51
|
Horackova M, Croll RP, Hopkins DA, Losier AM, Armour JA. Morphological and immunohistochemical properties of primary long-term cultures of adult guinea-pig ventricular cardiomyocytes with peripheral cardiac neurons. Tissue Cell 1996; 28:411-25. [PMID: 8760856 DOI: 10.1016/s0040-8166(96)80027-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Long-term (2-12 weeks) cultures of adult guinea-pig ventricular myocytes, cocultured with neurons derived from stellate or intrinsic cardiac ganglia, retain their functional properties (Horackova et al., 1993, 1994, 1995). The present study was designed to investigate the morphological and immunochemical properties of such neurons and their associated cardiomyocytes. Cultured myocytes studied by means of phalloidin-rhodamine (for F-actin) and an antibody raised against myomes revealed parallel myofibrils with striations typical of rod-shaped cardiomyocytes, even while myocytes changed from cylindrical to flattened form as they established intercellular contacts. Microtubular networks, identified by alpha-tubulin DM1A antibody, were arrayed longitudinally in myofibrils, being especially prominent during the formation of intercellular contacts between myocytes. Histochemically identified adult peripheral autonomic neurons cultured alone or with myocytes displayed a variety of shapes. alpha-Tubulin staining was associated with the somata and neurites of various-shaped neurons whether cultured alone or with myocytes. Cultured neurons derived from stellate and intrinsic cardiac ganglia also exhibited staining for the general neuronal marker PGP 9.5 (protein gene product 9.5), and for specific markers of the following neurochemicals: tyrosine hydroxylase, acetylcholinesterase, choline acetyltransferase, neuropeptide Y, vasoactive intestinal peptide, calcitonin gene-related peptide, bradykinin, oxytocin, and NADPH-diaphorase. These data indicate that: (a) adult ventricular myocytes cocultured with intrathoracic neurons retain the structural properties of adult myocytes found in vivo; (b) intrinsic cardiac and extrinsic intrathoracic neurons cultured alone or with cardiomyocytes display morphological characteristics similar to those of neurons studied in situ; (c) intrinsic cardiac and intrathoracic extracardiac neurons cultured alone or with cardiomyocytes display a variety of morphologies (unipolar, bipolar, and multipolar), larger and more multipolar neurons being present in cultures derived from stellate versus intrinsic cardiac ganglia; (d) such cultured neurons are associated with a number of neurochemicals, more than one chemical being associated with each neuron. This model presents an excellent opportunity to study the morphology of individual peripheral extracardiac and intracardiac neurons as well as their potential to produce various neurochemicals that are known to be involved in the neuromodulation of cardiomyocyte function.
Collapse
Affiliation(s)
- M Horackova
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | |
Collapse
|
52
|
Hofman P, D'Andrea L, Carnes D, Colgan SP, Madara JL. Intestinal epithelial cytoskeleton selectively constrains lumen-to-tissue migration of neutrophils. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 271:C312-20. [PMID: 8760060 DOI: 10.1152/ajpcell.1996.271.1.c312] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Migration of neutrophils (polymorphonuclear leukocytes; PMN) across polarized epithelia is asymmetrical: basolateral-to-apical (physiologically directed) migration is far more efficient than migration in the reverse direction, suggesting the presence of luminal retention signal(s). Following pilot observations, we used polarized intestinal epithelial monolayers (T84) to examine whether asymmetrical constraint of migration afforded by the epithelial cytoskeleton might underlie such retention signals. Rearrangement of epithelial cortical F-actin accompanied PMN transepithelial migration (in either direction) and was prevented by preloading monolayers with the F-actin stabilizing agent phallacidin. Although phallacidin preloading did not influence physiologically directed PMN transepithelial migration, such treatment greatly enhanced migration in the reverse direction (i.e., effective loss of luminal retention signal). 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) preloading also prevented epithelial cortical actin rearrangements and selectively resulted in loss of luminal retention signal(s). BAPTA preloading did not influence resistance or forskolin-induced Cl- secretion, and phallacidin preloading did not influence resistance or carbachol-induced Cl- secretion, suggesting that barrier function and surface polarity were maintained under these conditions. These and supplementary data suggest that epithelial actin (but not microtubule) cytoskeletal reordering asymmetrically influences PMN migration and underlies, at least in part, the observed signal that biases for retention of PMN in the luminal space.
