51
|
Abstract
Good fortune let me be an innocent child during World War II, a hopeful adolescent with encouraging parents during the years of German recovery, and a self-determined adult in a period of peace, freedom, and wealth. My luck continued as a scientist who could entirely follow his fancy. My mind was always set on understanding how things are made. At a certain point, I found myself confronted with the question of how mitochondria and organelles, which cannot be formed de novo, are put together. Intracellular transport of proteins, their translocation across the mitochondrial membranes, and their folding and assembly were the processes that fascinated me. Now, after some 30 years, we have wonderful insights, unimagined views of a complex and at the same time simple machinery and its workings. We have glimpses of how orderly processes are established in the cell to assemble from single molecules our beautiful mitochondria that every day make some 50 kg of ATP for each of us. At the same time, we have learned amazing lessons from the tinkering of evolution that developed mitochondria from bacteria.
Collapse
Affiliation(s)
- Walter Neupert
- Ludwig-Maximilians-Universität München and Max Planck Institute of Biochemistry, Martinsried D-82152, Germany
| |
Collapse
|
52
|
Dudek J, Rehling P, van der Laan M. Mitochondrial protein import: common principles and physiological networks. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:274-85. [PMID: 22683763 DOI: 10.1016/j.bbamcr.2012.05.028] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/24/2012] [Accepted: 05/28/2012] [Indexed: 11/28/2022]
Abstract
Most mitochondrial proteins are encoded in the nucleus. They are synthesized as precursor forms in the cytosol and must be imported into mitochondria with the help of different protein translocases. Distinct import signals within precursors direct each protein to the mitochondrial surface and subsequently onto specific transport routes to its final destination within these organelles. In this review we highlight common principles of mitochondrial protein import and address different mechanisms of protein integration into mitochondrial membranes. Over the last years it has become clear that mitochondrial protein translocases are not independently operating units, but in fact closely cooperate with each other. We discuss recent studies that indicate how the pathways for mitochondrial protein biogenesis are embedded into a functional network of various other physiological processes, such as energy metabolism, signal transduction, and maintenance of mitochondrial morphology. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Jan Dudek
- Abteilung Biochemie II, Universität Göttingen, 37073 Göttingen, Germany
| | | | | |
Collapse
|
53
|
Singha UK, Hamilton V, Duncan MR, Weems E, Tripathi MK, Chaudhuri M. Protein translocase of mitochondrial inner membrane in Trypanosoma brucei. J Biol Chem 2012; 287:14480-93. [PMID: 22408251 DOI: 10.1074/jbc.m111.322925] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Translocases of mitochondrial inner membrane (TIMs) are multiprotein complexes. The only Tim component so far characterized in kinetoplastid parasites such as Trypanosoma brucei is Tim17 (TbTim17), which is essential for cell survival and mitochondrial protein import. Here, we report that TbTim17 is present in a protein complex of about 1,100 kDa, which is much larger than the TIM complexes found in fungi and mammals. Depletion of TbTim17 in T. brucei impairs the mitochondrial import of cytochrome oxidase subunit IV, an N-terminal signal-containing protein. Pretreatment of isolated mitoplasts with the anti-TbTim17 antibody inhibited import of cytochrome oxidase subunit IV, indicating a direct involvement of the TbTim17 in the import process. Purification of the TbTim17-containing protein complex from the mitochondrial membrane of T. brucei by tandem affinity chromatography revealed that TbTim17 associates with seven unique as well as a few known T. brucei mitochondrial proteins. Depletion of three of these novel proteins, i.e. TbTim47, TbTim54, and TbTim62, significantly decreased mitochondrial protein import in vitro. In vivo targeting of a newly synthesized mitochondrial matrix protein, MRP2, was also inhibited due to depletion of TbTim17, TbTim54, and TbTim62. Co-precipitation analysis confirmed the interaction of TbTim54 and TbTim62 with TbTim17 in vivo. Overall, our data reveal that TbTim17, the single homolog of Tim17/22/23 family proteins, is present in a unique TIM complex consisting of novel proteins in T. brucei and is critical for mitochondrial protein import.
Collapse
Affiliation(s)
- Ujjal K Singha
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee 37208, USA
| | | | | | | | | | | |
Collapse
|
54
|
Duncan O, Murcha MW, Whelan J. Unique components of the plant mitochondrial protein import apparatus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:304-13. [PMID: 22406071 DOI: 10.1016/j.bbamcr.2012.02.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/21/2012] [Accepted: 02/23/2012] [Indexed: 10/28/2022]
Abstract
The basic mitochondrial protein import apparatus was established in the earliest eukaryotes. Over the subsequent course of evolution and the divergence of the plant, animal and fungal lineages, this basic import apparatus has been modified and expanded in order to meet the specific needs of protein import in each kingdom. In the plant kingdom, the arrival of the plastid complicated the process of protein trafficking and is thought to have given rise to the evolution of a number of unique components that allow specific and efficient targeting of mitochondrial proteins from their site of synthesis in the cytosol, to their final location in the organelle. This includes the evolution of two unique outer membrane import receptors, plant Translocase of outer membrane 20 kDa subunit (TOM20) and Outer membrane protein of 64 kDa (OM64), the loss of a receptor domain from an ancestral import component, Translocase of outer membrane 22 kDa subunit (TOM22), evolution of unique features in the disulfide relay system of the inter membrane space, and the addition of an extra membrane spanning domain to another ancestral component of the inner membrane, Translocase of inner membrane 17 kDa subunit (TIM17). Notably, many of these components are encoded by multi-gene families and exhibit differential sub-cellular localisation and functional specialisation. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Owen Duncan
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | | | | |
Collapse
|
55
|
Harsman A, Bartsch P, Hemmis B, Krüger V, Wagner R. Exploring protein import pores of cellular organelles at the single molecule level using the planar lipid bilayer technique. Eur J Cell Biol 2012; 90:721-30. [PMID: 21684628 DOI: 10.1016/j.ejcb.2011.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Proteins of living cells carry out their specialized functions within various subcellular membranes or aqueous spaces. Approximately half of all the proteins of a typical cell are transported into or across membranes. Targeting and transport to their correct subcellular destinations are essential steps in protein biosynthesis. In eukaryotic cells secretory proteins are transported into the endoplasmic reticulum before they are transported in vesicles to the plasma membrane. Virtually all proteins of the endosymbiotic organelles, chloroplasts and mitochondria, are synthesized on cytosolic ribosomes and posttranslationally imported. Genetic and biochemical techniques led to rather detailed knowledge on the subunit composition of the various protein transport complexes which carry out the membrane transport of the preproteins. Conclusive concepts on targeting and cytosolic transport of polypeptides emerged, while still few details on the molecular nature and mechanisms of the channel moieties of protein translocation complexes have been achieved. In this paper we will describe the history of how the individual subunits forming the channel pores of the chloroplast, mitochondrial and endoplasmic reticulum protein import machineries were identified and characterized by single channel electrophysiological techniques in planar bilayers. We will also highlight recent developments in the exploration of the molecular properties of protein translocating channels and the regulation of the diverse protein translocation systems using the planar bilayer technique.
Collapse
Affiliation(s)
- Anke Harsman
- University of Osnabrück, Faculty of Biology and Chemistry, Department of Biophysics, Barbarastr. 13, 49076 Osnabrück, Germany
| | | | | | | | | |
Collapse
|
56
|
Abstract
Depending on the organism, mitochondria consist approximately of 500-1,400 different proteins. By far most of these proteins are encoded by nuclear genes and synthesized on cytosolic ribosomes. Targeting signals direct these proteins into mitochondria and there to their respective subcompartment: the outer membrane, the intermembrane space (IMS), the inner membrane, and the matrix. Membrane-embedded translocation complexes allow the translocation of proteins across and, in the case of membrane proteins, the insertion into mitochondrial membranes. A small number of proteins are encoded by the mitochondrial genome: Most mitochondrial translation products represent hydrophobic proteins of the inner membrane which-together with many nuclear-encoded proteins-form the respiratory chain complexes. This chapter gives an overview on the mitochondrial protein translocases and the mechanisms by which they drive the transport and assembly of mitochondrial proteins.
