51
|
Babaoglan AB, O'Connor-Giles KM, Mistry H, Schickedanz A, Wilson BA, Skeath JB. Sanpodo: a context-dependent activator and inhibitor of Notch signaling during asymmetric divisions. Development 2009; 136:4089-98. [PMID: 19906847 DOI: 10.1242/dev.040386] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Asymmetric cell divisions generate sibling cells of distinct fates ('A', 'B') and constitute a fundamental mechanism that creates cell-type diversity in multicellular organisms. Antagonistic interactions between the Notch pathway and the intrinsic cell-fate determinant Numb appear to regulate asymmetric divisions in flies and vertebrates. During these divisions, productive Notch signaling requires sanpodo, which encodes a novel transmembrane protein. Here, we demonstrate that Drosophila sanpodo plays a dual role to regulate Notch signaling during asymmetric divisions - amplifying Notch signaling in the absence of Numb in the 'A' daughter cell and inhibiting Notch signaling in the presence of Numb in the 'B' daughter cell. In so doing, sanpodo ensures the asymmetry in Notch signaling levels necessary for the acquisition of distinct fates by the two daughter cells. These findings answer long-standing questions about the restricted ability of Numb and Sanpodo to inhibit and to promote, respectively, Notch signaling during asymmetric divisions.
Collapse
Affiliation(s)
- A Burcu Babaoglan
- Program in Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
52
|
Zhou B, Williams DW, Altman J, Riddiford LM, Truman JW. Temporal patterns of broad isoform expression during the development of neuronal lineages in Drosophila. Neural Dev 2009; 4:39. [PMID: 19883497 PMCID: PMC2780399 DOI: 10.1186/1749-8104-4-39] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 11/02/2009] [Indexed: 12/28/2022] Open
Abstract
Background During the development of the central nervous system (CNS) of Drosophila, neuronal stem cells, the neuroblasts (NBs), first generate a set of highly diverse neurons, the primary neurons that mature to control larval behavior, and then more homogeneous sets of neurons that show delayed maturation and are primarily used in the adult. These latter, 'secondary' neurons show a complex pattern of expression of broad, which encodes a transcription factor usually associated with metamorphosis, where it acts as a key regulator in the transitions from larva and pupa. Results The Broad-Z3 (Br-Z3) isoform appears transiently in most central neurons during embryogenesis, but persists in a subset of these cells through most of larval growth. Some of the latter are embryonic-born secondary neurons, whose development is arrested until the start of metamorphosis. However, the vast bulk of the secondary neurons are generated during larval growth and bromodeoxyuridine incorporation shows that they begin expressing Br-Z3 about 7 hours after their birth, approximately the time that they have finished outgrowth to their initial targets. By the start of metamorphosis, the oldest secondary neurons have turned off Br-Z3 expression, while the remainder, with the exception of the very youngest, maintain Br-Z3 while they are interacting with potential partners in preparation for neurite elaboration. That Br-Z3 may be involved in early sprouting is suggested by ectopically expressing this isoform in remodeling primary neurons, which do not normally express Br-Z3. These cells now sprout into ectopic locations. The expression of Br-Z3 is transient and seen in all interneurons, but two other isoforms, Br-Z4 and Br-Z1, show a more selective expression. Analysis of MARCM clones shows that the Br-Z4 isoform is expressed by neurons in virtually all lineages, but only in those cells born during a window during the transition from the second to the third larval instar. Br-Z4 expression is then maintained in this temporal cohort of cells into the adult. Conclusion These data show the potential for diverse functions of Broad within the developing CNS. The Br-Z3 isoform appears in all interneurons, but not motoneurons, when they first begin to interact with potential targets. Its function during this early sorting phase needs to be defined. Two other Broad isoforms, by contrast, are stably expressed in cohorts of neurons in all lineages and are the first examples of persisting molecular 'time-stamps' for Drosophila postembryonic neurons.
Collapse
Affiliation(s)
- Baohua Zhou
- Department of Biology, University of Washington, Seattle, 98195, USA.
| | | | | | | | | |
Collapse
|
53
|
Abstract
A wide variety of plasmid vectors are commercially available for the production of fusion proteins in bacterial cells. Most are also designed to incorporate a tag that allows affinity purification of the expressed fusion protein from bacterial cell extracts. The most commonly used are vectors that incorporate a portion of the glutathione-S-transferase (GST) enzyme that is able to bind to immobilized glutathione and vectors that use a polyhistidine tag which binds immobilized nickel ions with high affinity. This protocol describes preparation of an insoluble GST fusion protein, isolated using glutathione agarose beads.
Collapse
|
54
|
Zhang L, Ward RE. uninflatable encodes a novel ectodermal apical surface protein required for tracheal inflation in Drosophila. Dev Biol 2009; 336:201-12. [PMID: 19818339 DOI: 10.1016/j.ydbio.2009.09.040] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 09/23/2009] [Accepted: 09/26/2009] [Indexed: 11/15/2022]
Abstract
The tracheal system of Drosophila melanogaster has proven to be an excellent model system for studying the development of branched tubular organs. Mechanisms regulating the patterning and initial maturation of the tracheal system have been largely worked out, yet important questions remain regarding how the mature tubes inflate with air at the end of embryogenesis, and how the tracheal system grows in response to the oxygen needs of a developing larva that increases nearly 1000-fold in volume over a four day period. Here we describe the cloning and characterization of uninflatable (uif), a gene that encodes a large transmembrane protein containing carbohydrate binding and cell signaling motifs in its extracellular domain. Uif is highly conserved in insect species, but does not appear to have a true ortholog in vertebrate species. uif is expressed zygotically beginning in stage 5 embryos, and Uif protein localizes to the apical plasma membrane in all ectodermally derived epithelia, most notably in the tracheal system. uif mutant animals show defects in tracheal inflation at the end of embryogenesis, and die primarily as larvae. Tracheal tubes in mutant larvae are often crushed or twisted, although tracheal patterning and maturation appear normal during embryogenesis. uif mutant larvae also show defects in tracheal growth and molting of their tracheal cuticle.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | | |
Collapse
|
55
|
Benne C, Lelievre JD, Balbo M, Henry A, Sakano S, Levy Y. Notch Increases T/NK Potential of Human Hematopoietic Progenitors and Inhibits B Cell Differentiation at a Pro-B Stage. Stem Cells 2009; 27:1676-85. [DOI: 10.1002/stem.94] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
56
|
Peralta S, Gómez Y, González-Gaitán MA, Moya F, Vinós J. Notch down-regulation by endocytosis is essential for pigment cell determination and survival in the Drosophila retina. Mech Dev 2009; 126:256-69. [DOI: 10.1016/j.mod.2008.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 10/22/2008] [Accepted: 10/23/2008] [Indexed: 11/28/2022]
|
57
|
Badouel C, McNeill H. Apical junctions and growth control in Drosophila. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:755-60. [PMID: 18952051 DOI: 10.1016/j.bbamem.2008.08.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 08/22/2008] [Accepted: 08/27/2008] [Indexed: 12/25/2022]
Abstract
Recent studies have revealed unexpected links between cell polarity and proliferation, suggesting that the polarized organization of cells is necessary to regulate growth. Drosophila melanogaster is a genetically simple model that is especially suited for the study of polarity and growth control, as polarized tissues undergo a well-defined pattern of proliferation and differentiation during the development. In addition, genetic studies have identified a number of tumor suppressor genes, which later studies have shown to be associated with junctions, or in the regulation of junctional proteins. We will explore in this review the links between growth and apical junction proteins in the regulation of growth control in Drosophila.
Collapse
Affiliation(s)
- Caroline Badouel
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Canada
| | | |
Collapse
|
58
|
Parks AL, Shalaby NA, Muskavitch MAT. Notch and suppressor of Hairless regulate levels but not patterns of Delta expression in Drosophila. Genesis 2008; 46:265-75. [PMID: 18442047 DOI: 10.1002/dvg.20391] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Notch signal transduction pathway is highly conserved and governs many developmental decisions in metazoans. The ligand Delta, and its receptor Notch, are often expressed in complementary patterns during Drosophila postembryonic development. Notch signaling is thought to play a role in generation of these complementary patterns through feedback mechanisms that regulate Delta and Notch expression. We have examined Delta expression during postembryonic development, following global alteration of Notch-dependent or Su(H)-dependent transcriptional regulation. We find that Notch and Su(H) regulate Delta expression in a manner that varies by context. Surprisingly, we find that wild type Delta expression levels are influenced by Su(H)-dependent mechanisms only in regions of high Delta/low Notch expression. In contrast, Delta expression levels in regions of low Delta/high Notch expression appear to be unaffected by Su(H)-mediated regulation. We conclude that Notch pathway feedback regulation is unlikely to contribute to the generation of complementary patterns in the contexts examined.