Collapse
Affiliation(s)
- P Hofman
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
53
|
Simpson DG, Sharp WW, Borg TK, Price RL, Terracio L, Samarel AM. Mechanical regulation of cardiac myocyte protein turnover and myofibrillar structure. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 270:C1075-87. [PMID: 8928735 DOI: 10.1152/ajpcell.1996.270.4.c1075] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mechanical forces play an essential role in regulating the synthesis and assembly of contractile proteins into the sarcomeres of cardiac myocytes. To examine if physical forces might also regulate the turnover of contractile proteins at a posttranslational site of control, beating and nonbeating neonatal cardiac myocytes (NCM) were subjected to a 5% static stretch. The L-type calcium channel blocker nifedipine (12 microM) was used to inhibit contraction. Pulse-chase biosynthetic labeling experiments demonstrated that contractile arrest accelerated the loss of isotopic tracer from the total myofibrillar protein fraction, myosin heavy chain (MHC), and actin, but not desmin. Myofibrillar abnormalities developed in parallel with these metabolic changes. A 5% static load appeared to partially stabilize myofibrillar structure in nonbeating NCM and suppressed the loss of isotopic tracer from the total myofibrillar protein fraction, MHC, and actin in beating and nonbeating NCM. Contractile activity and/or a static stretch promoted the accumulation of MHC, actin, and desmin. Applying a static load to myocytes that lacked preexisting myofibrils did not promote the assembly of sarcomeres or alter protein turnover. These data indicate that the turnover of MHC and actin is correlated with the organizational state of the myofibrillar apparatus.
Collapse
Affiliation(s)
- D G Simpson
- Department of Developmental Biology and Anatomy, University of South Carolina School of Medicine, Columbia 29208, USA
| | | | | | | | | | | |
Collapse
|
54
|
Hertig CM, Butz S, Koch S, Eppenberger-Eberhardt M, Kemler R, Eppenberger HM. N-cadherin in adult rat cardiomyocytes in culture. II. Spatio-temporal appearance of proteins involved in cell-cell contact and communication. Formation of two distinct N-cadherin/catenin complexes. J Cell Sci 1996; 109 ( Pt 1):11-20. [PMID: 8834786 DOI: 10.1242/jcs.109.1.11] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The spatio-temporal appearance and distribution of proteins forming the intercalated disc were investigated in adult rat cardiomyocytes (ARC). The ‘redifferentiation model’ of ARC involves extensive remodelling of the plasma membrane and of the myofibrillar apparatus. It represents a valuable system to elucidate the formation of cell-cell contact between cardiomyocytes and to assess the mechanisms by which different proteins involved in the cell-cell adhesion process are sorted in a precise manner to the sites of function. Appearance of N-cadherin, the catenins and connexin43 within newly formed adherens and gap junctions was studied. Here first evidence is provided for a formation of two distinct and separable N-cadherin/catenin complexes in cardiomyocytes. Both complexes are composed of N-cadherin and alpha-catenin which bind to either beta-catenin or plakoglobin in a mutually exclusive manner. The two N-cadherin/catenin complexes are assumed to be functionally involved in the formation of cell-cell contacts in ARC; however, the differential appearance and localization of the two types of complexes may also point to a specific role during ARC differentiation. The newly synthesized beta-catenin containing complex is more abundant during the first stages in culture after ARC isolation, while the newly synthesized plakoglobin containing complex progressively accumulates during the morphological changes of ARC. ARC formed a tissue-like pattern in culture whereby the new cell-cell contacts could be dissolved through Ca2+ depletion. Presence of cAMP and replenishment of Ca2+ content in the culture medium not only allowed reformation of cell-cell contacts but also affected the relative protein ratio between the two N-cadherin/catenin complexes, increasing the relative amount of newly synthesized beta-catenin over plakoglobin at a particular stage of ARC differentiation. The clustered N-cadherin/catenin complexes at the plasma membrane appear to be a prerequisite for the following gap junction formation; a temporal sequence of the appearance of adherens junction proteins and of gap junctions forming connexin-43 is suggested.