Collapse
|
57
|
Lateral release of proteins from the TOM complex into the outer membrane of mitochondria. EMBO J 2011; 30:3232-41. [PMID: 21765393 DOI: 10.1038/emboj.2011.235] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 06/21/2011] [Indexed: 11/08/2022] Open
Abstract
The TOM complex of the outer membrane of mitochondria is the entry gate for the vast majority of precursor proteins that are imported into the mitochondria. It is made up by receptors and a protein conducting channel. Although precursor proteins of all subcompartments of mitochondria use the TOM complex, it is not known whether its channel can only mediate passage across the outer membrane or also lateral release into the outer membrane. To study this, we have generated fusion proteins of GFP and Tim23 which are inserted into the inner membrane and, at the same time, are spanning either the TOM complex or are integrated into the outer membrane. Our results demonstrate that the TOM complex, depending on sequence determinants in the precursors, can act both as a protein conducting pore and as an insertase mediating lateral release into the outer membrane.
Collapse
|
58
|
Peixoto PM, Dejean LM, Kinnally KW. The therapeutic potential of mitochondrial channels in cancer, ischemia-reperfusion injury, and neurodegeneration. Mitochondrion 2011; 12:14-23. [PMID: 21406252 DOI: 10.1016/j.mito.2011.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/23/2011] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
Abstract
Mitochondria communicate with the rest of the cell through channels located in their inner and outer membranes. Most of the time, the message is encoded by the flow of anions and cations e.g., through VDAC and PTP, respectively. However, proteins are also both imported and exported across the mitochondrial membranes e.g., through TOM and MAC, respectively. Transport through mitochondrial channels is exquisitely regulated and controls a myriad of processes; from energy production to cell death. Here, we examine the role of some of the mitochondrial channels involved in neurodegeneration, ischemia-reperfusion injury and cancer in the context of their potential as therapeutic targets.
Collapse
Affiliation(s)
- Pablo M Peixoto
- New York University, College of Dentistry, 345 East 24th Street, New York, NY 10010, United States
| | | | | |
Collapse
|
59
|
Gebert N, Ryan MT, Pfanner N, Wiedemann N, Stojanovski D. Mitochondrial protein import machineries and lipids: A functional connection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1002-11. [DOI: 10.1016/j.bbamem.2010.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 08/02/2010] [Accepted: 08/02/2010] [Indexed: 01/01/2023]
|
60
|
Harsman A, Krüger V, Bartsch P, Honigmann A, Schmidt O, Rao S, Meisinger C, Wagner R. Protein conducting nanopores. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:454102. [PMID: 21339590 DOI: 10.1088/0953-8984/22/45/454102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
About 50% of the cellular proteins have to be transported into or across cellular membranes. This transport is an essential step in the protein biosynthesis. In eukaryotic cells secretory proteins are transported into the endoplasmic reticulum before they are transported in vesicles to the plasma membrane. Almost all proteins of the endosymbiotic organelles chloroplasts and mitochondria are synthesized on cytosolic ribosomes and posttranslationally imported. Genetic, biochemical and biophysical approaches led to rather detailed knowledge on the composition of the translocon-complexes which catalyze the membrane transport of the preproteins. Comprehensive concepts on the targeting and membrane transport of polypeptides emerged, however little detail on the molecular nature and mechanisms of the protein translocation channels comprising nanopores has been achieved. In this paper we will highlight recent developments of the diverse protein translocation systems and focus particularly on the common biophysical properties and functions of the protein conducting nanopores. We also provide a first analysis of the interaction between the genuine protein conducting nanopore Tom40(SC) as well as a mutant Tom40(SC) (S(54 --> E) containing an additional negative charge at the channel vestibule and one of its native substrates, CoxIV, a mitochondrial targeting peptide. The polypeptide induced a voltage-dependent increase in the frequency of channel closure of Tom40(SC) corresponding to a voltage-dependent association rate, which was even more pronounced for the Tom40(SC) S54E mutant. The corresponding dwelltime reflecting association/transport of the peptide could be determined with t(off) approximately = 1.1 ms for the wildtype, whereas the mutant Tom40(SC) S54E displayed a biphasic dwelltime distribution (t(off)(-1) approximately = 0.4 ms; t(off)(-2) approximately = 4.6 ms).
Collapse
Affiliation(s)
- Anke Harsman
- Biophysics, Department of Biology/Chemistry, University of Osnabrueck, Germany
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Minor modifications and major adaptations: the evolution of molecular machines driving mitochondrial protein import. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:947-54. [PMID: 20659421 DOI: 10.1016/j.bbamem.2010.07.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 07/17/2010] [Accepted: 07/20/2010] [Indexed: 11/23/2022]
Abstract
Bacterial endosymbionts gave rise to mitochondria in a process that depended on the acquisition of protein import pathways. Modification and in some cases major re-tooling of the endosymbiont's cellular machinery produced these pathways, establishing mitochondria as organelles common to all eukaryotic cells. The legacy of this evolutionary tinkering can be seen in the homologies and structural similarities between mitochondrial protein import machinery and modern day bacterial proteins. Comparative analysis of these systems is revealing both possible routes for the evolution of the mitochondrial membrane translocases and a greater understanding of the mechanisms behind mitochondrial protein import. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Collapse
|
62
|
Peixoto PM, Ryu SY, Kinnally KW. Mitochondrial ion channels as therapeutic targets. FEBS Lett 2010; 584:2142-52. [PMID: 20178788 PMCID: PMC2872129 DOI: 10.1016/j.febslet.2010.02.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/12/2010] [Accepted: 02/16/2010] [Indexed: 12/31/2022]
Abstract
The study of mitochondrial ion channels changed our perception of these double-wrapped organelles from being just the power house of a cell to the guardian of a cell's fate. Mitochondria communicate with the cell through these special channels. Most of the time, the message is encoded by ion flow across the mitochondrial outer and inner membranes. Potassium, sodium, calcium, protons, nucleotides, and proteins traverse the mitochondrial membranes in an exquisitely regulated manner to control a myriad of processes, from respiration and mitochondrial morphology to cell proliferation and cell death. This review is an update on both well established and putative mitochondrial channels regarding their composition, function, regulation, and therapeutic potential.
Collapse
Affiliation(s)
| | - Shin-Young Ryu
- New York University College of Dentistry, New York, NY, 10002
| | | |
Collapse
|
63
|
Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N. Importing mitochondrial proteins: machineries and mechanisms. Cell 2009; 138:628-44. [PMID: 19703392 DOI: 10.1016/j.cell.2009.08.005] [Citation(s) in RCA: 1039] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Most mitochondrial proteins are synthesized on cytosolic ribosomes and must be imported across one or both mitochondrial membranes. There is an amazingly versatile set of machineries and mechanisms, and at least four different pathways, for the importing and sorting of mitochondrial precursor proteins. The translocases that catalyze these processes are highly dynamic machines driven by the membrane potential, ATP, or redox reactions, and they cooperate with molecular chaperones and assembly complexes to direct mitochondrial proteins to their correct destinations. Here, we discuss recent insights into the importing and sorting of mitochondrial proteins and their contributions to mitochondrial biogenesis.
