-structural proteins NS4B and NS2B associate with replication complexes within the ZIKV-induced tubular matrix and exhibit distinct ER distributions outside this central ER region. Deep neural networks trained to distinguish ZIKV-infected versus mock-infected cells successfully identified ZIKV-induced central ER tubular matrices as a determinant of viral infection. Super resolution microscopy and deep learning are therefore able to identify and localize morphological features of the ER and allow for better understanding of how ER morphology changes due to viral infection.
Collapse
Affiliation(s)
- Rory K M Long
- Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Kathleen P Moriarty
- School of Computing Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Ben Cardoen
- School of Computing Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Guang Gao
- Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - A Wayne Vogl
- Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - François Jean
- Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada. .,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Ghassan Hamarneh
- School of Computing Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| | - Ivan R Nabi
- Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada. .,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada. .,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
55
|
|
56
|
Dora M, Holcman D. Active flow network generates molecular transport by packets: case of the endoplasmic reticulum. Proc Biol Sci 2020; 287:20200493. [PMID: 32605515 DOI: 10.1098/rspb.2020.0493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biological networks are characterized by their connectivity and topology but also by their ability to transport materials. In the case of random transportation, the efficacy is measured by the time it takes to travel between two nodes of the network. We study here the consequences of a unidirectional transport mechanism occurring in the endoplasmic reticulum (ER) network, a structure present in the cell cytoplasm. This unidirectional transport mechanism is an active-waiting transportation, where molecules have to wait a random time before being transported from one node to the next one. We develop here a general theory of transport in an active network and find an unusual network transportation, where molecules group together in redundant packets instead of being disperse. Finally, the mean time to travel between two nodes of the ER is of the order of 20 min, but is reduced to 30 s when we consider the fastest particles because it uses optimal paths. To conclude, the present theory shows that unidirectional transport is an efficient and robust mechanism for fast molecular redistribution inside the ER.
Collapse
Affiliation(s)
- M Dora
- Group of Computational Biology, IBENS, Ecole Normale Supérieure-PSL, Paris, France
| | - D Holcman
- Group of Computational Biology, IBENS, Ecole Normale Supérieure-PSL, Paris, France.,DAMPT, University of Cambridge and Churchill College, CB30DS Cambridge, UK
| |
Collapse
|
57
|
Sahu A, Glisman A, Tchoufag J, Mandadapu KK. Geometry and dynamics of lipid membranes: The Scriven-Love number. Phys Rev E 2020; 101:052401. [PMID: 32575240 DOI: 10.1103/physreve.101.052401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
The equations governing lipid membrane dynamics in planar, spherical, and cylindrical geometries are presented here. Unperturbed and first-order perturbed equations are determined and nondimensionalized. In membrane systems with a nonzero base flow, perturbed in-plane and out-of-plane quantities are found to vary over different length scales. A new dimensionless number, named the Scriven-Love number, and the well-known Föppl-von Kármán number result from a scaling analysis. The Scriven-Love number compares out-of-plane forces arising from the in-plane, intramembrane viscous stresses to the familiar elastic bending forces, while the Föppl-von Kármán number compares tension to bending forces. Both numbers are calculated in past experimental works, and span a wide range of values in various biological processes across different geometries. In situations with large Scriven-Love and Föppl-von Kármán numbers, the dynamical response of a perturbed membrane is dominated by out-of-plane viscous and surface tension forces-with bending forces playing a negligible role. Calculations of non-negligible Scriven-Love numbers in various biological processes and in vitro experiments show in-plane intramembrane viscous flows cannot generally be ignored when analyzing lipid membrane behavior.
Collapse
Affiliation(s)
- Amaresh Sahu
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, California 94720, USA
| | - Alec Glisman
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, California 94720, USA
| | - Joël Tchoufag
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, California 94720, USA
| | - Kranthi K Mandadapu
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
58
|
Braun M, Lansky Z. Membrane Remodeling: Passive Crosslinkers Drive Membrane Tubulation. Curr Biol 2020; 30:R270-R272. [PMID: 32208151 DOI: 10.1016/j.cub.2020.01.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A new study has uncovered three mechanisms of motor-independent membrane tubulation. In vitro reconstitution using a minimal set of proteins shows that the accumulation of crosslinking proteins at the membrane-microtubule interface is sufficient to drive tubulation, which is enhanced by coupling with microtubule dynamics.
Collapse
Affiliation(s)
- Marcus Braun
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec 25250, Prague West, Czech Republic
| | - Zdenek Lansky
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec 25250, Prague West, Czech Republic.
| |
Collapse
|
59
|
Rodríguez-García R, Volkov VA, Chen CY, Katrukha EA, Olieric N, Aher A, Grigoriev I, López MP, Steinmetz MO, Kapitein LC, Koenderink G, Dogterom M, Akhmanova A. Mechanisms of Motor-Independent Membrane Remodeling Driven by Dynamic Microtubules. Curr Biol 2020; 30:972-987.e12. [PMID: 32032506 PMCID: PMC7090928 DOI: 10.1016/j.cub.2020.01.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/09/2019] [Accepted: 01/10/2020] [Indexed: 12/26/2022]
Abstract
Microtubule-dependent organization of membranous organelles occurs through motor-based pulling and by coupling microtubule dynamics to membrane remodeling. For example, tubules of endoplasmic reticulum (ER) can be extended by kinesin- and dynein-mediated transport and through the association with the tips of dynamic microtubules. The binding between ER and growing microtubule plus ends requires End Binding (EB) proteins and the transmembrane protein STIM1, which form a tip-attachment complex (TAC), but it is unknown whether these proteins are sufficient for membrane remodeling. Furthermore, EBs and their partners undergo rapid turnover at microtubule ends, and it is unclear how highly transient protein-protein interactions can induce load-bearing processive motion. Here, we reconstituted membrane tubulation in a minimal system with giant unilamellar vesicles, dynamic microtubules, an EB protein, and a membrane-bound protein that can interact with EBs and microtubules. We showed that these components are sufficient to drive membrane remodeling by three mechanisms: membrane tubulation induced by growing microtubule ends, motor-independent membrane sliding along microtubule shafts, and membrane pulling by shrinking microtubules. Experiments and modeling demonstrated that the first two mechanisms can be explained by adhesion-driven biased membrane spreading on microtubules. Optical trapping revealed that growing and shrinking microtubule ends can exert forces of ∼0.5 and ∼5 pN, respectively, through attached proteins. Rapidly exchanging molecules that connect membranes to dynamic microtubules can thus bear a sufficient load to induce membrane deformation and motility. Furthermore, combining TAC components and a membrane-attached kinesin in the same in vitro assays demonstrated that they can cooperate in promoting membrane tubule extension.
Collapse
Affiliation(s)
- Ruddi Rodríguez-García
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584, the Netherlands
| | - Vladimir A Volkov
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft 2629, the Netherlands
| | - Chiung-Yi Chen
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584, the Netherlands
| | - Eugene A Katrukha
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584, the Netherlands
| | - Natacha Olieric
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Amol Aher
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584, the Netherlands
| | - Ilya Grigoriev
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584, the Netherlands
| | | | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, Villigen 5232, Switzerland; University of Basel, Biozentrum, Klingelbergstrasse, Basel 4056, Switzerland
| | - Lukas C Kapitein
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584, the Netherlands
| | - Gijsje Koenderink
- Department of Living Matter, AMOLF, Science Park 104, Amsterdam 1098, the Netherlands
| | - Marileen Dogterom
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft 2629, the Netherlands.
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584, the Netherlands.
| |
Collapse
|
60
|
Fourriere L, Jimenez AJ, Perez F, Boncompain G. The role of microtubules in secretory protein transport. J Cell Sci 2020; 133:133/2/jcs237016. [PMID: 31996399 DOI: 10.1242/jcs.237016] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Microtubules are part of the dynamic cytoskeleton network and composed of tubulin dimers. They are the main tracks used in cells to organize organelle positioning and trafficking of cargos. In this Review, we compile recent findings on the involvement of microtubules in anterograde protein transport. First, we highlight the importance of microtubules in organelle positioning. Second, we discuss the involvement of microtubules within different trafficking steps, in particular between the endoplasmic reticulum and the Golgi complex, traffic through the Golgi complex itself and in post-Golgi processes. A large number of studies have assessed the involvement of microtubules in transport of cargo from the Golgi complex to the cell surface. We focus here on the role of kinesin motor proteins and protein interactions in post-Golgi transport, as well as the impact of tubulin post-translational modifications. Last, in light of recent findings, we highlight the role microtubules have in exocytosis, the final step of secretory protein transport, occurring close to focal adhesions.