Collapse
Affiliation(s)
- C M Hertig
- Institute for Cell Biology, Swiss Federal Institute of Technology, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
55
|
Decker RS, Cook MG, Behnke-Barclay M, Decker ML. Some growth factors stimulate cultured adult rabbit ventricular myocyte hypertrophy in the absence of mechanical loading. Circ Res 1995; 77:544-55. [PMID: 7641324 DOI: 10.1161/01.res.77.3.544] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cultured adult rabbit cardiac myocytes treated with recombinant growth factors display enhanced rates of protein accumulation (ie, growth) in response to insulin and insulin-like growth factors (IGFs), but epidermal growth factor, acidic or basic fibroblast growth factor, and platelet-derived growth factor failed to increase contractile protein synthesis or growth of the heart cells. Insulin and IGF-1 increased growth rates by stimulating anabolic while simultaneously inhibiting catabolic pathways, whereas IGF-2 elevated growth modestly by apparently inhibiting lysosomal proteolysis. Neutralizing antibodies directed against either IGF-1 or IGF-2 or IGF binding protein 3 blocked protein accumulation. A monoclonal antibody directed against the IGF-1 receptor also inhibited changes in protein turnover provoked by recombinant human IGF-1 but not IGF-2. Of the other growth factors tested, only transforming growth factor-beta 1 increased the fractional rate of myosin heavy chain (MHC) synthesis, with beta-MHC synthesis being elevated and alpha-MHC synthesis being suppressed. However, the other growth factors were able to modestly stimulate the rate of DNA synthesis in this preparation. Bromodeoxyuridine labeling revealed that these growth factors increased DNA synthesis in myocytes and nonmyocytes alike, but the heart cells displayed neither karyokinesis or cytokinesis. In contrast, cocultures of cardiac myocytes and nonmyocytes and nonmyocyte-conditioned culture medium failed to enhance the rate of cardiac MHC synthesis or its accumulation, implying that quiescent heart cells do not respond to "conditioning" by cardiac nonmyocytes. These findings demonstrated that insulin and the IGFs promote passively loaded cultured adult rabbit heart cells to hypertrophy but suggest that other growth factors tested may be limited in this regard.
Collapse
Affiliation(s)
- R S Decker
- Department of Medicine/Cardiology, Northwestern University Medical School, Chicago, Ill 60611, USA
| | | | | | | |
Collapse
|
56
|
Gregorio CC, Fowler VM. Mechanisms of thin filament assembly in embryonic chick cardiac myocytes: tropomodulin requires tropomyosin for assembly. J Cell Biol 1995; 129:683-95. [PMID: 7730404 PMCID: PMC2120443 DOI: 10.1083/jcb.129.3.683] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Tropomodulin is a pointed end capping protein for tropomyosin-coated actin filaments that is hypothesized to play a role in regulating the precise lengths of striated muscle thin filaments (Fowler, V. M., M. A. Sussman, P. G. Miller, B. E. Flucher, and M. P. Daniels. 1993. J. Cell Biol. 120:411-420; Weber, A., C. C. Pennise, G. G. Babcock, and V. M. Fowler. 1994, J. Cell Biol. 127:1627-1635). To gain insight into the mechanisms of thin filament assembly and the role of tropomodulin therein, we have characterized the temporal appearance, biosynthesis and mechanisms of assembly of tropomodulin onto the pointed ends of thin filaments during the formation of striated myofibrils in primary embryonic chick cardiomyocyte cultures. Our results demonstrate that tropomodulin is not assembled coordinately with other thin filament proteins. Double immunofluorescence staining and ultrastructural immunolocalization demonstrate that tropomodulin is incorporated in its characteristic sarcomeric location at the pointed ends of the thin filaments after the thin filaments have become organized into periodic I bands. In fact, tropomodulin assembles later than all other well characterized myofibrillar proteins studied including: actin, tropomyosin, alpha-actinin, titin, myosin and C-protein. Nevertheless, at steady state, a significant proportion (approximately 39%) of tropomodulin is present in a soluble pool throughout myofibril assembly. Thus, the absence of tropomodulin in some striated myofibrils is not due to limiting quantities of the protein. In addition, kinetic data obtained from [35S]methionine pulse-chase experiments indicate that tropomodulin assembles more slowly into myofibrils than does tropomyosin. This observation, together with results obtained using a novel permeabilized cell model for thin filament assembly, indicate that tropomodulin assembly is dependent on the prior association of tropomyosin with actin filaments. We conclude that tropomodulin is a late marker for the assembly of striated myofibrils in cardiomyocytes; its assembly appears to be linked to their maturity. We propose that tropomodulin is involved in maintaining and stabilizing the final lengths of thin filaments after they are assembled.