Collapse
Affiliation(s)
- Annette L Parks
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | | | | |
Collapse
|
59
|
Bray SJ, Takada S, Harrison E, Shen SC, Ferguson-Smith AC. The atypical mammalian ligand Delta-like homologue 1 (Dlk1) can regulate Notch signalling in Drosophila. BMC DEVELOPMENTAL BIOLOGY 2008; 8:11. [PMID: 18237417 PMCID: PMC2268666 DOI: 10.1186/1471-213x-8-11] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2007] [Accepted: 01/31/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND Mammalian Delta-like 1 (Dlk-1) protein shares homology with Notch ligands but lacks a critical receptor-binding domain. Thus it is unclear whether it is able to interact with Notch in vivo. Unlike mammals, Drosophila have a single Notch receptor allowing a simple in vivo assay for mammalian Dlk1 function. RESULTS Here we show that membrane-bound DLK1 can regulate Notch leading to altered cellular distribution of Notch itself and inhibiting expression of Notch target genes. The resulting adult phenotypes are indicative of reduced Notch function and are enhanced by Notch mutations, confirming that DLK1 action is antagonistic. In addition, cells expressing an alternative Dlk1 isoform exhibit alterations in cell size, functions previously not attributed to Notch suggesting that DLK1 might also act via an alternative target. CONCLUSION Our results demonstrate that DLK1 can regulate the Notch receptor despite its atypical structure.
Collapse
Affiliation(s)
- Sarah J Bray
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Shuji Takada
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Emma Harrison
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Shing-Chuan Shen
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Anne C Ferguson-Smith
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| |
Collapse
|
60
|
Soustelle L, Giangrande A. Novel gcm-dependent lineages in the postembryonic nervous system of Drosophila melanogaster. Dev Dyn 2007; 236:2101-8. [PMID: 17654713 DOI: 10.1002/dvdy.21232] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
glial cells missing genes (gcm and gcm2) act as the glial fate determinants in the Drosophila embryo. However, their requirement in the adult central nervous system (CNS) is at present not known, except for their role in lamina glia. This is particularly important with respect to two recent sets of data. Adult glial subpopulations differentiate through embryonic glia proliferation. Also, gcm-gcm2 are required for the differentiation of specific adult neurons. We here show that gcm is expressed in precursors and postmitotic, migrating, cells of the medulla neuropile glia (mng) lineage. It is also expressed in a thoracic glial lineage and in neurons of the ventral nerve cord (VNC). Finally, while gcm is required for gliogenesis in medulla and VNC, it does not seem to be required for the generation of VNC neurons.
Collapse
Affiliation(s)
- Laurent Soustelle
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Strasbourg, France
| | | |
Collapse
|
61
|
Regulation of Notch signaling by dynamic changes in the precision of S3 cleavage of Notch-1. Mol Cell Biol 2007; 28:165-76. [PMID: 17967888 DOI: 10.1128/mcb.00863-07] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Intramembrane proteolysis by presenilin-dependent gamma-secretase produces the Notch intracellular cytoplasmic domain (NCID) and Alzheimer disease-associated amyloid-beta. Here, we show that upon Notch signaling the intracellular domain of Notch-1 is cleaved into two distinct types of NICD species due to diversity in the site of S3 cleavage. Consistent with the N-end rule, the S3-V cleavage produces stable NICD with Val at the N terminus, whereas the S3-S/S3-L cleavage generates unstable NICD with Ser/Leu at the N terminus. Moreover, intracellular Notch signal transmission with unstable NICDs is much weaker than that with stable NICD. Importantly, the extent of endocytosis in target cells affects the relative production ratio of the two types of NICD, which changes in parallel with Notch signaling. Surprisingly, substantial amounts of unstable NICD species are generated from the Val-->Gly and the Lys-->Arg mutants, which have been reported to decrease S3 cleavage efficiency in cultured cells. Thus, we suggest that the existence of two distinct types of NICD points to a novel aspect of the intracellular signaling and that changes in the precision of S3 cleavage play an important role in the process of conversion from extracellular to intracellular Notch signaling.
Collapse
|
62
|
Cornbrooks C, Bland C, Williams DW, Truman JW, Rand MD. Delta expression in post-mitotic neurons identifies distinct subsets of adult-specific lineages in Drosophila. Dev Neurobiol 2007; 67:23-38. [PMID: 17443769 DOI: 10.1002/dneu.20308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Drosophila ventral nerve cord is comprised of numerous neuronal lineages, each derived from a stereotypically positioned neuroblast (NB). At the embryonic stage the unique identities of each NB, and several of their neuronal progeny, are well characterized by spatial and temporal expression patterns of molecular markers. These patterns of expression are not preserved at the larval stage and thus the identity of adult-specific lineages remains obscure. Recent clonal analysis using MARCM has identified 24 adult-specific lineages arising from thoracic NBs at the larval stage. In this study, we have explored a role for the Delta protein in development of the post-embryonic Drosophila ventral nerve cord. We find that Delta expression identifies 7 of the 24 adult-specific lineages of the thoracic ganglia by being highly enriched in clusters of newly born post-mitotic neurons and their neurite bundles. The Delta lineages constitute the majority of bundles projecting to the ventral neuropil, consistent with a role in processing leg sensory information. Targeted knockdown of Delta in neurons using RNAi results in significantly decreased leg chemosensory response and a relatively unaffected leg mechanosensory response. Delta RNAi knockdown in Delta lineages also gives a more diffuse bundle terminal morphology while the overall path-finding of neurite bundles is unaffected. We also identify a male-specific Delta lineage in the terminal abdominal ganglia, implicating a role for Delta in development of sexually dimorphic neural networks. Examples of Delta-expressing neurites contacting Notch-expressing glia are also seen, but are not common to all Delta lineages. Altogether, these data reveal a fundamental pattern of Delta expression that is indicative of an underlying developmental program that confers identity to adult lineage neurons.
Collapse
Affiliation(s)
- Carson Cornbrooks
- Department of Anatomy and Neurobiology, College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | |
Collapse
|
63
|
Sasaki N, Sasamura T, Ishikawa HO, Kanai M, Ueda R, Saigo K, Matsuno K. Polarized exocytosis and transcytosis of Notch during its apical localization in Drosophila epithelial cells. Genes Cells 2007; 12:89-103. [PMID: 17212657 DOI: 10.1111/j.1365-2443.2007.01037.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Notch (N) and its ligands, Delta (Dl) and Serrate (Ser), are transmembrane proteins that mediate the cell-cell interactions necessary for many cell-fate decisions. In Drosophila, N is predominantly localized to the apical portion of epithelial cells, but the mechanisms and functions of this localization are unknown. Here, we found N, Dl, and Ser were mostly located in the region from the subapical complex (SAC) to the apical portion of the adherens junctions (AJs) in wing disc epithelium. N was delivered to the SAC/AJs in two phases. First, polarized exocytosis specifically delivered nascent N to the apical plasma membrane and AJs in an O-fut1-independent manner. Second, N at the plasma membrane was relocated to the SAC/AJs by Dynamin- and Rab5-dependent transcytosis; this step required the O-fut1 function. Disruption of the apical polarity by Drosophila E-cadherin (DEcad) knock down caused N and Dl localization to the SAC/AJs to fail. N, but not Dl, formed a specific complex with DEcad in vivo. Finally, our results suggest that juxtacrine signaling in epithelia generally depends on the apicobasally polarized structure of epithelial cells.
Collapse
Affiliation(s)
- Nobuo Sasaki
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
64
|
De Falco M, Cobellis L, Giraldi D, Mastrogiacomo A, Perna A, Colacurci N, Miele L, De Luca A. Expression and distribution of notch protein members in human placenta throughout pregnancy. Placenta 2007; 28:118-26. [PMID: 17185135 DOI: 10.1016/j.placenta.2006.03.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 03/16/2006] [Accepted: 03/17/2006] [Indexed: 11/30/2022]
Abstract
Notch signaling is an evolutionarily conserved mechanism used by invertebrates and vertebrates to control cell fates through close-range cell interactions. Four Notch receptors have been identified in vertebrates and different ligands, divided into Delta-like and Serrate-like (Jagged). Several studies have demonstrated that Notch signaling is involved in different branches of the cell fate decision tree: differentiation, proliferation and apoptosis. These three processes are finely regulated in human placenta in order to allow a successful pregnancy and a correct fetal growth. Moreover, Notch and its ligands participate in the vascular remodelling and stabilization, other two processes much important and ticklish in human placenta. So, we decided to investigate the pattern of expression of Notch-1, Notch-4 and Jagged-1, together with two members related to Notch pathway and involved in angiogenesis: VEGF and p21, in human placenta during gestation by immunoblotting and immunohistochemistry. We showed a modulation of Notch proteins throughout the pregnancy; in particular we showed a slight decrease of Notch-1 throughout pregnancy, with a decreased cytoplasmic staining from the first to the third trimester of gestation in cytotrophoblast and syncytiotrophoblast. In contrast Jagged-1 showed an increase throughout pregnancy especially in syncytiotrophoblast and stroma during the third trimester of gestation. In addition, we found by immunoblotting an increase of VEGF expression from the first to the third trimester and an intense VEGF expression inside endothelial cells throughout the gestation as also confirmed by immunohistochemistry. We also showed a decrease of p21 expression during the pregnancy both through immunoblotting and immunohistochemistry assays. Moreover, we observed Notch localization in extravillous trophoblast cells that are able to invade the decidualized endometrium. Our results suggest an involvement of Notch signaling in regulation of placental cell fate decision and in angiogenesis that are dramatically important to maintain a normal physiology of this organ during pregnancy.