Collapse
Affiliation(s)
- Lou Fourriere
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, CNRS UMR 144, Sorbonne Université, 75005 Paris, France
| | - Ana Joaquina Jimenez
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, CNRS UMR 144, Sorbonne Université, 75005 Paris, France
| | - Franck Perez
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, CNRS UMR 144, Sorbonne Université, 75005 Paris, France
| | - Gaelle Boncompain
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, CNRS UMR 144, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
61
|
Öztürk Z, O’Kane CJ, Pérez-Moreno JJ. Axonal Endoplasmic Reticulum Dynamics and Its Roles in Neurodegeneration. Front Neurosci 2020; 14:48. [PMID: 32116502 PMCID: PMC7025499 DOI: 10.3389/fnins.2020.00048] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
The physical continuity of axons over long cellular distances poses challenges for their maintenance. One organelle that faces this challenge is endoplasmic reticulum (ER); unlike other intracellular organelles, this forms a physically continuous network throughout the cell, with a single membrane and a single lumen. In axons, ER is mainly smooth, forming a tubular network with occasional sheets or cisternae and low amounts of rough ER. It has many potential roles: lipid biosynthesis, glucose homeostasis, a Ca2+ store, protein export, and contacting and regulating other organelles. This tubular network structure is determined by ER-shaping proteins, mutations in some of which are causative for neurodegenerative disorders such as hereditary spastic paraplegia (HSP). While axonal ER shares many features with the tubular ER network in other contexts, these features must be adapted to the long and narrow dimensions of axons. ER appears to be physically continuous throughout axons, over distances that are enormous on a subcellular scale. It is therefore a potential channel for long-distance or regional communication within neurons, independent of action potentials or physical transport of cargos, but involving its physiological roles such as Ca2+ or organelle homeostasis. Despite its apparent stability, axonal ER is highly dynamic, showing features like anterograde and retrograde transport, potentially reflecting continuous fusion and breakage of the network. Here we discuss the transport processes that must contribute to this dynamic behavior of ER. We also discuss the model that these processes underpin a homeostatic process that ensures both enough ER to maintain continuity of the network and repair breaks in it, but not too much ER that might disrupt local cellular physiology. Finally, we discuss how failure of ER organization in axons could lead to axon degenerative diseases, and how a requirement for ER continuity could make distal axons most susceptible to degeneration in conditions that disrupt ER continuity.
Collapse
Affiliation(s)
| | - Cahir J. O’Kane
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
62
|
Diaz U, Bergman ZJ, Johnson BM, Edington AR, de Cruz MA, Marshall WF, Riggs B. Microtubules are necessary for proper Reticulon localization during mitosis. PLoS One 2019; 14:e0226327. [PMID: 31877164 PMCID: PMC6932760 DOI: 10.1371/journal.pone.0226327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 11/25/2019] [Indexed: 01/04/2023] Open
Abstract
During mitosis, the structure of the Endoplasmic Reticulum (ER) displays a dramatic reorganization and remodeling, however, the mechanism driving these changes is poorly understood. Hairpin-containing ER transmembrane proteins that stabilize ER tubules have been identified as possible factors to promote these drastic changes in ER morphology. Recently, the Reticulon and REEP family of ER shaping proteins have been shown to heavily influence ER morphology by driving the formation of ER tubules, which are known for their close proximity with microtubules. Here, we examine the role of microtubules and other cytoskeletal factors in the dynamics of a Drosophila Reticulon, Reticulon-like 1 (Rtnl1), localization to spindle poles during mitosis in the early embryo. At prometaphase, Rtnl1 is enriched to spindle poles just prior to the ER retention motif KDEL, suggesting a possible recruitment role for Rtnl1 in the bulk localization of ER to spindle poles. Using image analysis-based methods and precise temporal injections of cytoskeletal inhibitors in the early syncytial Drosophila embryo, we show that microtubules are necessary for proper Rtnl1 localization to spindles during mitosis. Lastly, we show that astral microtubules, not microfilaments, are necessary for proper Rtnl1 localization to spindle poles, and is largely independent of the minus-end directed motor protein dynein. This work highlights the role of the microtubule cytoskeleton in Rtnl1 localization to spindles during mitosis and sheds light on a pathway towards inheritance of this major organelle.
Collapse
Affiliation(s)
- Ulises Diaz
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
- Department of Biochemistry & Biophysics, UCSF Mission Bay, San Francisco, California, United States of America
| | - Zane J. Bergman
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Brittany M. Johnson
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Alia R. Edington
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Matthew A. de Cruz
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Wallace F. Marshall
- Department of Biochemistry & Biophysics, UCSF Mission Bay, San Francisco, California, United States of America
| | - Blake Riggs
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
63
|
Vajente N, Norante R, Redolfi N, Daga A, Pizzo P, Pendin D. Microtubules Stabilization by Mutant Spastin Affects ER Morphology and Ca 2+ Handling. Front Physiol 2019; 10:1544. [PMID: 31920731 PMCID: PMC6933510 DOI: 10.3389/fphys.2019.01544] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/05/2019] [Indexed: 01/21/2023] Open
Abstract
The endoplasmic reticulum (ER) extends as a network of interconnected tubules and sheet-like structures in eukaryotic cells. ER tubules dynamically change their morphology and position within the cells in response to physiological stimuli and these network rearrangements depend on the microtubule (MT) cytoskeleton. Store-operated calcium entry (SOCE) relies on the repositioning of ER tubules to form specific ER-plasma membrane junctions. Indeed, the tips of polymerizing MTs are supposed to provide the anchor for ER tubules to move toward the plasma membrane, however the precise role of the cytoskeleton during SOCE has not been conclusively clarified. Here we exploit an in vivo approach involving the manipulation of MT dynamics in Drosophila melanogaster by neuronal expression of a dominant-negative variant of the MT-severing protein spastin to induce MT hyper-stabilization. We show that MT stabilization alters ER morphology, favoring an enrichment in ER sheets at the expense of tubules. Stabilizing MTs has a negative impact on the process of SOCE and results in a reduced ER Ca2+ content, affecting the flight ability of the flies. Restoring proper MT organization by administering the MT-destabilizing drug vinblastine, chronically or acutely, rescues ER morphology, SOCE and flight ability, indicating that MT dynamics impairment is responsible for all the phenotypes observed.
Collapse
Affiliation(s)
- Nicola Vajente
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Rosa Norante
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Nelly Redolfi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Andrea Daga
- Laboratory of Molecular Biology, Scientific Institute IRCCS E. Medea, Lecco, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Neuroscience Institute-Italian National Research Council (CNR), Padua, Italy
| | - Diana Pendin
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Neuroscience Institute-Italian National Research Council (CNR), Padua, Italy
| |
Collapse
|
64
|
Sicari D, Delaunay‐Moisan A, Combettes L, Chevet E, Igbaria A. A guide to assessing endoplasmic reticulum homeostasis and stress in mammalian systems. FEBS J 2019; 287:27-42. [DOI: 10.1111/febs.15107] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/10/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Daria Sicari
- Inserm U1242 University of Rennes France
- Centre de lutte contre le cancer Eugène Marquis Rennes France
| | - Agnès Delaunay‐Moisan
- Institute for Integrative Biology of the Cell (I2BC) CEA‐Saclay CNRS ISVJC/SBIGEM Laboratoire Stress Oxydant et Cancer Université Paris‐Saclay Gif‐sur‐Yvette France
| | - Laurent Combettes
- UMRS1174 Université Paris Sud Orsay France
- UMRS1174 Institut National de la Santé et de la Recherche Médicale (Inserm) Orsay France
| | - Eric Chevet
- Inserm U1242 University of Rennes France
- Centre de lutte contre le cancer Eugène Marquis Rennes France
| | - Aeid Igbaria
- Inserm U1242 University of Rennes France
- Centre de lutte contre le cancer Eugène Marquis Rennes France
| |
Collapse
|
65
|
Lee CA, Blackstone C. ER morphology and endo-lysosomal crosstalk: Functions and disease implications. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158544. [PMID: 31678515 DOI: 10.1016/j.bbalip.2019.158544] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 02/03/2023]
Abstract
The endoplasmic reticulum (ER) is a continuous endomembrane system comprising the nuclear envelope, ribosome-studded sheets, dense peripheral matrices, and an extensive polygonal network of interconnected tubules. In addition to performing numerous critical cellular functions, the ER makes extensive contacts with other organelles, including endosomes and lysosomes. The molecular and functional characterization of these contacts has advanced significantly over the past several years. These contacts participate in key functions such as cholesterol transfer, endosome tubule fission, and Ca2+ exchange. Disruption of key proteins at these sites can result in often severe diseases, particularly those affecting the nervous system.
Collapse
Affiliation(s)
- Crystal A Lee
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Craig Blackstone
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
66
|
|
67
|
Katz ZB, Zhang C, Quintana A, Lillemeier BF, Hogan PG. Septins organize endoplasmic reticulum-plasma membrane junctions for STIM1-ORAI1 calcium signalling. Sci Rep 2019; 9:10839. [PMID: 31346209 PMCID: PMC6658532 DOI: 10.1038/s41598-019-46862-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/28/2019] [Indexed: 12/21/2022] Open
Abstract
ORAI1 Ca2+ channels in the plasma membrane (PM) are gated by STIM1 at endoplasmic reticulum (ER)-PM junctions to effect store-dependent Ca2+ entry into cells, but little is known about how local STIM-ORAI signalling at junctions is coordinated with overall cellular architecture. Filamentous septins can specify cytoskeletal rearrangements and have been found recently to modulate STIM-ORAI signalling. Here we show by super-resolution imaging of ORAI1, STIM1, and septin 4 in living cells that septins facilitate Ca2+ signalling indirectly. Septin 4 does not colocalize preferentially with ORAI1 in resting or stimulated cells, assemble stably at ER-PM junctions, or specify a boundary that directs or confines ORAI1 to junctions. Rather, ORAI1 is recruited to junctions solely through interaction with STIM proteins, while septins regulate the number of ER-PM junctions and enhance STIM1-ORAI1 interactions within junctions. Thus septins communicate with STIM1 and ORAI1 through protein or lipid intermediaries, and are favorably positioned to coordinate Ca2+ signalling with rearrangements in cellular architecture.
Collapse
Affiliation(s)
- Zachary B Katz
- Division of Signalling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
- NOMIS Center for Immunobiology and Microbial Pathogenesis & Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Chen Zhang
- Division of Signalling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Ariel Quintana
- Division of Signalling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
- Translational Science Division, Clinical Science Department, Moffitt Cancer Center Magnolia Campus, Tampa, FL, 33612, USA
| | - Björn F Lillemeier
- NOMIS Center for Immunobiology and Microbial Pathogenesis & Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| | - Patrick G Hogan
- Division of Signalling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.