Collapse
Affiliation(s)
- Agnieszka Chacinska
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
64
|
Kuhn S, Bussemer J, Chigri F, Vothknecht UC. Calcium depletion and calmodulin inhibition affect the import of nuclear-encoded proteins into plant mitochondria. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:694-705. [PMID: 19175770 DOI: 10.1111/j.1365-313x.2009.03810.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Many metabolic processes essential for plant viability take place in mitochondria. Therefore, mitochondrial function has to be carefully balanced in accordance with the developmental stage and metabolic requirements of the cell. One way to adapt organellar function is the alteration of protein composition. Since most mitochondrial proteins are nuclear encoded, fine-tuning of mitochondrial protein content could be achieved by the regulation of protein translocation. Here we present evidence that the import of nuclear-encoded mitochondrial proteins into plant mitochondria is influenced by calcium and calmodulin. In pea mitochondria, the calmodulin inhibitor ophiobolin A as well as the calcium ionophores A23187 and ionomycin inhibit translocation of nuclear-encoded proteins in a concentration-dependent manner, an effect that can be countered by the addition of external calmodulin or calcium, respectively. Inhibition was observed exclusively for proteins translocating into or across the inner membrane but not for proteins residing in the outer membrane or the intermembrane space. Ophiobolin A and the calcium ionophores further inhibit translocation into mitochondria with disrupted outer membranes, but their effect is not mediated via a change in the membrane potential across the inner mitochondrial membrane. Together, our results suggest that calcium/calmodulin influences the import of a subset of mitochondrial proteins at the inner membrane. Interestingly, we could not observe any influence of ophiobolin A or the calcium ionophores on protein translocation into mitochondria of yeast, indicating that the effect of calcium/calmodulin on mitochondrial protein import might be a plant-specific trait.
Collapse
|
65
|
Barksdale KA, Bijur GN. The basal flux of Akt in the mitochondria is mediated by heat shock protein 90. J Neurochem 2009; 108:1289-99. [PMID: 19187436 DOI: 10.1111/j.1471-4159.2009.05878.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Akt is a known client protein of heat shock protein 90 (HSP90). We have found that HSP90 is responsible for Akt accumulation in the mitochondria in unstimulated cells. Treatment of SH-SY5Y neuroblastoma cells and human embryonic kidney cells with the HSP90 inhibitors novobiocin and geldanamycin caused substantial decreases in the level of Akt in the mitochondria without affecting the level of Akt in the cytosol. Moreover, intracerebroventricular injection of novobiocin into mice brains decreased Akt levels in cortical mitochondria. Knockdown of HSP90 expression with short interfering RNA also caused a significant decrease in Akt levels in the mitochondria without affecting total Akt levels. Using a mitochondrial import assay it was found that Akt is transported into the mitochondria. Furthermore, it was found that the mitochondrial import of Akt was independent of Akt activation as both an unmodified Akt and constitutively active mutant Akt; both readily accumulated in the mitochondria in an HSP90-dependent manner. Interestingly, incubation of isolated mitochondria with constitutively active Akt caused visible alterations in mitochondrial morphology, including pronounced remodeling of the mitochondrial matrix. This effect was blocked when Akt was mostly excluded from the mitochondria with novobiocin treatment. These results indicate that the level of Akt in the mitochondria is dependent on HSP90 chaperoning activity and that Akt import can cause dynamic changes in mitochondrial configuration.
Collapse
Affiliation(s)
- Keri A Barksdale
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 35294-0017, USA
| | | |
Collapse
|
66
|
Protein transport machineries for precursor translocation across the inner mitochondrial membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:52-9. [DOI: 10.1016/j.bbamcr.2008.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 05/20/2008] [Accepted: 05/22/2008] [Indexed: 11/20/2022]
|
67
|
Gabriel K, Pfanner N. The mitochondrial machinery for import of precursor proteins. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2008; 390:99-117. [PMID: 17951683 DOI: 10.1007/978-1-59745-466-7_7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Mitochondria contain a small genome that codes for approx 1% of the total number of proteins that reside in the mitochondria. Hence, most mitochondrial proteins are encoded for by the nuclear genome. After transcription in the nucleus these proteins are synthesized by cytosolic ribosomes. Like proteins destined for other organellar compartments, mitochondrially destined proteins possess targeting signals within their primary or secondary structure that direct them to the organelle with the assistance of cytosolic factors. Very specialized and discriminatory protein translocase complexes in the mitochondrial membranes, intermembrane space, and matrix are then engaged for the translocation, sorting, integration, processing, and folding of the newly imported proteins. The principles of protein targeting into mitochondria have been and are still being unraveled, mostly by studies with the yeast Saccharomyces cerevisiae and the fungus Neurospora crassa. In this chapter the major principles of mitochondrial protein targeting as currently understood will be discussed as a foundation for the experimental methods discussed later in this volume.
Collapse
Affiliation(s)
- Kipros Gabriel
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Freiburg, Germany
| | | |
Collapse
|
68
|
The assembly pathway of the mitochondrial carrier translocase involves four preprotein translocases. Mol Cell Biol 2008; 28:4251-60. [PMID: 18458057 DOI: 10.1128/mcb.02216-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mitochondrial inner membrane contains preprotein translocases that mediate insertion of hydrophobic proteins. Little is known about how the individual components of these inner membrane preprotein translocases combine to form multisubunit complexes. We have analyzed the assembly pathway of the three membrane-integral subunits Tim18, Tim22, and Tim54 of the twin-pore carrier translocase. Tim54 displayed the most complex pathway involving four preprotein translocases. The precursor is translocated across the intermembrane space in a supercomplex of outer and inner membrane translocases. The TIM10 complex, which translocates the precursor of Tim22 through the intermembrane space, functions in a new posttranslocational manner: in case of Tim54, it is required for the integration of Tim54 into the carrier translocase. Tim18, the function of which has been unknown so far, stimulates integration of Tim54 into the carrier translocase. We show that the carrier translocase is built via a modular process and that each subunit follows a different assembly route. Membrane insertion and assembly into the oligomeric complex are uncoupled for each precursor protein. We propose that the mitochondrial assembly machinery has adapted to the needs of each membrane-integral subunit and that the uncoupling of translocation and oligomerization is an important principle to ensure continuous import and assembly of protein complexes in a highly active membrane.
Collapse
|
69
|
Becker T, Vögtle FN, Stojanovski D, Meisinger C. Sorting and assembly of mitochondrial outer membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:557-63. [PMID: 18423394 DOI: 10.1016/j.bbabio.2008.03.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 03/05/2008] [Accepted: 03/19/2008] [Indexed: 10/22/2022]
Abstract
In the last years the picture of protein import into the mitochondria has become much more complicated in terms of new components and new sorting pathways. These novel findings have also changed views concerning the biogenesis pathway of mitochondrial outer membrane proteins. In addition to proteins anchored with transmembrane alpha-helices, the endosymbiotic origin of the mitochondria has resulted in the presence of transmembrane beta-barrels in this compartment. The sorting and assembly pathway of outer membrane proteins involves three machineries: the translocase of the outer membrane (TOM complex) the sorting and assembly machinery (SAM complex) and the MDM complex (mitochondrial distribution and morphology). Here we review recent developments on the biogenesis pathways of outer membrane proteins with a focus on Tom proteins, the most intensively studied class of these precursor proteins.
Collapse
Affiliation(s)
- Thomas Becker
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung, Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | |
Collapse
|
70
|
Chapter 5 New Insights into the Mechanism of Precursor Protein Insertion into the Mitochondrial Membranes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 268:147-90. [DOI: 10.1016/s1937-6448(08)00805-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
|
71
|
Hwang DK, Claypool SM, Leuenberger D, Tienson HL, Koehler CM. Tim54p connects inner membrane assembly and proteolytic pathways in the mitochondrion. ACTA ACUST UNITED AC 2007; 178:1161-75. [PMID: 17893242 PMCID: PMC2064651 DOI: 10.1083/jcb.200706195] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tim54p, a component of the inner membrane TIM22 complex, does not directly mediate the import of inner membrane substrates but is required for assembly/stability of the 300-kD TIM22 complex. In addition, Δtim54 yeast exhibit a petite-negative phenotype (also observed in yeast harboring mutations in the F1Fo ATPase, the ADP/ATP carrier, mitochondrial morphology components, or the i–AAA protease, Yme1p). Interestingly, other import mutants in our strain background are not petite-negative. We report that Tim54p is not involved in maintenance of mitochondrial DNA or mitochondrial morphology. Rather, Tim54p mediates assembly of an active Yme1p complex, after Yme1p is imported via the TIM23 pathway. Defective Yme1p assembly is likely the major contributing factor for the petite-negativity in strains lacking functional Tim54p. Thus, Tim54p has two independent functions: scaffolding/stability for the TIM22 membrane complex and assembly of Yme1p into a proteolytically active complex. As such, Tim54p links protein import, assembly, and turnover pathways in the mitochondrion.