Collapse
Affiliation(s)
- M De Falco
- Department of Biological Sciences, Section of Evolutionary and Comparative Biology, University of Naples "Federico II", Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Thomas PB, Liu YH, Zhuang FF, Selvam S, Song SW, Smith RE, Trousdale MD, Yiu SC. Identification of Notch-1 expression in the limbal basal epithelium. Mol Vis 2007; 13:337-44. [PMID: 17392684 PMCID: PMC2633467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE To determine whether Notch-1, a ligand-activated transmembrane receptor known to maintain cells in an undifferentiated state, primarily progenitor cells in other systems, could be used as a stem cell marker in human limbal epithelium. METHODS Human corneoscleral tissues obtained from the Doheny Eye & Tissue Transplant Bank were prepared for cross section and whole mount analysis. Tissue for whole mount was incubated in dispase; the epithelial sheet was removed and fixed in 4% paraformaldehyde. Sections and whole mount were stained with antibodies against Notch-1, Notch-2, beta-1 integrin, alpha-6, and the G2 subtype member of the ATP binding cassette transporter (ABCG2). Specificity of the Notch-1 antibody was determined by western blot analysis with Cos-7 cells transfected with Notch-1. Explant culture was performed and only primary cultures were used in this experiment. RESULTS Notch-1 was found to be expressed in the limbal basal region where stem cells reside. Notch-1 antigenicity was more pronounced in cell clusters, mainly in the palisades of Vogt. The central cornea was almost devoid of Notch-1. The intensity of Notch-1 staining in cultured cells from the limbal explants was high in only a few cells. The Notch-1 signal was diminished in dividing cells. Expression in cultured cells was more cytoplasmic; few cells showed additional nuclear staining. The Notch-1-stained whole mount showed only a few cells in the limbal region. A 300 kDa and a 110 kDa band confirmed the specificity of the antibody in Cos-7 cells transfected with Notch-1. Double staining for ABCG2 and Notch-1 showed some ABCG2-positive cells co-expressing Notch-1 in the limbal basal epithelium, indicating that Notch-1-expressing cells might be a unique subpopulation of cells with stem cell properties. CONCLUSIONS Immunofluorescence data shows that Notch-1 could be a possible marker for the stem cells in the limbal basal epithelium. Further studies and characterization of the Notch pathway in corneal development will provide valuable clues for the identification of stem cells.
Collapse
Affiliation(s)
| | - Yi-Hsin Liu
- Department of Ophthalmology, Keck School of Medicine, Los Angeles, CA,Center for Craniofacial Molecular Biology, Los Angeles, CA
| | | | - Shivaram Selvam
- Ocular Surface Center, Doheny Eye Institute, Los Angeles, CA,Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA
| | - Sang W. Song
- Ocular Surface Center, Doheny Eye Institute, Los Angeles, CA
| | - Ronald E. Smith
- Ocular Surface Center, Doheny Eye Institute, Los Angeles, CA,Department of Ophthalmology, Keck School of Medicine, Los Angeles, CA
| | - Melvin D. Trousdale
- Ocular Surface Center, Doheny Eye Institute, Los Angeles, CA,Department of Ophthalmology, Keck School of Medicine, Los Angeles, CA
| | - Samuel C. Yiu
- Ocular Surface Center, Doheny Eye Institute, Los Angeles, CA,Department of Ophthalmology, Keck School of Medicine, Los Angeles, CA
| |
Collapse
|
66
|
Sasamura T, Ishikawa HO, Sasaki N, Higashi S, Kanai M, Nakao S, Ayukawa T, Aigaki T, Noda K, Miyoshi E, Taniguchi N, Matsuno K. The O-fucosyltransferase O-fut1 is an extracellular component that is essential for the constitutive endocytic trafficking of Notch in Drosophila. Development 2007; 134:1347-56. [PMID: 17329366 DOI: 10.1242/dev.02811] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Notch is a transmembrane receptor that mediates the cell-cell interactions necessary for many cell-fate decisions. Endocytic trafficking of Notch plays important roles in the activation and downregulation of this receptor. A Drosophila O-FucT-1 homolog, encoded by O-fut1, catalyzes the O-fucosylation of Notch, a modification essential for Notch signaling and ligand binding. It was recently proposed that O-fut1 acts as a chaperon for Notch in the endoplasmic reticulum and is required for Notch to exit the endoplasmic reticulum. Here, we report that O-fut1 has additional functions in the endocytic transportation of Notch. O-fut1 was indispensable for the constitutive transportation of Notch from the plasma membrane to the early endosome, which we show was independent of the O-fucosyltransferase activity of O-fut1. We also found that O-fut1 promoted the turnover of Notch, which consequently downregulated Notch signaling. O-fut1 formed a stable complex with the extracellular domain of Notch. In addition, O-fut1 protein added to conditioned medium and endocytosed was sufficient to rescue normal Notch transportation to the early endosome in O-fut1 knockdown cells. Thus, an extracellular interaction between Notch and O-fut1 is essential for the normal endocytic transportation of Notch. We propose that O-fut1 is the first example, except for ligands, of a molecule that is required extracellularly for receptor transportation by endocytosis.
Collapse
Affiliation(s)
- Takeshi Sasamura
- Precursory Research for Embryonic Science and Technology (PRESTO Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Thomas GB, van Meyel DJ. The glycosyltransferase Fringe promotes Delta-Notch signaling between neurons and glia, and is required for subtype-specific glial gene expression. Development 2007; 134:591-600. [PMID: 17215308 DOI: 10.1242/dev.02754] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The development, organization and function of central nervous systems depend on interactions between neurons and glial cells. However, the molecular signals that regulate neuron-glial communication remain elusive. In the ventral nerve cord of Drosophila, the close association of the longitudinal glia (LG) with the neuropil provides an excellent opportunity to identify and characterize neuron-glial signals in vivo. We have found that the activity and restricted expression of the glycosyltransferase Fringe (Fng)renders a subset of LG sensitive to activation of signaling through the Notch(N) receptor. This is the first report showing that modulation of N signaling by Fng is important for central nervous system development in any organism. In each hemisegment of the nerve cord the transcription factor Prospero (Pros) is selectively expressed in the six most anterior LG. Pros expression is specifically reduced in fng mutants, and is blocked by antagonism of the N pathway. The N ligand Delta (Dl), which is expressed by a subset of neurons, cooperates with Fng for N signaling in the anterior LG, leading to subtype-specific expression of Pros. Furthermore, ectopic Pros expression in posterior LG can be triggered by Fng, and by Dl derived from neurons but not glia. This effect can be mimicked by direct activation of the N pathway within glia. Our genetic studies suggest that Fng sensitizes N on glia to axon-derived Dl and that enhanced neuron-glial communication through this ligand-receptor pair is required for the proper molecular diversity of glial cell subtypes in the developing nervous system.
Collapse
Affiliation(s)
- Graham B Thomas
- Graduate Program in Neurological Sciences, Montreal, QC, Canada
| | | |
Collapse
|
68
|
Tanaka M, Kokubo M, Marunouchi T. Asymmetric localization of Notch2 on the microvillous surface in choroid plexus epithelial cells. Histochem Cell Biol 2007; 127:449-56. [PMID: 17219215 DOI: 10.1007/s00418-006-0260-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2006] [Indexed: 10/23/2022]
Abstract
Notch family molecules are transmembrane receptors that play various roles in contact-dependent cell-cell interactions in a wide range of organs. In the brain, Notch2, but not the other members of Notch, is expressed in the choroid plexus at an exceptionally high level. We immunohistochemically examined the cellular and subcellular localization of Notch2 protein in the choroid plexus using confocal and electron microscopy. Unexpectedly, Notch2 was asymmetrically localized on the microvillous surface of epithelial cells in the choroid plexus of both postnatal and adult rats. This localization pattern of Notch2 suggests its novel and unknown role independent of contact with adjacent cells in the choroid plexus. In organotypic cultures of the choroid plexus, the addition of anti-Notch2 antibody resulted in deformation of microvilli in epithelial cells, which suggests a role of Notch2 in the maintenance of the microvillous structure in choroid plexus epithelial cells.
Collapse
Affiliation(s)
- Masahiko Tanaka
- Division of Cell Biology, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
| | | | | |
Collapse
|
69
|
Cornbrooks C, Bland C, Williams DW, Truman JW, Rand MD. Delta expression in post-mitotic neurons identifies distinct subsets of adult-specific lineages in Drosophila. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/neu.20308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
70
|
Sesé M, Corominas M, Stocker H, Heino TI, Hafen E, Serras F. The Cdi/TESK1 kinase is required for Sevenless signaling and epithelial organization in the Drosophila eye. J Cell Sci 2006; 119:5047-56. [PMID: 17118962 DOI: 10.1242/jcs.03294] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
How cellular behaviors such as cell-to-cell communication, epithelial organization and cell shape reorganization are coordinated during development is poorly understood. The developing Drosophila eye offers an ideal model system to study these processes. Localized actin polymerization is required to constrict the apical surface of epithelial cells of the eye imaginal disc to maintain the refined arrangement of the developing ommatidia. The identity of each photoreceptor cell within the epithelium is determined by cell-to-cell contacts involving signal transduction events. The R7 photoreceptor cell requires the activity of the Sevenless RTK to adopt a proper cell fate. We performed an EP screen for negative regulators of this inductive process, and we identified the serine/threonine kinase Center divider (cdi) as a suppressor of the phenotype caused by an activated Sevenless receptor. Cdi is homologous to the human testis-specific kinase 1 (TESK1), a member of the LIM kinases involved in cytoskeleton control through ADF/cofilin phosphorylation. We have analyzed the effects of gain- and loss-of-function of cdi and found alterations in actin organization and in the adherens junctions proteins DE-cadherin and beta-catenin, as well as in Sevenless apical localization. Interference with the function of the ADF/cofilin phosphatase Slingshot (ssh), which antagonizes Cdi, also results in a suppression of signaling triggered by the Sevenless RTK. Our results reveal a critical interplay between the localization of molecules involved in epithelial organization and signal transduction.