- Program in Immunology, University of California San Diego, La Jolla, CA, 92037, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
68
|
The architecture of cell differentiation in choanoflagellates and sponge choanocytes. PLoS Biol 2019; 17:e3000226. [PMID: 30978201 PMCID: PMC6481868 DOI: 10.1371/journal.pbio.3000226] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/24/2019] [Accepted: 03/27/2019] [Indexed: 11/19/2022] Open
Abstract
Although collar cells are conserved across animals and their closest relatives, the choanoflagellates, little is known about their ancestry, their subcellular architecture, or how they differentiate. The choanoflagellate Salpingoeca rosetta expresses genes necessary for animal development and can alternate between unicellular and multicellular states, making it a powerful model for investigating the origin of animal multicellularity and mechanisms underlying cell differentiation. To compare the subcellular architecture of solitary collar cells in S. rosetta with that of multicellular ‘rosette’ colonies and collar cells in sponges, we reconstructed entire cells in 3D through transmission electron microscopy on serial ultrathin sections. Structural analysis of our 3D reconstructions revealed important differences between single and colonial choanoflagellate cells, with colonial cells exhibiting a more amoeboid morphology consistent with higher levels of macropinocytotic activity. Comparison of multiple reconstructed rosette colonies highlighted the variable nature of cell sizes, cell–cell contact networks, and colony arrangement. Importantly, we uncovered the presence of elongated cells in some rosette colonies that likely represent a distinct and differentiated cell type, pointing toward spatial cell differentiation. Intercellular bridges within choanoflagellate colonies displayed a variety of morphologies and connected some but not all neighbouring cells. Reconstruction of sponge choanocytes revealed ultrastructural commonalities but also differences in major organelle composition in comparison to choanoflagellates. Together, our comparative reconstructions uncover the architecture of cell differentiation in choanoflagellates and sponge choanocytes and constitute an important step in reconstructing the cell biology of the last common ancestor of animals. 3D electron microscopy of choanoflagellates and sponge choanocytes reveals a remarkable variety of cell architecture and suggests that cell type differentiation may have been present in the stem lineage leading to the animals. Choanoflagellates are microscopic aquatic organisms that can alternate between single-celled and multicellular states, and sequencing of their genomes has revealed that choanoflagellates are the closest single-celled relatives of animals. Moreover, choanoflagellates are a form of ‘collar cell’—a cell type crowned by an array of finger-like microvilli and a single, whip-like flagellum. This cell type is also found throughout the animal kingdom; therefore, studying the structure of the choanoflagellate collar cell can shed light on how this cell type and animal multicellularity might have evolved. We used electron microscopy to reconstruct in 3D the total subcellular composition of single-celled and multicellular choanoflagellates as well as the collar cells from a marine sponge, which represents an early-branching animal lineage. We found differences between single-celled and multicellular choanoflagellates in structures associated with cellular energetics, membrane trafficking, and cell morphology. Likewise, we describe a complex system of cell–cell connections associated with multicellular choanoflagellates. Finally, comparison of choanoflagellates and sponge collar cells revealed subcellular differences associated with feeding and cellular energetics. Taken together, this study is an important step forward in reconstructing the biology of the last common ancestor of the animals.
Collapse
|
69
|
Fus F, Yang Y, Lee HZS, Top S, Carriere M, Bouron A, Pacureanu A, da Silva JC, Salmain M, Vessières A, Cloetens P, Jaouen G, Bohic S. Intracellular Localization of an Osmocenyl‐Tamoxifen Derivative in Breast Cancer Cells Revealed by Synchrotron Radiation X‐ray Fluorescence Nanoimaging. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812336] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Florin Fus
- EA 7442, Laboratoire Rayonnement Synchrotron et Recherche MédicaleUniversité Grenoble Alpes Grenoble France
- European Synchrotron Radiation FacilityID16A beamline, ESRF Grenoble France
| | - Yang Yang
- European Synchrotron Radiation FacilityID16A beamline, ESRF Grenoble France
| | | | - Siden Top
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie Moléculaire (IPCM) 75005 Paris France
| | - Marie Carriere
- Univ. Grenoble Grenoble AlpesCEACNRS, INAC-SyMMES, CIBEST 38000 Grenoble France
| | - Alexandre Bouron
- Laboratoire de Chimie et Biologie des Métaux, UMR CNRS 5249Université Grenoble Alpes, CEA, BIG Grenoble France
| | | | | | - Michèle Salmain
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie Moléculaire (IPCM) 75005 Paris France
| | - Anne Vessières
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie Moléculaire (IPCM) 75005 Paris France
| | - Peter Cloetens
- European Synchrotron Radiation FacilityID16A beamline, ESRF Grenoble France
| | - Gérard Jaouen
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie Moléculaire (IPCM) 75005 Paris France
- PSLChimie ParisTech 11 rue Pierre et Marie Curie 75005 Paris France
| | - Sylvain Bohic
- EA 7442, Laboratoire Rayonnement Synchrotron et Recherche MédicaleUniversité Grenoble Alpes Grenoble France
- European Synchrotron Radiation FacilityID16A beamline, ESRF Grenoble France
| |
Collapse
|
70
|
Fus F, Yang Y, Lee HZS, Top S, Carriere M, Bouron A, Pacureanu A, da Silva JC, Salmain M, Vessières A, Cloetens P, Jaouen G, Bohic S. Intracellular Localization of an Osmocenyl‐Tamoxifen Derivative in Breast Cancer Cells Revealed by Synchrotron Radiation X‐ray Fluorescence Nanoimaging. Angew Chem Int Ed Engl 2019; 58:3461-3465. [DOI: 10.1002/anie.201812336] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/09/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Florin Fus
- EA 7442, Laboratoire Rayonnement Synchrotron et Recherche MédicaleUniversité Grenoble Alpes Grenoble France
- European Synchrotron Radiation FacilityID16A beamline, ESRF Grenoble France
| | - Yang Yang
- European Synchrotron Radiation FacilityID16A beamline, ESRF Grenoble France
| | | | - Siden Top
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie Moléculaire (IPCM) 75005 Paris France
| | - Marie Carriere
- Univ. Grenoble Grenoble AlpesCEACNRS, INAC-SyMMES, CIBEST 38000 Grenoble France
| | - Alexandre Bouron
- Laboratoire de Chimie et Biologie des Métaux, UMR CNRS 5249Université Grenoble Alpes, CEA, BIG Grenoble France
| | | | | | - Michèle Salmain
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie Moléculaire (IPCM) 75005 Paris France
| | - Anne Vessières
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie Moléculaire (IPCM) 75005 Paris France
| | - Peter Cloetens
- European Synchrotron Radiation FacilityID16A beamline, ESRF Grenoble France
| | - Gérard Jaouen
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie Moléculaire (IPCM) 75005 Paris France
- PSLChimie ParisTech 11 rue Pierre et Marie Curie 75005 Paris France
| | - Sylvain Bohic
- EA 7442, Laboratoire Rayonnement Synchrotron et Recherche MédicaleUniversité Grenoble Alpes Grenoble France
- European Synchrotron Radiation FacilityID16A beamline, ESRF Grenoble France
| |
Collapse
|
71
|
Li S, Yan Z, Luo Z, Xu Y, Huang F, Zhang X, Yi X, Yue T. Mechanics of the Formation, Interaction, and Evolution of Membrane Tubular Structures. Biophys J 2019; 116:884-892. [PMID: 30795870 DOI: 10.1016/j.bpj.2019.01.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 01/07/2019] [Accepted: 01/29/2019] [Indexed: 01/27/2023] Open
Abstract
Membrane nanotubes, also known as membrane tethers, play important functional roles in many cellular processes, such as trafficking and signaling. Although considerable progresses have been made in understanding the physics regulating the mechanical behaviors of individual membrane nanotubes, relatively little is known about the formation of multiple membrane nanotubes due to the rapid occurring process involving strong cooperative effects and complex configurational transitions. By exerting a pair of external extraction upon two separate membrane regions, here, we combine molecular dynamics simulations and theoretical analysis to investigate how the membrane nanotube formation and pulling behaviors are regulated by the separation between the pulling forces and how the membrane protrusions interact with each other. As the force separation increases, different membrane configurations are observed, including an individual tubular protrusion, a relatively less deformed protrusion with two nanotubes on its top forming a V shape, a Y-shaped configuration through nanotube coalescence via a zipper-like mechanism, and two weakly interacting tubular protrusions. The energy profile as a function of the separation is determined. Moreover, the directional flow of lipid molecules accompanying the membrane shape transition is analyzed. Our results provide new, to our knowledge, insights at a molecular level into the interaction between membrane protrusions and help in understanding the formation and evolution of intra- and intercellular membrane tubular networks involved in numerous cell activities.