Collapse
Affiliation(s)
- David K Hwang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
72
|
Abstract
About 10% to 15% of the nuclear genes of eukaryotic organisms encode mitochondrial proteins. These proteins are synthesized in the cytosol and recognized by receptors on the surface of mitochondria. Translocases in the outer and inner membrane of mitochondria mediate the import and intramitochondrial sorting of these proteins; ATP and the membrane potential are used as energy sources. Chaperones and auxiliary factors assist in the folding and assembly of mitochondrial proteins into their native, three-dimensional structures. This review summarizes the present knowledge on the import and sorting of mitochondrial precursor proteins, with a special emphasis on unresolved questions and topics of current research.
Collapse
Affiliation(s)
- Walter Neupert
- Institut für Physiologische Chemie, Universität München, 81377 München, Germany.
| | | |
Collapse
|
73
|
Peixoto PMV, Graña F, Roy TJ, Dunn CD, Flores M, Jensen RE, Campo ML. Awaking TIM22, a Dynamic Ligand-gated Channel for Protein Insertion in the Mitochondrial Inner Membrane. J Biol Chem 2007; 282:18694-701. [PMID: 17462993 DOI: 10.1074/jbc.m700775200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aqueous channels are at the core of the translocase of the outer membrane (TOM) and the translocase of the inner membrane for the transport of preproteins (TIM23), the translocases mediating the transport of proteins across the outer and inner mitochondrial membranes. Yet, the existence of a channel associated to the translocase of the inner membrane for the insertion of multitopic protein (TIM22) complex has been arguable, as its function relates to the insertion of multispanning proteins into the inner membrane. For the first time, we report conditions for detecting a channel activity associated to the TIM22 translocase in organelle, i.e. intact mitoplasts. An internal signal peptide in the intermembrane space of mitochondria is a requisite to inducing this channel, which is otherwise silent. The channel showed slightly cationic and high conductance activity of 1000 pS with a predominant half-open substate. Despite their different composition, the channels of the three mitochondrial translocases were thus remarkably similar, in agreement with their common task as pores transiently trapping proteins en route to their final destination. The opening of the TIM22 channel was a step-up process depending on the signal peptide concentration. Interestingly, low membrane potentials kept the channel fully open, providing a threshold level of the peptide is present. Our results portray TIM22 as a dynamic channel solely active in the presence of its cargo proteins. In its fully open conformation, favored by the combined action of internal signal peptide and low membrane potential, the channel could embrace the in-transit protein. As insertion progressed and initial interaction with the signal peptide faded, the channel would close, sustaining its role as a shunt that places trapped proteins into the membrane.
Collapse
Affiliation(s)
- Pablo M V Peixoto
- Department of Biochemistry and Molecular Biology, University of Extremadura, 10071 Cáceres, Spain
| | | | | | | | | | | | | |
Collapse
|
74
|
Abstract
Although mitochondria are known to exhibit a wide variety of morphologies in different cells, the mechanism by which these shapes are established and regulated are largely unknown. Several potential shape-forming proteins have been recently identified. Some studies suggest that these proteins control shape by mediating attachment of mitochondria to the cytoskeleton, while other studies indicate that these proteins form part of a connection between the mitochondrial outer and inner membranes. Complicating matters, a recent study raises the possibility that one or more of these shape-forming proteins plays a direct role in the import and assembly of mitochondrial proteins synthesized in the cytosol.
Collapse
Affiliation(s)
- Robert E Jensen
- Department of Cell Biology, Johns Hopkins Medical School, 725 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
75
|
Fehrenbacher KL, Boldogh IR, Pon LA. A role for Jsn1p in recruiting the Arp2/3 complex to mitochondria in budding yeast. Mol Biol Cell 2005; 16:5094-102. [PMID: 16107558 PMCID: PMC1266410 DOI: 10.1091/mbc.e05-06-0590] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Although the Arp2/3 complex localizes to the leading edge of motile cells, endocytic structures, and mitochondria in budding yeast, the mechanism for targeting the Arp2/3 complex to different regions in the cell is not well understood. We find that Jsn1p, a member of the PUF family of proteins, facilitates association of Arp2/3 complex to yeast mitochondria. Jsn1p localizes to punctate structures that align along mitochondria, cofractionates with a mitochondrial marker protein during subcellular fractionation, and is both protease sensitive and carbonate extractable in isolated mitochondria. Thus, Jsn1p is a peripheral membrane protein that is associated with the outer leaflet of the mitochondrial outer membrane. Jsn1p colocalized and coimmunoprecipitated with mitochondria-associated Arc18p-GFP, and purified Arp2/3 complex bound to isolated TAP-tagged Jsn1p. Moreover, deletion of JSN1 reduces the amount of Arc18p-GFP that colocalizes and is recovered with mitochondria twofold, and jsn1Delta cells exhibited defects in mitochondrial morphology and motility similar to those observed in Arp2/3 complex mutants. Thus, Jsn1p has physical interactions with mitochondria-associated Arp2/3 complex and contributes to physical and functional association of the Arp2/3 complex with mitochondria.
Collapse
Affiliation(s)
- Kammy L Fehrenbacher
- Department of Anatomy and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
76
|
Abstract
The mitochondrion has developed an elaborate translocation system for the import of nuclear-coded proteins and the export of proteins coded on the mitochondrial genome. Precursor proteins contain targeting and sorting information to reach the mitochondrion, whereas the translocons recognize the information and direct the precursor to the correct compartment. The outer membrane contains the TOM (translocase of the outer membrane) complex for translocation and the SAM (sorting and assembly machinery) complex for assembly of outer membrane proteins with complex topologies. At the inner membrane, the TIM23 (translocase of the inner membrane) mediates the import of mitochondrial proteins with a typical N-terminal targeting sequence, and the TIM22 complex mediates the import of polytopic inner membrane proteins. Based on its prokaryotic origin, the inner membrane also contains several components that mediate the export and assembly of proteins from within the matrix. Together the translocation and assembly complexes coordinate assembly of the mitochondrion.
Collapse
Affiliation(s)
- Carla M Koehler
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA 90095-1569, USA.
| |
Collapse
|
77
|
Grigoriev SM, Muro C, Dejean LM, Campo ML, Martinez-Caballero S, Kinnally KW. Electrophysiological approaches to the study of protein translocation in mitochondria. ACTA ACUST UNITED AC 2004; 238:227-74. [PMID: 15364200 DOI: 10.1016/s0074-7696(04)38005-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Electrophysiological techniques have been integral to our understanding of protein translocation across various membranes, and, in particular, the mitochondrial inner and outer membranes. Descriptions of various methodologies (for example, patch clamp, planar bilayers, and tip dip, and their past and potential contributions) are detailed within. The activity of protein import channels of native mitochondrial inner and outer membranes can be studied by directly patch clamping mitochondria and mitoplasts (mitochondria stripped of their outer membrane by French pressing) from various genetically manipulated strains of yeast and mammalian tissue cultured cells. The channel activities of TOM, TIM23, and TIM22 complexes are compared with those reconstituted in proteoliposomes and with those of the recombinant proteins Tom40p, Tim23p, and Tim22p, which play major roles in protein translocation. Studies of the mechanism(s) and the role of channels in protein translocation in mitochondria are prototypes, as the same principles are likely followed in all biological membranes including the endoplasmic reticulum and chloroplasts. The ability to apply electrophysiological techniques to these channels is now allowing investigations into the role of mitochondria in diverse fields such as neurotransmitter release, long-term potentiation, and apoptosis.