Collapse
Affiliation(s)
- Marta Sesé
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
71
|
Maitra S, Kulikauskas RM, Gavilan H, Fehon RG. The tumor suppressors Merlin and Expanded function cooperatively to modulate receptor endocytosis and signaling. Curr Biol 2006; 16:702-9. [PMID: 16581517 DOI: 10.1016/j.cub.2006.02.063] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 01/31/2006] [Accepted: 02/15/2006] [Indexed: 11/23/2022]
Abstract
The precise coordination of signals that control proliferation is a key feature of growth regulation in developing tissues . While much has been learned about the basic components of signal transduction pathways, less is known about how receptor localization, compartmentalization, and trafficking affect signaling in developing tissues. Here we examine the mechanism by which the Drosophila Neurofibromatosis 2 (NF2) tumor suppressor ortholog Merlin (Mer) and the related tumor suppressor expanded (ex) regulate proliferation and differentiation in imaginal epithelia. Merlin and Expanded are members of the FERM (Four-point one, Ezrin, Radixin, Moesin) domain superfamily, which consists of membrane-associated cytoplasmic proteins that interact with transmembrane proteins and may function as adapters that link to protein complexes and/or the cytoskeleton . We demonstrate that Merlin and Expanded function to regulate the steady-state levels of signaling and adhesion receptors and that loss of these proteins can cause hyperactivation of associated signaling pathways. In addition, pulse-chase labeling of Notch in living tissues indicates that receptor levels are upregulated at the plasma membrane in Mer; ex double mutant cells due to a defect in receptor clearance from the cell surface. We propose that these proteins control proliferation by regulating the abundance, localization, and turnover of cell-surface receptors and that misregulation of these processes may be a key component of tumorigenesis.
Collapse
Affiliation(s)
- Sushmita Maitra
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
72
|
Müller D, Nagel AC, Maier D, Preiss A. A molecular link A molecular link between Hairless and Pros26.4, a member of the AAA-ATPase subunits of the proteasome 19S regulatory particle in Drosophila. J Cell Sci 2006; 119:250-8. [PMID: 16410550 DOI: 10.1242/jcs.02743] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The proteasome is the major degradation machinery of the cell that regulates multiple cellular processes as diverse as cell cycle, signal transduction and gene expression. Recognition and unfolding of target proteins involves the regulatory cap whose base contains six AAA-ATPases that display reverse chaperone activity. One of them, Rpt2 (also known as S4), has an essential role in gating the degradative central core. We have isolated the orthologous gene Pros26.4 from Drosophila melanogaster as a molecular interaction partner of Hairless. Hairless plays a major role as antagonist of Notch signalling in Drosophila, prompting our interest in the Hairless-Pros26.4 interaction. We find that Pros26.4 negatively regulates Hairless at the genetic and molecular level. Depletion of Pros26.4 by using tissue-specific RNA interference (RNAi) resulted in a specific stabilization of the Hairless protein, but not in stabilization of the intracellular domain of Notch or the effector protein Suppressor of Hairless. Thus, the Hairless-Pros26.4 interaction provides a novel mechanism of positive regulation of Notch signalling.
Collapse
Affiliation(s)
- Dominik Müller
- Universität Hohenheim, Institut für Genetik (240), Garbenstr. 30, 70599 Stuttgart, Germany
| | | | | | | |
Collapse
|
73
|
Molnar C, de Celis JF. Independent roles of Drosophila Moesin in imaginal disc morphogenesis and hedgehog signalling. Mech Dev 2006; 123:337-51. [PMID: 16682173 DOI: 10.1016/j.mod.2006.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 02/17/2006] [Accepted: 02/20/2006] [Indexed: 12/31/2022]
Abstract
The three ERM proteins (Ezrin, Radixin and Moesin) form a conserved family required in many developmental processes involving regulation of the cytoskeleton. In general, the molecular function of ERM proteins is to link specific membrane proteins to the actin cytoskeleton. In Drosophila, loss of moesin (moe) activity causes incorrect localisation of maternal determinants during oogenesis, failures in rhabdomere differentiation in the eye and alterations of epithelial integrity in the wing imaginal disc. Some aspects of Drosophila Moe are related to the activity of the small GTPase RhoA, because the reduction of RhoA activity corrects many phenotypes of moe mutant embryos and imaginal discs. We have analysed the phenotype of moesin loss-of-function alleles in the wing disc and adult wing, and studied the effects of reduced Moesin activity on signalling mediated by the Notch, Decapentaplegic, Wingless and Hedgehog pathways. We found that reductions in Moesin levels in the wing disc cause the formation of wing-tissue vesicles and large thickenings of the vein L3, corresponding to breakdowns of epithelial continuity in the wing base and modifications of Hedgehog signalling in the wing blade, respectively. We did not observe any effect on signalling pathways other than Hedgehog, indicating that the moe defects in epithelial integrity have not generalised effects on cell signalling. The effects of moe mutants on Hedgehog signalling depend on the correct gene-dose of rhoA, suggesting that the requirements for Moesin in disc morphogenesis and Hh signalling in the wing disc are mediated by its regulation of RhoA activity. The mechanism linking Moesin activity with RhoA function and Hedgehog signalling remains to be elucidated.
Collapse
Affiliation(s)
- Cristina Molnar
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | | |
Collapse
|
74
|
LeComte M, Wesley UV, Mok LP, Shepherd A, Wesley C. Evidence for the involvement of dominant-negative Notch molecules in the normal course of Drosophila development. Dev Dyn 2006; 235:411-26. [PMID: 16331645 DOI: 10.1002/dvdy.20650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Notch signaling is used to specify cell types during animal development. A high level specifies one cell type, whereas a low level specifies the alternate type. The effector of Notch signaling is the Notch intracellular domain. Upon its release from the plasma membrane in response to Delta binding the Notch extracellular domain, the Notch intracellular domain combines with the transcription factor Suppressor of Hairless and promotes the expression of target genes. Using a panel of antibodies made against different extracellular and intracellular regions of Notch, we show that cell types and tissues with low levels of Notch signaling are enriched for Notch molecules detected only by the extracellular domain antibodies. This enrichment often follows enrichment for Notch molecules detected only by antibodies made against the Suppressor of Hairless binding region. Notch molecules lacking most of the intracellular domain or containing only the Suppressor of Hairless binding region are produced during development. Such molecules are known to suppress Notch signaling, possibly by taking away Delta or Suppressor of Hairless from the full-length Notch. Thus, it is possible that dominant-negative Notch molecules are produced in the normal course of tissue differentiation in Drosophila as part of an auto-down-regulation mechanism.
Collapse
Affiliation(s)
- Matthew LeComte
- Department of Microbiology and Molecular Genetics, The University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | |
Collapse
|
75
|
Dando JS, Tavian M, Catelain C, Poirault S, Bennaceur-Griscelli A, Sainteny F, Vainchenker W, Péault B, Lauret E. Notch/Delta4 interaction in human embryonic liver CD34+ CD38- cells: positive influence on BFU-E production and LTC-IC potential maintenance. Stem Cells 2006; 23:550-60. [PMID: 15790776 DOI: 10.1634/stemcells.2004-0205] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We investigated whether Notch signaling pathways have a role in human developmental hematopoiesis. In situ histochemistry analysis revealed that Notch1, 2, and 4 and Notch ligand (Delta1-4, and Jagged1) proteins were not expressed in the yolk sac blood islands, the para-aortic splanchnopleure, the hematopoietic aortic clusters, and at the early stages of embryonic liver hematopoiesis. Notch1-2, and Delta4 were eventually detected in the embryonic liver, from 34 until 38 days postconception. Fluorescence-activated cell sorter analysis showed that first-trimester embryonic liver CD34(+)CD38(low) cells expressed both Notch1 and Notch2. When these cells were cultured on S17 stroma stably expressing Delta4, a 2.6-fold increase in BFU-E number was observed at day 7, as compared with cultures with control stroma, and this effect was maintained for 2 weeks. Importantly, exposure of these cells to Delta4 under these conditions maintained the original frequency and quality of long-term culture-initiating cells (LTC-ICs), while control cultures quickly resulted in the extinction of this LTC-IC potential. Furthermore, short-term exposure of embryonic liver adherent cells to erythropoietin resulted in a dose-dependent increase in Delta4 expression, almost doubling the expression observed with untreated stroma. This suggests that Delta4 has a role in the regulation of hematopoiesis after a hypoxic stress in the fetus.
Collapse
Affiliation(s)
- Jonathan S Dando
- U362 Inserm, Institut Gustave Roussy, PR1, 94800 Villejuif, France
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Fuwa TJ, Hori K, Sasamura T, Higgs J, Baron M, Matsuno K. The first deltex null mutant indicates tissue-specific deltex-dependent Notch signaling in Drosophila. Mol Genet Genomics 2006; 275:251-63. [PMID: 16395579 DOI: 10.1007/s00438-005-0087-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 12/04/2005] [Indexed: 01/06/2023]
Abstract
Notch (N) is a single-pass transmembrane receptor. The N signaling pathway is an evolutionarily conserved mechanism that controls various cell-specification processes. Drosophila Deltex (Dx), a RING-domain E3 ubiquitin ligase, binds to the N intracellular domain, promotes N's endocytic trafficking to late endosomes, and was proposed to activate Suppressor of Hairless [Su(H)]-independent N signaling. However, it has been difficult to evaluate the importance of dx, because no null mutant of a dx family gene has been available in any organism. Here, we report the first null mutant allele of Drosophila dx. We found that dx was involved only in the subsets of N signaling, but was not essential for it in any developmental context. A strong genetic interaction between dx and Su(H) suggested that dx might function in Su(H)-dependent N signaling. Our epistatic analyses suggested that dx functions downstream of the ligands and upstream of activated Su(H). We also uncovered a novel dx activity that suppressed N signaling downstream of N.