Collapse
Affiliation(s)
- Shixin Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, China
| | - Zengshuai Yan
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Zhen Luo
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Yan Xu
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, China
| | - Xin Yi
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China; Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, China.
| | - Tongtao Yue
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, China; Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, China.
| |
Collapse
|
72
|
Mather IH, Masedunskas A, Chen Y, Weigert R. Symposium review: Intravital imaging of the lactating mammary gland in live mice reveals novel aspects of milk-lipid secretion. J Dairy Sci 2019; 102:2760-2782. [PMID: 30471915 PMCID: PMC7094374 DOI: 10.3168/jds.2018-15459] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/21/2018] [Indexed: 12/22/2022]
Abstract
Milk fat comprises membrane-coated droplets of neutral lipid, which constitute the predominant source of lipids for survival of the suckling neonate. From the perspective of the dairy industry, they are the basis for the manufacture of butter and essential ingredients in the production of cheese, yogurt, and specialty dairy produce. To provide mechanistic insight into the assembly and secretion of lipid droplets during lactation, we developed novel intravital imaging techniques using transgenic mice, which express fluorescently tagged marker proteins. The number 4 mammary glands were surgically prepared under a deep plane of anesthesia and the exposed glands positioned as a skin flap with intact vascular supply on the stage of a laser-scanning confocal microscope. Lipid droplets were stained by prior exposure of the glands to hydrophobic fluorescent BODIPY (boron-dipyrromethene) dyes and their formation and secretion monitored by time-lapse subcellular microscopy over periods of 1 to 2 h. Droplets were transported to the cell apex by directed (superdiffusive) motion at relatively slow and intermittent rates (0-2 µm/min). Regardless of size, droplets grew by numerous fusion events during transport and as they were budding from the cell enveloped by apical membranes. Surprisingly, droplet secretion was not constitutive but required an injection of oxytocin to induce contraction of the myoepithelium with subsequent release of droplets into luminal spaces. These novel results are discussed in the context of the current paradigm for milk fat synthesis and secretion and as a template for future innovations in the dairy industry.
Collapse
Affiliation(s)
- Ian H Mather
- Department of Animal and Avian Sciences, University of Maryland, College Park 20742; National Cancer Institute and National Institute of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD 20892.
| | - Andrius Masedunskas
- National Cancer Institute and National Institute of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD 20892
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21205
| | - Roberto Weigert
- National Cancer Institute and National Institute of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
73
|
Farías GG, Fréal A, Tortosa E, Stucchi R, Pan X, Portegies S, Will L, Altelaar M, Hoogenraad CC. Feedback-Driven Mechanisms between Microtubules and the Endoplasmic Reticulum Instruct Neuronal Polarity. Neuron 2019; 102:184-201.e8. [PMID: 30772082 DOI: 10.1016/j.neuron.2019.01.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 11/29/2018] [Accepted: 01/15/2019] [Indexed: 12/20/2022]
Abstract
Establishment of neuronal polarity depends on local microtubule (MT) reorganization. The endoplasmic reticulum (ER) consists of cisternae and tubules and, like MTs, forms an extensive network throughout the entire cell. How the two networks interact and control neuronal development is an outstanding question. Here we show that the interplay between MTs and the ER is essential for neuronal polarity. ER tubules localize within the axon, whereas ER cisternae are retained in the somatodendritic domain. MTs are essential for axonal ER tubule stabilization, and, reciprocally, the ER is required for stabilizing and organizing axonal MTs. Recruitment of ER tubules into one minor neurite initiates axon formation, whereas ER retention in the perinuclear area or disruption of ER tubules prevent neuronal polarization. The ER-shaping protein P180, present in axonal ER tubules, controls axon specification by regulating local MT remodeling. We propose a model in which feedback-driven regulation between the ER and MTs instructs neuronal polarity.
Collapse
Affiliation(s)
- Ginny G Farías
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, the Netherlands.
| | - Amélie Fréal
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, the Netherlands
| | - Elena Tortosa
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, the Netherlands
| | - Riccardo Stucchi
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, the Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Xingxiu Pan
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, the Netherlands
| | - Sybren Portegies
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, the Netherlands
| | - Lena Will
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, the Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, the Netherlands.
| |
Collapse
|
74
|
Wang Z, Yin F, Xu J, Zhang T, Wang G, Mao M, Wang Z, Sun W, Han J, Yang M, Jiang Y, Hua Y, Cai Z. CYT997(Lexibulin) induces apoptosis and autophagy through the activation of mutually reinforced ER stress and ROS in osteosarcoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:44. [PMID: 30704503 PMCID: PMC6357486 DOI: 10.1186/s13046-019-1047-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 01/16/2019] [Indexed: 11/18/2022]
Abstract
Background Osteosarcoma (OS) is a common malignant cancer in children and adolescents and has a cure rate that has not improved in the last two decades. CYT997 (lexibulin) is a novel potent microtubule-targeting agent with various anticancer activities, such as proliferation inhibition, vascular disruption, and cell cycle arrest and apoptosis induction, in multiple cancers. However, the direct cytotoxic mechanisms of CYT997 have not yet been fully characterized. Methods We evaluated apoptosis and autophagy in human osteosarcomas after treatment with CYT997 and investigated the underlying mechanisms. To explore relationships, we used the reactive oxygen species (ROS) scavenger N-acetyl cysteine (NAC), PERK inhibitor GSK2606414, ERO1 inhibitor EN460 and mitochondrial targeted protection peptide elamipretide. BALB/c-nu mice were inoculated with 143B tumor cells to investigate the in vivo effect of CYT997. Results We explored the efficacy and mechanism of CYT997 in osteosarcoma (OS) in vitro and in vivo and demonstrated that CYT997 potently suppresses cell viability and induces apoptosis and autophagy. CYT997 triggered production of ROS and exerted lethal effects via endoplasmic reticulum (ER) stress in OS cells. NAC attenuated these effects. The PERK inhibitor GSK2606414, which can block the ER stress pathway, reduced ROS production and enhanced cell viability. Moreover, activation of ERO1 in the ER stress pathway was responsible for inducing ROS production. ROS produced by the mitochondrial pathway also aggravate ER stress. Protection of mitochondria can reduce apoptosis and autophagy. Finally, CYT997 prominently reduced tumor growth in vivo. Conclusions This study suggests that CYT997 induces apoptosis and autophagy in OS cells by triggering mutually enhanced ER stress and ROS and may thus be a promising agent against OS. Electronic supplementary material The online version of this article (10.1186/s13046-019-1047-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zongyi Wang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China
| | - Fei Yin
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China
| | - Jing Xu
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China
| | - Tao Zhang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China
| | - Gangyang Wang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China
| | - Ming Mao
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China
| | - Zhuoying Wang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China
| | - Wei Sun
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China
| | - Jing Han
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China
| | - Mengkai Yang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China
| | - Yafei Jiang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China
| | - Yingqi Hua
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China.
| | - Zhengdong Cai
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China.
| |
Collapse
|
75
|
Wang N, Rapoport TA. Reconstituting the reticular ER network - mechanistic implications and open questions. J Cell Sci 2019; 132:132/4/jcs227611. [PMID: 30670475 DOI: 10.1242/jcs.227611] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The endoplasmic reticulum (ER) is a major membrane-bound organelle in all eukaryotic cells. This organelle comprises morphologically distinct domains, including the nuclear envelope and peripheral sheets and tubules. The tubules are connected by three-way junctions into a network. Several membrane proteins have been implicated in network formation; curvature-stabilizing proteins generate the tubules themselves, and membrane-anchored GTPases fuse tubules into a network. Recent experiments have shown that a tubular network can be formed with reconstituted proteoliposomes containing the yeast membrane-fusing GTPase Sey1 and a curvature-stabilizing protein of either the reticulon or REEP protein families. The network forms in the presence of GTP and is rapidly disassembled when GTP hydrolysis of Sey1 is inhibited, indicating that continuous membrane fusion is required for its maintenance. Atlastin, the ortholog of Sey1 in metazoans, forms a network on its own, serving both as a fusion and curvature-stabilizing protein. These results show that the reticular ER can be generated by a surprisingly small set of proteins, and represents an energy-dependent steady state between formation and disassembly. Models for the molecular mechanism by which curvature-stabilizing proteins cooperate with fusion GTPases to form a reticular network have been proposed, but many aspects remain speculative, including the function of additional proteins, such as the lunapark protein, and the mechanism by which the ER interacts with the cytoskeleton. How the nuclear envelope and peripheral ER sheets are formed remain major unresolved questions in the field. Here, we review reconstitution experiments with purified curvature-stabilizing proteins and fusion GTPases, discuss mechanistic implications and point out open questions.
Collapse
Affiliation(s)
- Ning Wang
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA
| | - Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA
| |
Collapse
|
76
|
Schroeder LK, Barentine AES, Merta H, Schweighofer S, Zhang Y, Baddeley D, Bewersdorf J, Bahmanyar S. Dynamic nanoscale morphology of the ER surveyed by STED microscopy. J Cell Biol 2019; 218:83-96. [PMID: 30442642 PMCID: PMC6314542 DOI: 10.1083/jcb.201809107] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 01/21/2023] Open
Abstract
The endoplasmic reticulum (ER) is composed of interconnected membrane sheets and tubules. Superresolution microscopy recently revealed densely packed, rapidly moving ER tubules mistaken for sheets by conventional light microscopy, highlighting the importance of revisiting classical views of ER structure with high spatiotemporal resolution in living cells. In this study, we use live-cell stimulated emission depletion (STED) microscopy to survey the architecture of the ER at 50-nm resolution. We determine the nanoscale dimensions of ER tubules and sheets for the first time in living cells. We demonstrate that ER sheets contain highly dynamic, subdiffraction-sized holes, which we call nanoholes, that coexist with uniform sheet regions. Reticulon family members localize to curved edges of holes within sheets and are required for their formation. The luminal tether Climp63 and microtubule cytoskeleton modulate their nanoscale dynamics and organization. Thus, by providing the first quantitative analysis of ER membrane structure and dynamics at the nanoscale, our work reveals that the ER in living cells is not limited to uniform sheets and tubules; instead, we suggest the ER contains a continuum of membrane structures that includes dynamic nanoholes in sheets as well as clustered tubules.