Collapse
Affiliation(s)
- Sergey M Grigoriev
- College of Dentistry, Department of Basic Sciences, New York University, 345 East 24th Street, New York, New York 10010, USA
| | | | | | | | | | | |
Collapse
|
78
|
Brandner K, Rehling P, Truscott KN. The carboxyl-terminal third of the dicarboxylate carrier is crucial for productive association with the inner membrane twin-pore translocase. J Biol Chem 2004; 280:6215-21. [PMID: 15591051 DOI: 10.1074/jbc.m412269200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The carrier proteins of the mitochondrial inner membrane consist of three structurally related tandem repeats (modules). Several different, and in some cases contradictory, views exist on the role individual modules play in carrier transport across the mitochondrial membranes and how they promote protein insertion into the inner membrane. Thus, by use of specific translocation intermediates, we performed a detailed analysis of carrier biogenesis and assessed the physical association of carrier modules with the inner membrane translocation machinery. Here we have reported that each module of the dicarboxylate carrier contains sufficient targeting information for its transport across the outer mitochondrial membrane. The carboxyl-terminal module possesses major targeting information to facilitate the direct binding of the carrier protein to the inner membrane twin-pore translocase and subsequent insertion into the inner membrane in a membrane potential-dependent manner. We concluded that, in this case, a single structural repeat can drive inner membrane insertion, whereas all three related units contribute targeting information for outer membrane translocation.
Collapse
Affiliation(s)
- Katrin Brandner
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
79
|
Chacinska A, Pfannschmidt S, Wiedemann N, Kozjak V, Sanjuán Szklarz LK, Schulze-Specking A, Truscott KN, Guiard B, Meisinger C, Pfanner N. Essential role of Mia40 in import and assembly of mitochondrial intermembrane space proteins. EMBO J 2004; 23:3735-46. [PMID: 15359280 PMCID: PMC522791 DOI: 10.1038/sj.emboj.7600389] [Citation(s) in RCA: 345] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Accepted: 08/09/2004] [Indexed: 11/08/2022] Open
Abstract
Mitochondria import nuclear-encoded precursor proteins to four different subcompartments. Specific import machineries have been identified that direct the precursor proteins to the mitochondrial outer membrane, inner membrane or matrix, respectively. However, a machinery dedicated to the import of mitochondrial intermembrane space (IMS) proteins has not been found so far. We have identified the essential IMS protein Mia40 (encoded by the Saccharomyces cerevisiae open reading frame YKL195w). Mitochondria with a mutant form of Mia40 are selectively inhibited in the import of several small IMS proteins, including the essential proteins Tim9 and Tim10. The import of proteins to the other mitochondrial subcompartments does not depend on functional Mia40. The binding of small Tim proteins to Mia40 is crucial for their transport across the outer membrane and represents an initial step in their assembly into IMS complexes. We conclude that Mia40 is a central component of the protein import and assembly machinery of the mitochondrial IMS.
Collapse
Affiliation(s)
- Agnieszka Chacinska
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Freiburg, Germany
| | - Sylvia Pfannschmidt
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Freiburg, Germany
- Fakultät für Biologie, Universität Freiburg, Freiburg, Germany
| | - Nils Wiedemann
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Freiburg, Germany
| | - Vera Kozjak
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Freiburg, Germany
- Fakultät für Biologie, Universität Freiburg, Freiburg, Germany
| | - Luiza K Sanjuán Szklarz
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Freiburg, Germany
- Fakultät für Biologie, Universität Freiburg, Freiburg, Germany
| | | | - Kaye N Truscott
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Freiburg, Germany
| | - Bernard Guiard
- Centre de Génétique Moléculaire, Laboratoire propre du CNRS associeté à l'Université Pierre et Marie Curie, Gif-sur-Yvette, France
| | - Chris Meisinger
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Freiburg, Germany
| | - Nikolaus Pfanner
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Freiburg, Germany
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg im Breisgau, Germany. Tel.: +49 761 203 5224; Fax: +49 761 203 5261; E-mail:
| |
Collapse
|
80
|
Rehling P, Brandner K, Pfanner N. Mitochondrial import and the twin-pore translocase. Nat Rev Mol Cell Biol 2004; 5:519-30. [PMID: 15232570 DOI: 10.1038/nrm1426] [Citation(s) in RCA: 263] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peter Rehling
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany.
| | | | | |
Collapse
|
81
|
Dunn CD, Jensen RE. Suppression of a defect in mitochondrial protein import identifies cytosolic proteins required for viability of yeast cells lacking mitochondrial DNA. Genetics 2004; 165:35-45. [PMID: 14504216 PMCID: PMC1462761 DOI: 10.1093/genetics/165.1.35] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The TIM22 complex, required for the insertion of imported polytopic proteins into the mitochondrial inner membrane, contains the nonessential Tim18p subunit. To learn more about the function of Tim18p, we screened for high-copy suppressors of the inability of tim18Delta mutants to live without mitochondrial DNA (mtDNA). We identified several genes encoding cytosolic proteins, including CCT6, SSB1, ICY1, TIP41, and PBP1, which, when overproduced, rescue the mtDNA dependence of tim18Delta cells. Furthermore, these same plasmids rescue the petite-negative phenotype of cells lacking other components of the mitochondrial protein import machinery. Strikingly, disruption of the genes identified by the different suppressors produces cells that are unable to grow without mtDNA. We speculate that loss of mtDNA leads to a lowered inner membrane potential, and subtle changes in import efficiency can no longer be tolerated. Our results suggest that increased amounts of Cct6p, Ssb1p, Icy1p, Tip41p, and Pbp1p help overcome the problems resulting from a defect in protein import.
Collapse
Affiliation(s)
- Cory D Dunn
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
82
|
Mühlenbein N, Hofmann S, Rothbauer U, Bauer MF. Organization and Function of the Small Tim Complexes Acting along the Import Pathway of Metabolite Carriers into Mammalian Mitochondria. J Biol Chem 2004; 279:13540-6. [PMID: 14726512 DOI: 10.1074/jbc.m312485200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tim9, Tim10a, and Tim10b are members of the family of small Tim proteins located in the intermembrane space of mammalian mitochondria. In yeast, members of this family act along the TIM22 import pathway during import of metabolite carriers and other integral inner membrane proteins. Here, we show that the human small proteins form two distinct hetero-oligomeric complexes. A 70-kDa complex that contains Tim9 and Tim10a and a Tim9-10a-10b that is part of a higher molecular weight assembly of 450 kDa. This distribution among two complexes suggests Tim10b to be the functional homologue of yeast Tim12. Both human complexes are tightly associated with the inner membrane and, compared with yeast, soluble 70-kDa complexes appear to be completely absent in the intermembrane space. Thus, the function of soluble 70-kDa complexes as trans-site receptors for incoming carrier proteins is not conserved from lower to higher eukaryotes. During import, the small Tim complexes directly interact with human adenine nucleotide translocator (ANT) in transit in a metal-dependent manner. For insertion of carrier preproteins into the inner membrane, the human small Tim proteins directly interact with human Tim22, the putative insertion pore of the TIM22 translocase. However, in contrast to yeast, only a small fraction of Tim9-Tim10a-Tim10b complex is in a stable association with Tim22. We conclude that different mechanisms and specific requirements for import and insertion of mammalian carrier preproteins have evolved in higher eukaryotes.
Collapse
Affiliation(s)
- Nicole Mühlenbein
- Institut für Diabetesforschung, Akademisches Krankenhaus München-Schwabing, Kölner Platz 1, D-80804 München, Germany
| | | | | | | |
Collapse
|
83
|
Youngman MJ, Hobbs AEA, Burgess SM, Srinivasan M, Jensen RE. Mmm2p, a mitochondrial outer membrane protein required for yeast mitochondrial shape and maintenance of mtDNA nucleoids. ACTA ACUST UNITED AC 2004; 164:677-88. [PMID: 14981098 PMCID: PMC2172170 DOI: 10.1083/jcb.200308012] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mitochondrial outer membrane protein, Mmm1p, is required for normal mitochondrial shape in yeast. To identify new morphology proteins, we isolated mutations incompatible with the mmm1-1 mutant. One of these mutants, mmm2-1, is defective in a novel outer membrane protein. Lack of Mmm2p causes a defect in mitochondrial shape and loss of mitochondrial DNA (mtDNA) nucleoids. Like the Mmm1 protein (Aiken Hobbs, A.E., M. Srinivasan, J.M. McCaffery, and R.E. Jensen. 2001. J. Cell Biol. 152:401–410.), Mmm2p is located in dot-like particles on the mitochondrial surface, many of which are adjacent to mtDNA nucleoids. While some of the Mmm2p-containing spots colocalize with those containing Mmm1p, at least some of Mmm2p is separate from Mmm1p. Moreover, while Mmm2p and Mmm1p both appear to be part of large complexes, we find that Mmm2p and Mmm1p do not stably interact and appear to be members of two different structures. We speculate that Mmm2p and Mmm1p are components of independent machinery, whose dynamic interactions are required to maintain mitochondrial shape and mtDNA structure.