Collapse
Affiliation(s)
- Takashi J Fuwa
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, 278-8510 Noda, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
77
|
Almeida MS, Bray SJ. Regulation of post-embryonic neuroblasts by Drosophila Grainyhead. Mech Dev 2005; 122:1282-93. [PMID: 16275038 DOI: 10.1016/j.mod.2005.08.004] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 07/30/2005] [Accepted: 08/23/2005] [Indexed: 11/29/2022]
Abstract
The Drosophila post-embryonic neuroblasts (pNBs) are neural stem cells that persist in the larval nervous system where they proliferate to produce neurons for the adult CNS. These pNBs provide a good model to investigate mechanisms regulating the maintenance and proliferation of stem cells. The transcription factor Grainyhead (Grh), which is required for morphogenesis of epidermal and tracheal cells, is also expressed in all pNBs. Here, we show that grh is essential for pNBs to adopt the stem cell programme appropriate to their position within the CNS. In grh mutants the abdominal pNBs produced more progeny while the thoracic pNBs, in contrast, divided less and produced fewer progeny than wild type. We investigated three candidates; the Neuroblast identify gene Castor, the signalling molecule Notch and the adhesion protein E-Cadherin, to determine whether they could mediate these effects. Neither Castor nor Notch fulfilled the criteria for intermediaries, and in particular Notch activity was found to be dispensable for the normal proliferation and survival of the pNBs. In contrast E-Cadherin, which has been shown to regulate pNB proliferation, was present at greatly reduced levels in the grh mutant pNBs. Furthermore, ectopic expression of Grh was sufficient to promote ectopic E-Cadherin and two conserved Grh-binding sites were identified in the E-Cadherin/shotgun flanking sequences, arguing that this gene is a downstream target. Thus one way Grh could regulate pNBs is through expression of E-cadherin, a protein that is thought to mediate interactions with the glial niche.
Collapse
Affiliation(s)
- Mara S Almeida
- Department of Anatomy, University of Cambridge, Downing Street, CA CB2 3DY, UK
| | | |
Collapse
|
78
|
Dobens L, Jaeger A, Peterson JS, Raftery LA. Bunched sets a boundary for Notch signaling to pattern anterior eggshell structures during Drosophila oogenesis. Dev Biol 2005; 287:425-37. [PMID: 16223477 DOI: 10.1016/j.ydbio.2005.09.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 09/01/2005] [Accepted: 09/06/2005] [Indexed: 01/01/2023]
Abstract
Organized boundaries between different cell fates are critical in patterning and organogenesis. In some tissues, long-range signals position a boundary, and local Notch signaling maintains it. How Notch activity is restricted to boundary regions is not well understood. During Drosophila oogenesis, the long-range signals EGF and Dpp regulate expression of bunched (bun), which encodes a homolog of mammalian transcription factors TSC-22 and GILZ. Here, we show that bun establishes a boundary for Notch signaling in the follicle cell epithelium. Notch signaling is active in anterior follicle cells and is required for concurrent follicle cell reorganizations including centripetal migration and operculum formation. bun is required in posterior columnar follicle cells to repress the centripetal migration fate, including gene expression, cell shape changes and accumulation of cytoskeletal components. bun mutant clones adjacent to the centripetally migrating follicle cells showed ectopic Notch responses. bun is necessary, but not sufficient, to down-regulate Serrate protein levels throughout the follicular epithelium. These data indicate that Notch signaling is necessary, but not sufficient, for centripetal migration and that bun regulates the level of Notch stimulation to position the boundary between centripetally migrating and stationary columnar follicle cells.
Collapse
Affiliation(s)
- Leonard Dobens
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Bldg. 149 13th Street, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
79
|
Peterson RE, McClay DR. A Fringe-modified Notch signal affects specification of mesoderm and endoderm in the sea urchin embryo. Dev Biol 2005; 282:126-37. [PMID: 15936334 DOI: 10.1016/j.ydbio.2005.02.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 10/12/2004] [Accepted: 02/24/2005] [Indexed: 11/19/2022]
Abstract
Fringe proteins are O-fucose-specific beta-1,3 N-acetylglucosaminyltransferases that glycosylate the extracellular EGF repeats of Notch and enable Notch to be activated by the ligand Delta. In the sea urchin, signaling between Delta and Notch is known to be necessary for specification of secondary mesenchyme cells (SMCs). The Lytechinus variegatus Fringe homologue is expressed in both the signaling and receiving cells during this first Delta-Notch signal. Perturbation of Fringe expression through morpholino antisense oligonucleotide (MO) injection results in fewer SMCs but also causes decreased and delayed archenteron invagination. Partial endoderm specification occurs but expression of some endoderm genes is compromised. The data are consistent with a Fringe-requiring Notch signal as one upstream component of archenteron morphogenesis. Finally, Fringe perturbations result in more severe phenotypes than those previously reported for Notch dominant-negative (LvN(neg)) injections or reported here for Notch MO (NMO) injections. Injecting a combination of LvN(neg) and NMO results in a more severe phenotype than either treatment alone, and this combination phenocopies the fringe MO embryos. Taken together, the results show that Fringe is necessary both for maternal and zygotic Notch signals, and these Notch signals affect specification of mesoderm and endoderm.
Collapse
Affiliation(s)
- Robert E Peterson
- Department of Biology and Developmental, Cell, and Molecular Biology Group, Duke University, Box 91000, Durham, NC 27708, USA.
| | | |
Collapse
|
80
|
Delaney C, Varnum-Finney B, Aoyama K, Brashem-Stein C, Bernstein ID. Dose-dependent effects of the Notch ligand Delta1 on ex vivo differentiation and in vivo marrow repopulating ability of cord blood cells. Blood 2005; 106:2693-9. [PMID: 15976178 PMCID: PMC1366491 DOI: 10.1182/blood-2005-03-1131] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Although significant advances have been made over the last decade with respect to our understanding of stem cell biology, progress has been limited in the development of successful techniques for clinically significant ex vivo expansion of hematopoietic stem and progenitor cells. We here describe the effect of Notch ligand density on induction of Notch signaling and subsequent cell fate of human CD34+CD38- cord blood progenitors. Lower densities of Delta1(ext-IgG) enhanced the generation of CD34+ cells as well as CD14+ and CD7+ cells, consistent with early myeloid and lymphoid differentiation, respectively. However, culture with increased amounts of Delta1(ext-IgG) induced apoptosis of CD34+ precursors resulting in decreased cell numbers, without affecting generation of CD7+ cells. RNA interference studies revealed that the promotion of lymphoid differentiation was primarily mediated by Delta1 activation of Notch1. Furthermore, enhanced generation of NOD/SCID repopulating cells was seen following culture with lower but not higher densities of ligand. These studies indicate critical, quantitative aspects of Notch signaling in affecting hematopoietic precursor cell-fate outcomes and suggest that density of Notch ligands in different organ systems may be an important determinant in regulating cell-fate outcomes. Moreover, these findings contribute to the development of methodology for manipulation of hematopoietic precursors for therapeutic purposes.
Collapse
Affiliation(s)
- Colleen Delaney
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, D2-373, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
81
|
Vivekanand P, Tootle TL, Rebay I. MAE, a dual regulator of the EGFR signaling pathway, is a target of the Ets transcription factors PNT and YAN. Mech Dev 2005; 121:1469-79. [PMID: 15511639 DOI: 10.1016/j.mod.2004.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 07/23/2004] [Accepted: 07/26/2004] [Indexed: 11/16/2022]
Abstract
Ets transcription factors play crucial roles in regulating diverse cellular processes including cell proliferation, differentiation and survival. Coordinated regulation of the Drosophila Ets transcription factors YAN and POINTED is required for eliciting appropriate responses to Receptor Tyrosine Kinase (RTK) signaling. YAN, a transcriptional repressor, and POINTED, a transcriptional activator, compete for regulatory regions of common target genes, with the ultimate outcome likely influenced by context-specific interactions with binding partners such as MAE. Previous work in cultured cells has led us to propose that MAE attenuates the transcriptional activity of both YAN and POINTED, although its effects on POINTED remain controversial. Here we describe a new layer of complexity to this regulatory hierarchy whereby mae expression is itself directly regulated by the opposing action of YAN and POINTED. In addition, we report that MAE can antagonize POINTED function during eye development; a finding that suggests MAE operates as a dual positive and negative regulator of RTK-mediated signaling in vivo. Together our results lead us to propose that a combination of protein-protein and transcriptional interactions between MAE, YAN and POINTED establishes a complex regulatory circuit that ensures that both down-regulation and activation of the RTK pathway occur appropriately according to specific developmental context.