Collapse
Affiliation(s)
- Lena K Schroeder
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT
| | - Andrew E S Barentine
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT.,Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Holly Merta
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT
| | - Sarah Schweighofer
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT
| | - Yongdeng Zhang
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT
| | - David Baddeley
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT.,Nanobiology Institute, Yale University, West Haven, CT.,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Joerg Bewersdorf
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT .,Department of Biomedical Engineering, Yale University, New Haven, CT.,Nanobiology Institute, Yale University, West Haven, CT
| | - Shirin Bahmanyar
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT
| |
Collapse
|
77
|
Avci D, Malchus NS, Heidasch R, Lorenz H, Richter K, Neßling M, Lemberg MK. The intramembrane protease SPP impacts morphology of the endoplasmic reticulum by triggering degradation of morphogenic proteins. J Biol Chem 2018; 294:2786-2800. [PMID: 30578301 DOI: 10.1074/jbc.ra118.005642] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/12/2018] [Indexed: 11/06/2022] Open
Abstract
The endoplasmic reticulum (ER), as a multifunctional organelle, plays crucial roles in lipid biosynthesis and calcium homeostasis as well as the synthesis and folding of secretory and membrane proteins. Therefore, it is of high importance to maintain ER homeostasis and to adapt ER function and morphology to cellular needs. Here, we show that signal peptide peptidase (SPP) modulates the ER shape through degradation of morphogenic proteins. Elevating SPP activity induces rapid rearrangement of the ER and formation of dynamic ER clusters. Inhibition of SPP activity rescues the phenotype without the need for new protein synthesis, and this rescue depends on a pre-existing pool of proteins in the Golgi. With the help of organelle proteomics, we identified certain membrane proteins to be diminished upon SPP expression and further show that the observed morphology changes depend on SPP-mediated cleavage of ER morphogenic proteins, including the SNARE protein syntaxin-18. Thus, we suggest that SPP-mediated protein abundance control by a regulatory branch of ER-associated degradation (ERAD-R) has a role in shaping the early secretory pathway.
Collapse
Affiliation(s)
- Dönem Avci
- From the Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany and
| | - Nicole S Malchus
- From the Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany and
| | - Ronny Heidasch
- From the Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany and
| | - Holger Lorenz
- From the Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany and
| | - Karsten Richter
- German Cancer Research Center (DKFZ), Central Unit Electron Microscopy, 69120 Heidelberg, Germany
| | - Michelle Neßling
- German Cancer Research Center (DKFZ), Central Unit Electron Microscopy, 69120 Heidelberg, Germany
| | - Marius K Lemberg
- From the Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany and
| |
Collapse
|
78
|
Schrod N, Vanhecke D, Laugks U, Stein V, Fukuda Y, Schaffer M, Baumeister W, Lucic V. Pleomorphic linkers as ubiquitous structural organizers of vesicles in axons. PLoS One 2018; 13:e0197886. [PMID: 29864134 PMCID: PMC5986143 DOI: 10.1371/journal.pone.0197886] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/10/2018] [Indexed: 11/30/2022] Open
Abstract
Many cellular processes depend on a precise structural organization of molecular components. Here, we established that neurons grown in culture provide a suitable system for in situ structural investigations of cellular structures by cryo-electron tomography, a method that allows high resolution, three-dimensional imaging of fully hydrated, vitrified cellular samples. A higher level of detail of cellular components present in our images allowed us to quantitatively characterize presynaptic and cytoskeletal organization, as well as structures involved in axonal transport and endocytosis. In this way we provide a structural framework into which information from other methods need to fit. Importantly, we show that short pleomorphic linkers (tethers and connectors) extensively interconnect different types of spherical vesicles and other lipid membranes in neurons imaged in a close-to-native state. These linkers likely serve to organize and precisely position vesicles involved in endocytosis, axonal transport and synaptic release. Hence, structural interactions via short linkers may serve as ubiquitous vesicle organizers in neuronal cells.
Collapse
Affiliation(s)
- Nikolas Schrod
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Germany
| | - Dimitri Vanhecke
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Germany
| | - Ulrike Laugks
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Germany
| | - Valentin Stein
- Institute of Physiology II, University of Bonn, Bonn, Germany
| | - Yoshiyuki Fukuda
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Germany
| | - Miroslava Schaffer
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Germany
| | - Wolfgang Baumeister
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Germany
| | - Vladan Lucic
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Germany
| |
Collapse
|
79
|
Easton JA, Albuloushi AK, Kamps MAF, Brouns GHMR, Broers JLV, Coull BJ, Oji V, van Geel M, van Steensel MAM, Martin PE. A rare missense mutation in GJB3
(Cx31G45E) is associated with a unique cellular phenotype resulting in necrotic cell death. Exp Dermatol 2018; 28:1106-1113. [DOI: 10.1111/exd.13542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Jennifer A. Easton
- Department of Dermatology; Maastricht University Medical Centre; Maastricht The Netherlands
- GROW School for Oncology and Developmental Biology; Maastricht University; Maastricht The Netherlands
| | - Ahmad K. Albuloushi
- Department of Life Sciences; School of Health and Life Sciences; Glasgow Caledonian University; Glasgow UK
| | - Miriam A. F. Kamps
- Department of Dermatology; Maastricht University Medical Centre; Maastricht The Netherlands
- GROW School for Oncology and Developmental Biology; Maastricht University; Maastricht The Netherlands
- Department of Genetics and Cell Biology; Maastricht University; Maastricht The Netherlands
| | - Gladys H. M. R. Brouns
- Department of Dermatology; Maastricht University Medical Centre; Maastricht The Netherlands
| | - Jos L. V. Broers
- GROW School for Oncology and Developmental Biology; Maastricht University; Maastricht The Netherlands
- Department of Genetics and Cell Biology; Maastricht University; Maastricht The Netherlands
| | - Barry J. Coull
- Department of Dermatology; Maastricht University Medical Centre; Maastricht The Netherlands
- Division of Biological Chemistry and Drug Discovery; College of Life Sciences; University of Dundee; Dundee UK
| | - Vincent Oji
- Department of Dermatology; University Hospital Münster; Münster Germany
| | - Michel van Geel
- Department of Dermatology; Maastricht University Medical Centre; Maastricht The Netherlands
- GROW School for Oncology and Developmental Biology; Maastricht University; Maastricht The Netherlands
| | - Maurice A. M. van Steensel
- Department of Dermatology; Maastricht University Medical Centre; Maastricht The Netherlands
- GROW School for Oncology and Developmental Biology; Maastricht University; Maastricht The Netherlands
- Skin Research Institute of Singapore; Institute of Medical Biology, Immunos; Singapore
| | - Patricia E. Martin
- Department of Life Sciences; School of Health and Life Sciences; Glasgow Caledonian University; Glasgow UK
| |
Collapse
|
80
|
Kalthur G, Salian SR, Nair R, Mathew J, Adiga SK, Kalthur SG, Zeegers D, Hande MP. Distribution pattern of cytoplasmic organelles, spindle integrity, oxidative stress, octamer-binding transcription factor 4 (Oct4) expression and developmental potential of oocytes following multiple superovulation. Reprod Fertil Dev 2018; 28:2027-2038. [PMID: 26173898 DOI: 10.1071/rd15184] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 06/09/2015] [Indexed: 11/23/2022] Open
Abstract
The aim of the present study was to determine the effects of repeated superovulation on oocyte quality and embryo developmental potential. Female Swiss albino mice were injected with 5IU pregnant mare's serum gonadotropin followed 48h by 10IU human chorionic gonadotropin. Mice were superovulated up to four times with a gap of 7 days between each superovulation cycle. Ovarian weight increased significantly with an increasing number of superovulation cycles. Although the first stimulation cycle resulted in a threefold increase in the number of oocytes, the number of oocytes decreased gradually after subsequent stimulations. Increased cytoplasmic fragmentation, abnormal mitochondrial distribution, aggregation of Golgi apparatus, spindle damage, increased intracellular oxidative stress and a decrease in expression of octamer-binding transcription factor 4 (Oct4) expression were observed in these oocytes. Further, embryos derived from mice subjected to multiple stimulation cycles exhibited a low blastocyst rate, decreased hatching rate and increased apoptosis in blastocysts. In conclusion, the present study demonstrates that repeated superovulation adversely affects mouse oocyte quality by altering the distribution of cytoplasmic organelles, increasing oxidative stress and decreasing Oct4 expression, resulting in poor developmental potential of the embryos.
Collapse
Affiliation(s)
- Guruprasad Kalthur
- Division of Clinical Embryology, Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal, 576104, India
| | - Sujith Raj Salian
- Division of Clinical Embryology, Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal, 576104, India
| | - Ramya Nair
- Division of Clinical Embryology, Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal, 576104, India
| | - Jemey Mathew
- Division of Clinical Embryology, Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal, 576104, India
| | - Satish Kumar Adiga
- Division of Clinical Embryology, Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal, 576104, India
| | | | - Dimphy Zeegers
- Genome Stability Laboratory, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - M Prakash Hande
- Genome Stability Laboratory, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| |
Collapse
|
81
|
Schmidt A, Grosshans J. Dynamics of cortical domains in early Drosophila development. J Cell Sci 2018; 131:131/7/jcs212795. [DOI: 10.1242/jcs.212795] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT
Underlying the plasma membrane of eukaryotic cells is an actin cortex that includes actin filaments and associated proteins. A special feature of all polarized and epithelial cells are cortical domains, each of which is characterized by specific sets of proteins. Typically, an epithelial cell contains apical, subapical, lateral and basal domains. The domain-specific protein sets contain evolutionarily conserved proteins, as well as cell-type-specific factors. Among the conserved proteins are, the Par proteins, Crumbs complex and the lateral proteins Scribbled and Discs large 1. Organization of the plasma membrane into cortical domains is dynamic and depends on cell type, differentiation and developmental stage. The dynamics of cortical organization is strikingly visible in early Drosophila embryos, which increase the number of distinct cortical domains from one, during the pre-blastoderm stage, to two in syncytial blastoderm embryos, before finally acquiring the four domains that are typical for epithelial cells during cellularization. In this Review, we will describe the dynamics of cortical organization in early Drosophila embryos and discuss the processes and mechanisms underlying cortical remodeling.