Collapse
Affiliation(s)
- Matthew J Youngman
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
84
|
Chew O, Lister R, Qbadou S, Heazlewood JL, Soll J, Schleiff E, Millar AH, Whelan J. A plant outer mitochondrial membrane protein with high amino acid sequence identity to a chloroplast protein import receptor. FEBS Lett 2004; 557:109-14. [PMID: 14741350 DOI: 10.1016/s0014-5793(03)01457-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have identified a novel protein on the outer membrane of Arabidopsis thaliana mitochondria. This protein displays 67% sequence identity with the 64 kDa translocase of the outer envelope membrane of chloroplasts (Toc). A mitochondrial localisation for this protein was determined by (i). its presence in the proteome of highly purified Arabidopsis mitochondria, (ii). Western blot analysis with antibodies to Toc64 from pea that indicate its presence in Arabidopsis and pea mitochondria, (iii). green fluorescent protein fusion proteins that indicate an exclusive mitochondrial localisation for this protein, and (iv). expression profiles in various tissue types and during development that are more similar to translocase of the outer mitochondrial membrane components than to chloroplastic Toc components. Thus Arabidopsis mitochondria contain a protein with high sequence identity to a plastid protein import receptor.
Collapse
Affiliation(s)
- Orinda Chew
- Plant Molecular Biology Group, School of Biomedical and Chemical Sciences, The University of Western Australia, 35 Stirling Highway, Nedlands, WA 6009, Australia
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Hoppins SC, Nargang FE. The Tim8-Tim13 complex of Neurospora crassa functions in the assembly of proteins into both mitochondrial membranes. J Biol Chem 2004; 279:12396-405. [PMID: 14722057 DOI: 10.1074/jbc.m313037200] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Tim8 and Tim13 proteins in yeast are known to exist in the mitochondrial intermembrane space and to form a hetero-oligomeric complex involved in the import of the mitochondrial inner membrane protein Tim23, the central component of the TIM23 translocase. Here, we have isolated tim8 and tim13 mutants in Neurospora crassa and have shown that mitochondria lacking the Tim8-Tim13 complex were deficient in the import of the outer membrane beta-barrel proteins Tom40 and porin. Cross-linking studies showed that the Tom40 precursor contacts the Tim8-Tim13 complex. The complex is involved at an early point in the Tom40 assembly pathway because cross-links can only be detected during the initial stages of Tom40 import. In mitochondria lacking the Tim8-Tim13 complex, the Tom40 precursor appears in a previously characterized early intermediate of Tom40 assembly more slowly than in wild type mitochondria. Thus, our data suggest a model in which one of the first steps in Tom40 assembly may be interaction with the Tim8-Tim13 complex. As in yeast, the N. crassa Tim23 precursor was imported inefficiently into mitochondria lacking the Tim8-Tim13 complex when the membrane potential was reduced. Tim23 import intermediates could also be cross-linked to the complex, suggesting a dual role for the Tim8-Tim13 intermembrane space complex in the import of proteins found in both the outer and inner mitochondrial membranes.
Collapse
Affiliation(s)
- Suzanne C Hoppins
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | |
Collapse
|
86
|
Vasiljev A, Ahting U, Nargang FE, Go NE, Habib SJ, Kozany C, Panneels V, Sinning I, Prokisch H, Neupert W, Nussberger S, Rapaport D. Reconstituted TOM core complex and Tim9/Tim10 complex of mitochondria are sufficient for translocation of the ADP/ATP carrier across membranes. Mol Biol Cell 2003; 15:1445-58. [PMID: 14668492 PMCID: PMC363167 DOI: 10.1091/mbc.e03-05-0272] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Precursor proteins of the solute carrier family and of channel forming Tim components are imported into mitochondria in two main steps. First, they are translocated through the TOM complex in the outer membrane, a process assisted by the Tim9/Tim10 complex. They are passed on to the TIM22 complex, which facilitates their insertion into the inner membrane. In the present study, we have analyzed the function of the Tim9/Tim10 complex in the translocation of substrates across the outer membrane of mitochondria. The purified TOM core complex was reconstituted into lipid vesicles in which purified Tim9/Tim10 complex was entrapped. The precursor of the ADP/ATP carrier (AAC) was found to be translocated across the membrane of such lipid vesicles. Thus, these components are sufficient for translocation of AAC precursor across the outer membrane. Peptide libraries covering various substrate proteins were used to identify segments that are bound by Tim9/Tim10 complex upon translocation through the TOM complex. The patterns of binding sites on the substrate proteins suggest a mechanism by which portions of membrane-spanning segments together with flanking hydrophilic segments are recognized and bound by the Tim9/Tim10 complex as they emerge from the TOM complex into the intermembrane space.
Collapse
Affiliation(s)
- Andreja Vasiljev
- Institut für Physiologische Chemie der Universität München, D-81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Polcicová K, Kempná P, Sabová L, Gavurníková G, Polcic P, Kolarov J. The delivery of ADP/ATP carrier protein to mitochondria probed by fusions with green fluorescent protein and ?-galactosidase. FEMS Yeast Res 2003; 4:315-21. [PMID: 14654436 DOI: 10.1016/s1567-1356(03)00170-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The import of proteins into mitochondria is an essential process, largely investigated in vitro with isolated mitochondria and radioactively labeled precursors. In this study, we used intact cells and fusions with genes encoding two reporter proteins, green fluorescent protein (GFP) and beta-galactosidase (lacZ), to probe the import of the ADP/ATP carrier (AAC). Typical mitochondrial fluorescence was observed with AAC-GFP fusions containing at least one complete transmembrane loop. This confirms the results of in vitro analysis demonstrating that an internal targeting signal was present in each one of the three transmembrane loops of the carrier. The fusions of AAC fragments to beta-galactosidase demonstrated that the targeting signal was capable of delivering the reporter molecule to the mitochondrial surface, but not to internalize it to a protease-inaccessible location. The delivery to a protease-inaccessible location required the presence of more distal sequences present within the third (C-terminal) transmembrane loop of the carrier molecule. The results of our study provide an alternative for investigation in a natural context of mitochondrial protein import in cells when the isolation of intact, functional mitochondria is not achievable.
Collapse
Affiliation(s)
- Katarína Polcicová
- Department of Biochemistry, Faculty of Sciences, Comenius University, Bratislava, Slovak Republic
| | | | | | | | | | | |
Collapse
|
88
|
Senapin S, Chen XJ, Clark-Walker GD. Transcription of TIM9, a new factor required for the petite-positive phenotype of Saccharomyces cerevisiae, is defective in spt7 mutants. Curr Genet 2003; 44:202-10. [PMID: 12923659 DOI: 10.1007/s00294-003-0437-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2003] [Revised: 07/22/2003] [Accepted: 07/22/2003] [Indexed: 11/25/2022]
Abstract
TIM9 has been identified as an additional novel gene required for the petite-positive phenotype in Saccharomyces cerevisiae. tim9-1 was obtained through a screen for respiratory-deficient strains that are unable to survive in the absence of mitochondrial DNA. A point mutation found in the tim9-1 coding region converts codon 71 from Gly to Arg. Examination of genes encoding other Tim components indicated that the temperature-conditional alleles of essential genes for the viability of S. cerevisiae, TIM9, TIM10 and TIM12, are required for petite survival, while deletion of TIM8 and TIM13 has no notable effect on petite cell viability. Northern hybridization results suggested that the Spt7 transcription factor is strictly involved in transcription of TIM9 and that the synergistic lethality of tim9-1/spt7Delta dual mutations is due to the deficiency of TIM9 transcription together with defective function of the tim9-1 protein.