Collapse
Affiliation(s)
- Pavithra Vivekanand
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | | |
Collapse
|
82
|
Dallas MH, Varnum-Finney B, Delaney C, Kato K, Bernstein ID. Density of the Notch ligand Delta1 determines generation of B and T cell precursors from hematopoietic stem cells. ACTA ACUST UNITED AC 2005; 201:1361-6. [PMID: 15851488 PMCID: PMC2213184 DOI: 10.1084/jem.20042450] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Notch signaling regulates multiple cell fate decisions by hematopoietic precursors. To address whether different amounts of Notch ligand influence lineage choices, we cultured murine bone marrow lin−Sca-1+c-kit+ cells with increasing densities of immobilized Delta1ext-IgG consisting of the extracellular domain of Delta1 fused to the Fc domain of human IgG1. We found that relatively lower densities of Delta1ext-IgG enhanced the generation of Sca-1+c-kit+ cells, Thy1+CD25+ early T cell precursors, and B220+CD43−/lo cells that, when cocultured with OP9 stroma cells, differentiated into CD19+ early B cell precursors. Higher densities of Delta1ext-IgG also enhanced the generation of Sca-1+c-kit+ precursor cells and promoted the development of Thy1+CD25+ cells, but inhibited the development of B220+CD43−/lo cells. Analyses of further isolated precursor populations suggested that the enhanced generation of T and B cell precursors resulted from the effects on multipotent rather than lymphoid-committed precursors. The results demonstrate the density-dependent effects of Delta1 on fate decisions of hematopoietic precursors at multiple maturational stages and substantiate the previously unrecognized ability of Delta1 to enhance the development of both early B and T precursor cells.
Collapse
Affiliation(s)
- Mari H Dallas
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
83
|
Hayward P, Brennan K, Sanders P, Balayo T, Dasgupta R, Perrimon N, Martinez Arias A. Notch modulates Wnt signalling by associating with Armadillo/beta-catenin and regulating its transcriptional activity. Development 2005; 132:1819-30. [PMID: 15772135 PMCID: PMC2500123 DOI: 10.1242/dev.01724] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The establishment and stability of cell fates during development depend on the integration of multiple signals, which ultimately modulate specific patterns of gene expression. While there is ample evidence for this integration at the level of gene regulatory sequences, little is known about its operation at other levels of cellular activity. Wnt and Notch signalling are important elements of the circuitry that regulates gene expression in development and disease. Genetic analysis has suggested that in addition to convergence on the transcription of specific genes, there are modulatory cross-regulatory interactions between these signalling pathways. We report that the nodal point of these interactions is an activity of Notch that regulates the activity and the amount of the active/oncogenic form of Armadillo/beta-catenin. This activity of Notch is independent of that induced upon cleavage of its intracellular domain and which mediates transcription through Su(H)/CBF1. The modulatory function of Notch described here, contributes to the establishment of a robust threshold for Wnt signalling which is likely to play important roles in both normal and pathological situations.
Collapse
Affiliation(s)
- Penny Hayward
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Keith Brennan
- School of Biological Sciences, University of Manchester, 3.239 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | - Phil Sanders
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Tina Balayo
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Ramanuj Dasgupta
- Harvard Medical School/HHMI, Dept. of Genetics, 77 Avenue Louis Pasteur, NRB #339, Boston MA 02115
| | - Norbert Perrimon
- Harvard Medical School/HHMI, Dept. of Genetics, 77 Avenue Louis Pasteur, NRB #339, Boston MA 02115
| | - Alfonso Martinez Arias
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
- Correspondence should be addressed to A.MA at , Telephone 44 1223 766742
| |
Collapse
|
84
|
Silver SJ, Chen F, Doyon L, Zink AW, Rebay I. New class of Son-of-sevenless (Sos) alleles highlights the complexities of Sos function. Genesis 2005; 39:263-72. [PMID: 15286999 DOI: 10.1002/gene.20054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The guanine nucleotide exchange factor (GEF) Son-of-sevenless (Sos) encodes a complex multidomain protein best known for its role in activating the small GTPase RAS in response to receptor tyrosine kinase (RTK) stimulation. Much less well understood is SOS's role in modulating RAC activity via a separate GEF domain. In the course of a genetic modifier screen designed to investigate the complexities of RTK/RAS signal transduction, a complementation group of 11 alleles was isolated and mapped to the Sos locus. Molecular characterization of these alleles indicates that they specifically affect individual domains of the protein. One of these alleles, SosM98, which contains a single amino acid substitution in the RacGEF motif, functions as a dominant negative in vivo to downregulate RTK signaling. These alleles provide new tools for future investigations of SOS-mediated activation of both RAS and RAC and how these dual roles are coordinated and coregulated during development.
Collapse
Affiliation(s)
- Serena J Silver
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | | | |
Collapse
|
85
|
Okajima T, Xu A, Lei L, Irvine KD. Chaperone activity of protein O-fucosyltransferase 1 promotes notch receptor folding. Science 2005; 307:1599-603. [PMID: 15692013 DOI: 10.1126/science.1108995] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Notch proteins are receptors for a conserved signaling pathway that affects numerous cell fate decisions. We found that in Drosophila, Protein O-fucosyltransferase 1 (OFUT1), an enzyme that glycosylates epidermal growth factor-like domains of Notch, also has a distinct Notch chaperone activity. OFUT1 is an endoplasmic reticulum protein, and its localization was essential for function in vivo. OFUT1 could bind to Notch, was required for the trafficking of wild-type Notch out of the endoplasmic reticulum, and could partially rescue defects in secretion and ligand binding associated with Notch point mutations. This ability of OFUT1 to facilitate folding of Notch did not require its fucosyltransferase activity. Thus, a glycosyltransferase can bind its substrate in the endoplasmic reticulum to facilitate normal folding.
Collapse
Affiliation(s)
- Tetsuya Okajima
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
86
|
Kamimura K, Rhodes JM, Ueda R, McNeely M, Shukla D, Kimata K, Spear PG, Shworak NW, Nakato H. Regulation of Notch signaling by Drosophila heparan sulfate 3-O sulfotransferase. ACTA ACUST UNITED AC 2004; 166:1069-79. [PMID: 15452147 PMCID: PMC2172002 DOI: 10.1083/jcb.200403077] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heparan sulfate (HS) regulates the activity of various ligands and is involved in molecular recognition events on the cell surface and in the extracellular matrix. Specific binding of HS to different ligand proteins depends on the sulfation pattern of HS. For example, the interaction between antithrombin and a particular 3-O sulfated HS motif is thought to modulate blood coagulation. However, a recent study of mice defective for this modification suggested that 3-O sulfation plays other biological roles. Here, we show that Drosophila melanogaster HS 3-O sulfotransferase-b (Hs3st-B), which catalyzes HS 3-O sulfation, is a novel component of the Notch pathway. Reduction of Hs3st-B function by transgenic RNA interference compromised Notch signaling, producing neurogenic phenotypes. We also show that levels of Notch protein on the cell surface were markedly decreased by loss of Hs3st-B. These findings suggest that Hs3st-B is involved in Notch signaling by affecting stability or intracellular trafficking of Notch protein.
Collapse
Affiliation(s)
- Keisuke Kamimura
- Dept. of Genetics, Cell Biology, and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Hori K, Fostier M, Ito M, Fuwa TJ, Go MJ, Okano H, Baron M, Matsuno K. DrosophilaDeltex mediates Suppressor of Hairless-independent and late-endosomal activation of Notch signaling. Development 2004; 131:5527-37. [PMID: 15496440 DOI: 10.1242/dev.01448] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Notch (N) signaling is an evolutionarily conserved mechanism that regulates many cell-fate decisions. deltex (dx) encodes an E3-ubiquitin ligase that binds to the intracellular domain of N and positively regulates N signaling. However, the precise mechanism of Dx action is unknown. Here, we found that Dx was required and sufficient to activate the expression of gene targets of the canonical Su(H)-dependent N signaling pathway. Although Dx required N and a cis-acting element that overlaps with the Su(H)-binding site, Dx activated a target enhancer of N signaling, the dorsoventral compartment boundary enhancer of vestigial (vgBE), in a manner that was independent of the Delta (Dl)/Serrate (Ser) ligands- or Su(H). Dx caused N to be moved from the apical cell surface into the late-endosome, where it accumulated stably and co-localized with Dx. Consistent with this, the dx gene was required for the presence of N in the endocytic vesicles. Finally, blocking the N transportation from the plasma membrane to the late-endosome by a dominant-negative form of Rab5 inhibited the Dx-mediated activation of N signaling, suggesting that the accumulation of N in the late-endosome was required for the Dx-mediated Su(H)-independent N signaling.
Collapse
Affiliation(s)
- Kazuya Hori
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Tapanes-Castillo A, Baylies MK. Notch signaling patterns Drosophila mesodermal segments by regulating the bHLH transcription factor twist. Development 2004; 131:2359-72. [PMID: 15128668 DOI: 10.1242/dev.01113] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One of the first steps in embryonic mesodermal differentiation is allocation of cells to particular tissue fates. In Drosophila, this process of mesodermal subdivision requires regulation of the bHLH transcription factor Twist. During subdivision, Twist expression is modulated into stripes of low and high levels within each mesodermal segment. High Twist levels direct cells to the body wall muscle fate, whereas low levels are permissive for gut muscle and fat body fate. We show that Su(H)-mediated Notch signaling represses Twist expression during subdivision and thus plays a critical role in patterning mesodermal segments. Our work demonstrates that Notch acts as a transcriptional switch on mesodermal target genes, and it suggests that Notch/Su(H) directly regulates twist, as well as indirectly regulating twist by activating proteins that repress Twist. We propose that Notch signaling targets two distinct 'Repressors of twist' - the proteins encoded by the Enhancer of split complex [E(spl)C] and the HLH gene extra machrochaetae (emc). Hence, the patterning of Drosophila mesodermal segments relies on Notch signaling changing the activities of a network of bHLH transcriptional regulators, which, in turn, control mesodermal cell fate. Since this same cassette of Notch, Su(H) and bHLH regulators is active during vertebrate mesodermal segmentation and/or subdivision, our work suggests a conserved mechanism for Notch in early mesodermal patterning.