Collapse
Affiliation(s)
- Anja Schmidt
- Institute for Developmental Biochemistry, Medical School, University of Göttingen, 37077 Göttingen, Germany
| | - Jörg Grosshans
- Institute for Developmental Biochemistry, Medical School, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
82
|
Nicotine Modulates Mitochondrial Dynamics in Hippocampal Neurons. Mol Neurobiol 2018; 55:8965-8977. [PMID: 29619740 DOI: 10.1007/s12035-018-1034-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/23/2018] [Indexed: 01/08/2023]
Abstract
Mitochondria are widely recognized as fundamental organelles for cellular physiology and constitute the main energy source for different cellular processes. The location, morphology, and interactions of mitochondria with other organelles, such as the endoplasmic reticulum (ER), have emerged as critical events capable of determining cellular fate. Mitochondria-related functions have proven particularly relevant in neurons; mitochondria are necessary for proper neuronal morphogenesis and the highly energy-demanding synaptic transmission process. Mitochondrial health depends on balanced fusion-fission events, termed mitochondrial dynamics, to repair damaged organelles and/or improve the quality of mitochondrial function, ATP production, calcium homeostasis, and apoptosis, which represent some mitochondrial functions closely related to mitochondrial dynamics. Several neurodegenerative disorders, such as Alzheimer's, Parkinson's, and Huntington's diseases, have been correlated with severe mitochondrial dysfunction. In this regard, nicotine, which has been associated with relevant neuroprotective effects mainly through activation of the nicotinic acetylcholine receptor (nAChR), exerts its effects at least in part by acting directly on mitochondrial physiology and morphology. Additionally, a recent description of mitochondrial nAChR localization suggests a nicotine-dependent mitochondrial function. In the present work, we evaluated in cultured hipocampal neurons the effects of nicotine on mitochondrial dynamics by assessing mitochondrial morphology, membrane potential, as well as interactions between mitochondria, cytoskeleton and IP3R, levels of the cofactor PGC-1α, and fission-fusion-related proteins. Our results suggest that nicotine modulates mitochondrial dynamics and influences mitochondrial association from microtubules, increasing IP3 receptor clustering showing modulation between mitochondria-ER communications, together with the increase of mitochondrial biogenesis.
Collapse
|
83
|
Choudhary V, Golani G, Joshi AS, Cottier S, Schneiter R, Prinz WA, Kozlov MM. Architecture of Lipid Droplets in Endoplasmic Reticulum Is Determined by Phospholipid Intrinsic Curvature. Curr Biol 2018. [PMID: 29526591 DOI: 10.1016/j.cub.2018.02.020] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Lipid droplets (LDs) store fats and play critical roles in lipid and energy homeostasis. They form between the leaflets of the endoplasmic reticulum (ER) membrane and consist of a neutral lipid core wrapped in a phospholipid monolayer with proteins. Two types of ER-LD architecture are thought to exist and be essential for LD functioning. Maturing LDs either emerge from the ER into the cytoplasm, remaining attached to the ER by a narrow membrane neck, or stay embedded in the ER and are surrounded by ER membrane. Here, we identify a lipid-based mechanism that controls which of these two architectures is favored. Theoretical modeling indicated that the intrinsic molecular curvatures of ER phospholipids can determine whether LDs remain embedded in or emerge from the ER; lipids with negative intrinsic curvature such as diacylglycerol (DAG) and phosphatidylethanolamine favor LD embedding, while those with positive intrinsic curvature, like lysolipids, support LD emergence. This prediction was verified by altering the lipid composition of the ER in S. cerevisiae using mutants and the addition of exogenous lipids. We found that fat-storage-inducing transmembrane protein 2 (FIT2) homologs become enriched at sites of LD generation when biogenesis is induced. DAG accumulates at sites of LD biogenesis, and FIT2 proteins may promote LD emergence from the ER by reducing DAG levels at these sites. Altogether, our findings suggest that cells regulate LD integration in the ER by modulating ER lipid composition, particularly at sites of LD biogenesis and that FIT2 proteins may play a central role in this process.
Collapse
Affiliation(s)
- Vineet Choudhary
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Gonen Golani
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Amit S Joshi
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Stéphanie Cottier
- Division of Biochemistry, Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Roger Schneiter
- Division of Biochemistry, Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - William A Prinz
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| | - Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel.
| |
Collapse
|
84
|
Suzuki R, Nishii I, Okada S, Noguchi T. 3D reconstruction of endoplasmic reticulum in a hydrocarbon-secreting green alga, Botryococcus braunii (Race B). PLANTA 2018; 247:663-677. [PMID: 29164368 DOI: 10.1007/s00425-017-2811-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/09/2017] [Indexed: 06/07/2023]
Abstract
Based on 3D sections through cells of Botryococcus braunii, the structure of three domains of endoplasmic reticulum, and their spatial and functional relationships to other organelles are clarified. Oil production by photosynthetic microalgae has attracted attention since these oils can be converted into renewable, carbon-neutral fuels. The green alga B. braunii accumulates large amounts of hydrocarbons, 30-50% of cell dry weight, in extracellular spaces rather than its cytoplasm. To advance the knowledge of hydrocarbon biosynthesis and transport pathways in this alga, we utilized transmission EM combined with rapid freezing and image reconstruction. We constructed detailed 3D maps distinguishing three ER domains: rdER with ribosomes on both sides, rsER with ribosomes on one side, and sER without ribosomes. The rsER and sER domains were especially prominent during the oil body formation and oil secretion stages. The ER contacted the chloroplasts, oil bodies, or plasma membrane via the rsER domains, oriented with the ribosome-free surface facing the organelles. We discuss the following transport pathway for hydrocarbons and their precursors in the cytoplasm: chloroplast → endoplasmic reticulum (ER) → oil bodies → ER → plasma membrane → secretion. This study represents the first 3D study of the three-domain classification (rdER, rsER and sER) of the ER network among eukaryotic cells. Finally, we propose the novel features of the ERs in plant cells that are distinct from the latest proposed model for the ERs in mammalian cells.
Collapse
Affiliation(s)
- Reiko Suzuki
- Nara Women's University, Kitauoya-nishimachi, Nara, 630-8506, Japan
- JST, CREST, 5 Sanbancho, Chiyoda, Tokyo, 102-0075, Japan
| | - Ichiro Nishii
- Department of Biological Sciences, Faculty of Science, Nara Women's University, Kitauoya-nishimachi, Nara, 630-8506, Japan
- JST, CREST, 5 Sanbancho, Chiyoda, Tokyo, 102-0075, Japan
| | - Shigeru Okada
- Department of Aquatic Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
- JST, CREST, 5 Sanbancho, Chiyoda, Tokyo, 102-0075, Japan
| | - Tetsuko Noguchi
- Nara Women's University, Kitauoya-nishimachi, Nara, 630-8506, Japan.
- JST, CREST, 5 Sanbancho, Chiyoda, Tokyo, 102-0075, Japan.
| |
Collapse
|
85
|
Terasaki M. Axonal endoplasmic reticulum is very narrow. J Cell Sci 2018; 131:jcs.210450. [PMID: 29361544 DOI: 10.1242/jcs.210450] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/02/2018] [Indexed: 12/20/2022] Open
Abstract
The endoplasmic reticulum (ER) is an interconnected network of tubules and sheets. In most tissues of the body, ER tubules have a diameter of ∼60 nm. Using new methods for serial-section electron microscopy, a distinct class of very narrow, 20- to 30-nm-diameter tubules were found in neurons of both the central and peripheral nervous system. The narrow tubules appear to be the most abundant form of ER in axons, and are also found interspersed in the cell bodies and dendrites. At the site of branch points, there is a small sheet that has a similarly narrow lumen. The narrowness of the ER is likely to be important for the as yet poorly characterized functions of the axonal ER.
Collapse
Affiliation(s)
- Mark Terasaki
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
86
|
Microparticle Assembly Pathways on Lipid Membranes. Biophys J 2017; 113:1037-1046. [PMID: 28877487 DOI: 10.1016/j.bpj.2017.07.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/25/2017] [Accepted: 07/31/2017] [Indexed: 11/20/2022] Open
Abstract
Understanding interactions between microparticles and lipid membranes is of increasing importance, especially for unraveling the influence of microplastics on our health and environment. Here, we study how a short-ranged adhesive force between microparticles and model lipid membranes causes membrane-mediated particle assembly. Using confocal microscopy, we observe the initial particle attachment to the membrane, then particle wrapping, and in rare cases spontaneous membrane tubulation. In the attached state, we measure that the particle mobility decreases by 26%. If multiple particles adhere to the same vesicle, their initial single-particle state determines their interactions and subsequent assembly pathways: 1) attached particles only aggregate when small adhesive vesicles are present in solution, 2) wrapped particles reversibly attract one another by membrane deformation, and 3) a combination of wrapped and attached particles form membrane-mediated dimers, which further assemble into a variety of complex structures. The experimental observation of distinct assembly pathways, induced only by a short-ranged membrane-particle adhesion, shows that a cytoskeleton or other active components are not required for microparticle aggregation. We suggest that this membrane-mediated microparticle aggregation is a reason behind reported long retention times of polymer microparticles in organisms.