Collapse
Affiliation(s)
- C C Gregorio
- Department of Cell Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
57
|
Schackow TE, Sheets MF, Decker RS, Ten Eick RE. Alteration of the sodium current in cat cardiac ventricular myocytes during primary culture. THE AMERICAN JOURNAL OF PHYSIOLOGY 1995; 268:C993-1001. [PMID: 7733248 DOI: 10.1152/ajpcell.1995.268.4.c993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To determine the response of cardiac Na current (INa) in adult cardiac ventricular myocytes to culture, single isolated ventricular myocytes from collagenase-perfused adult cat hearts were placed in primary culture for up to 2 wk on a two-dimensional (2D) surface (laminin-coated coverslips), which allowed the morphology of the myocytes to change markedly, or in a three-dimensional matrix (3D) of alginate, in which cell shape changed only minimally. Action potentials and INa were recorded from groups of 1) freshly isolated myocytes serving as the control (day 0),2) cells maintained in 2D culture for 9-14 days (2D, day 9-14), and 3) cells cultured in alginate for 9-14 days (3D, day 9-14) with use of a conventional whole cell patch technique. Maximal upstroke velocity (Vmax) of the action potential was reduced by approximately 50% in 2D- and 3D-cultured cells relative to controls. INa in 2D- and 3D-cultured cells was strikingly different from that in control myocytes. Half-maximal voltage (V 1/2) for the chord conductance-voltage relationship was shifted approximately 15 mV negatively to that for controls in 2D- and 3D-cultured cells. INa steady-state availability curve also shifted negatively relative to controls in 2D- and 3D-cultured myocytes, but the magnitude of this shift (approximately 16-20 mV) was greater than that for the chord conductance-voltage curve.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- T E Schackow
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
58
|
Simpson DG, Sharp WW, Borg TK, Price RL, Samarel AM, Terracio L. Mechanical regulation of cardiac myofibrillar structure. Ann N Y Acad Sci 1995; 752:131-40. [PMID: 7755252 DOI: 10.1111/j.1749-6632.1995.tb17416.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The excitation-contraction coupling cycle (ECC) consists of a complex cascade of electrochemical and mechanical events; however, the relative contributions of these different processes in the regulation of cardiac myofibrillar structure are not well understood. There is extensive evidence to suggest that the mechanical aspects of the ECC play a crucial role in controlling the availability of contractile proteins for myofibrillar assembly. To examine if these physical forces might also serve to stabilize the structure of preexisting myofibrils, beating and nonbeating cultures of neonatal cardiac myocytes (NCM) were subjected to a 5% static stretch. Contractile arrest was achieved by treating NCM with 12 microM nifedipine, which resulted in immediate and sustained contractile arrest and initiated the evolution of marked myofibrillar abnormalities within 24 hours. As judged by scanning confocal and transmission electron microscopic examination, an external load appears to partially stabilize myofibrillar structure in nonbeating NCM. These results suggest that the maintenance of myofibrillar structure may be highly dependent upon the mechanical aspects of ECC.