Collapse
Affiliation(s)
- Alexis Tapanes-Castillo
- Program in Developmental Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, Weill Graduate School of Medical Sciences at Cornell University, 1275 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
89
|
Wang F, Dumstrei K, Haag T, Hartenstein V. The role of DE-cadherin during cellularization, germ layer formation and early neurogenesis in the Drosophila embryo. Dev Biol 2004; 270:350-63. [PMID: 15183719 DOI: 10.1016/j.ydbio.2004.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 03/04/2004] [Accepted: 03/05/2004] [Indexed: 11/21/2022]
Abstract
The Drosophila E-cadherin homolog, DE-cadherin, is expressed and required in all epithelial tissues throughout embryogenesis. Due to a strong maternal component of DE-cadherin, its early function during embryogenesis has remained elusive. The expression of a dominant negative DE-cadherin construct (UAS-DE-cad(ex)) using maternally active driver lines allowed us to analyze the requirements for DE-cadherin during this early phase of development. Maternally expressed DE-cad(ex) result in phenotype with variable expressivity. Most severely affected embryos have abnormalities in epithelialization of the blastoderm, resulting in loss of the blastodermal cells' apico-basal polarity and monolayered structure. Another phenotypic class forms a rather normal blastoderm, but shows abnormalities in proliferation and morphogenetic movements during gastrulation and neurulation. Mitosis of the mesoderm occurs prematurely before invagination, and proliferation in the ectoderm, normally a highly ordered process, occurs in a random pattern. Mitotic spindles of ectodermal cells, normally aligned horizontally, frequently occurred vertically or at an oblique angle. This finding further supports recent findings indicating that, in the wild-type ectoderm, the zonula adherens is required for the horizontal orientation of mitotic spindles. Proliferation defects in DE-cad(ex)-expressing embryos are accompanied by the loss of epithelial structure of ectoderm and neuroectoderm. These germ layers form irregular double or triple layers of rounded cells that lack zonula adherens. In the multilayered neuroectoderm, epidermal precursors, neuroblasts and ganglion mother cells occurred intermingled, attesting to the pivotal role of DE-cadherin in delamination and polarized division of neuroblasts. By contrast, the overall number and spacing of neuroblasts was grossly normal, indicating that DE-cadherin-mediated adhesion is less important for cell-cell interaction controlling the ratio of epidermal vs. neural progenitors.
Collapse
Affiliation(s)
- Fay Wang
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
90
|
Tokunaga A, Kohyama J, Yoshida T, Nakao K, Sawamoto K, Okano H. Mapping spatio-temporal activation of Notch signaling during neurogenesis and gliogenesis in the developing mouse brain. J Neurochem 2004; 90:142-54. [PMID: 15198674 DOI: 10.1111/j.1471-4159.2004.02470.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Notch1 plays various important roles including the maintenance of the stem cell state as well as the promotion of glial fates in mammalian CNS development. However, because of the very low amount of the activated form of Notch1 present in vivo, its precise activation pattern has remained unknown. In this study, we mapped the active state of this signaling pathway in situ in the developing mouse brain using a specific antibody that recognizes the processed form of the intracellular domain of Notch1 cleaved by presenilin/gamma-secretase activity. By using this antibody, active state of Notch1 came to be detectable with a higher sensitivity than using conventional antibody against Notch1. We found that activated Notch1 was mainly detected in the nuclei of a subpopulation of radial glial cells, the majority of proliferating precursor cells in the ventricular zone (VZ). However, Notch1 activation was not detected in neuronal precursor cells positive for neuronal basic helix-loop-helix proteins or in differentiating neurons in the embryonic forebrain. Interestingly, we found that Notch1 was transiently activated in the astrocytic lineage during perinatal CNS development. Taken together, the present method has enabled us to determine the timing, gradients, and boundaries of the activation of Notch signaling.
Collapse
Affiliation(s)
- Akinori Tokunaga
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
91
|
Chen W, Casey Corliss D. Three modules of zebrafish Mind bomb work cooperatively to promote Delta ubiquitination and endocytosis. Dev Biol 2004; 267:361-73. [PMID: 15013799 DOI: 10.1016/j.ydbio.2003.11.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2003] [Revised: 11/11/2003] [Accepted: 11/11/2003] [Indexed: 02/07/2023]
Abstract
Precise regulation of Notch signaling activity is critical for development of many different tissues. Here, we show that the zebrafish insertional mutation Hi904 attenuates Notch signaling, and is allelic to mind bomb. We show that Mind bomb protein displays E3 ubiquitin ligase activity in vitro and that it is associated with Delta and enhances its ubiquitination and internalization in transfected cells. Furthermore, by functional analysis of three conserved regions of Mind bomb, we show that the N-terminal half is required for Delta association, the ankyrin repeats are important for Delta internalization, and the ring fingers are required for Delta ubiquitination. Thus, the three functionally distinct modules of Mind bomb work cooperatively to regulate Notch signaling by associating with, ubiquitinating, and internalizing Delta.
Collapse
Affiliation(s)
- Wenbiao Chen
- Vollum Institute, Oregon Health and Science University, Portland, OR 97201, USA.
| | | |
Collapse
|
92
|
Kong Y, Glickman J, Subramaniam M, Shahsafaei A, Allamneni KP, Aster JC, Sklar J, Sunday ME. Functional diversity ofnotchfamily genes in fetal lung development. Am J Physiol Lung Cell Mol Physiol 2004; 286:L1075-83. [PMID: 15064243 DOI: 10.1152/ajplung.00438.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In Drosophila, developmental signaling via the transmembrane Notch receptor modulates branching morphogenesis and neuronal differentiation. To determine whether the notch gene family can regulate mammalian organogenesis, including neuroendocrine cell differentiation, we evaluated developing murine lung. After demonstrating gene expression for notch-1, notch-2, notch-3, and the Notch ligands jagged-1 and jagged-2 in embryonic mouse lung, we tested whether altering expression of these genes can modulate branching morphogenesis. Branching of embryonic day (E) 11.5 lung buds increased when they were treated with notch-1 antisense oligodeoxynucleotides in culture compared with the corresponding sense controls, whereas notch-2, notch-3, jagged-1, or jagged-2 antisense oligos had no significant effect. To assess cell differentiation, we immunostained lung bud cultures for the neural/neuroendocrine marker PGP9.5. Antisense to notch-1 or jagged-1 markedly increased numbers of PGP9.5-positive neuroendocrine cells alone without affecting neural tissue, whereas only neural tissue was promoted by notch-3 antisense in culture. There was no significant effect on cell proliferation or apoptosis in these antisense experiments. Cumulatively, these observations suggest that interactions between distinct Notch family members can have diverse tissue-specific regulatory functions during development, arguing against simple functional redundancy.
Collapse
Affiliation(s)
- Yanping Kong
- Brigham & Women's Hospital, Dept. of Pathology, 75 Francis St., Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Michaely P, Bennett V. The ANK repeat: a ubiquitous motif involved in macromolecular recognition. Trends Cell Biol 2004; 2:127-9. [PMID: 14731966 DOI: 10.1016/0962-8924(92)90084-z] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Many proteins rely on stable, noncovalent interactions with other macromolecules to perform their function. The identification of a repeated sequence motif, the ANK repeat, in diverse proteins whose common function involves binding to other proteins indicates one way nature may achieve a wide range of protein-protein interactions. In this article, we describe evidence that these ANK repeats are involved in the specific recognition of proteins and possibly DNA, and present a model for the folding of the motif.
Collapse
Affiliation(s)
- P Michaely
- Howard Hughes Medical Institute and Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
94
|
Sunday ME, Shan L, Subramaniam M. Immunomodulatory functions of the diffuse neuroendocrine system: implications for bronchopulmonary dysplasia. Endocr Pathol 2004; 15:91-106. [PMID: 15299196 DOI: 10.1385/ep:15:2:091] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pulmonary neuroendocrine (NE) cells are believed to be the precursor of NE lung carcinomas, including well-differentiated (carcinoids) and moderately/poorly differentiated (atypical carcinoids and small-cell carcinomas, SCLCs) subtypes. In early studies, we determined mechanisms by which NE cell-derived peptides such as bombesin-like peptide (BLP) promote normal fetal lung development. Postnatally, BLP may normally regulate perinatal adaptation of the pulmonary circulation. However, elevated BLP levels in premature infants shortly after birth predict which infants are at high risk for developing bronchopulmonary dysplasia (BPD, chronic lung disease of newborns). An anti-BLP blocking antibody abrogates clinical and pathological evidence of lung injury in two baboon models of BPD. These observations indicate that BLP mediates lung injury in BPD, supporting a role for BLP as pro-inflammatory cytokines. We have directly tested the effects of BLP on eliciting inflammatory cell infiltrates in vivo. Surprisingly, mast cells are the major responding cell population. These data suggest that the diffuse NE system may be a newly recognized component of innate immunity in multiple organ systems. We speculate that overproduction of NE cell-derived peptides such as BLP may be responsible for a variety of chronic inflammatory disorders.