Collapse
|
87
|
Sec61β facilitates the maintenance of endoplasmic reticulum homeostasis by associating microtubules. Protein Cell 2017; 9:616-628. [PMID: 29168059 PMCID: PMC6019657 DOI: 10.1007/s13238-017-0492-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/13/2017] [Indexed: 10/25/2022] Open
Abstract
Sec61β, a subunit of the Sec61 translocon complex, is not essential in yeast and commonly used as a marker of endoplasmic reticulum (ER). In higher eukaryotes, such as Drosophila, deletion of Sec61β causes lethality, but its physiological role is unclear. Here, we show that Sec61β interacts directly with microtubules. Overexpression of Sec61β containing small epitope tags, but not a RFP tag, induces dramatic bundling of the ER and microtubule. A basic region in the cytosolic domain of Sec61β is critical for microtubule association. Depletion of Sec61β induces ER stress in both mammalian cells and Caenorhabditis elegans, and subsequent restoration of ER homeostasis correlates with the microtubule binding ability of Sec61β. Loss of Sec61β causes increased mobility of translocon complexes and reduced level of membrane-bound ribosomes. These results suggest that Sec61β may stabilize protein translocation by linking translocon complex to microtubule and provide insight into the physiological function of ER-microtubule interaction.
Collapse
|
88
|
Abstract
Lipid membrane nanotubes are abundant in living cells, even though tubules are energetically less stable than sheet-like structures. According to membrane elastic theory, the tubular endoplasmic reticulum (ER), with its high area-to-volume ratio, appears to be particularly unstable. We explore how tubular membrane structures can nevertheless be induced and why they persist. In Monte Carlo simulations of a fluid-elastic membrane model subject to thermal fluctuations and without constraints on symmetry, we find that a steady increase in the area-to-volume ratio readily induces tubular structures. In simulations mimicking the ER wrapped around the cell nucleus, tubules emerge naturally as the membrane area increases. Once formed, a high energy barrier separates tubules from the thermodynamically favored sheet-like membrane structures. Remarkably, this barrier persists even at large area-to-volume ratios, protecting tubules against shape transformations despite enormous driving forces toward sheet-like structures. Molecular dynamics simulations of a molecular membrane model confirm the metastability of tubular structures. Volume reduction by osmotic regulation and membrane area growth by lipid production and by fusion of small vesicles emerge as powerful factors in the induction and stabilization of tubular membrane structures.
Collapse
Affiliation(s)
- Amir Houshang Bahrami
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics , Max-von-Laue Str. 3, 60438 Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics , Max-von-Laue Str. 3, 60438 Frankfurt am Main, Germany
- Institute for Biophysics, Goethe University Frankfurt , 60438 Frankfurt am Main, Germany
| |
Collapse
|
89
|
Parker AL, Teo WS, McCarroll JA, Kavallaris M. An Emerging Role for Tubulin Isotypes in Modulating Cancer Biology and Chemotherapy Resistance. Int J Mol Sci 2017; 18:ijms18071434. [PMID: 28677634 PMCID: PMC5535925 DOI: 10.3390/ijms18071434] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 06/24/2017] [Accepted: 06/27/2017] [Indexed: 12/19/2022] Open
Abstract
Tubulin proteins, as components of the microtubule cytoskeleton perform critical cellular functions throughout all phases of the cell cycle. Altered tubulin isotype composition of microtubules is emerging as a feature of aggressive and treatment refractory cancers. Emerging evidence highlighting a role for tubulin isotypes in differentially influencing microtubule behaviour and broader functional networks within cells is illuminating a complex role for tubulin isotypes regulating cancer biology and chemotherapy resistance. This review focuses on the role of different tubulin isotypes in microtubule dynamics as well as in oncogenic changes that provide a survival or proliferative advantage to cancer cells within the tumour microenvironment and during metastatic processes. Consideration of the role of tubulin isotypes beyond their structural function will be essential to improving the current clinical use of tubulin-targeted chemotherapy agents and informing the development of more effective cancer therapies.
Collapse
Affiliation(s)
- Amelia L Parker
- Tumour Biology and Targeting, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia.
- Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Wee Siang Teo
- Tumour Biology and Targeting, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia.
- Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Joshua A McCarroll
- Tumour Biology and Targeting, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia.
- Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Maria Kavallaris
- Tumour Biology and Targeting, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia.
- Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
90
|
Eritano AS, Altamirano A, Beyeler S, Gaytan N, Velasquez M, Riggs B. The endoplasmic reticulum is partitioned asymmetrically during mitosis before cell fate selection in proneuronal cells in the early Drosophila embryo. Mol Biol Cell 2017; 28:1530-1538. [PMID: 28381427 PMCID: PMC5449151 DOI: 10.1091/mbc.e16-09-0690] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 11/19/2022] Open
Abstract
In the early Drosophila embryo, epithelial cells begin to adopt a cell fate. At gastrulation, there is an asymmetric partitioning of the endoplasmic reticulum in a symmetrically dividing cell population before cell fate selection. These results highlight the changes in organelle distribution before asymmetric divisions. Asymmetric cell division is the primary mechanism to generate cellular diversity, and it relies on the correct partitioning of cell fate determinants. However, the mechanism by which these determinants are delivered and positioned is poorly understood, and the upstream signal to initiate asymmetric cell division is unknown. Here we report that the endoplasmic reticulum (ER) is asymmetrically partitioned during mitosis in epithelial cells just before delamination and selection of a proneural cell fate in the early Drosophila embryo. At the start of gastrulation, the ER divides asymmetrically into a population of asynchronously dividing cells at the anterior end of the embryo. We found that this asymmetric division of the ER depends on the highly conserved ER membrane protein Jagunal (Jagn). RNA inhibition of jagn just before the start of gastrulation disrupts this asymmetric division of the ER. In addition, jagn-deficient embryos display defects in apical-basal spindle orientation in delaminated embryonic neuroblasts. Our results describe a model in which an organelle is partitioned asymmetrically in an otherwise symmetrically dividing cell population just upstream of cell fate determination and updates previous models of spindle-based selection of cell fate during mitosis.
Collapse
Affiliation(s)
- Anthony S Eritano
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Arturo Altamirano
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Sarah Beyeler
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Norma Gaytan
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Mark Velasquez
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Blake Riggs
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| |
Collapse
|
91
|
Lopez-Crisosto C, Pennanen C, Vasquez-Trincado C, Morales PE, Bravo-Sagua R, Quest AFG, Chiong M, Lavandero S. Sarcoplasmic reticulum-mitochondria communication in cardiovascular pathophysiology. Nat Rev Cardiol 2017; 14:342-360. [PMID: 28275246 DOI: 10.1038/nrcardio.2017.23] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Repetitive, calcium-mediated contractile activity renders cardiomyocytes critically dependent on a sustained energy supply and adequate calcium buffering, both of which are provided by mitochondria. Moreover, in vascular smooth muscle cells, mitochondrial metabolism modulates cell growth and proliferation, whereas cytosolic calcium levels regulate the arterial vascular tone. Physical and functional communication between mitochondria and sarco/endoplasmic reticulum and balanced mitochondrial dynamics seem to have a critical role for optimal calcium transfer to mitochondria, which is crucial in calcium homeostasis and mitochondrial metabolism in both types of muscle cells. Moreover, mitochondrial dysfunction has been associated with myocardial damage and dysregulation of vascular smooth muscle proliferation. Therefore, sarco/endoplasmic reticulum-mitochondria coupling and mitochondrial dynamics are now viewed as relevant factors in the pathogenesis of cardiac and vascular diseases, including coronary artery disease, heart failure, and pulmonary arterial hypertension. In this Review, we summarize the evidence related to the role of sarco/endoplasmic reticulum-mitochondria communication in cardiac and vascular muscle physiology, with a focus on how perturbations contribute to the pathogenesis of cardiovascular disorders.
Collapse
Affiliation(s)
- Camila Lopez-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Christian Pennanen
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Cesar Vasquez-Trincado
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Pablo E Morales
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Roberto Bravo-Sagua
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile.,Instituto de Nutricion y Tecnologia de los Alimentos (INTA), Universidad de Chile, Avenida El Líbano 5524, Santiago 7830490, Chile
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile.,Centro de Estudios Moleculares de la Celula (CEMC), Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile.,Centro de Estudios Moleculares de la Celula (CEMC), Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75235, USA
| |
Collapse
|
92
|
Houston DW. Vertebrate Axial Patterning: From Egg to Asymmetry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:209-306. [PMID: 27975274 PMCID: PMC6550305 DOI: 10.1007/978-3-319-46095-6_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The emergence of the bilateral embryonic body axis from a symmetrical egg has been a long-standing question in developmental biology. Historical and modern experiments point to an initial symmetry-breaking event leading to localized Wnt and Nodal growth factor signaling and subsequent induction and formation of a self-regulating dorsal "organizer." This organizer forms at the site of notochord cell internalization and expresses primarily Bone Morphogenetic Protein (BMP) growth factor antagonists that establish a spatiotemporal gradient of BMP signaling across the embryo, directing initial cell differentiation and morphogenesis. Although the basics of this model have been known for some time, many of the molecular and cellular details have only recently been elucidated and the extent that these events remain conserved throughout vertebrate evolution remains unclear. This chapter summarizes historical perspectives as well as recent molecular and genetic advances regarding: (1) the mechanisms that regulate symmetry-breaking in the vertebrate egg and early embryo, (2) the pathways that are activated by these events, in particular the Wnt pathway, and the role of these pathways in the formation and function of the organizer, and (3) how these pathways also mediate anteroposterior patterning and axial morphogenesis. Emphasis is placed on comparative aspects of the egg-to-embryo transition across vertebrates and their evolution. The future prospects for work regarding self-organization and gene regulatory networks in the context of early axis formation are also discussed.