Collapse
Affiliation(s)
- D G Simpson
- Department of Developmental Biology and Anatomy, University of South Carolina School of Medicine, Columbia 29208, USA
| | | | | | | | | | | |
Collapse
|
59
|
Decker RS, Decker ML, Behnke-Barclay MM, Janes DM, Clark WA. Mechanical and neurohumoral regulation of adult cardiocyte growth. Ann N Y Acad Sci 1995; 752:168-86. [PMID: 7755256 DOI: 10.1111/j.1749-6632.1995.tb17420.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- R S Decker
- Department of Medicine/Cardiology S 207, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
60
|
|
61
|
|
62
|
Clark WA, Rudnick SJ, Andersen LC, LaPres JJ. Myosin heavy chain synthesis is independently regulated in hypertrophy and atrophy of isolated adult cardiac myocytes. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47286-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
63
|
Simpson DG, Terracio L, Terracio M, Price RL, Turner DC, Borg TK. Modulation of cardiac myocyte phenotype in vitro by the composition and orientation of the extracellular matrix. J Cell Physiol 1994; 161:89-105. [PMID: 7929612 DOI: 10.1002/jcp.1041610112] [Citation(s) in RCA: 145] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cellular phenotype is the result of a dynamic interaction between a cell's intrinsic genetic program and the morphogenetic signals that serve to modulate the extent to which that program is expressed. In the present study we have examined how morphogenetic information might be stored in the extracellular matrix (ECM) and communicated to the neonatal heart cell (NHC) by the cardiac alpha 1 beta 1 integrin molecule. A thin film of type I collagen (T1C) was prepared with a defined orientation. This was achieved by applying T1C to the peripheral edge of a 100 mm culture dish. The T1C was then drawn across the surface of the dish in a continuous stroke with a sterile cell scraper and allowed to polymerize. When NHCs were cultured on this substrate, they spread, as a population, along a common axis in parallel with the gel lattice and expressed an in vivo-like phenotype. Individual NHCs displayed an elongated, rod-like shape and disclosed parallel arrays of myofibrils. These phenotypic characteristics were maintained for at least 4 weeks in primary culture. The evolution of this tissue-like organizational pattern was dependent upon specific interactions between the NHCs and the collagen-based matrix that were mediated by the cardiac alpha 1 beta 1 integrin complex. This conclusion was supported by a variety of experimental results. Altering the tertiary structure of the matrix or blocking the extracellular domains of either the cardiac alpha 1 or beta 1 integrin chain inhibited the expression of the tissue-like pattern of organization. Neither cell-to-cell contact or contractile function were necessary to induce the formation of the rod-like cell shape. However, beating activity was necessary for the assembly of a well-differentiated myofibrillar apparatus. These data suggest that the cardiac alpha 1 beta 1 integrin complex serves to detect and transduce phenotypic information stored within the tertiary structure of the surrounding matrix.
Collapse
Affiliation(s)
- D G Simpson
- Department of Developmental Biology and Anatomy, University of South Carolina Medical School, Columbia 29208
| | | | | | | | | | | |
Collapse
|
64
|
Volberg T, Geiger B, Citi S, Bershadsky AD. Effect of protein kinase inhibitor H-7 on the contractility, integrity, and membrane anchorage of the microfilament system. CELL MOTILITY AND THE CYTOSKELETON 1994; 29:321-38. [PMID: 7859295 DOI: 10.1002/cm.970290405] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Addition of protein kinase inhibitor H-7 leads to major changes in cell structure and dynamics. In previous studies [Citi, 1992: J. Cell Biol. 117:169-178] it was demonstrated that intercellular junctions in H-7-treated epithelial cells become calcium independent. To elucidate the mechanism responsible for this effect we have examined the morphology, dynamics, and cytoskeletal organization of various cultured cells following H-7-treatment. We show here that drug treated cells display an enhanced protrusive activity. Focal contact-attached stress fibers and the associated myosin, vinculin, and talin deteriorated in such cells while actin, vinculin, and N-cadherin associated with cell-cell junctions were retained. Furthermore, we demonstrate that even before these cytoskeletal changes become apparent, H-7 suppresses cellular contractility. Thus, short pretreatment with H-7 leads to strong inhibition of the ATP-induced contraction of saponin permeabilized cells. Comparison of H-7 effects with those of other kinase inhibitors revealed that H-7-induced changes in cell shape, protrusional activity, and actin cytoskeleton structure are very similar to those induced by selective inhibitor of myosin light chain kinase, KT5926. Specific inhibitors of protein kinase C (Ro31-8220 and GF109203X), on the other hand, did not induce similar alterations. These results suggest that the primary effect of H-7 on cell morphology, motility, and junctional interactions may be attributed to the inhibition of actomyosin contraction. This effect may have multiple effects on cell behavior, including general reduction in cellular contractility, destruction of stress fibers, and an increase in lamellipodial activity. It is proposed that this reduction in tension also leads to the apparent stability of cell-cell junctions in low-calcium medium.
Collapse
Affiliation(s)
- T Volberg
- Department of Chemical Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
65
|
Simpson DG, Carver W, Borg TK, Terracio L. Role of mechanical stimulation in the establishment and maintenance of muscle cell differentiation. INTERNATIONAL REVIEW OF CYTOLOGY 1994; 150:69-94. [PMID: 8169083 DOI: 10.1016/s0074-7696(08)61537-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- D G Simpson
- Department of Developmental Biology and Anatomy, School of Medicine, University of South Carolina, Columbia 29208
| | | | | | | |
Collapse
|