Collapse
Affiliation(s)
- Saengchan Senapin
- Molecular Genetics and Evolution Group, Research School of Biological Sciences, The Australian National University, GPO Box 475, ACT 2601 Canberra, Australia
| | | | | |
Collapse
|
89
|
Allen S, Lu H, Thornton D, Tokatlidis K. Juxtaposition of the two distal CX3C motifs via intrachain disulfide bonding is essential for the folding of Tim10. J Biol Chem 2003; 278:38505-13. [PMID: 12882976 DOI: 10.1074/jbc.m306027200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The TIM10 complex, composed of the homologous proteins Tim10 and Tim9, chaperones hydrophobic proteins inserted at the mitochondrial inner membrane. A salient feature of the TIM10 complex subunits is their conserved "twin CX3C" motif. Systematic mutational analysis of all cysteines of Tim10 showed that their underlying molecular defect is impaired folding (demonstrated by circular dichroism, aberrant homo-oligomer formation, and thiol trapping assays). As a result of defective folding, clear functional consequences were manifested in (i) complex formation with Tim9, (ii) chaperone activity, and (iii) import into tim9ts mitochondria lacking both endogenous Tim9 and Tim10. The organization of the four cysteines in intrachain disulfides was determined by trypsin digestion and mass spectrometry. The two distal CX3C motifs are juxtaposed in the folded structure and disulfide-bonded to each other rather than within each other, with an inner cysteine pair connecting Cys44 with Cys61 and an outer pair between Cys40 and Cys65. These cysteine pairs are not equally important for folding and assembly; mutations of the inner Cys are severely affected and form wrong, non-native disulfides, in contrast to mutations of the outer Cys that can still maintain the native inner disulfide pair and display weaker functional defects. Taken together these data reveal this specific intramolecular disulfide bonding as the crucial mechanism for Tim10 folding and show that the inner cysteine pair has a more prominent role in this process.
Collapse
Affiliation(s)
- Scott Allen
- School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | | | | | | |
Collapse
|
90
|
Boldogh IR, Nowakowski DW, Yang HC, Chung H, Karmon S, Royes P, Pon LA. A protein complex containing Mdm10p, Mdm12p, and Mmm1p links mitochondrial membranes and DNA to the cytoskeleton-based segregation machinery. Mol Biol Cell 2003; 14:4618-27. [PMID: 13679517 PMCID: PMC266777 DOI: 10.1091/mbc.e03-04-0225] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Previous studies indicate that two proteins, Mmm1p and Mdm10p, are required to link mitochondria to the actin cytoskeleton of yeast and for actin-based control of mitochondrial movement, inheritance and morphology. Both proteins are integral mitochondrial outer membrane proteins. Mmm1p localizes to punctate structures in close proximity to mitochondrial DNA (mtDNA) nucleoids. We found that Mmm1p and Mdm10p exist in a complex with Mdm12p, another integral mitochondrial outer membrane protein required for mitochondrial morphology and inheritance. This interpretation is based on observations that 1) Mdm10p and Mdm12p showed the same localization as Mmm1p; 2) Mdm12p, like Mdm10p and Mmm1p, was required for mitochondrial motility; and 3) all three proteins coimmunoprecipitated with each other. Moreover, Mdm10p localized to mitochondria in the absence of the other subunits. In contrast, deletion of MMM1 resulted in mislocalization of Mdm12p, and deletion of MDM12 caused mislocalization of Mmm1p. Finally, we observed a reciprocal relationship between the Mdm10p/Mdm12p/Mmm1p complex and mtDNA. Deletion of any one of the subunits resulted in loss of mtDNA or defects in mtDNA nucleoid maintenance. Conversely, deletion of mtDNA affected mitochondrial motility: mitochondria in cells without mtDNA move 2-3 times faster than mitochondria in cells with mtDNA. These observations support a model in which the Mdm10p/Mdm12p/Mmm1p complex links the minimum heritable unit of mitochondria (mtDNA and mitochondrial outer and inner membranes) to the cytoskeletal system that drives transfer of that unit from mother to daughter cells.
Collapse
Affiliation(s)
- Istvan R Boldogh
- Department of Anatomy and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
91
|
Abstract
Protein import into mitochondria is inhibited by protons (IC(50) pH 6.5). The channels of the import machinery were examined to further investigate this pH dependence. TOM and TIM23 are the protein translocation channels of the mitochondrial outer and inner membranes, respectively, and their single channel behaviors at various pHs were determined using patch-clamp techniques. While not identical, increasing H(+) concentration decreases the open probability of both TIM23 and TOM channels. The pattern of the pH dependences of protein import and channel properties suggests TIM23 open probability can limit import of nuclear-encoded proteins into the matrix of yeast mitochondria.
Collapse
Affiliation(s)
- Sergey M Grigoriev
- Division of Basic Sciences, New York University College of Dentistry, New York, NY 10010, USA
| | | | | |
Collapse
|
92
|
Dyall SD, Lester DC, Schneider RE, Delgadillo-Correa MG, Plümper E, Martinez A, Koehler CM, Johnson PJ. Trichomonas vaginalis Hmp35, a putative pore-forming hydrogenosomal membrane protein, can form a complex in yeast mitochondria. J Biol Chem 2003; 278:30548-61. [PMID: 12766161 DOI: 10.1074/jbc.m304032200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An abundant integral membrane protein, Hmp35, has been isolated from hydrogenosomes of Trichomonas vaginalis. This protein has no known homologue and exists as a stable 300-kDa complex, termed HMP35, in membranes of the hydrogenosome. By using blue native gel electrophoresis, we found the HMP35 complex to be stable in 2 m NaCl and up to 5 m urea. The endogenous Hmp35 protein was largely protease-resistant. The protein has a predominantly beta-sheet structure and predicted transmembrane domains that may form a pore. Interestingly, the protein has a high number of cysteine residues, some of which are arranged in motifs that resemble the RING finger, suggesting that they could be coordinating zinc or another divalent cation. Our data show that Hmp35 forms one intramolecular but no intermolecular disulfide bonds. We have isolated the HMP35 complex by expressing a His-tagged Hmp35 protein in vivo followed by purification with nickel-agarose beads. The purified 300-kDa complex consists of mostly Hmp35 with lesser amounts of 12-, 25-27-, and 32-kDa proteins. The stoichiometry of proteins in the complex indicates that Hmp35 exists as an oligomer. Hmp35 can be targeted heterologously into yeast mitochondria, despite the lack of homology with any yeast protein, demonstrating the compatibility of mitochondrial and hydrogenosomal protein translocation machineries.
Collapse
Affiliation(s)
- Sabrina D Dyall
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, California 90095-1489 and the Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095-1569
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Dyall SD, Agius SC, De Marcos Lousa C, Trezeguet V, Tokatlidis K. The dynamic dimerization of the yeast ADP/ATP carrier in the inner mitochondrial membrane is affected by conserved cysteine residues. J Biol Chem 2003; 278:26757-64. [PMID: 12740376 DOI: 10.1074/jbc.m302700200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ADP/ATP carrier (AAC) that facilitates the translocation of ATP made in mitochondria is inserted at the inner mitochondrial membrane by the TIM10-TIM22 protein import system. Here we addressed the state of the AAC precursor during insertion (stage IV of import) and identified residues of the carrier important for dimerization. By a combination of (i) import of a mix of His-tagged and untagged versions of AAC either 35S-labeled or unlabeled, (ii) import of a tandem covalent dimer AAC into wild-type mitochondria, and (iii) import of monomeric AAC into mitochondria expressing only the tandem covalent dimer AAC, we found that the stage IV intermediate is a monomer, and this stage is probably the rate-limiting step of insertion in the membrane. Subsequent dimerization occurs extremely rapidly (within less than a minute). The incoming monomer dimerizes with monomeric endogenous AAC suggesting that the AAC dimer is very dynamic. Conserved Cys residues were found not to affect insertion significantly, but they are crucial for the dimerization process to obtain a functional carrier.