Collapse
Affiliation(s)
- Mary E Sunday
- Departments of Pathology, Brigham & Women's Hospital, Harvard Medical School, MA 02115, USA.
| | | | | |
Collapse
|
95
|
Lei L, Xu A, Panin VM, Irvine KD. An O-fucose site in the ligand binding domain inhibits Notch activation. Development 2003; 130:6411-21. [PMID: 14627724 DOI: 10.1242/dev.00883] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two glycosyltransferases that transfer sugars to EGF domains, OFUT1 and Fringe, regulate Notch signaling. However, sites of O-fucosylation on Notch that influence Notch activation have not been previously identified. Moreover, the influences of OFUT1 and Fringe on Notch activation can be positive or negative, depending on their levels of expression and on whether Delta or Serrate is signaling to Notch. Here, we describe the consequences of eliminating individual, highly conserved sites of O-fucose attachment to Notch. Our results indicate that glycosylation of an EGF domain proposed to be essential for ligand binding, EGF12, is crucial to the inhibition of Serrate-to-Notch signaling by Fringe. Expression of an EGF12 mutant of Notch(N-EGF12f) allows Notch activation by Serrate even in the presence of Fringe. By contrast, elimination of three other highly conserved sites of O-fucosylation does not have detectable effects. Binding assays with a soluble Notch extracellular domain fusion protein and ligand-expressing cells indicate that the NEGF12f mutation can influence Notch activation by preventing Fringe from blocking Notch-Serrate binding. The N-EGF12f mutant can substitute for endogenous Notch during embryonic neurogenesis, but not at the dorsoventral boundary of the wing. Thus, inhibition of Notch-Serrate binding by O-fucosylation of EGF12 might be needed in certain contexts to allow efficient Notch signaling.
Collapse
Affiliation(s)
- Liang Lei
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
96
|
Ward RE, Evans J, Thummel CS. Genetic Modifier Screens in Drosophila Demonstrate a Role for Rho1 Signaling in Ecdysone-Triggered Imaginal Disc Morphogenesis. Genetics 2003; 165:1397-415. [PMID: 14668390 PMCID: PMC1462826 DOI: 10.1093/genetics/165.3.1397] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abstract
Drosophila adult leg development provides an ideal model system for characterizing the molecular mechanisms of hormone-triggered morphogenesis. A pulse of the steroid hormone ecdysone at the onset of metamorphosis triggers the rapid transformation of a flat leg imaginal disc into an immature adult leg, largely through coordinated changes in cell shape. In an effort to identify links between the ecdysone signal and the cytoskeletal changes required for leg morphogenesis, we performed two large-scale genetic screens for dominant enhancers of the malformed leg phenotype associated with a mutation in the ecdysoneinducible broad early gene (br1). From a screen of >750 independent deficiency and candidate mutation stocks, we identified 17 loci on the autosomes that interact strongly with br1. In a complementary screen of ∼112,000 F1 progeny of EMS-treated br1 animals, we recovered 26 mutations that enhance the br1 leg phenotype [E(br) mutations]. Rho1, stubbloid, blistered (DSRF), and cytoplasmic Tropomyosin were identified from these screens as br1-interacting genes. Our findings suggest that ecdysone exerts its effects on leg morphogenesis through a Rho1 signaling cascade, a proposal that is supported by genetic interaction studies between the E(br) mutations and mutations in the Rho1 signaling pathway. In addition, several E(br) mutations produce unexpected defects in midembryonic morphogenetic movements. Coupled with recent evidence implicating ecdysone signaling in these embryonic morphogenetic events, our results suggest that a common ecdysone-dependent, Rho1-mediated regulatory pathway controls morphogenesis during the two major transitions in the life cycle, embryogenesis and metamorphosis.
Collapse
Affiliation(s)
- Robert E Ward
- Howard Hughes Medical Institute, Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112-5331, USA
| | | | | |
Collapse
|
97
|
Abstract
During the last decade, many of the factors and mechanisms controlling membrane and protein trafficking in general and endocytic trafficking in particular have been uncovered. We have a detailed understanding of the different endocytic trafficking steps: plasma membrane budding, endocytic vesicle motility and fusion with the endosome, recycling, transcytosis and lysosomal degradation. The kinetics and trafficking pathway of many signaling receptors and the relevance of endocytic trafficking during signaling in many mammalian cultured cells are also well understood. However, only in recent years has the role of endocytic trafficking during cell-to-cell communication during development, i.e. during patterning, induction and lateral inhibition, begun to be explored. The contribution of Drosophila developmental genetics and cell biology has been fundamental in elucidating the essential role of endocytosis during these processes. Reviewed here are some of the recent developments on the role of endocytic trafficking during long- and short-range signaling and during lateral inhibition.
Collapse
Affiliation(s)
- Marcos González-Gaitán
- Max-Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden D-01307, Germany.
| |
Collapse
|
98
|
Doerflinger H, Benton R, Shulman JM, St Johnston D. The role of PAR-1 in regulating the polarised microtubule cytoskeleton in the Drosophila follicular epithelium. Development 2003; 130:3965-75. [PMID: 12874119 DOI: 10.1242/dev.00616] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The PAR-1 kinase plays a conserved role in cell polarity in C. elegans, Drosophila and mammals. We have investigated the role of PAR-1 in epithelial polarity by generating null mutant clones in the Drosophila follicular epithelium. Large clones show defects in apicobasal membrane polarity, but small clones induced later in development usually have a normal membrane polarity. However, all cells that lack PAR-1 accumulate spectrin and F-actin laterally, and show a strong increase in the density of microtubules. This is consistent with the observation that the mammalian PAR-1 homologues, the MARKs, dramatically reduce the number of microtubules, when overexpressed in tissue culture cells. The MARKs have been proposed to destabilize microtubules by inhibiting the stabilizing activity of the Tau family of microtubule-associated proteins. This is not the case in Drosophila, however, as null mutations in the single tau family member in the genome have no effect on the microtubule organisation in the follicle cells. Furthermore, PAR-1 activity stabilises microtubules, as microtubules in mutant cells depolymerise much more rapidly after cold or colcemid treatments. Loss of PAR-1 also disrupts the basal localisation of the microtubule plus ends, which are mislocalised to the centre of mutant cells. Thus, Drosophila PAR-1 regulates the density, stability and apicobasal organisation of microtubules. Although the direct targets of PAR-1 are unknown, we suggest that it functions by regulating the plus ends, possibly by capping them at the basal cortex.
Collapse
Affiliation(s)
- Hélène Doerflinger
- The Wellcome Trust/Cancer Research UK Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | | | | | | |
Collapse
|
99
|
Wesley CS, Mok LP. Regulation of Notch signaling by a novel mechanism involving suppressor of hairless stability and carboxyl terminus-truncated notch. Mol Cell Biol 2003; 23:5581-93. [PMID: 12897132 PMCID: PMC166347 DOI: 10.1128/mcb.23.16.5581-5593.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Different amounts of Suppressor of Hairless (SuH)-dependent Notch (N) signaling is often used during animal development to produce two different tissues from a population of equipotent cells. During Drosophila melanogaster embryogenesis, cells with high amounts of this signaling differentiate the larval epidermis whereas cells with low amounts, or none, differentiate the central nervous system (CNS). The mechanism by which SuH-dependent N signaling is increased or decreased in these different cells is obscure. The developing epidermis is known to get enriched for the full-length N (NFull) and the developing CNS for the carboxyl terminus-truncated N (NdeltaCterm). Results described here indicate that this differential accumulation of N receptors is part of a mechanism that would promote SuH-dependent N signaling in the developing epidermis but suppress it in the developing CNS. This mechanism involves SuH-dependent stability of NFull, NFull-dependent accumulation of SuH, stage specific stability of SuH, and NdeltaCterm-dependent loss of SuH and NFull.
Collapse
Affiliation(s)
- Cedric S Wesley
- Department of Microbiology and Molecular Genetics, The University of Vermont, Burlington, Vermont 05405, USA
| | | |
Collapse
|
100
|
Li Y, Lei L, Irvine KD, Baker NE, Li L. Notch activity in neural cells triggered by a mutant allele with altered glycosylation. Development 2003; 130:2829-40. [PMID: 12756168 DOI: 10.1242/dev.00498] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The receptor protein Notch is inactive in neural precursor cells despite neighboring cells expressing ligands. We investigated specification of the R8 neural photoreceptor cells that initiate differentiation of each Drosophila ommatidium. The ligand Delta was required in R8 cells themselves, consistent with a lateral inhibitor function for Delta. By contrast, Delta expressed in cells adjacent to R8 could not activate Notch in R8 cells. The split mutation of Notch was found to activate signaling in R8 precursor cells, blocking differentiation and leading to altered development and neural cell death. split did not affect other, inductive functions of Notch. The Ile578-->Thr578 substitution responsible for the split mutation introduced a new site for O-fucosylation on EGF repeat 14 of the Notch extracellular domain. The O-fucose monosaccharide did not require extension by Fringe to confer the phenotype. Our results suggest functional differences between Notch in neural and non-neural cells. R8 precursor cells are protected from lateral inhibition by Delta. The protection is affected by modifications of a particular EGF repeat in the Notch extracellular domain. These results suggest that the pattern of neurogenesis is determined by blocking Notch signaling, as well as by activating Notch signaling.
Collapse
Affiliation(s)
- Yanxia Li
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|