Collapse
Affiliation(s)
- Douglas W Houston
- Department of Biology, The University of Iowa, 257 BB, Iowa City, IA, 52242, USA.
| |
Collapse
|
93
|
Watanabe K, Bizen N, Sato N, Takebayashi H. Endoplasmic Reticulum-Localized Transmembrane Protein Dpy19L1 Is Required for Neurite Outgrowth. PLoS One 2016; 11:e0167985. [PMID: 27959946 PMCID: PMC5154530 DOI: 10.1371/journal.pone.0167985] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/28/2016] [Indexed: 11/18/2022] Open
Abstract
The endoplasmic reticulum (ER), including the nuclear envelope, is a continuous and intricate membrane-bound organelle responsible for various cellular functions. In neurons, the ER network is found in cell bodies, axons, and dendrites. Recent studies indicate the involvement of the ER network in neuronal development, such as neuronal migration and axonal outgrowth. However, the regulation of neural development by ER-localized proteins is not fully understood. We previously reported that the multi-transmembrane protein Dpy19L1 is required for neuronal migration in the developing mouse cerebral cortex. A Dpy19L family member, Dpy19L2, which is a causative gene for human Globozoospermia, is suggested to act as an anchor of the acrosome to the nuclear envelope. In this study, we found that the patterns of exogenous Dpy19L1 were partially coincident with the ER, including the nuclear envelope in COS-7 cells at the level of the light microscope. The reticular distribution of Dpy19L1 was disrupted by microtubule depolymerization that induces retraction of the ER. Furthermore, Dpy19L1 showed a similar distribution pattern with a ER marker protein in embryonic mouse cortical neurons. Finally, we showed that Dpy19L1 knockdown mediated by siRNA resulted in decreased neurite outgrowth in cultured neurons. These results indicate that transmembrane protein Dpy19L1 is localized to the ER membrane and regulates neurite extension during development.
Collapse
Affiliation(s)
- Keisuke Watanabe
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Division of Gross Anatomy and Morphogenesis, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- * E-mail:
| | - Norihisa Bizen
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Noboru Sato
- Division of Gross Anatomy and Morphogenesis, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
94
|
|
95
|
Ng IC, Pawijit P, Teo LY, Li H, Lee SY, Yu H. Kinectin-dependent ER transport supports the focal complex maturation required for chemotaxis in shallow gradients. J Cell Sci 2016; 129:2660-72. [PMID: 27221621 DOI: 10.1242/jcs.181768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 05/19/2016] [Indexed: 01/09/2023] Open
Abstract
Chemotaxis in shallow gradients of chemoattractants is accomplished by preferential maintenance of protrusions oriented towards the chemoattractant; however, the mechanism of preferential maintenance is not known. Here, we test the hypothesis that kinectin-dependent endoplasmic reticulum (ER) transport supports focal complex maturation to preferentially maintain correctly oriented protrusions. We knocked down kinectin expression in MDA-MB-231 cells using small interfering RNA and observed that kinectin contributes to the directional bias, but not the speed, of cell migration. Kymograph analysis revealed that the extension of protrusions oriented towards the chemoattractant was not affected by kinectin knockdown, but that their maintenance was. Immunofluorescence staining and live-cell imaging demonstrated that kinectin transports ER preferentially to protrusions oriented towards the chemoattractant. ER then promotes the maturation of focal complexes into focal adhesions to maintain these protrusions for chemotaxis. Our results show that kinectin-dependent ER distribution can be localized by chemoattractants and provide a mechanism for biased protrusion choices during chemotaxis in shallow gradients of chemoattractants.
Collapse
Affiliation(s)
- Inn Chuan Ng
- NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Pornteera Pawijit
- NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Lee Ying Teo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Huipeng Li
- Singapore-MIT Alliance, E4-04-10, 4 Engineering Drive 3, Singapore 117576, Singapore
| | - Shu Ying Lee
- Confocal Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Hanry Yu
- NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore Singapore-MIT Alliance, E4-04-10, 4 Engineering Drive 3, Singapore 117576, Singapore Confocal Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore Institute of Bioengineering and Nanotechnology, A*STAR, Singapore 138669, Singapore Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #10-01 CREATE Tower, Singapore 138602, Singapore Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
96
|
Schweitzer Y, Shemesh T, Kozlov MM. A Model for Shaping Membrane Sheets by Protein Scaffolds. Biophys J 2016; 109:564-73. [PMID: 26244738 DOI: 10.1016/j.bpj.2015.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/31/2015] [Accepted: 06/02/2015] [Indexed: 01/16/2023] Open
Abstract
Membranes of peripheral endoplasmic reticulum form intricate morphologies consisting of tubules and sheets as basic elements. The physical mechanism of endoplasmic-reticulum shaping has been suggested to originate from the elastic behavior of the sheet edges formed by linear arrays of oligomeric protein scaffolds. The heart of this mechanism, lying in the relationships between the structure of the protein scaffolds and the effective intrinsic shapes and elastic properties of the sheets' edges, has remained hypothetical. Here we provide a detailed computational analysis of these issues. By minimizing the elastic energy of membrane bending, we determine the effects of a rowlike array of semicircular arclike membrane scaffolds on generation of a membrane fold, which shapes the entire membrane surface into a flat double-membrane sheet. We show, quantitatively, that the sheet's edge line tends to adopt a positive or negative curvature depending on the scaffold's geometrical parameters. We compute the effective elastic properties of the sheet edge and analyze the dependence of the equilibrium distance between the scaffolds along the edge line on the scaffold geometry.
Collapse
Affiliation(s)
- Yonatan Schweitzer
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel; Nuclear Physics Division, Soreq Nuclear Research Center, Yavne, Israel
| | - Tom Shemesh
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel.
| |
Collapse
|
97
|
Plácido AI, Pereira CMF, Correira SC, Carvalho C, Oliveira CR, Moreira PI. Phosphatase 2A Inhibition Affects Endoplasmic Reticulum and Mitochondria Homeostasis Via Cytoskeletal Alterations in Brain Endothelial Cells. Mol Neurobiol 2016; 54:154-168. [DOI: 10.1007/s12035-015-9640-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/15/2015] [Indexed: 12/30/2022]
|
98
|
Schwarz DS, Blower MD. The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci 2016; 73:79-94. [PMID: 26433683 PMCID: PMC4700099 DOI: 10.1007/s00018-015-2052-6] [Citation(s) in RCA: 908] [Impact Index Per Article: 113.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum (ER) is a large, dynamic structure that serves many roles in the cell including calcium storage, protein synthesis and lipid metabolism. The diverse functions of the ER are performed by distinct domains; consisting of tubules, sheets and the nuclear envelope. Several proteins that contribute to the overall architecture and dynamics of the ER have been identified, but many questions remain as to how the ER changes shape in response to cellular cues, cell type, cell cycle state and during development of the organism. Here we discuss what is known about the dynamics of the ER, what questions remain, and how coordinated responses add to the layers of regulation in this dynamic organelle.
Collapse
Affiliation(s)
- Dianne S Schwarz
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- New England Biolabs, Ipswich, MA, 01938, USA
| | - Michael D Blower
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
99
|
The Directional Observation of Highly Dynamic Membrane Tubule Formation Induced by Engulfed Liposomes. Sci Rep 2015; 5:16559. [PMID: 26548331 PMCID: PMC4637876 DOI: 10.1038/srep16559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 10/01/2015] [Indexed: 11/09/2022] Open
Abstract
Highly dynamic tubular structures in cells are responsible for exchanges between organelles. Compared with bacterial invasion, the most affordable and least toxic lipids were found in this study to be gentle and safe exogenous stimuli for the triggering of membrane tubules. A specific lipid system was internalized by NIH3T3 cells. Following cellular uptake, the constructed liposomes traveled towards the nucleus in aggregations and were gradually distributed into moving vesicles and tubules in the cytosol. The triggered tubules proceeded, retreated or fluctuated along the cytoskeleton and were highly dynamic, moving quickly (up to several microns per second), and breaking and fusing frequently. These elongated tubules could also fuse with one another, giving rise to polygonal membrane networks. These lipid systems, with the novel property of accelerating intracellular transport, provide a new paradigm for investigating cellular dynamics.
Collapse
|
100
|
The Emerging Role of Extracellular Vesicle-Mediated Drug Resistance in Cancers: Implications in Advanced Prostate Cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:454837. [PMID: 26587537 PMCID: PMC4637461 DOI: 10.1155/2015/454837] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 07/05/2015] [Indexed: 01/07/2023]
Abstract
Emerging evidence has shown that the extracellular vesicles (EVs) regulate various biological processes and can control cell proliferation and survival, as well as being involved in normal cell development and diseases such as cancers. In cancer treatment, development of acquired drug resistance phenotype is a serious issue. Recently it has been shown that the presence of multidrug resistance proteins such as Pgp-1 and enrichment of the lipid ceramide in EVs could have a role in mediating drug resistance. EVs could also mediate multidrug resistance through uptake of drugs in vesicles and thus limit the bioavailability of drugs to treat cancer cells. In this review, we discussed the emerging evidence of the role EVs play in mediating drug resistance in cancers and in particular the role of EVs mediating drug resistance in advanced prostate cancer. The role of EV-associated multidrug resistance proteins, miRNA, mRNA, and lipid as well as the potential interaction(s) among these factors was probed. Lastly, we provide an overview of the current available treatments for advanced prostate cancer, considering where EVs may mediate the development of resistance against these drugs.
Collapse
|