Collapse
Affiliation(s)
- Sabrina D Dyall
- School of Biological Sciences, 2.205 Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | | | | | | | | |
Collapse
|
94
|
Abstract
Apart from a handful of proteins encoded by the mitochondrial genome, most proteins residing in this organelle are nuclear-encoded and synthesised in the cytosol. Thus, delivery of proteins to their final destination depends on a network of specialised import components that form at least four main translocation complexes. The import machinery ensures that proteins earmarked for the mitochondrion are recognised and delivered to the organelle, transported across membranes, sorted to the correct compartment and assisted in overcoming energetic barriers.
Collapse
Affiliation(s)
- Kaye N Truscott
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany.
| | | | | |
Collapse
|
95
|
Bauer MF, Hofmann S, Neupert W. Import of mitochondrial proteins. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 53:57-90. [PMID: 12512337 DOI: 10.1016/s0074-7742(02)53004-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Matthias F Bauer
- Institute of Clinical Chemistry, Molecular Diagnostics and Mitochondrial Genetics and Diabetes Research Group, Academic Hospital Munich-Schwabing Kölner Platz, D-80804 München, Germany
| | | | | |
Collapse
|
96
|
Wiedemann N, Kozjak V, Prinz T, Ryan MT, Meisinger C, Pfanner N, Truscott KN. Biogenesis of yeast mitochondrial cytochrome c: a unique relationship to the TOM machinery. J Mol Biol 2003; 327:465-74. [PMID: 12628251 DOI: 10.1016/s0022-2836(03)00118-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The import of cytochrome c into the mitochondrial intermembrane space is not understood at a mechanistic level. While the precursor apocytochrome c can insert into protein-free lipid bilayers, the purified translocase of the outer membrane (TOM) complex supports the translocation of apocytochrome c into proteoliposomes. We report an in organello analysis of cytochrome c import into yeast mitochondria from wild-type cells and different mutants cells, each defective in one of the seven Tom proteins. The import of cytochrome c is not affected by removal of the receptor Tom20 or Tom70. Moreover, neither the transfer protein Tom5 nor the assembly factors Tom6 and Tom7 are needed for import of cytochrome c. When the general import pore (GIP)-protein Tom40 is blocked, the import of cytochrome c is moderately affected. Mitochondria lacking the central receptor and organizing protein Tom22 contain greatly reduced levels of cytochrome c. We conclude that up to two components of the TOM complex, Tom22 and possibly the GIP, are involved in the biogenesis of cytochrome c.
Collapse
Affiliation(s)
- Nils Wiedemann
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, Germany
| | | | | | | | | | | | | |
Collapse
|
97
|
Abstract
Tim9p is located in the soluble 70-kDa Tim9p-Tim10p complex and the 300-kDa membrane complex in the mitochondrial TIM22 protein import system, which mediates the import of inner membrane proteins. From a collection of temperature-sensitive mutants, we have analyzed two in detail. tim9-3 contained two mutations and tim9-19 contained one mutation, all located near the 'twin CX3C' motif that is conserved in the small Tim proteins. As a result, the import components in the tim9-3 mutant mitochondria were severely reduced and assembled into complexes of aberrant sizes. Protein import was severely reduced and Tim9p and Tim10p binding to in vitro imported ADP/ATP carrier was impaired. In the tim9-19 mutant mitochondria, the 300-kDa membrane complex was assembled, although the soluble 70-kDa Tim9p-Tim10p complex was not detectable. Protein import was decreased only two-fold. When coexpressed in Escherichia coli, tim9-19 and TIM10 proteins failed to assemble into a 70-kDa complex. Our findings suggest that residues near the 'twin CX3C' motif are important for the assembly of Tim9p in both the Tim9p-Tim10p complex and the 300-kDa membrane complex.
Collapse
Affiliation(s)
- Danielle Leuenberger
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| | | | | | | |
Collapse
|
98
|
Rehling P, Pfanner N, Meisinger C. Insertion of hydrophobic membrane proteins into the inner mitochondrial membrane--a guided tour. J Mol Biol 2003; 326:639-57. [PMID: 12581629 DOI: 10.1016/s0022-2836(02)01440-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Only a few mitochondrial proteins are encoded by the organellar genome. The majority of mitochondrial proteins are nuclear encoded and thus have to be transported into the organelle from the cytosol. Within the mitochondrion proteins have to be sorted into one of the four sub-compartments: the outer or inner membranes, the intermembrane space or the matrix. These processes are mediated by complex protein machineries within the different compartments that act alone or in concert with each other. The translocation machinery of the outer membrane is formed by a multi-subunit protein complex (TOM complex), that is built up by signal receptors and the general import pore (GIP). The inner membrane houses two multi-subunit protein complexes that each handles special subsets of mitochondrial proteins on their way to their final destination. According to their primary function these two complexes have been termed the pre-sequence translocase (or TIM23 complex) and the protein insertion complex (or TIM22 complex). The identification of components of these complexes and the analysis of the molecular mechanisms underlying their function are currently an exciting and fast developing field of molecular cell biology.
Collapse
Affiliation(s)
- Peter Rehling
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Str. 7, D-79104 Freiburg, Germany.
| | | | | |
Collapse
|
99
|
Abstract
During the evolution of mitochondria from free-living alpha-proteobacteria, many bacterial genes were transferred into the nuclear genome of eukaryotic cells. This required the development of both targeting signals on the respective polypeptides and protein translocation machineries (translocases) in the mitochondrial membranes. Most components of these translocases have no obvious homologies to bacterial proteins or proteins found in other organelles. Membrane integration of many inner membrane proteins, however, apparently occurs via a conserved sorting pathway whose components and characteristics resemble protein translocation in bacteria. Consistent with this, the topogenic signals of these mitochondrial inner membrane proteins mimic those of bacterial proteins. The requirement for post-translational transport to their final destination has placed considerable constraints on the evolution of mitochondrial protein sequences.
Collapse
Affiliation(s)
- Johannes M Herrmann
- Institut für Physiologische Chemie, Universität München, Butenandtstrasse 5, 81377 Münich, Germany.
| |
Collapse
|
100
|
Truscott KN, Wiedemann N, Rehling P, Müller H, Meisinger C, Pfanner N, Guiard B. Mitochondrial import of the ADP/ATP carrier: the essential TIM complex of the intermembrane space is required for precursor release from the TOM complex. Mol Cell Biol 2002; 22:7780-9. [PMID: 12391147 PMCID: PMC134741 DOI: 10.1128/mcb.22.22.7780-7789.2002] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2002] [Revised: 08/05/2002] [Accepted: 08/16/2002] [Indexed: 11/20/2022] Open
Abstract
The mitochondrial intermembrane space contains a protein complex essential for cell viability, the Tim9-Tim10 complex. This complex is required for the import of hydrophobic membrane proteins, such as the ADP/ATP carrier (AAC), into the inner membrane. Different views exist about the role played by the Tim9-Tim10 complex in translocation of the AAC precursor across the outer membrane. For this report we have generated a new tim10 yeast mutant that leads to a strong defect in AAC import into mitochondria. Thereby, for the first time, authentic AAC is stably arrested in the translocase complex of the outer membrane (TOM), as shown by antibody shift blue native electrophoresis. Surprisingly, AAC is still associated with the receptors Tom70 and Tom20 when the function of Tim10 is impaired. The nonessential Tim8-Tim13 complex of the intermembrane space is not involved in the transfer of AAC across the outer membrane. These results define a two-step mechanism for translocation of AAC across the outer membrane. The initial insertion of AAC into the import channel is independent of the function of Tim9-Tim10; however, completion of translocation across the outer membrane, including release from the TOM complex, requires a functional Tim9-Tim10 complex.
Collapse
Affiliation(s)
- Kaye N Truscott
- Institut für Biochemie und Molekularbiologie. Fakultät für Biologie, Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|